当前位置: 仪器信息网 > 行业主题 > >

莱卡荧光光学显微镜

仪器信息网莱卡荧光光学显微镜专题为您提供2024年最新莱卡荧光光学显微镜价格报价、厂家品牌的相关信息, 包括莱卡荧光光学显微镜参数、型号等,不管是国产,还是进口品牌的莱卡荧光光学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合莱卡荧光光学显微镜相关的耗材配件、试剂标物,还有莱卡荧光光学显微镜相关的最新资讯、资料,以及莱卡荧光光学显微镜相关的解决方案。

莱卡荧光光学显微镜相关的资讯

  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 光学显微镜新动向:直播间里的“科技盛宴”——大规模设备更新之徕卡专场活动成功举办!
    仪器信息网讯 2024年5月13日,大规模设备更新——光学显微镜专场直播活动圆满召开!本次活动由仪器信息网携手徕卡光学显微系统联合主办,特别设置了圆桌对话和主题报告两大环节,在大规模设备更新政策背景下,9位嘉宾聚焦光学显微成像前沿技术与应用,共话未来发展新趋势。活动话题丰富、干货十足,吸引2000余人观看,观众在直播间与嘉宾积极互动,热烈讨论。对话专家:深度剖析光学显微镜之两大热门领域需求趋势活动开始,中国科学院半导体研究所主任/研究员韦欣、清华大学蛋白质研究技术中心主管/高级工程师王文娟、徕卡显微系统生命科学部全国应用经理王怡净和徕卡显微系统工业销售总监夏燕四位嘉宾作客直播间,就光学显微镜的技术创新、生命科学研究和半导体等工业领域的应用进展以及各类光学显微镜的选型建议等话题分享了自己的观点。圆桌对话清华大学蛋白质研究技术中心主管/高级工程师王文娟王文娟从事光学显微镜相关工作已十余年的时间,是资深的应用专家。她所管理的平台上,荧光显微镜、共聚焦显微镜、双光子显微镜、超分辨显微镜等生命科学相关的各个类型光学显微镜一应俱全,在生物医药、细胞生物学、发育生物学、分子医学、神经科学甚至环境、材料等方向都有好的支撑。谈及光学显微镜的技术创新,她讲到,面对生命科学领域的需求,光学显微镜技术更新迭代非常快,向更高分辨率、更快成像速度、成像深度更深、更低的光毒性以及更高通量这几个方向发展;在后续图像处理方面,人工智能技术的融入让图像处理更加简便。她还指出,当前活体组织的超分辨成像是当前的一大难点,希望显微镜能有技术上的突破去解决这一难题。在光学显微镜选型话题时,她给出了经验之谈:第一是看技术的先进性,要解决实际问题;第二是对比不同平台实际样品测试结果;第三是售后服务的响应及时性和维保价格合适。中国科学院半导体研究所主任/研究员韦欣韦欣主要从事化合物半导体分立器件和小规模集成电路器件的研究。他介绍到,半导体相关的工业强烈依赖于工艺水平和过程中的加工良率,光学显微镜是工艺过程中不可或缺的一类控制和检测工具,在他的工作中金相显微镜和体式显微镜几乎每天都要使用。不同于生命科学研究应用,工业检测领域对于光学显微镜的分辨率要求相对较低(电镜可实现),但对于更大视场和更快的成像速度需求较高,这主要源于工业领域对于效率的追求。要提高成像速度,硬件和软件技术都需要不断提升,尤其现在已经进入数字化时代,因此机器学习来提高识别效率和可靠性是软件发展的一大趋势。韦欣老师对光学显微镜未来技术最大期待是通过软件自动寻找、识别和记录每一个工艺步骤的缺陷,作为过程控制中定量的手段,而不只是实现定性检测。谈到工业领域的应用前景,韦老师认为,除了半导体工艺过程控制,在材料的表面分析方面光学显微镜的作用越来越大。在选型时,韦老师更关注是否能够满足定制化的需求、能否给出更多选项以及软件是否有明显提升等几个方面。徕卡显微系统生命科学部全国应用经理王怡净负责王怡净长期从事光学显微镜在生命科学领域的应用开发工作,她讲到,针对前面王文娟老师提到的超高分辨率、更深成像和智能化图像处理等用户需求或者技术趋势,徕卡在这些方面都早有相应的布局,今年也有一些新的突破。比如,“看的更深”方面,徕卡在常规多光子基础上进行了技术性的突破,从原来的滤片式外置检测器升级为光谱式外置检测器,检测灵敏度更高,在做神经纤维、骨等特殊样品时更有优势。对于智能化,徕卡的全类产品都有相应设计,如去年推出的MICA全场景显微成像分析平台可以实现一键成像。应用方面,徕卡在空间多组学、脑科学和类器官的研究等方向也早有布局,近期将推出流程化的解决方案。徕卡显微系统工业销售总监夏燕夏燕介绍到,在工业领域,光学显微镜如金相显微镜的革新性技术相对较少,但无论是高校和科研院所等前沿研究还是制造业的大规模检测,工业领域对于光学显微镜的操作便捷性、功能的可拓展性以及特殊的软件定制化都有明确的需求。徕卡在生命科学、工业检测、手术显微镜和电镜制样等各个产品线上都有相应硬件和定制化软件的布局。谈到工业领域光学显微镜的应用前景,夏燕着重介绍了徕卡在新能源领域毛刺检测方面根据客户的需求开发了新的软件,能够实现从定向到定量的需求。在半导体方面,针对民用半导体领域晶圆表面缺陷检测,徕卡有DM8000M、DM12000M产品来实现,并且相关产品在物镜、内置光源等方面具有独特优势。系统报告:徕卡显微镜产品家族的特点和应用圆桌对话环节后,来自徕卡光学显微系统的5位专家老师对徕卡显微镜产品家族进行了深度解读,包括多通道成像、智能平台、宽场光学与工业新应用等方面的技术亮点和解决方案。报告主题:《徕卡STELLARIS全方位多维成像解决方案》报告嘉宾:徕卡显微系统(上海)贸易有限公司 应用工程师 黄晖报告展示了STELLARIS全方位多维成像效果,它配备了最新一代白激光技术,可提供非常宽泛的光谱选择范围,为多色成像提供了重要基础。同时,STELLARIS Hyd 新一代共聚焦检测器使其具有更亮的信号、更多荧光颜色的自由搭配和更温和的激发。此外,黄老师还介绍了TauSTEDXtend纳米级多色活细胞成像和DIVE光谱式多光子深层多色成像。报告主题:《革新科学研究:MICA智能显微成像分析平台》报告嘉宾:徕卡显微系统(上海)贸易有限公司 高端宽场产品经理 童昕童昕介绍了全场景智能显微技术——MICA智能显微成像平台,它具备人人皆享、包罗万象、极简工作流三大特点。同时,童老师还讲解了MICA在效应T细胞介导的肿瘤细胞杀伤等实验中的应用案例。报告主题:《常规宽场显微镜助力诊断和科研》报告嘉宾:徕卡显微系统(上海)贸易有限公司 宽场显微镜产品经理 郑晓业常规的宽场显微镜主要分为体视镜、正置显微镜和倒置显微镜三大类,郑晓业分别介绍了徕卡这三类显微镜的产品和功能。徕卡的体视镜家族具有融合光学的独有技术;正置显微镜家族主要包括DM500/750、DM4/6B和DM1000-3000;倒置显微镜家族主要包括DMi1、DMiL、DMi8、Mateo TL和Mateo FL。报告主题:工业显微镜新应用——为发展新质生产力护航报告嘉宾:徕卡显微系统(上海)贸易有限公司 应用工程师 姚永朋姚永朋主要介绍了徕卡在工业领域的主要产品及功能,此外还讲述了这些产品在地质科学、水泥工业、煤炭焦化、石棉检测和液晶工业等领域的应用。报告主题:徕卡先进制样技术在电子半导体行业应用介绍报告嘉宾:徕卡显微系统(上海)贸易有限公司 电镜制样产品应用工程师 王露露王露露介绍了徕卡的离子束切割/研磨技术路线,主要用到EM TXP精研一体机、EM TIC3X三离子束研磨仪和EM ACE200/ACE600低真空/高真空镀膜仪三台仪器。EM TXP精研一体机应用于对固定样品切割/铣削/冲钻/研磨/抛光,EM TIC3X三离子束研磨仪应用于固体表面无应力损伤表面/截面制备。活动主持人 曲文清 仪器信息网品牌合作伙伴资深运营更多精彩内容尽在直播回放!点击查看 :直播链接:https://www.instrument.com.cn/webinar/meetings/leica2024 此次直播,为广大相关从业者提供一个全面了解光学显微镜新技术、新方案的平台,让大家在选型过程中少走弯路,能够为大家在科研工作中提供更多帮助和支持,为进一步高效推动科研设备的升级换代贡献一份力量。
  • 徕卡175周年:入射光荧光显微镜的里程碑
    荧光显微镜先驱Johan Sebastiaan Ploem 自上世纪中叶以来,荧光显微镜发展成为一种生物科学工具,对我们了解生命产生了最大的影响。在荧光分子的帮助下观察细胞和蛋白质是当今几乎所有生命科学学科的标准方法。这种广泛的应用可以追溯到一些研究人员的技术工作,他们希望改进和简化荧光显微镜下的劳动。荷兰医生约翰-塞巴斯蒂安-普洛姆(Johann Sebastiaan Ploem)就是其中的一位参与者。外荧光显微镜约翰-塞巴斯蒂安-普洛姆(Johann Sebastiaan Ploem)于 1927 年出生在苏门答腊岛的泽兰托(Sawahlunto),是一名荷兰煤矿工程师的儿子。幼年时,他随父母回到荷兰,并在那里将绘画作为自己的爱好之一。高中毕业后,他发现了另一个令人着迷的色彩领域,我们稍后会了解到。Ploem 决定学习医学,并在乌得勒支、哈佛和阿姆斯特丹接受教育。随后,他开始了学术生涯,曾在迈阿密大学和阿姆斯特丹大学工作,后晋升为荷兰莱顿大学医学系教授。在研究活动中,他发现荧光显微镜是一种强大的工具。20 世纪 60 年代,一种特殊的标本照明方式开始流行,事实上,早在 1925 年,对丝虫自发荧光事件感兴趣的 Policard 和 Paillot 就已经知道并描述了这种照明方式(Policard 和 Paillot,1925 年)。一些研究人员重新启动了这两位法国科学家的项目,将荧光照明和样品检测放在显微镜的同一侧。这种利用入射光的原理被称为 "Epi-Illumination",与透射显微镜形成鲜明对比。在荧光显微镜中使用这种技术的一大好处是可以避免检测光源发出的发射光(图 1)。另一个优点是机械性更强:在透射照明中,聚光器和物镜有两个独立的光轴,必须仔细对准。而在外延照明中,物镜既是聚光器,又是集光物镜。这样就可以避免对准问题。 图 1:外延照明在荧光显微镜中的优势:在透射照明的情况下(左图),光源和图像检测位于物镜的两侧。在这种设置下,一个明显的限制就是无法检测到激发光(浅蓝色)。相比之下,Epi-Illumination(右图)使用物镜进行照明和图像检测。对于荧光显微镜来说,这意味着用户不会受到激发光的照射。二向色分光镜早在几年前,前苏联的两位研究人员就为荧光外延照明显微镜提供了非常重要的投入。Brumberg 和 Krylova 开发了一种所谓的二向色分光器,用于入射光的紫外激发(Brumberg 和 Krylova,1952 年)。二向色材料能够让特定波长范围的光通过,而其他波长的光则被反射(图 2)。这一原理对于荧光外延照明是不可或缺的,因为激发光必须以某种方式融合到显微镜的光路中(图 3)。更确切地说,二向色分光镜无法穿透光源发出的所需激发光的波长,只能将激发光反射到样品上。样品发出的荧光反过来又可以通过二向色分光器到达检测端。 图 2:透射图说明了二向色分光镜的功能。波长较短的光(蓝色箭头)会被反射,而波长较长的光(红色箭头)则可以通过滤光器。图 3:荧光外延照明需要一个二向色镜(灰色),它能够将激发光(蓝色)反射到试样上,并将发射光(绿色)传递到检测端。激发光的波长可通过相应的滤光片(橙色)进行预选。朝向检测侧的滤光片(紫色)只允许荧光团的波长通过,并排除激发光的残余杂散光。遗憾的是,由于铁幕之间缺乏信息交流,Ploem 并不知道俄罗斯的发展情况。尽管如此,他还是自己开始使用二向色分光镜。针对 Ploem 的特殊情况,他与著名的特种玻璃生产商肖特公司(美因茨)共同开发了一种可反射蓝光和绿光的分光镜(Ploem,1965 年)。之后,他用 Leitz 公司提供的中性分光镜改装了一台 "Opak" 外延照明器,通过引入一个带有四个不同二向色分光镜的滑块,他可以在紫外线、紫光、蓝光和绿光之间非常快速、方便地改变激发光的波长(Ploem,1967 年)(图 4)。 图 4:荧光多波长外延照明器,带有四个安装在滑块中的二向色分光镜,用于紫外、紫光、蓝光和绿光的入射照明。由阿姆斯特丹大学制造(Ploem,1965 年)。荧光滤光器立方体开发二向色分光镜以产生不同波长的激发光具有重要的优势。当时,紫外光谱(约 100 nm - 380 nm)的激发光非常普遍,但却有一个恼人的副作用:自发荧光。很多组织物质都会被紫外线激发,从而产生微弱的背景光(图 5)。通过将二向色镜的反射波长调整到绿色或蓝色范围,Ploem 能够达到当时非常常用的两种荧光染料 FITC(494 纳米)和 TRITC(541 纳米)的激发最大值,而不会产生自发荧光。