当前位置: 仪器信息网 > 行业主题 > >

气相手性苯丙醛

仪器信息网气相手性苯丙醛专题为您提供2024年最新气相手性苯丙醛价格报价、厂家品牌的相关信息, 包括气相手性苯丙醛参数、型号等,不管是国产,还是进口品牌的气相手性苯丙醛您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相手性苯丙醛相关的耗材配件、试剂标物,还有气相手性苯丙醛相关的最新资讯、资料,以及气相手性苯丙醛相关的解决方案。

气相手性苯丙醛相关的论坛

  • 【求助】苯丙醛的熔点

    我在网上查到苯丙醛的熔点一说:-42;另一说:47。我在Beilstein上查到一说:47;另一说:151。不知道哪一种说法是正确的。

  • 【求助】丙醛、三羟基甲基乙烷的标准

    [size=5]各位高手: 请问大家有没有丙醛、三羟基甲基乙烷的相关标准?我找了许多网站,都没有找到,有没有哪位高人有丙醛和三羟基甲基乙烷的企业标准、国内外的标准可以支援一下啊?谢谢帮忙,我将重谢![/size]

  • 【求助】选择怎么样的展开剂分离丙烯醛和3-羟基丙醛

    我用丙烯醛合成3-羟基丙醛,硫酸做催化剂,产物用Na2CO3中和里面的酸。然后用产物做薄层色谱,希望哪位高手能提供一种展开剂能分离出来,我用正丁醇跑了下,就是一条线,正丁醇:正己烷=1:1也是一条线。还有的想问的是两种溶剂不互溶应是不能做展开剂的,如正己醇和水不互溶,是不是有什么方法加入 些其他的溶剂得一正己醇和水还有其他溶液的混合剂呢?是不是样品要从新处理下,当然产物肯定还有其他的副产物的,不过比较小了。

  • 【求助】(急)选择怎么样的展开剂分离丙烯醛和3-羟基丙醛

    本人第一次做薄层色谱,爬板很多不懂。请高手们指点一二。本人一混合物里含丙烯醛和3-羟基丙醛。然后用产物做薄层色谱,希望哪位高手能提供一种展开剂能分离出来,我用正丁醇跑了下,就是一条线,正丁醇:正己烷=1:1也是一条线。还有的想问的是两种溶剂不互溶应是不能做展开剂的,如正己醇和水不互溶,是不是有什么方法加入 些其他的溶剂得一正己醇和水还有其他溶液的混合剂呢?是不是样品要从新处理下,当然产物肯定还有其他的副产物的,不过比较小了。

  • 请教GC做铃兰醛的具体参数和指标?

    用的科创的GC9800。FID检测器。求具体的参数。柱温什么的?怎么才可以有更好的分离?  【中文名称】铃兰醛,对叔丁基甲位甲基苯丙醛 http://imgsrc.baidu.com/baike/abpic/item/42e89c2610fd123b8a82a10b.jpg  【英文名称】Lilial Lilestralis   【结构或分子式】C14H20   【相对分子量或原子量】 204.3   【CAS】80-54-6   【密度】0.941-0.946   【沸点】279℃(0.8kPa)   【闪点(℃)】100℃   【折射率】1.503-1.507   【性状】无色至淡黄色液体。   【香气】有清新的铃兰、百合兔耳草似的花香香气,香气较清新透发,易扩散。其香气比兔耳草醛更为温柔、细腻和优雅。   【稳定性】稳定,不导致变色。铃兰醛遇空气或时久,易被氧化为白色粉末状铃兰酸,但对香气影响甚小。   【溶解情况】不溶于水,溶于酒精   【用途】广泛用于百合、丁香、玉兰、茶花以及素心兰、东方型香型日用香精。   【制备或来源】   主要由对叔丁基苯甲醛和丙醛的缩合,然后选择加氢制得。未见有存在于自然界的报道。

  • 【原创】【天瑞论文奖+第三届原创】加压毛细管电色谱法分离1-甲基-3-苯基丙胺对映体

    维权声明:本文为sunpengwjh 及几位同仁合力原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任摘要:运用毛细管电色谱(pCEC)模式,以羟丙基-β-环糊精(HP-β-CD)作为手性选择剂,对1-甲基-3-苯基丙胺对映体进行手性分离。考察了手性选择剂浓度、流动相配比、背景电解质pH值、柱温和分离电压对分离的影响,结果使1-甲基-3-苯基丙胺对映体达到了基线分离, 该方法重现性好、简便、快捷。关键词:加压毛细管电色谱(pCEC);1-甲基-3-苯基丙胺; 对映体拆分; 羟丙基-β-环糊精(HP-β-CD)

  • [分享]:手性色谱柱知识介绍(zz)

    手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级-偶级作用、π-π作用、静电作用、疏水作用或空间作用。手性分离效果是多种相互作用共同作用的结果。这些相互作用通过影响包埋复合物的形成,特殊位点与分析物的键合等而改变手性分离结果。由于这种作用力较微弱,因此需要仔细调节、优化流动相和温度以达到最佳分离效果。。在手性拆分中,温度的影响是很显著的。低温增加手性识别能力,但可能引起色谱峰变宽而导致分离变差。因此确定手性分析方法过程中要考虑柱温的影响,确定最优柱温。 迄今为止,尚没有一种类似十八烷基键合硅胶(ODS)柱的普遍适用的手性柱。不同化学性质的异构体不得不采用不同类型的手性柱,而市售的手性色谱柱通常价格昂贵,因此如何根据化合物的分子结构选择适用的手性色谱柱是非常重要的。根据手性固定相和溶剂的相互作用机制,Irving Wainer首次提出了手性色谱柱的分类体系:第1类:通过氢键、π-π作用、偶级-偶级作用形成复合物。第2类:既有类型1中的相互作用,又存在包埋复合物。此类手性色谱柱中典型的是由纤维素及其衍生物制成的手性色谱柱。第3类:基于溶剂进入手性空穴形成包埋复合物。这类手性色谱柱中最典型的是由Armstrong教授开发的环糊精型手性柱[2],另外冠醚型手性柱和螺旋型聚合物,如聚(苯基甲基甲基丙烯酸酯)形成的手性色谱柱也属于此类。第4类:基于形成非对映体的金属络合物,是由Davankov开发的手性分离技术,也称为手性配位交换色谱(CLEC)。第5类:蛋白质型手性色谱柱。手性分离是基于疏水相互作用和极性相互作用实现。但由于市场上可选择的手性色谱柱越来越多,此分类系统有时很难将一些手性柱归纳进去。因此参考Irving Wainer的分类方法,根据固定相的化学结构,将手性色谱柱分为以下几种:刷(Brush)型或称为Prikle型纤维素(Cellulose)型环糊精(Cyclodextrin)型大环抗生素(Macrocyclic antibiotics)型蛋白质(Protein)型配位交换(|Ligand exchange)型冠醚(Crown ethers)型刷型:刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类中的第一种类型。