FITC(异硫氰酸荧光素)和 TRITC(四甲基罗丹明-5(和 6)-异硫氰酸酯)可与抗体耦合,目前仍用于免疫荧光显微镜。通过在较小范围内达到其激发最大值,组织标本的对比度得到了显著增强(图 5)。使用 Ploem 的二向色分光器产生的激发光束能有效地与 FITC 的激发最大值相匹配,即使是发射光谱很差的光源也能使用。 图 5:左图:用宽波段紫外激发光照射标记有免疫标记(FITC)的组织细胞。注意带有蓝色自发荧光的组织结构。右图 使用窄波段蓝光(490 纳米)外延照明,对相同的组织和相同的 FITC 标记进行免疫染色。注意图像对比度的增加(Ploem,1967 年)。有鉴于此,现在可以利用外延照明的优势,使用普通的高压汞弧光灯提供蓝光和绿光的窄带激发。这一改进满足了生命科学和医学领域对荧光显微镜的需求。根据 Ploem 的发明,Leitz 设计出了一种新型多波长荧光外延照明器,它带有四个旋转式二向色分光镜,可在紫外、紫光、蓝光和绿光范围内激发标本,这就是 Leitz PLOEMOPAK。莱茨员工卡夫(W. Kraft)取得了更大的成就,他将二向色分光器与适当的激发和发射滤光器组合在一个工件上,即所谓的滤光器立方体或滤光器块(卡夫,1969 年和卡夫,1972 年)(图 6)。他的研究成果是设计出了一种外延照明器,该照明器带有多组四个这样的滤光器立方体,如今几乎所有的多波长荧光显微镜都是以这些滤光器立方体为基础的。 图 6:左:1970 年左右,Leitz 员工 W. Kraft 将激发滤光片(橙色)、二色分光镜(灰色)和发射滤光片(紫色)集成在一个工件上 - 滤光片立方体。中间:滤光器立方体的工程图。右图 在现代显微镜中,荧光滤光片立方体可以很方便地点入和点出。研究人员甚至可以根据自己的需要,用不同的滤光片和二向色分光器改装一个立方体。总 结有了 Ploem 及其同代人和后继者建立起来的技术基础,我们今天就可以通过将适当的滤光器立方体放入外延照明器(图 7),观察到无数不同的荧光团。研究人员甚至可以根据自己的需要定制激发和发射参数。由于现代研究显微镜的自动化,在实验过程中切换滤光器立方体只需点击一下按钮。科学家们可以在一瞬间切换不同的荧光团,从而观察到即使是活体标本也被荧光标记为不同的荧光团。 图 7:荧光显微镜的演变。左图:透射光荧光显微镜的基本问题是检测激发光。中图 这就是人们利用外延照明并将光源移到显微镜检测侧的原因。这种方法需要二向色分光镜。右图 将激发滤光片、发射滤光片和二向色分光器放在一个区块中,可以快速切换不同的区块,专用于某些荧光团。参考文献:1.Brumberg, E. M., Krylova, T. N.: O fluoreschentnykh mikroskopopak. Zh. obshch. biol. 14, 461, 1953.2.Ploem, J. S.: Die Möglichkeit der Auflichtfluoreszenzmethoden bei Untersuchungen von Zellen in Durchströmungskammern und Leightonröhren. Xth Symposium d. Gesellschaft f. Histochemie, 1965. Acta Histochem. Suppl. 7, 339–343, 1967.3.Ploem, J. S.: The use of a vertical illuminator with interchangeable dichroic mirrors for Fluorescence microscopy with incident light. Zeitschr. f. wiss. Mikroskopie 68, 129–142, 1967.4.Kraft, W.: Die Technologie des Fluoreszenzopak, Leitz Mitt. Wiss. u. Techn. IV/6, 239–242, 1969.5.Kraft, W.: Fluorescence Microscopy and Instrument Requirements. Leitz Mitt. Wiss. u. Techn. V/7, 193–206, 1972.6.Policard,A., Paillot, A.: Etude de la sécrétion de la soie à I' aide des rayons ultraviolets filtrés (lumière de Wood). Comptes Rendus de l' Académie des Sciences Paris 181, 378–380, 1925.参加问卷调研,领取精美小礼品! 8月底活动截止届时答题满分的小伙伴会收到我们的小礼品问卷答案的答案可以在之前的推文内寻找哦~ 徕卡175周年:徕卡品牌的发展历程,也是显微技术的发展史 相关产品 DMi8 S 高速成像平台 倒置显微镜成像解决方案 STELLARIS共聚焦显微镜平台 正置双目生物显微镜 徕卡DM4 B & 徕卡DM6 B 徕卡显微咨询电话:400-877-0075 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 徕卡显微系统携手仪器信息网,5月13日直播探讨光学显微镜新进展与选型指南
    在科研设备日益更新的当下,仪器信息网积极响应国务院常务会议审议通过的《推动大规模设备更新和消费品以旧换新行动方案》,特别推出系列直播活动。本期活动将聚焦光学显微镜领域,携手徕卡显微系统,于2024年5月13日13:30邀请行业资深专家,共同探讨仪器技术新进展、行业应用趋势,为用户带来最新技术和选型采购的实用经验。本次直播活动将涵盖多个亮点。首先,圆桌论坛将聚焦显微成像前沿技术,行业大咖将现场分享经验,探讨未来发展新趋势。此外,徕卡显微镜产品家族也将进行深度解读,包括多通道成像、智能平台、宽场光学与工业新应用等方面的技术亮点。圆桌论坛环节,仪器信息网邀请行业大咖,共同探讨显微成像技术的未来发展。嘉宾阵容包括:王文娟,清华大学蛋白质研究技术中心主管/高级工程师,她长期利用化学生物学手段,特别是荧光成像技术,深入探索生物大分子的功能与机制。韦欣,中国科学院半导体研究所主任/研究员,专注于新型半导体激光器、探测器及纳米结构应用的研究。夏燕,徕卡显微系统工业销售总监,她将带来工业显微镜领域的最新进展和市场洞察。王怡净,徕卡显微系统生命科学部全国应用经理,她将分享生命科学研究中显微镜技术的应用案例和选型建议。在直播中,嘉宾们将分享与光学显微镜的深厚情感,探讨技术创新浪潮下的专业实验室配置的光镜新品类,以及创新应用与发展趋势。他们还将针对用户需求,提供权威的选型指导,助力用户精准采购。 点击报名 此外,为了增加活动的趣味性,报名参加直播的用户还有机会赢取徕卡特色礼品,包括精美咖啡杯、设计感雨伞和趣味积木等。快来参与直播抽奖,让好运和惊喜不断!活动日程如下:点击报名
  • 江苏醋酸纤维素工程技术研究中心引进徕卡显微镜
    2008年11月24日,工程技术中心投入30万元人民币,引进德国徕卡Leica仪器公司DM2500P型偏光显微镜正式投入使用。   DM 2500P 技术参数   1. 偏光专用三目镜筒,可0/100% 50/50% 100/0%三档分光   2. 目镜:10X/22mm视域   3. 一套透反共用物镜:其中 1.25X的NA≧0.04 2.5X的NA≧0.07 5X的NA≧0.12 10X的NA≧0.25 20X的NA≧0.50 50X的NA≧0.75 100X的NA≧0.90 100X油镜的NA≧1.25   4. 可调中的360度旋转载物台,带2个微分尺,精度0.1度   5. 三级同轴(粗、中、细) 调焦旋纽,最小精度1um   6. 可双向调中孔位的物镜转盘,5孔位   7. 配180度旋转带刻度偏光检偏镜、圆偏光观察的四分之一波长补偿片、目镜测微尺、测微标尺   8. 透射光路包括:偏光专用聚光镜、暗场环、起偏器、全波长补偿片、四分之一波长补偿片、蓝色滤片、绿色滤片、灰度片、100W透射光灯箱   9. 反射光路包括:反射光光路架、带全波长补偿片起偏器、日光转换滤片、蓝色滤片、绿色滤片、灰度片、100W反射光灯箱   DM 2500P 主要特点   1. 无限远光学校正系统,图像清晰,高反差   2. 内置透反射卤素灯电源,透反射照明都是12V-100W,透、反射光转换方便,可加配荧光光源,荧光与卤素灯转换时不用拆换灯箱   3. 物镜透反共用,反射光、透射光观察转换时不用换物镜,省时省力   4. 检偏镜可180度旋转   5. 360度旋转专业偏光载物台,带2个微分尺,可加配带XY移动尺样品夹,移动样品夹有0,1mm,0.2mm0.3mm,0.5mm,1.0mm,2.0mm五档步距,调焦旋钮的扭力可调,物台高度限位可调整   7. 特有保护锁设计,使更换样品后无需重新调焦,实现样品与物镜双重保护   8. 调节工具可放在镜体上方便随时取用   9. 聚光镜架调中后,即便卸掉反光镜,调中位置也不改变   10. 各种滤片都经过防热处理   11. 专利的热补偿焦距稳定技术,即双金属片反向膨胀抵消技术,抵消机体由于长时间热效应带来的调焦面移动   江苏省醋酸纤维素工程技术研究中心(简称工程技术中心)依托南通醋酸纤维有限公司。工程技术中心的建立将进一步提升中国在醋酸纤维素领域的研发和自主创新能力,确保中国醋纤工业在日趋激烈的国际市场竞争中不断发展壮大。   工程技术中心大楼于2005年11月17日正式破土动工,2006年12月12日竣工并通过整体验收,2007年1月8日正式启用。工程技术中心占地总面积33000平方米,中心大楼建筑面积4000平方米,两层建筑加辅楼,分试验区和办公区两部分,试验区主要包括仪器分析实验室、烟气测试分析室、综合实验室、滤棒成型研究室、醋片小试室、丝束试验室、木浆粕研究室、油剂试验室。办公区主要包括:情报资料室、办公室、会议室、报告厅等,并预留部分面积作为发展之用。同时建成国内唯一的丝束中试和醋片中试线。   摘自南通醋酸纤维素工程技术研究中心网站
  • 新品|大功率LED荧光光源-蔡司显微镜专用兼容
    大功率LED荧光光源BGU-LED-MH-scope5(蔡司专用)专为国际知名光学品牌蔡司显微镜而造,兼容蔡司2021年明星产品 Axioscope5/ Axioscope7两款型号,共同实现高品质的荧光成像效果。长寿命的LED光源和高品质荧光滤光组是高品质荧光成像的保证。有单色荧光、双色荧光及多色荧光等多种配置方案可选。采用大功率LED光源,集成模块化设计专利产品,荧光通道一键切换,快速响应。前方位拨动滑块切换荧光通道光源和荧光滤光片组联动,一键切换,操作顺畅。采用高品质荧光滤片组,OD值6,高信噪比;多种波段可选,应用于多种领域的荧光检测。LED即开即用,开机无须预热 使用寿命长,人工维护成本低;可通过电源适配器实时显示荧光亮度情况,实现荧光强度精准控制。荧光滤色片:紫外通道:UV: BP360/50nm FT:415nm BP:460/50nm蓝色通道:B : BP477/35nm FT:505nm BP:530/40nm绿色通道:G : BP540/25nm FT:565nm BP: 605/55nm最多可搭配3组滤光片和保留一组明场观察通道荧光光源:标配大功率LED光源,寿命20000小时以上电源箱:亮度连续可调,可数显强度,额定电压/电流:AC100-240V 50/60Hz0.3A匹配显微镜:Zeiss Axioscope 5/ Axioscope 7可选荧光滤色片组:紫外通道:uV: BP360/50nm FT: 410nm LP:420nm蓝色通道:B : BP477/35nm FT:505nm LP:510nm绿色通道:G : BP540/25nm FT:570nm LP:575nm紫色通道:V :BP405/10nm FT:455nm LP:460nm黄色通道:Y : BP562/40nm FT:593nm BP:640/70nm红色通道:R : BP635/30nm FT: 660nm BP: 710/80nm医疗检测应用:真菌结核杆菌呼吸道七联检,呼吸道病毒妇科检查 滴虫脑炎CTC大功率LED荧光光源BGU-LED-MH-scope5(蔡司专用)专为国际知名光学品牌蔡司显微镜而造,兼容蔡司2021年明星产品 Axioscope5/ Axioscope7两款型号,共同实现高品质的荧光成像效果。长寿命的LED光源和高品质荧光滤光组是高品质荧光成像的保证。有单色荧光、双色荧光及多色荧光等多种配置方案可选。如果您对大功率LED荧光光源BGU-LED-MH-scope5(蔡司专用)感兴趣,欢迎您的咨询!产品彩页:大功率LED荧光光源BGU-LED-MH-scope5(蔡司专用)
  • 徕卡法医学比对显微镜---助力得出科学的鉴定结论
    法医学比对显微镜介绍:徕卡FS C、FS M和FS CB系列法医学比对显微镜可用于检测弹道、工具痕迹、毛发、纤维和其他司法鉴定证据,并将提取的证据与所有物中发现的蛛丝马迹进行比对。徕卡FS系列法医学比对显微镜优点 一、便于记录配备高性能相机和软件应用,便于记录、测量、注释和存档精确测量样本,从不同角度观察,可以在案例报告上添加注释利用软件拼接功能,轻松记录超大视野利用高分辨率相机,记录微小的细节 二、多样化的比对方法利用多功能比对桥,支持多种高精度比对利用可调节分割线,轻松改变比对方法,协助您的鉴证工作;全部到左边,全部到右边,或者相互叠加以0.1%的放大精度比对右侧和左侧的图像,确保对结果充满信心。适应变形样本,+/- 4%的变焦放大调整(FS C,FS CB)三、可靠比对 利用高规格光学器件,得出可靠的比对结果对于远心目标,必须以正确角度观察通过物镜复消色差校正和单独虹膜控制,准确观察并记录证据精确的校准和测量,采用固定放大物镜和带编码的物镜转换器(适用于FS C以及搭配带编码显微镜的FS CB)四、采用多种人体工学组件 长时间工作依然舒适人体工学工作台,高度可电动调节,确保坐感舒适可调节观察角度,确保全天保持正确坐姿载物台、焦距和照明控制均触手可及,尽可能减少重复性手动操作。 五、提供多种照明选项,可清晰检测各种样本使用光纤光导、独立聚光,或多段环形光源,观察表面结构 利用同轴照明很容易观察到高反射表面利用透光分析半透明样本的内部结构 使用标准显微镜的所有对比技术,如荧光、相衬、偏振光、微分干涉对比(徕卡CFS CB比对桥可用于常规和高级显微镜平台)进行复杂结构的对比徕卡法医学比对显微镜应用介绍:法医学实验室将现场的弹壳与发射的进行比对分析破坏锁具的工具痕迹,并将其与所有物中发现的工具进行比对调查证件是否伪造将车祸中的毛发、纤维和油漆与“肇事逃逸"的车辆进行比对 凭借精确可靠的功能,助力得出科学的鉴定结论 :配备高性能相机和软件模块,便于记录、测量、注释和存档利用多功能比对桥,支持多种高精度比对利用高规格光学器件,得出可靠的比对结果采用多种人体工学组件,即使长时间工作也不会感到疲劳提供多种照明选项,可清晰检测各种样本。 堪称是取证实验室的理想选择 徕卡FS C / FS M / FS CB法医学比对显微镜的技术:特殊比对桥设计 采用特殊比对桥设计技术,确保可以持续观察利用比对桥中的颜色中性棱镜,精确重现色彩凭借比对桥的精密机械和光学结构,对左右视野进行精确比对。 相关产品:FS CFS MFS CB比对桥
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。   美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。   在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 显微课堂 | 徕卡晶圆检测显微镜 令人信服的技术细节
    晶圆或 LCD 和 TFT 的检验、过程控制和缺陷分析必须快速、精确并符合人体工学。LeicaDM8000M和 DM12000M晶圆检测显微镜提供了一个创新而高性价的系统解决方案,帮助客户充满信心地应对现在和未来的检验挑战。除了大视野和高分辨率光学部件,系统还采用了高度人性化的设计和全内置的 LED 照明,可以从不同角度照亮样品。DM8000 M / DM12000 M 是一个模块化大型平台检测显微镜平台,可用于 8"/200 mm 和 12"/300 mm 样品检测。 手动检测版本 电动版本DM8000 M/DM12000 M01进入检测领域的第一步查看样品表面的更多信息,在更短的研究时间内改进产品质量决策。 宏观物镜(Plan APO 0.7x)4倍与常规扫描物镜的视野,用于快速浏览样品紫外照明可获得更高分辨率,可与斜照明技术相结合,从任意角度以高分辨率查看样品,获得更多样品表面信息,且检验结果精确符合人体工程学的设计和自动化功能可实现快速、低疲劳操作,避免在重复性样品检测过程中注意力不集中通过手动、编码和电动功能支持智能工作流程,加快样品检测速度02快速样品详览从用于快速浏览样本的微距物镜(Plan APO 0.7x)到用于观察最精细细节的微距物镜。 使用 25 mm (FOV) 目镜,可看到 35.7 毫米的样品表面一目了然地看到在高倍放大镜下 "看不见 "的宏观缺陷,如材料样品中的曝光缺失区域、鲨鱼齿结构或流动结构需要检测宏观结构时,无需对样品进行耗时的扫描只需切换到更高倍率(Obj. HC PL APO 150x/0.90 IVIS BD)即可看到最细微的细节03在更短时间内获得更多样品表面信息紫外照明可获得更高分辨率,可与斜照明技术相结合,获得更多样品表面信息。 以高倍率(150 倍)的彩色模式,通过明场、暗场或DIC模式检查样品,以发现样品缺陷通过激活紫外线照明来提高光学分辨率,以观察最精细的结构以高分辨率将对比度较低的表面转化为清晰的结构拓扑图,快速发现缺陷04通过智能功能支持工作流程通过手动、编码和电动功能支持智能工作流程,加快样品检测速度。 只需点击一下按钮,即可根据所选方法自动调整照明和对比度设置,从而节省时间并避免出错集成的 LED 可见光和紫外照明可在几秒钟内切换不同的照明技术,保证污染不会进入无尘间保持,确保洁净室的清洁内置聚焦探测器,用于检测高反射表面,可快速、轻松地找到正确的聚焦位置相关产品 DM8000 M DM12000M 徕卡显微咨询电话:400-877-0075 关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 徕卡发布大量新品,全面更新工业显微镜产品线
    日前,著名光学设备制造商徕卡发布了一系列新型显微镜产品,其工业显微镜产品线几乎全部更新。此次发布的新产品有Leica DM2700M系列最新高级LED照明正置材料显微镜、Leica DM2700P系列最高级LED照明正置偏光显微镜、Leica DMS1000系列全自动工业检测显微镜(体视)和Leica DMS300系列工业检测显微镜(体视)等。 Leica DM2700M   徕卡此次发布的新品均具有出色的光学性能、良好的视场,提高了经济性,基于人体工程学的设计提高了易用性和舒适性。
  • 徕卡发布德国徕卡 共聚焦显微镜 STELLARIS新品
    STELLARIS: 全新打造的共聚焦显微镜。 在显微镜领域,我们的使命是让您能够在科学研究中不断进步。 为了让您更接近真实的世界,我们打造了全新的共聚焦显微镜。 更接近真实的世界体验 STELLARIS助您更接近真实的世界欢迎了解我们如何打造全新的共聚焦平台。观看视频,了解 STELLARIS 如何提高您的工作能力、潜力和效率。 能力:看到更多细节想象一下,您能够看到更多细节。 收集更精确可靠的数据。完美验证您的假设。 看到更多细节的能力 新一代 Power HyD 检测器与完全优化的光路和独特的白激光相结合,为您提供完美的成像性能。 即使使用多个低丰度标记,您也可以从更明亮的信号、更高的对比度以及令人惊叹的细节中获得更清晰的结果。请想象图像的巨大力量。 新一代 Power HyD 检测器 亮度更高、细节更多: 亮度、分辨率与对比度完美结合,为您提供更出色的图像质量 检测效率高,让您能比以前更好地了解样本的原生状态 采用徕卡显微系统专有的光子计数方法,为您提供定量结果 (Graphic text) 徕卡 Power HyD 系列 传统 Multi-alkali-PMT 灵敏度/PDE (%) 蓝绿光 450-560纳米 橙红光 560-720 纳米 扩展红光 720-850 纳米 波长(纳米) 超敏感信号检测 Power HyD 检测器可以检测到最常用荧光探针标记的更弱的信号与传统的光电倍增管 (PMT) 相比,光子检测效率 (PDE) 高2倍,在扩展红光范围内高3倍 (Caption) 左侧: 传统共聚焦显微镜 右侧: STELLARIS 平台 使用白激光 (WLL) 激发波长可达 790 纳米 检测波长可达 850 纳米 实现最大程度的多色灵活性 在一个样本内同时对更多标志物成像。 用更宽的红色激发光谱来扩大现有标志物的范围。 我们的新一代白激光可提供这些优势。 Power HyD 检测器可为您的研究设立新的成像标准。 它们具有极高的灵敏度,光谱范围宽达850纳米,已达到近红外光谱区。 我们的新一代白激光可与荧光染料完美配合,让您能够完全自由地选择光谱。 可以最多同时使用8条从440纳米到790纳米的单激发谱线。 一台激光器可以完成多台激光器的工作,降低复杂性,提高灵活性温和的活细胞成像 Power HyD 检测器与新一代白激光巧妙结合,可以对激发波长与和检测波长进行最佳匹配,实现更长时间的成像 以最低的照明强度完成有效信号采集,从而保持样本的原始性状。 重大技术进步 Power HyD 检测器使用最常用的荧光探针,光子检测效率 (PDE) 高达56%。 效率比传统碱性光电倍增管至少高2倍。 在扩展红光范围内,PDE 甚至高3倍。 近红外 (NIR) 检测范围扩大到850纳米,可额外容纳3种检测颜色。 与目前最先进的检测器相比,动态范围最多可提高67%。** 在光子计数模式 (CW)下 SP8 HyD 与 STELLARIS HyD X 和 HyD R 的最大计数比较 新一代白激光最多可同时使用8条从440纳米至790纳米的激发光线。 重新设计的光路可提供最高的传输效率。 潜力发现更多奥秘想象一下,您能够在样本中探索全新的维度。 发现更多奥秘的潜力。 从每个样本中提取新的信息维度,并使用基于荧光寿命的数据来探索分子在其细胞环境中的功能,从而提高研究的科学影响力。 运用STELLARIS 提供的独家新技术 TauSense 进行实验,从中获取更多信息。TauSense 技术是一组基于荧光寿命的创新成像模式,包括 TauContrast、TauGating 和 TauSeparation,可为您提供功能成像。 STELLARIS 可提供荧光寿命成像,一种与荧光强度不同,并可以相互对照的成像模式。 通过基于荧光寿命的多通道成像来探索细胞的微环境和代谢状态。 为您的研究带来新的潜力。 探索新的信息维度 运用 TauContrast 技术可以立即从活细胞成像中获得功能信息,例如代谢状态、酸碱度和离子浓度 获得额外的维度以及前所未有的、未曾探索过的深入视角,为您的研究带来潜在的巨大价值 提高成像质量 运用 TauGating 技术可在保留所需信号的同时去除多余的自发荧光,从而最大程度提高检测效率 当有内在杂信号时,您仍可轻松地从样本中提取相关信息 超越光谱的多通道采集技术 即使发射光谱完全重叠,TauSeparation 技术也可以将样本组分分离基于寿命的信息可补充光谱信息,从而扩大同时检测通道的数量 重大技术进步以逐个像素的方法读取光子平均到达时间,同时进行强度检测,同时多达16个时间门控通道,可进行数字调节,基于寿命的组分分离算法 生产力完成更多任务想象一下,只需点击几下即可从复杂的样本中获得图像。拥有完成更多任务的高效率。 ImageCompass 是一个全新的智能用户界面。 现在,设置复杂的实验比以往任何时候都更加容易和直观。 您只需要知道如何制备样本即可。 想象一下,您再也不需要在速度与成像质量之间考虑取舍。 想象一下,您可以立即全面了解样本情况。 使用我们新设计的 Navigator 工具,您能够自由查看样本,实时在高质量图像中观察相关细节。 缩短共聚焦系统初学者所需的培训时间,使他们有信心进行高级实验 只需点击几下即可轻松地完全控制您的实验设置 在实验设置和图像采集过程中获得直观的引导想象一下您的工作效率大大提高。 化繁为简: “拖放”添加荧光探针 自动优化激发和检测 操作导航 自动配置成像参数 快速覆盖整个 时间与空间的范围 以最高时间分辨率快速采集大量信息将共振扫描仪, LIGHTNING 与新的Rolling average 技术相结合,全速实时提供出色的成像质量 更低的激发光强度,更小的光毒性 即时识别 相关细节 使用 LAS X Navigator 全景导航您的样本图像 定位重要区域并通过高清放大快速识别相关细节 重大技术进步只需点击一下每个荧光探针标记的图标,,即可设置一个多色实验通过自动选择的最佳采集设置,最大程度提高信号强度保持最佳成像质量的同时,可高达420帧/秒的时间分辨率不受任何影响。