刷型手性固定相分为π电子接受型和π电子提供型两类。最常见的π电子接受型固定相是由(R)-N-3,5-二硝基苯甲酰苯基甘氨酸键合到γ-氨丙基硅胶上的制成。此类刷型手性色谱柱可以分离许多可提供π电子的芳香族化合物,或用氯化萘酚等对化合物进行衍生化后进行手性分离。π电子供给型固定相常见的是共价结合到硅胶上的萘基氨基酸衍生物,这种固定相要求被分析物具有π电子接受基团,例如二硝基苯甲酰基。醇类、羧酸类、胺类等,可以用氯化二硝基苯甲酰、异腈酸盐、或二硝基苯胺等进行衍生化后,用π电子供给型固定相达到手性分离。刷型固定相的优势在于其易于合成。合成方法在Bill Prikle的著作中有详细的说明。另外,刷型固定相具有高的容量因子,因此具有高的选择因子。它的不利之处在于它仅对芳香族化合物有效,有时不得不进行衍生化反应。但值得一提的是,这种衍生化反应是非手性衍生反应,所以不存在手性衍生的问题。刷型手性色谱使用的流动相基本是极性弱的有机溶剂,这对于制备色谱来讲未必是缺点。近来,刷型固定相出现了π电子供给和接受基因的混合固定相。如:WHELK-O和BLAMO,及α-BURKE-Ⅱ固定相。α-BURKE-Ⅱ相十分适用于β-阻断剂的手性分离。典型的流动相为二氯甲烷-乙醇-甲醇混合物,比例为85:10:5。加入10mM醋酸铵可以调整保留时间。SS BLAMO Ⅱ,同时具有π电子供体区和受体区,形成手性裂缝,因此对于某些分子具有很高选择性。纤维素型:纤维素型手性色谱柱的分离作用包括相互吸引的作用及形成包埋复合物。它们属于Wainer分类中的第2种类型。市售的手性色谱柱为微晶三醋酸基、三安息香酸基、三苯基氨基酸盐纤维素固定相。很多化合物可通过此类型的色谱柱得到分离。这种类型的手性色谱柱种类也很齐全。流动相使用低极性溶剂,典型的流动相为乙醇-己烷混合物。但特别要注意由于氯可以使纤维素从硅胶上脱落,因此要确保流动相中无含氯溶剂。这种类型的手性色谱柱主要的制造商之一是日本的Daicel公司,他们生产的纤维素酯和氨基甲酸纤维素柱可以分离多种生物碱和药物。特别值得一提的是OD柱。在某手性化合物异构体的分离中,分离度超过了25,这意味着载样量可以很高,对于制备十分有利。纤维素固定相的每个单元都为螺旋型,而且这种螺旋结构还存在极性作用、π-π作用及形成包埋复合物等手性分离因素。淀粉代替纤维素制成的此类手性柱显示了和纤维素柱不同的选择性,但是稳定性较差。因为淀粉是水溶性的,因此流动相中必须绝对无水才能保证柱子寿命。目前此类型的柱子能分离80%左右可能面临到的所有手性化合物。此类柱子通常用于正相系统,用正己烷-乙醇,正己烷-异丙醇混合溶剂为流动相。OD柱也可用于反相的情况,但流动相必须含有高浓度的高氯酸盐缓冲液,以防止固定相溶解。即使这样,使用较长时间以后色谱柱也难免要受到损害,但是在某些情况下使用反相系统分离效果要优于使用正相系统。