使用LIGHTNING 技术还可进一步提升成像质量点击一下即可获得荧光寿命信息您准备好更接近真实的世界了吗?欢迎您了解我们如何打造全新的共聚焦平台。欢迎扫描二维码了解 STELLARIS 如何提高您的能力、潜力和生产力。 查看脚注(1) 有丝分裂 COS7 细胞 – 蓝绿色: H2B/黄色: 有丝分裂纺锤体/红色: 高尔基体/绿色: 线粒体/紫红色: 肌动蛋白。 样本提供方: 苏黎世大学 Jana D?hner 和 Urs Ziegler(2) 有丝分裂 COS7 细胞 SiR-Actin(激发波长:647 纳米,发射波长:657-740 纳米) AF750-Tom20(激发波长:750 纳米,发射波长:760-790 纳米) AF790-memb(激发波长:790 纳米,发射波长:810-850 纳米) 样本提供方: 苏黎世大学 Jana D?hner、 Urs Ziegler(3) 斑马鱼后侧线原基迁移。 蓝绿色: Membranes、GFP,紫红色: Nuclei、tdTomato 样本提供方: 海德堡欧洲分子生物学实验室 Gilmour 研究小组 Jonas Hartmann(4) 拟南芥的根下胚轴接合点(Era 等人,《Plant Cell Physiol》杂志,2009 年)。 Chlorophyll、Life-Act Venus、IProp. 样本提供方: 海德堡大学生物研究中心 Krebs 博士。(5) NE-115 细胞。 LifeAct-mNeon Green、 MitoTracker Green、NUC Red 和 SiR-tubulin。 样本提供方: 伯尔尼大学 Max Heider 和 Spirochrome 公司(6) 斑马鱼后外侧线原基迁移。 蓝绿色: Membranes、GFP,紫红色: Nuclei、tdTomato 样本提供方: 海德堡欧洲分子生物学实验室 Gilmour 研究小组 Jonas Hartmann 创新点:1. 观察更多的洞察力 ? 创新的Power HyD 检测器,与传统的光电倍增管 (PMT) 相比,光子检测效率 (PDE) 提高到2倍以上,在近红外一区内更是提高3倍,最高波长达到850nm,同时提供了光子计数功能。 ? 二代白激光可与各种荧光染料完美契合,让您可以全光谱自由地选择激发谱线。在440-790nm波段内,最多可同时选择8条单激发谱线。 ? Power HyD 检测器与二代白激光巧妙结合,可实现激发波长与检测波长的精准匹配,以更低的照明强度完成有效信号采集,保持活细胞样品的原始性状。 2. 探索更多的高潜力 由一系列基于荧光寿命的创新成像模式组成的TauSense 技术重新定义共聚焦,获得额外的维度以及崭新的、未曾探索过的深入视角,为研究带来巨大的潜在价值。 ? 运用 TauContrast 可立即从活细胞成像中获得功能信息,例如代谢状态、酸碱度和离子浓度。 ? 运用 TauGating 技术在保留目标信号的同时去除多余的自发荧光,从而充分提高检测效率。 ? 即使发射光谱波段完全重叠,TauSeparation 技术也可以将样品组分分离,从而扩大同时检测通道的数量。 3. 完成更多的生产力 ? ImageCompass 是一个全新的智能用户界面,“拖-放”添加荧光探针,自动优化激发和检测,自动配置成像参数。 ? LIGHTNING,共振扫描头与全新动态信号增强技术相结合,全速实时打造优越的图像质量。 ? 使用 LAS X Navigator 全局编列定位样本图像,锁定重要区域并快速鉴别重大细节。 德国徕卡 共聚焦显微镜 STELLARIS
  • 新颖的3D光学成像技术提高了荧光显微镜效率
    p style=" text-align: justify text-indent: 2em " 数十年来,科学家一直在使用荧光显微镜来研究生物细胞和生物的内部运作。但是,这些平台中的许多平台通常太慢,无法跟随3D的生物学作用,并可能在强光照射下对生物样本造成破坏。 /p p style=" text-align: justify text-indent: 2em " 为了应对这些挑战,由香港大学(HKU)电气与电子工程学系副教授兼生物医学工程学学士学位课程主任、项目负责人Kevin Tsia博士领导的研究团队开发了一种新的光学成像技术——编码光片阵列显微术(CLAM)。它可以高速进行3D成像,并且具有足够的功率效率和柔和度,能够在扫描过程中以现有技术无法达到的水平保存活体标本。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 360px " src=" https://img1.17img.cn/17img/images/202004/uepic/8b848a8f-6895-4507-a695-f4520371e1c7.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 360" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong span style=" font-size: 14px " Kevin Tsia博士(右一)和他的团队开发了一种新的光学成像技术,可以使3D荧光显微镜更高效,更不损坏。 /span /strong /p p style=" text-align: justify text-indent: 2em " 这项先进的成像技术最近发表在《光:科学与应用》上,这项创新已经提交了美国专利申请。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 新光学成像技术——编码光片阵列显微术(CLAM) /strong /span /p p style=" text-align: justify text-indent: 2em " 现有的3D生物显微镜平台速度较慢,因为必须依次扫描标本的全部体积,并逐点、逐行或逐平面成像。在这些平台上,单个3D快照需要在标本上重复照明,标本的光照强度通常是日光的数千倍至百万倍,这很可能会损坏标本本身,因此不利于长期用于各种解剖学、发育生物学和神经科学等领域的生物成像。 /p p style=" text-align: justify text-indent: 2em " 此外,这些平台通常很快耗尽有限的荧光“预算”——这是一个基本限制,即荧光灯只能在有限的时间内通过照明产生,然后在一个称为“光漂白”的过程中永久消失,这就限制了在一个样本上可以执行多少图像采集。& nbsp /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 360px " src=" https://img1.17img.cn/17img/images/202004/uepic/3ca9166f-5215-4fb8-b0e0-a6eee546de6d.jpg" title="  编码光片阵列显微镜(CLAM).jpg" alt="  编码光片阵列显微镜(CLAM).jpg" width=" 600" height=" 360" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong span style=" font-size: 14px " 编码光片阵列显微镜(CLAM) 香港大学 /span /strong /p p style=" text-align: justify text-indent: 2em " Tsia博士说:“ 样品上的重复照明不仅会加速光致漂白,而且还会产生过多的荧光,最终无法形成最终图像。因此,荧光& #39 预算& #39 在这些成像平台上被大大浪费了。而CLAM允许以高帧速率进行3D荧光成像,与最先进的技术(每秒约10倍的体积)相当。更重要的是,它比科学实验室中广泛使用的标准3D显微镜更节能,比标准3D显微镜温和1000倍以上,这大大减少了扫描过程中对活体标本造成的损害。”& nbsp /p p style=" text-align: justify text-indent: 2em " 据介绍,CLAM的核心技术是使用一对平行反射镜将单个激光束转换成高密度的“光片”阵列,以荧光激发的方式将其扩散到整个样品区域。 /p p style=" text-align: justify text-indent: 2em " 整个3D体积内的图像可以同时(即并行化)拍摄的,而无需按其他技术的要求逐点、逐行或逐平面扫描样本。这样的CLAM中的3D并行化可产生非常柔和而有效的3D荧光成像,而不会牺牲灵敏度和速度,CLAM在降低光漂白效果方面也胜过普通的3D荧光成像方法 /p p style=" text-align: justify text-indent: 2em " 同时,为了在CLAM中保持图像分辨率和质量,团队转向了码分复用(CDM),这是一种图像编码技术,已广泛应用于电信领域,用于同时发送多个信号。 /p p style=" text-align: justify text-indent: 2em " 开发该系统的另一位博士后研究员Queenie Lai博士解释说:“这种编码技术使我们能够使用2D图像传感器同时捕获和数字重建3D中的所有图像堆栈。CDM以前从未在3D成像中使用过,我们采用了这项技术,并取得了成功。” /p p style=" text-align: justify text-indent: 2em " 作为概念验证的演示,该团队应用CLAM以每秒超过10体积的体积速率捕获微流体芯片中快速微粒流动的3D视频。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 挑战极限 提高CLAM扫描速度& nbsp /strong /span /p p style=" text-align: justify text-indent: 2em " CLAM对成像速度没有根本的限制,唯一的限制来自系统中使用的检测器(即用于拍摄快照的相机)的速度。随着高速相机技术的不断发展,CLAM始终可以挑战其极限,以达到更高的扫描速度。 /p p style=" text-align: justify text-indent: 2em " 该团队进一步采取了行动,将CLAM与HKU LKS医学院新开发的组织清除技术相结合,以高帧频对小鼠肾小球和肠血管系统进行3D可视化。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f453719f-bebb-406d-8486-fef778022593.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong span style=" font-size: 14px " 使用CLAM进行3D高速成像。学分:香港大学& nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " 蔡医生说:“我们预计,这种组合技术可以扩展到档案生物学样本的大规模3D组织病理学研究,例如在大脑中绘制细胞组织以进行神经科学研究。由于CLAM成像比其他所有方法都要温和得多,因此它独特地有利于对生物样本以其活体形式进行长期和连续的& #39 监视& #39 。这可能会影响我们对细胞生物学许多方面的基本了解,例如不断跟踪动物胚胎发育成成年形式;实时监测细胞/生物如何被细菌或病毒感染;观察癌细胞如何被药物杀死,以及当今现有技术无法实现的其他挑战性任务。” /p p style=" text-align: justify text-indent: 2em " CLAM可以通过最少的硬件或软件修改就适用于许多当前的显微镜系统。利用此优势,该团队计划进一步升级当前的CLAM系统,以进行细胞生物学、动植物发育生物学研究。 /p p style=" text-align: left text-indent: 2em " 原文链接: a href=" https://www.sensorexpert.com.cn/article/7303.html" _src=" https://www.sensorexpert.com.cn/article/7303.html" https://www.sensorexpert.com.cn/article/7303.html /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 附: /strong /span /p p style=" text-align: justify text-indent: 2em " 讲座:《四合一数码显微镜,多种难题一机解决!》 /p p style=" text-align: justify text-indent: 2em " 主讲人:夏天齐& nbsp & nbsp 基恩士 /p p style=" text-align: justify text-indent: 2em " 时间:4月22日10:& nbsp 00 /p p style=" text-align: justify text-indent: 2em " 主要报告内容:此次讲座希望让更多使用显微镜的客户,了解到数码显微镜能解决的常规问题,作为技术储备,认识到VHX系列产品的一些功能和应用场景。 /p p style=" text-align: left text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meeting_13067.html" target=" _self" span style=" color: rgb(0, 112, 192) " 点击报名,免费听课:https://www.instrument.com.cn/webinar/meeting_13067.html /span /a /p