  • 【转帖】手性分析经验谈 总结详细!

    关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。  手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。  手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。  一、 手性柱  手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是 OD- H,很多文献中都有报导。大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、IB和 IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。  关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。我们买了几十只手性色谱柱,但是型号相对很少,平时几乎只用两只色谱柱:AD-H和IC,但是拿到手里的手性化合物除去溶解性和紫外吸收的原因之外,几乎所有的样品都能用这两只色谱柱分开,我们主要的手段是在流动相上下功夫,通过流动相的调整来达到只用一两只柱子去解决遇到的所有手性分析问题,而大赛璐的专家讲座时给我们提供的思路是流动相变化相对较少,更多的是分不开就换柱子。细想一下也不难理解,厂家手里最不缺的就是柱子,为了分析一个样品他们可以试用所有型号的手性柱,但是对我们用户来说,一只柱子动辄一两万,相信没有哪个用户能有厂家那样的魄力和实力,一下子拿出那么多型号的手性柱来为一个样品的分离做筛选。  二、 样品前处理  说到手性分析,样品的前处理非常重要。首先是消旋体样品的普通液相纯度问题,样品的纯度低了,看到手性柱上分离开的几个峰让人无从判断究竟对映异构体有没有分离开,分离开的几个峰哪个是杂质峰哪个是对映异构体的峰,所以样品的纯度要尽量的高,一般我们的要求是样品的纯度能达到90%以上,纯度低的样品需要做进一步的纯化。关于对映异构体峰的判断,现在比较好的手段是使用旋光检测器,在色谱图上可以直接看到分离开的两峰吸收一正一负,再有就是使用DAD 检测器,通过看两峰的紫外吸收是否一致来做判断。  样品前处理的另外一项是稀释问题,这个问题最容易被忽视,处理不好会直接导致实验失败。我们都知道反相样品稀释的时候需要尽量使用流动相做稀释剂,且稀释剂里水含量要尽量高一些,这个要求对于手性分析同样适用,正相的手性分析要求样品稀释溶剂尽量要求和流动相所采用的溶剂种类一致,且起洗脱作用的醇类溶剂含量尽量要低,最好不要超过流动相里醇类的含量,否则会导致有些样品的分离度降低,使原本能达到基线分离的样品不能基线分离,严重的甚至使样品峰分叉甚至不成峰,因为在手性分离里起洗脱作用的醇类能够促进样品在管路里的扩散,我做过一个化合物,手性分析的时候只能用正己烷做稀释剂,只要稀释样品添加了醇类的溶剂样品就不能达到基线分离。有时候我们从实验室拿到的样品是溶液,使用的可能是DMF、甲苯、二氯甲烷或者乙酸乙酯等常见的溶剂,这些溶剂对于涂覆型的填料都不能使用,即使含量很低也会对固定相造成伤害,这样的样品必须除掉溶剂。有时候样品不溶于流动相,我们又不得不使用这些溶剂,可以先用少量这类溶剂超声将样品溶掉,再加流动相稀释,对于键合相手性柱这样做完全没有问题,但有时我们不得以将此方法用到涂覆型手性柱上,就要牺牲手性柱寿命来换分离。  很多时候我们拿到手的样品比较难溶,毕竟乙醇和异丙醇不是非常好的溶剂,即便是二氯甲烷、四氢呋喃、DMF或者DMAC也会遇到溶解性比较差的样品,通常此类样品分子式都相对比较复杂,分子量偏大,结构中含有带N的显碱性基团和显酸性基团,此类样品可以通过稀释样品时加酸或者碱来促进其溶解,但是加入的酸或碱含量不宜太高,浓度不宜过大。  很多化合物为了增加其稳定性,都要做成盐来保存和转移,常见的包括盐酸盐、三氟乙酸盐、甲基磺酸盐、酒石酸盐以及其它更复杂的盐,这些盐类也是可以直接拿来做手性分析的,无论是正相还是反相都可以,只要样品能用合适的稀释剂溶解,当然样品游离出来做手性分析会更好。  再有就是很多样品因为液相没有紫外吸收、气相不能气化而不能直接做手性分析,这时就要衍生,衍生最多的样品可能就是氨基酸了。氨基酸衍生方法可以是给氨基上衍生CBZ做液相,或者是用HCl(HBr)的乙醇(甲醇、异丙醇)溶液加三氟乙酸酐将羧基衍生成酯,氨基衍生成酰胺来做气相。最近比较流行的氨基酸衍生方法是用苯异硫氰酸酯(也叫异硫氰酸苯酯)衍生氨基来做手性分析,此方法当然也可以用来做普通的氨基酸液相纯度分析,这个衍生方法要求化合物分子结构中的 N原子上至少连接有一个H,所以只要是分子结构中含有带有至少一个H原子的N结构,化合物都可以用此方法衍生。需要指出的是,做手性分析的原则是能不衍生就不衍生,因为衍生有可能会引起样品手性纯度下降,即消旋。  总结一下,手性分析中使用的消旋体纯度一定要好,最好能配合DAD检测器或者是旋光检测器来做分析方法开发。样品在稀释时尽量用流动相相同种类的溶剂做稀释剂,稀释剂中醇类的含量不宜超过流动相中醇类的含量,难溶的样品尽量不要用其它的溶剂,一方面可能会伤害柱子,另一方面容易导致峰形变差,但实际操作过程中很多时候为了达到分析目的,还不得不牺牲柱子的寿命,而且即便是使用纯的乙醇或者是异丙醇做稀释剂也不是不可以,只要是稀释剂和流动相能够互溶就行。  三、 流动相  手性分析很关键的一项是流动相的选择,手性分析一般都采用正相,使用最多的流动相是正己烷、正庚烷、乙醇和异丙醇这四种,其中起洗脱作用的流动相是乙醇和异丙醇,正己烷和正庚烷用来调节流动相的洗脱强度。正己烷和正庚烷对于样品分离没有什么太大的影响,不会改变选择性和分离度,通常都可以混用,不过正庚烷比正己烷对人体的伤害要小很多,但价格是后者的一倍,所以欧美的很多大制药公司多使用正庚烷,而国内多使用正己烷。乙醇和异丙醇对样品的分离起关键的作用,不同的醇有不同的选择性,改变醇的种类可以改变选择性,常用的醇类是乙醇和异丙醇,甲醇不能使用是因为它和正己烷、正庚烷不互溶,叔丁醇粘度太大,一般作为添加剂配合乙醇或者异丙醇少量使用,提供特殊的选择性,通常能起到意想不到的效果。一般情况下分析手性样品,很多人推荐首选异丙醇,但是我喜欢首选乙醇,因为乙醇气味比异丙醇好一点,