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p   从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。 /p p   限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。 /p p   对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。 /p p   大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title=" 1.png" width=" 600" height=" 429" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 429px " / /p p style=" text-align: center " 图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自 sup 5 /sup /p p   然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。 /p p   一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。 /p p   于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title=" 2.png" / /p p style=" text-align: center " 图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献 sup 8、9、10 /sup 和 sup 11 /sup /p p   之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题: /p p   1 如何将飞秒激光有效的导入微型显微镜 /p p   2 如何在微型显微镜内进行扫描/图像重建 /p p   3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。 /p p   4 如何有效的对荧光信号进行收集 /p p   5 如何使整个系统在动物剧烈运动时仍保持稳定 /p p   6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /p p   本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title=" 3.png" width=" 600" height=" 470" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 470px " / /p p style=" text-align: center " 图3 FIRM-TPM示意图,来自 sup 12 /sup /p p   新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title=" 4.png" width=" 600" height=" 437" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 437px " / /p p style=" text-align: center " 图4 FIRM-TPM实物图,来自 sup 12 /sup /p p   树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title=" 5.png" width=" 600" height=" 283" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 283px " / /p p style=" text-align: center " 图5 三种模式在结构学成像中的成像质量对比,来自 sup 12 /sup /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title=" 6.png" / /p p style=" text-align: center " 图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自 sup 12 /sup /p p   从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。 /p p   纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。 /p p   然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。 /p p   该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。” /p p   1. Denk, W., Strickler, J. & amp Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990). /p p   2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005). /p p   3. Zipfel, W.R.,Williams, R.M. & amp Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003). /p p   4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013). /p p   5. Minderer, M.,Harvey, C.D., Donato, F. & amp Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016). /p p   6. Hamel, E.J., Grewe,B.F., Parker, J.G. & amp Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015). /p p   7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011). /p p   8. Helmchen, F., Fee,M.S., Tank, D.W. & amp Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001). /p p   9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & amp Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008). /p p   10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009). /p p   11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009). /p p   12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017). /p p   13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & amp Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008). /p
  • 显微镜制造技术迈向国际水平 重点专项支持永新光学谋求国产替代
    p   一个实验室、五台成套设备、七位科技部专家,一件推动我国显微镜产业技术革新的事件在宁波永新光学悄然上演。9月14日,国家重点研发计划重点专项“高分辨荧光显微成像仪研究及产业化”项目顺利通过中期验收,并达到“超额完成”的等级要求。对此,《证券日报》记者专程来到永新光学,采访了该项目负责人、永新光学总经理毛磊。 /p p style=" text-align: center "   重大生命科学仪器国产化取得突破 /p p   显微镜自诞生以来跨越了400多年的发展,一直在生命科学领域扮演着重要角色,高分辨荧光显微镜更是生命科学研究及临床医学诊断等领域的重要工具。然而我国精密仪器领域的技术水平与国外相比还有很大差距,“在光学仪器行业,我们的进口远大于出口,不管是医院还是实验室,使用的高端检测仪器将近80%是进口的”毛磊感慨。 /p p   根据相关统计,2015年至2017年我国显微镜年均出口量在220万台至300万台之间,年均进口5万台左右,出口数量远高于进口数量,但出口金额远低于进口金额,在世界高端显微镜市场,我国显微镜制造企业产品占比小于1%。 /p p   2016年,永新光学牵头,联合了浙江大学、上海理工大学、复旦大学中山医院、南京医科大学等单位,以关键核心技术和部件的自主研发为突破口,共同研究开发的“高分辨荧光显微成像仪研究及产业化”项目,获得了国家重点研发计划支持。 /p p   该项目从高端通用科学仪器的战略需要出发,针对单分子荧光探测、荧光漂白后恢复、光切片成像、高精度扫描控制、复眼照明、高端显微物镜等关键部件、软件开发、高端显微物镜总体设计及工程化、产业化等问题,开展了技术攻关,毛磊介绍,“我们研究的产品指标对照2014年获诺贝尔奖的超分辨率荧光显微镜,这意味着我们离国际最高水平越来越近了,但作为一家上市公司,我们下一步要做的就是将它商品化”。 /p p   据相关统计数据,2016年全球高端光学显微镜一类产品市场共有超过30亿美元,中国市场规模大约在16亿元人民币,年增长率超过30%,具有很大的市场空间。值得一提的是,项目进行到中期,已有近800万元的销售,NIB900、NE900系列研究级显微镜已实现批量生产。 /p p   “上市之后,许多世界知名品牌客户表示愿意与我们扩大合作。通过上市,企业公信力加强,能够取得更多国际知名企业的深度信任,我们的策略是达到世界最高水平100%的性能、以70%的价格,逐步实现国产化高端替代,公司上市募投的光学显微镜扩产项目也是基于这些考虑。” /p p   此外,毛磊还向《证券日报》记者透露,“我们在2015年承担主导制定的ISO9345显微镜国际标准在今年7月24日被允许直接进入发行阶段,今年年底应该就可以正式出版了”。这也是中国人首次在显微镜和内窥镜领域主导国际标准。 /p p style=" text-align: center "   光学元组件规模不断扩大 /p p   永新光学1998 年切入光学元件组件业务,承担了“嫦娥二号”、“嫦娥三号”的部分光学镜头生产。 /p p   随着光电技术的逐渐发展,衍生出光电产品越来越多,包括望远镜、显微镜、投影机、条码扫描仪等,行业规模巨大,带动了整个光电产业的发展,从而也拉动了光学元件组件行业的增长。 /p p   近年来公司光学元件组件产品销售规模也不断扩大,2016年、2017年、2018年上半年光学元件组件系列产品业务收入分别占总营收的50.40%、55.56%、55.13%。产品包括条码扫描仪镜头、平面光学元件和专业成像光学部组件,主要应用于条码扫描仪、车载镜头、高端相机、运动光学和投影仪等。 /p p   公司以产品品质为基础,得到了国内外客户的广泛认可,是新美亚、日本尼康、徕卡相机、徕卡显微系统、德国蔡司、美国捷普等众多国际知名企业的供应商。“目前市场上大部分的条码扫描仪镜头都是我们做的,徕卡相机公司有近40%的光学零部件外采来自永新”,毛磊对此表示很有信心。 /p p   随着经营规模的扩大,公司目前的产能利用率也逐渐接近饱和,2018年上半年,公司条码扫描仪镜头、平面光学元件、专业成像光学部组件产能利用率分别高达103.85%、99.43%、108.92%。 /p p   目前公司位于高新区的上市募投项目所对应的厂房与设施,已于2018年8月份顺利结顶。新厂区建设基于先进的信息化技术,同时参考德国日本同类标杆企业的设计,目前在进行结构主体验收,预计2019年10月份将投入使用。 /p p br/ /p
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。   光学显微镜的出现及其影响   自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。   此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。   SR技术的发展过程   在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。   在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。   最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。   通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。   这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。   虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。   现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。   除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。   今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。   最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。   SR荧光显微镜在生物学研究中的应用   到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。   通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础   结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。   SR成像有助于人们更好地了解分子间的差异   细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。   SR成像技术还能用于在单分子水平研究蛋白动态组装过程   细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。   上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。   原文检索:   Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 国产追赶加速 高端光学显微镜助力光学制造业高质量发展
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题,并向国产光学显微镜企业广泛征稿,(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为永新光学股份有限公司供稿,永新光学作为国产光学显微镜前三甲企业之一,近几年在共聚焦显微镜、超分辨显微镜等高端光学显微镜方面取得一定成果。撰稿人:范靖琪 产品经理 永新光学股份有限公司仪器信息网:请回顾一下贵公司光学显微镜技术的发展历程。光学显微镜是一种精密的光学仪器,距今已有300多年的发展历史。永新光学承前启后,创造了多个中国显微镜的第一,如中国第一台大型天文望远镜、第一台航空摄影机等,被誉为“中国光学的摇篮”。1943年永新光学前身--江南光学仪器厂诞生了中国第一台生物显微镜,标志着我国光学显微镜事业的新起点。放眼未来,永新光学已有近80年的技术沉淀。从1980年研制了中国第一台天文望远镜、航测仪到2010-2019年由浙江大学设计、永新光学制造的多款光学镜头应用于嫦娥二号/三号/ 四号人造月球卫星。永新光学掌握超分辨显微镜等高端显微系统的关键技术,在定制化核心光学部件开发制造方面具有较强的竞争力,成为中国显微镜行业的龙头企业。公司致力于生命科学、AI智慧医疗和工业检测领域的科学仪器国产化替代,为物联网、自动驾驶、工业自动化、人工智能和专业影像设备等产业提供核心光学部件,年产10余万台光学显微镜和数千万件光学元件组件,是徕卡相机、德国蔡司、日本尼康等国际知名企业的核心供应商。宁波永新光学股份有限公司新厂鸟瞰图仪器信息网:当前贵公司主推的产品和技术有哪些。贵公司在高端光学显微镜方面有哪些独具优势的技术?目前,永新光学主推高端显微镜Nexcope品牌产品,包括NE900系列科研级正置生物显微镜、NIB600系列实验级倒置生物显微镜、NIB900系列科研级倒置生物显微镜、NSS-6数字切片成像系统等高端产品,并在今年重点研发推出NCF950科研级倒置激光共聚焦显微镜,陆续有科研机构及重点院校定制、安装并使用。目前公司在研超分辨显微镜,预计在不久的将来会和大家见面。在技术层面,永新光学独创多人共览显微镜系统,为多机型通用,可供多达10人共览,为所有观察者提供均匀的视野和最佳亮度;NOMIS Basic 图像处理系统实时采集图像和导入图像,可快速将小幅图进行拼接,形成高质量、高分辨率图像。对于我们的高端产品激光共聚焦显微镜而言,技术层次及性能上包含了高性能的平场复消色差物镜;调节精度可达到0.01%的高灵敏度4路激光器+声光调制器(AOTF);高量子效率探测器;4通道同时成像;扫描分辨率达到4K等优点,在保持永新光学独有的性能的同时发挥产品高效性、多样性及实用性的利益最大化,满足客户更高品质的需求。永新光学NCF950四色激光共聚焦显微镜机组永新光学激光共聚焦显微镜通过对细胞器的观察和测定,对溶酶体、线粒体等细胞内特异结构的组分进行特异性标记,对其细胞迁移、纳米高分子材料载体靶向定位传递、细胞凋亡等生理变化进行研究;细胞骨架方面,能标记细胞中的肌动蛋白Actin、微管蛋白Tubulin等特异蛋白、细胞内代谢物、核酸类似物、蛋白酶等特异性分子,追踪细胞生长情况;神经生物学方面,在一定厚度的组织样品中获取神经元精细结构和形态变化的清晰图像,可尽早发现普通光镜下未能发现的神经组织的细微病变;发育生物学方面,可获取模式生物(如:果蝇、线虫和斑马鱼胚胎)的三维结构细节和动态变化;实时定量检测细胞内离子变化;氧化应激检测,用以检测细胞中的活性氧类(ROS)物质,研究动脉粥样硬化、癌变、缺血再灌注损伤和神经退行性疾病等;活细胞成像可实时观察小鼠胚胎3D成像、甲基化DNA检测等。目前,我们的机组在国内多个高校、科研院所和医院试用并得到良好反馈,且已经实现销售。以下图片为客户使用反馈后的样品,仅供参考。 海拉细胞(分裂、自噬)海拉细胞三维成像仪器信息网:贵公司主推的光学显微镜技术发展现状如何?还有哪些亟待解决的问题?从整个行业角度看,激光共聚焦技术正在不断发展壮大,发挥其独特的优势。激光共聚焦技术使人们探索微观世界的范畴从二维平面迈向了三维空间。激光共聚焦还具有灵活多变的实时声光调控系统,一方面可以通过在激光整合器后加入声光调制滤片系统实现局部光操作,对图像上特定区域进行扫描成像,另一方面还可在激发过程中采用顺序扫描的模式,减少了波段叠加,实时多通道采集。但目前在现有阶段还存在一些亟待解决的问题,比如快速扫描与高分辨率之间的矛盾,要想提高扫描速度,通常需要牺牲图像分辨率;低光毒性与高分辨率之间的矛盾,提高图像分辨率需要加强荧光信号,增强激光照射功率和时间,加上这种光的强度很高,从而造成光漂白导致的光毒性,降低染料荧光寿命和样品的存活率。而降低光毒性意味着减少激光照射功率和时间,不利于信号收集;另外还有串色、扫描背景强及图像信噪比质量不高等问题待解决。目前,激光共聚焦显微技术还存在着其他一些不足,比如扫描速度及光毒性程度与分辨率之间的矛盾,制约了活体细胞和组织荧光成像观测的范围;设备价格昂贵、对操作人员技术要求高,同样限制了该技术的应用。仪器信息网:您如何评价目前高端光学显微镜的应用情况?总体来讲,激光共聚焦技术具有高分辨率、高灵敏度和灵活性空间结构观察的特点,是使其成为生命科学、医学以及材料科学相关的诸多重要分支领域的全新科研实验手段和必备研究工具之一,为许多研究者提供了有力的技术支持和新的探索思路。激光共聚焦显微镜在生物学及医学相关领域的应用越来越广泛和深入,已经渗透到分子生物学、基因组学、免疫学、病理学、流行病学、肿瘤等相关分支领域。通过它可以直接观测到细胞形态学应用的组织、细胞之间的相互作用、真菌感染、组织微环境、组织重建和药物扩散等现象。激光共聚焦显微镜可很好地补充或替代许多操作繁琐的实验观察。除了在生物及医学研究领域,激光共聚焦显微镜在金属、半导体、芯片等材料科学及生产检测领域中也具有广泛的应用。另外,人们还利用激光共聚焦显微镜研究了其与电镜技术的互补应用。由此看来,随着现代高科技技术的发展,激光扫描共焦显微技术将渗透并应用到科技发展的各个领域。客户使用永新光学激光共聚焦显微镜NCF950的现场图仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?高端光学显微镜的市场主要布局在德国和日本。德国以蔡司(Zeiss)和徕卡(Leica)公司为代表,日本以尼康(Nikon)和奥林巴斯(OlymPus)公司为代表,据统计,他们四家占据着世界显微镜市场 50% 以上的市场份额。国产光学显微镜生产商和进口品牌厂商有着较大的差距,但是这种差距在逐步缩短。国产高端光学显微镜仍面临一些挑战,首先,我国光学显微镜行业企业数量较少,海外厂商占主导地位且市场集中度较高,现有的竞争者之间的竞争激烈程度较高,致使国内厂商很难站稳脚跟;其次,高端光学显微镜产品的特殊性,单次采购量有限,且往往需要定制,故其无法批量采购;另外,高校与研究院所对高端光学显微镜的要求较高,多倾向于购置海外厂商的高分辨率产品。对于永新光学而言,高端显微镜发展也有好的一面。由于高端光学显微镜行业壁垒较高,替代品较少,行业在短时间内各厂商替代风险较低,且近年来,国产光学显微镜企业都在加大研发力度,加速追赶步伐,随着近几年国产替代进度的加速,国内显微镜龙头厂商优势显现,高性价比的高端显微镜将逐步进入原有海外巨头厂商垄断的市场,推动我国精密光学元器件制造、光学材料、精密加工等行业的发展。未来几年,技术、成本等优势将助力光学显微镜发展。光学显微镜与CCD的结合,成为光学显微镜的一种新的突破,生产厂商也逐渐将软件信息应用于光学显微镜中,甚至将人工智能技术应用于光学显微镜中,使得光学显微镜操作更加简单和高效。在发展趋势上,伴随着以日本、中国、印度等为代表的亚太地区在医疗、科研、生命科学等领域的快速发展,对光学显微镜的需求将会保持较快的增速发展。信息软件技术、AI人工智能技术将会进一步应用到光学显微镜的市场应用领域。
  • 中国高端仪器取得突破,光学显微镜的分辨率提高到60纳米!