  • 【求助】求水中乙醛和丙烯醛的气相法

    国标中关于气相法测定乙醛和丙烯醛,用的是填充柱,直接进50ul水样测定。问题如下:1.气相法可以直接进水样吗?是因为用了耐水的填充柱?2.若只有毛细柱,乙醛沸点:20.8℃,丙烯醛沸点:52℃,他们可否通过顶空方法进行测定?求教!谢谢!

  • HPLC法在手性药物中的应用(手性柱)

    随着食品安全曝光出的问题 药品的安全问题国家也开始重视了 其中手性药物最容易钻空子 下面的资料有助于大家对手性药物分离有所了解 由于药物对映体之间在药理、毒理及吸收等方面存在较大差异,因此,建立分离和测定对映体化合物的方法十分重要。HPLC法在分离和测定药物对映体的常用方法,包括手性衍生化试剂、手性流动相和手性固定相在药物对映体分离测定中的应用。对对映体化合物的分析鉴定有指导意义。  手性化合物的拆分是当前分析化学中最为活跃的领域之一,自然界中的许多化合物都是有旋光性的,而合成手性药物中大多(88%)是外消旋体,许多手性药物的对映体在生理过程中显示了不同生理活性。据研究反应停的致畸作用主要是由于其(S)-(-)异构体所致。因此,建立高专属性、高灵敏度、高分离度的对映体拆分和测定方法,对提高药物的活性、减小副作用,深入研究药物的作用机理等具有重要的理论和实际意义。  对映体化合物之间除对偏振光的偏转方向不同外,具有完全相同的理化性质,因而其分离比较困难。传统的拆分方法有分步结晶、微生物和酶消化法等,或者用手性衍生化试剂将其转化成非对映体,然后根据其物理性质不同进行分离,但这些方法难于进行微量的分离和测定。80年代以来,随着快速、准确、微量的光学异构体的HPLC拆分及测定方法的建立和发展,使HPLC迅速成为药物对映体分离和测定最为广泛应用的方法。  手性HPLC拆分法是以现代HPLC技术为基础,引入手性环境使对映异构体间呈现物理特征的差异而进行分离。通常分间接法和直接法,前者是对映体混合物以手性试剂作柱前衍生,形成一非对映体,然后以常规(偶也见手性)固定相分离。后者是直接以手性流动相(CMP)或手性固定相(CSP)直接进行分离。  1、手性衍生化试剂法  手性衍生化试剂(CDR)法是在分子间引入手性中心,其产物为非对映异构体(diastereomer,DSTM),从而进行分离。  下列情况通常选用CDR法进行拆分:(1)不宜直接拆分。添加某些基团,以增加色谱系统的选择性。如游离胺类在CSP上往往是颇弱的色谱性质,生成中性化合物后则获显著改善。(2)提高紫外或荧光检测的效果。刘雁鸣等用NBD-(L)-APY荧光试剂柱前衍生化测定布洛芬对映体,提高了检测灵敏度。对CDR的要求通常为:溶质分子至少有一个(多个时其性质各不相同)功能团供衍生(多为-NH2,-OH或-COOH)。光学活性试剂必需是手性高纯度;反应条件必须温和、简便;宜附有发色或荧光基团。  目前,已有许多商品化的CDR可供选用,常见的CDR可分为以下几类:(1)异硫氰酸酯和异氰酸酯类此类试剂易与大多数醇类及胺类化合物反应进而被分离,如麻黄素类,肾上腺素类,肾上腺素拮抗剂,儿茶酚胺类等。王亚芹等采用S( )-1-(1-苯基)乙基异氰酸酯为衍生化试剂分析了血浆中普罗帕酮的对应体,并研究了其在健康人体内的药代动力学。邱宗荫等用乙酰葡萄糖异硫氰酸酯(GITC)为柱前CDR,以反相HPLC法测定血浆中地佐西平对映体的血药浓度,线性范围为5~200μg.L-1。陈冰等用GITC为柱前CDR,用反相HPLC法测定血浆中普罗帕酮对映体的血药浓度,适合用于临床药动药效学研究。(2)萘衍生物类由于此类化合物有利于提高立体选择性和检测灵敏度,因此萘的各种衍生物用作手性试剂十分普遍。Wainer等选用萘甲醛(NDH)为手性试剂,与其缩合成恶唑烷衍生物,成功地分离了麻黄碱、4-甲氧基麻黄碱、伪麻黄碱。Bhatti等用S-( )-1-(1-萘基)-乙基异氰酸酯为CDR,用HPLC法测定了人血浆中美托洛尔对映体浓度。(3)酰氯与磺酰氯类此类试剂可与化合物直接缩合,或与样品反应后,再引入其它基团,合成更有利于拆分与检测的衍生物。Sallustio等以SOCl2与芳丙酸类消炎镇痛药如2-苯丙酸、酮洛芬及非诺洛芬的血浆样品提取物反应,然后再与R-2-苯乙胺成酰胺衍生物,产物以NP(Sil,乙腈∶二氯甲烷,5∶95)分离,异构体均可完全拆分。(4)光学活性氨基酸类为最早采用的色谱手性试剂,为提高反应活性和定量回收率,常将羧基转化成酰氯、酸酐等。