    显微镜是重要的科学仪器,显微镜的诞生,拓宽了人类的眼界,带领人类进入微观世界。利用显微镜,人类可以看到细胞机构、微生物、材料的微观机构等,在此基础上进行研究和分析,从而产生大量发明和发现,推动了科学的发展。自显微镜发明以来,科学家们不断提升显微镜的性能,新技术层出不穷,更强大的显微镜能够进一步提升科技水平。由于显微镜对科学有着重大贡献,显微镜领域的多项重大发明都获得了诺贝尔奖。1953年,荷兰人弗里茨塞尔尼克因因相衬显微技术而获得了诺贝尔物理学奖。1986年,德国人恩斯特鲁斯卡作为透视电子显微镜的发明人,获得了诺贝尔物理学奖。1986年,德国人格尔德宾宁和荷兰人海因里希罗雷尔研制出扫描隧道显微镜,获得了诺贝尔物理学奖。2014年,美国人艾力克贝齐格、美国人莫尔纳尔和德国人斯特凡赫尔凭借超分辨荧光显微镜,获得了诺贝尔化学奖。2017年,瑞士雅克杜博歇、德国人约阿希姆弗兰克、英国理查德亨德森研发出低温电子显微镜,获得了诺贝尔化学奖。其中超分辨荧光显微镜的出现,使得光学显微镜进入纳米级尺度。现在,中国研究团队进一步提升光学显微镜的性能,在光学超分辨显微成像技术领域取得突破性进展。哈尔滨工业大学仪器学院和北京大学未来技术学院合作,在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,该显微镜是目前活细胞光学显微成像中分辨率最高的超分辨显微镜,并实现564帧/秒、成像时间达到1小时以上。中国团队提出了一种计算显微成像算法,可以突破光学衍射极限,加上荧光成像的前向物理模型以及压缩感知理论,同时结合稀疏性与时空连续性的双约束条件,开发出稀疏解卷积技术,提高了时空分辨率和频谱,从而研发出超快结构光超分辨荧光显微镜系统。这项技术适用于大多数荧光显微镜成像系统模态,能够实现近两倍的稳定空间分辨率提升,将在生物科学领域发挥重大作用。麦克奥迪、舜宇光学科技、永新光学和广州晶华光学是目前国内光学显微镜市场份额排名靠前的企业,均为中国企业。但国内高端光学显微镜市场主要被徕卡、蔡司、尼康、奥林巴斯等国外企业占据。随着中国光学显微镜实力不断提升,中国企业有望改变高端光学显微镜市场竞争格局。结语中国通过引进和吸收国外技术,取得了巨大进步,想要进一步提升国家竞争力,就必须自主创新,自主创新需要从基础研究做起,而基础研究离不开科学仪器,研制科学仪器就是打好发展基础。
  • 新闻 | AR荧光技术让您实时观察脑血管血流情况 -徕卡显微系统副总裁接受神外前沿专访
    徕卡显微系统副总裁Maxim Mamin于2017年11与17日来华,并于当日接受了“神外前沿”公众号的专访,对徕卡即将在国内上市的MFL800研发初衷与技术问题进行了独家的解读。神外前沿讯,在洛杉矶举行的2017 AANS美国神经外科年会上,徕卡基于手术显微镜的增强现实荧光成像技术AR荧光(MFL800)正式上市,这个血管荧光突破性的新技术,可以将近红外荧光成像与白光图像相结合,让神经外科医生在双目镜筒中实时观察解剖结构及荧光效果,为手术决策提供实时有效的信息。(点击上图播放手术效果视频)据悉,采用AR(增强现实)荧光技术的徕卡MFL800已经通过CFDA认证,将于明年一季度在中国上市。近日,徕卡显微系统副总裁Maxim Mamin先生就AR荧光新技术的研发情况接受了《神外前沿》的访谈。对话内容如下神外前沿:AR荧光(MFL800)研究开发的初衷是什么,能够帮助神外医生解决什么问题?Maxim Mamin:血管荧光造影剂广泛应用于脑血管手术,包括动脉瘤夹闭,脑血管畸形和微血管减压术等手术。在使用过程中就会发现ICG通过红外成像,是肉眼看不到的,只能在显微镜上看到,而且是黑白的,还有很多解剖结构的细节看不清,并且还有一点延时,这对医生来说是比较被动的事情。ICG只能看到荧光显影,周边的组织是无法看清楚的;MFL800也属于ICG技术,但在镜下高清的,可以把细节和血管等都显示出来。有了深度的感觉了,周边的血管可以看得很清楚,可以在这上面做一些操作。神外前沿:AR荧光(MFL800)和以往的显微镜下的荧光有什么不同,比如肿瘤手术使用的5?ALA肿瘤荧光?Maxim Mamin:ICG荧光方式现在主要用于血管病的手术治疗,因为ICG要用注射的方式注射到到血管里,可以通过血液的流动经过全身,然后可以观察到血流的情况。5-ALA是一种荧光显影剂,使用方式是在患者手术前,通过饮用的方式喝下去,不会在血管显现,只会在肿瘤上显现,而且只会在高级别胶质瘤上显现。可以说ICG是血管显影的介质,5ALA是胶质瘤显影的介质。另外,ICG和5ALA在激发后产生的光波的波谱和波长是不一样的,借助于发射波长为400nm蓝光手术显微镜,5-ALA是可以看见的,ICG的波长是780nm-800nm,是红外光,肉眼看不到的。神外前沿:AR荧光(MFL800)在神经外科中更适合血管还是肿瘤的显影?Maxim Mamin:这个新技术主要应用于血管病,包括动脉瘤、血管畸形、MVD(微血管减压)等,当然还可以用在心血管病的搭桥手术,看血管的流畅情况,还有可以用在整形手术中。(图注:Leica M530 OH6手术显微镜与MFL800的结合,有德国科隆医疗中心神经外科的Cleopatra Charalampaki教授提供的手术照片)神外前沿:这个技术如果应用于脑血管外科,是否会扩大适应症范围,相对于介入技术的不断发展?Maxim Mamin:这是个很好的问题,现在确实有趋势看到很多医生开始采用介入技术,MFL800肯定能帮助神经外科医生看得更清楚,以治疗更复杂的脑血管病。MFL800是基于(增强现实技术的)GLOW平台,现在开发的是用于脑血管病的技术,将来还可以开发应用于肿瘤的技术。这个平台的硬件包括摄像头等设备,另外还有相关软件,以实现定量化、多波长的荧光成像技术,最终就像地图一样,能够显示出比如血流的强度、随时间变化的情况等,因而能够区分动脉和静脉,带来更多的信息。我们采用的是开放性的设计平台,将来有了新技术都可以将其升级到手术显微镜上。新的技术把不可见的光通过数据化显示出来,最重要的一点是MFL800是一个实时的技术,术者可以在目镜下实时观察到手术中的情况,没有延时。神外前沿:MFL800预计在中国何时上市?Maxim Mamin:我们产品的正式上市是在10月份刚刚结束的AANS美国神经外科年会上,正式的装机在11月份,12月份还会在欧洲和美国有新的装机。在中国我们已经通过了CFDA的认证,应该在明年一季度上市。神外前沿:目前内镜技术在神经外科应用越来越多,显微镜如何面对内镜的竞争?Maxim Mamin:显微镜和神经内镜是互补的技术,手术显微镜最明显的优势就是术中可以有很好的深度感受,可以很直观的看到并操作,相对来说也容易操作。另外,显微镜现在可以搭载各种荧光成像技术,但目前的神经内镜还没有。再有,神经内镜很难判断方向,并且并非所有手术器械都适用于脑室镜,比如双极电凝。神经内镜可能更适合于不能直视的一些病变,比如在角落或者被重要器官遮挡的。目前最新的技术可以把神经内镜的成像集成到显微镜上,也就是可以在目镜下直接显示。受访者简介Maxim Mamin, Vice President Medical Division (Surgical Microscopes Imaging) at Leica Microsystems (Danaher company), Leica Microsystems, UCLA Anderson School of Management.International Executive with 15+ years of leadership experience in Siemens Healthcare across various functions (Marketing, Product Development, Sales, Regional Business Development, Country Operations), across diverse products portfolio (Imaging and Lab Diagnostics), and cultures (Russia, Germany, Singapore, Korea, Malaysia).来源:神外前沿关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 高端光学显微镜新品盘点:老牌稳步向前 国产令人欣喜
    光学显微镜在生命科学领域有着广泛而重要的应用,而相较于普通光学显微镜,不断发展的高端光学显微镜在分辨率、成像深度和速度以及自动化等方面具有独特优势,对于科研人员来说更是发挥着越来越重要的作用。仪器信息网对近两年发布的高端光学生物显微镜新品进行盘点,包括共聚焦显微镜、超高分辨率显微镜、双光子显微镜、光片显微镜、全玻片扫描系统、光镊-共聚焦显微镜以及为了克服单一技术的缺陷而出现的多技术联用显微镜,带大家一起走进生命科学发展不可或缺的微观技术世界。进口篇:不断精进蔡司作为德国百年精密光学仪器公司,其创新研发能力的确优秀,产品更新换代速度较快,近一年就发布了多款新产品,包括Lattice Lightsheet 7晶格层光显微镜、Elyra 7 with Lattice SIM2超分辨显微成像系统、全自动数字玻片扫描系统Axioscan 7和紧凑型显微镜Primostar 3。蔡司Lattice Lightsheet 7晶格层光显微镜Lattice Lightsheet 7晶格层光显微镜于2020年底上市,晶格光片技术来源于诺贝尔奖获得者Eric Betizg教授发明的晶格层光显微成像技术,该技术对光进行结构化调制,使光片更薄,更长。光毒性低,可以实现长时间以亚细胞分辨率观察细胞及微小生物体的3D动态过程。Lattice Lightsheet 7晶格层光显微镜蔡司Elyra 7 with Lattice SIM2超高分辨率显微成像系统Elyra 7 with Lattice SIM2超高分辨率显微成像系统是应用于生命科学研究的高端光学显微镜产品,在2019年发布的Lattice SIM基础上进行升级迭代,属于晶格照明技术与SIM超分辨率显微技术的结合,用高光效率克服传统SIM在成像速度、深度和光毒性等方面的局限性。