此类试剂广泛用于胺、羧酸及醇类药物,尤其是氨基酸类,其衍生化法多基于肽合成原理。  本类方法要求手性药物具有活泼反应基团,同时两个对映体的衍生化速度应相同,否则会引起非对映体与原对映体的组成产生差异,另外要求手性衍生化试剂光学纯度高,反应要迅速、彻底,因此应用受到一定限制。  2、直接方法  直接方法是在分子间引入手性环境,即采用手性流动相或手性固定相不经柱前衍生化直接分离药物对映体的方法,该法近年发展迅速。  2.1 手性流动相拆分法向流动相中加入一手性试剂,它与溶质常以氢键、离子键或金属离子的配位健生成非对映体缔合物,从而以常规HPLC固定相分离。分离机理为:(1)在流动相中形成立体选择性复合物;(2)手性流动相添加剂(CMPA)与固定相之间发生作用,形成动态的CSP,该法可通过改变CMPA的种类、浓度及流动相的组成而优化分离条件。  常用的CMPA主要有:(1)环糊精类主要是α-、β-和γ-环糊精及其衍生物。Eto等用β-环糊精测定了数种巴比妥类和乙内酰脲类药物在生物体液中的对映体浓度。谢剑炜等用β-环糊精手性流动相添加剂,用反相HPLC法首次抗胆碱能药物盐酸戊乙奎醚、盐酸苯环壬酯和盐酸卡马特灵,3个手性药物4对对映体完全达到基线分离。(2)手性离子对试剂,karlsso等以N-苯甲酰甘氨酰脯氨酸作为CMPA,分离测定了血浆中(R)-和(S)-普萘洛尔。与HPLC中的离子对法的差别主要在于前者是手性离子对试剂,由于CMPA价格昂贵,其体系稳定性差等原因,应用受到一定的限制。范柏等用L-苯丙氨酸为配合剂,Cu2 为配合离子,用简便的手性配合交换反相HPLC法成功拆分了氧氟沙星对映体,手性流动相为6mmol.L-1L(D)-苯丙氨酸,3mmol.L-1硫酸铜-甲醇(83∶17)。  2.2 手性固定相拆分法由于CSP技术的飞速发展,采用CSP分离对映体化合物的方法应用越来越广泛。目前,商品化的手性柱已有数十种,却无一具有类似ODS柱那样普遍的适应性,且价格昂贵。随着手性识别机理的深入研究,新方法、新理论不断提出,预计将会有价廉、适应性广的CSP面世。(1)环糊精键合相α-、β-和γ-环糊精(CD)是分别由6~8个葡萄糖单位通过α-(1、4)连接构成的环状低聚糖,CD-CSP通过共价键将CD分子键合到硅胶上,形成对水稳定的键合相。β-CD键合相的立体选择性较好,应用最多。β-CD柱上分离较好的化合物通常其手性中心为分子中环状结构的一部分,或至少与两个SP2杂化碳原子相连。Berthod等采用商品的β-CD柱(CydobondⅠ)和γ-CD柱(CydobondⅡ)拆分了25种不同类型的手性药物,其中对映体之间达基线分离的有11种。(2)吸附络合物形成相要想实现手性识别,手性化合物与CSP之间至少应存在三种相互作用,称为三点识别模式。这些作用可以是氢键、静电作用、疏水作用、π-π作用、偶极-偶极作用或空间作用,一般通过将某些氨基酸,如(R)-或(S)-苯基甘氨酸等分子中的α-氨基与3,5-二硝基苯甲酰氯反应后,离子或共价键合到氨丙基硅胶上而制得。该类固定相通常按正相方式操作,其在药物分析中应用较少,后来,RUSTUM等发现也可使用反相分离系统,从而扩展了其应用范围。(3)手性聚合物相用不同方法将纤维素衍生物涂复于大孔硅胶上而制得,在此类固定相上得到成功分离的化合物大都含有苯基、羰基、腈基、磺酰基或羟基等。目前,纤维素—三(3.5一二甲基苯基氨基甲酸酯)手性固定相应用较多。例如,用三(3,5-二甲苯基氨基甲酸酯)纤维素衍生物为CSP对血浆中普萘洛尔对映体的测定。Shibukawa等人采用3,5-二甲苯基氨基甲酸酯衍生化的直链淀粉手性固定相(AD-CSP)分离了维拉帕米及其代谢产物去甲维拉帕米的对映体,方法的线性范围为2.5~100μg.L-1。(4)蛋白质键合相以离子键(或共价键)和蛋白交联作用将蛋白质固定于硅胶上,利用蛋白质分子与手性化合物分子间的立体选择性作用,进行药物对映体分离,其机理一般有氢键、静电作用、疏水作用、离子对和离子交换作用。将α1-酸性糖蛋白(α1-AGP)固定到硅胶上而制得AGP柱可直接分离许多碱性、酸性及中性药物对映体。钟大放等用CHIRAL-AGP柱,选择不同流动相分别拆分了SFZ-47、KMBZ-009和地丙苯酮3种药物的4对对映体,并研究了SFZ-47在家犬体内的药代动力学。Schmidt等人以α1-酸性糖蛋白为CSP测定人体血浆中美沙酮对映体的含量。Orn等以α1-酸性糖蛋白为CS

  • 【求助】气相可以分离手性物质吗?(用FID)

    [size=4]各位前辈有做过这方面的经验吗?现在我用一般的5%苯基和95%二甲基聚硅氧烷柱(如DB-5)做α-氨基丙醇测定,可是就是出不了峰,其它的手性分离就不用说了。不知哪里出问题了?条件:30m*0.25mm*μm,柱温:100,气化:200;检测:200,用FID检测。PS:氨基丙醇性质,沸点:160,易溶于水与乙醇,水剂呈碱性。[/size]

  • 迪马产品应用有奖问答10.25(已完结)——15种醛/酮化合物-DNPH衍生物分析

    迪马产品应用有奖问答10.25(已完结)——15种醛/酮化合物-DNPH衍生物分析

    10,抽取5个版友);中奖名单:999youran(注册ID:999youran)牛一牛(注册ID:v2700892)zengzhengce163(注册ID:zengzhengce163)莫名其妙(注册ID:moyueqiu)mengzhaocheng(注册ID:mengzhaocheng)http://ng1.17img.cn/bbsfiles/images/2016/10/201610251534_615082_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610251534_615083_1610895_3.jpg【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================15种醛/酮化合物-DNPH衍生物分析方法:HPLC基质:标准溶液应用编号:101486化合物:甲醛-DNPH;乙醛-DNPH;丙烯醛-DNPH;丙酮-DNPH;丙醛-DNPH;巴豆醛-DNPH;丁醛-DNPH;苯甲醛-DNPH;异戊醛-DNPH;戊醛-DNPH;o-甲基苯甲醛-DNPH;m-甲基苯甲醛-DNPH;p-甲基苯甲醛-DNPH;2,5-二甲基苯甲醛-DNPH;己醛-DNPH固定相:Diamonsil C18(2)色谱柱/前处理小柱:Diamonsil 5μm C18(2), 250 x 4.6mm色谱条件:色谱柱规格:250×4.6 mm,5 μm 流动相A:甲醇 流动相B:水 梯度:0-35 min,流动相A由70%升高到80%,35-40 min,流动相A恒定在80% 流速:1.0 mL/min 柱温:35 ℃ 检测器:UV 360 nm 进样体积:20 μL关键字:羰基类化合物,醛/酮类化合物,环境,室内气体,汽车,DNPH衍生物,Diamonsil C18(2),钻石二代谱图:http://www.dikma.com.cn/Public/Uploads/images/Analysis%20of%2015%20Derivatized%20Carbonyl%20Compounds.JPG图例:1. 甲醛-DNPH;2. 乙醛-DNPH;3. 丙烯醛-DNPH;4. 丙酮-DNPH;5. 丙醛-DNPH;6. 巴豆醛-DNPH;7. 丁醛-DNPH;8. 苯甲醛-DNPH;9. 异戊醛-DNPH;10. 戊醛-DNPH;11. o-甲基苯甲醛-DNPH;12. m-甲基苯甲醛-DNPH;13. p-甲基苯甲醛-DNPH;14. 2,5-二甲基苯甲醛-DNPH;15. 己醛-DNPH

  • 有做过丙二醛 2,4-二硝基苯肼柱前衍生检测的?

    当前开展丙二醛 2,4-二硝基苯肼柱前衍生液相色谱310nm检测,流动相0.2%乙酸-乙腈(1:1),结果只有 2,4-二硝基苯肼峰,未见明显衍生产物峰,没有衍生好是什么原因。衍生方法为丙二醛在高氯酸或三氯乙酸酸性条件衍生。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制