相关参数:分辨率:xy 60nm,z 200nm 成像速度:达到255fps;可用于活细胞成像等。Elyra 7 with Lattice SIM2超分辨显微成像系统蔡司全自动数字玻片扫描系统Axioscan 7Axioscan 7是在Axio Scan.Z1基础上优化和升级,有明场、荧光、偏光和TIE反差成像多种模式,可以实现批量样品的连续扫描,在神经生物学研究、肿瘤免疫研究和组织分析中有良好应用。全自动数字玻片扫描系统Axioscan7奥林巴斯也推出2款新产品,分别是光片显微镜Alghα3和研究级全玻片扫描系统VS200。奥林巴斯光片显微镜Alghα3光片显微镜Alghα3是今年年初在中国发布的一款新产品。该产品光片显微技术来源于PhaseView公司的多向选择平面光显微成像技术(mSPIM),还使用了“聚焦扩展”专利技术。产品介绍中,技术特点包括,可实现生物样本快速原位成像,双重照明技术能够实现亚细胞分辨率成像,超薄光片照明以及可以实现更多成像物镜和电动部件的组合等。光片显微镜Alghα3奥林巴斯研究级全玻片扫描系统VS200奥林巴斯研究级全玻片扫描系统VS200于2019年底上市,2020年正式在中国销售,利用明场、暗场、相衬、偏光、荧光五种成像,方式,主要用于教学、会诊、培训和科研等多种场合,可应用于神经生物学、发育生物学、组织病理学等领域研究。奥林巴斯研究级全玻片扫描系统VS200在我们现在常说的超分辨显微镜之前,共聚焦显微镜属于第一代超分辨显微镜,其分辨率同样可突破衍射极限(200nm)。共聚焦显微镜面世已经超过25年,对于科研用户来说相对较为惯用。尼康AX/AX R共聚焦显微镜今年4月,尼康发布了其第十代点扫描共聚焦——尼康AX/AX R共聚焦显微镜,在人工智能技术、分辨率、灵敏度和成像速度方面都有所改进。这款产品也是尼康时隔十年再次发布的该系列共聚焦显微镜,上一代产品还是A1。尼康AX/AX R共聚焦显微镜LUMICKS C-trap G2 超分辨光镊-共聚焦联用系统在近期的展会上,笔者还看到了一款光镊荧光共聚焦显微镜——C-trap G2光镊-共聚焦联用系统。据工作人员介绍,这也是全球首台超高分辨率光镊-共聚焦显微镜联用系统,进入中国市场不久。这款产品是集超高分辨率光镊、共聚焦显微镜(或STED超分辨显微镜)和微流控与一体的单分子操作分析系统据,用于对生物大分子进行操控,研究亚细胞结构,细胞器的力学特性、操控蛋白液滴,研究细胞相分离,将荧光-力学信号同时采集,可用于蛋白质与DNA相互作用以及对蛋白构象变化的研究。C-trap G2光镊-共聚焦联用系统国产篇:多点开花基于中国自主核心技术的产品近几年有很多喜讯,国内高端显微镜也出现了繁荣的景象。超视计HiS-SIM智能超灵敏活细胞超分辨显微镜广州超视计是一家成立不足三年的高新技术企业,2020年11月推出HiS-SIM智能超灵敏活细胞超分辨显微镜。该产品是自主设计和生产的结构光超分辨显微镜,核心技术来源于北京大学陈良怡教授团队,曾被评为“2018年中国光学十大进展”。目前该产品已经完成商业化生产并已有多家用户使用。相关参数:分辨率:60纳米,可辨识线粒体内嵴及其动态过程;灵敏度:光强相比其他结构光超分辨率显微镜:1/10,比PALM/STORM超分辨显微镜:1/1000,比STED超分辨显微镜:1/400000;成像速度:最快564Hz,可观察到囊泡分泌孔道和新中间态;超低毒性:连续1小时1Hz成像无漂白。HiS-SIM智能超灵敏活细胞超分辨显微镜SIM-ultimate转盘-结构光多模态超分辨系统笔者认为SIM-ultimate转盘-结构光多模态超分辨系统是今年非常有看点的一款新品,今年7月在合肥的生物物理大会上发布,据介绍,这是国产显微镜企业和进口显微镜企业的第一款战略合作高端光学显微镜。该产品集合了是广州超视计的HiS-SIM智能超灵敏活细胞超分辨显微镜和奥林巴斯的Spin SR超高分辨转盘共聚焦显微系统,产品介绍显示,两款显微镜的结合,打通Spinning Disk Confocal、Spinning SR、2D-SIM、TIRF-SIM等成像模式,并在各模态中全方位嵌入最新的实时重建和稀疏重建功能,联合开发跨平台硬件操控,根据各种不同的活细胞成像需求让用户来探索合适自己活细胞样本的成像流程和模式组合,让许多生命科学问题迎刃而解。“ultimate”有“终极”之意,体现了产品研发人员对其应用和功能的信心。SIM-ultimate转盘-结构光多模态超分辨系统纳析光电Multi-SIM多模态结构光超分辨智能显微镜北京纳析光电科技有限公司的Multi-SIM多模态结构光超分辨智能显微镜,这款产品目前还没有正式发布上市,在一些展会上已经能够看到它的身影,且据悉已经有多台样机在生命科学研究平台进行试用。该产品的技术来源于中科院生物物理所李栋研究员团队,曾获得2018年度“中国科学十大进展”。产品介绍显示,Multi-SIM实现了将超分辨成像实验室指标工程化为高稳定、可靠、易操作的商业产品,提供高速、长时程、超分辨活细胞成像全流程解决方案,具备多种独家研制的SIM超分辨成像模态。可为生物医学研究、临床病理,以及药物精准筛选提供五维(5-D:X-Y-Z-Time-Color) 超分辨成像解决方案。相关参数:2- D超分辨,84纳米(TIRF-SIM);60纳米(Nonlinear-SIM)3- D超分辨,X-Y:100纳米;Z:320纳米成像速度快,大视野多模态:可以根据生物问题特点选择合适的SIM成像模态:TIRF-SIM-细胞膜;GI-SIM-细胞器;Single Slice-SIM-细胞内单一层次;Stacked Slices-SIM-细胞内多层次堆叠;3D-SIM-全细胞。Multi-SIM多模态结构光超分辨智能显微镜超维景微型化双光子显微镜FIRM-TPM北京超维景生物科技有限公司的微型化双光子显微镜FIRM-TPM于2018年上市,目前更新到第二代,是一款头戴式双光子显微镜。该产品技术来源于北京大学程和平院士团队,还有其他北京大学的专家参与,曾被Nature Methods 评为“2018年度方法”,被国家科技部评为“2017年度中国十大科学进展”。FIRM-TPM可实时记录自由行为动物的大脑神经元和树突棘活动,支持钙成像,并可在同一视野长时程反复成像。系统能够配置移动的轴向扫描模块,实现三维成像和多平面快速切换实时成像,用于脑神经回路观察;还可配置光遗传模块,对神经元和大脑神经回路活动进行精确控制。微型化双光子显微镜FIRM-TPM国产共聚焦显微镜也有一些突破,笔者了解到有正在研究的技术和工程样机,也有意欲上市的成型产品。近两年已经上市的,有永新光学的NCF950共聚焦显微镜和世纪桑尼的CSIM 110共聚焦扫描成像模块。永新光学NCF950共聚焦显微镜永新光学的NCF950共聚焦显微镜于2020年底发布,据称是国内首台商业化四色共聚焦显微镜,技术接近国际竞品水平,主要在生物学研究领域应用。据介绍,目前该产品在国内多个高校、科研院所和医院试用并得到良好反馈,且已经实现销售。其主要特点包括便捷的交互方式和多种操控方式;基于高灵敏度的光电倍增和稳定激光光源可得到高信噪比图像。采用高速扫描振镜,实现高达 4096x4096 的实时扫描分辨率;在扫描头、激光器、探测器和物镜方面根据用户使用体验也作了相应设计。NCF950共聚焦显微镜世纪桑尼CSIM 110共聚焦扫描成像模块世纪桑尼CSIM 110共聚焦扫描成像模块早在2020年1月上市,目前已经完成多项销售。CSIM 110共聚焦扫描成像模块的创新点包括(1)光路设计更简洁,降低光信号的损失,提高模块检测灵敏度;(2)优化信号的探测类型,获得更高效的信号采集。世纪桑尼共聚焦模块在国外篇最后提到的光镊技术是2018年诺贝尔物理学奖获奖技术。据了解,西安交通大学的雷铭教授团队也正在进行相关技术的研究工作。此外,雷铭团队还研发了结构光照明三维荧光显微镜、结构光照明三维彩色显微镜和结构光照明超分辨荧光显微镜,也有商业化的打算。笔者按:如今,高端光学显微镜尤其是在活细胞超分辨成像技术方面,进口产品以及国内不同团队的技术各有千秋,在被“四大家”长期统治的高端显微镜市场,出现了越来越多的国产显微镜身影,而且还有许多科研团队在投入研究更多技术。技术已然实现突破,再攻克产品商业化的难题,笔者相信,未来国产品牌在中国高端显微镜市场必将占有一席之地。
  • 某新建材料实验室将购置荧光光谱仪、电子显微镜等研发设备20台
    近日,研友检测技术(南京)有限公司公示了其材料检测实验室建设项目详情。据了解,出于市场的需要,研友检测技术(南京)有限公司拟投资 3000 万元,租赁现有研发用房(建筑面积约 1000 平方米),建设材料检测实验室。项目位于南京市江宁区景佑路 33 号产研综合大楼 A 座 2 层 216 室(江宁高新园),购置荧光光谱仪、电子显微镜、热分析仪器等研发设备 20 台(套),实验流程为:样品→检测→出具报告。项目建成后,预计年检测样品约 1 万例。本项目仅提供外部来样检测服务,不涉及生产原材料。项目主要产品及产能、生产单元与工艺一览表建设项目主要设施一览表
  • 第二波!永新光学又一批高端荧光显微镜驰援湖北
    p style=" margin-bottom: 0px text-indent: 2em " span style=" text-indent: 2em " 2月5日, /span span style=" text-indent: 2em " 继大年初一将第一批实验室研究用荧光显微镜火速发往武汉外,当天下午,宁波高新区的永新光学又有一批显微镜驰援湖北。此次是向湖北多家发热门诊及定点治疗三甲医院,捐赠出价值83万元共计12台套病毒实验分析显微镜,用于抗击新型冠状病毒。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202002/uepic/3e35bded-6cc4-4090-a0b4-ba488f616a8e.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 自从新型冠状病毒感染的肺炎疫情蔓延以来,医疗物资紧缺成为此次疫情的关注焦点。“因抗击疫情需要,华中科技大学同济医学院附属协和医院申请贵公司捐赠NE900荧光显微镜2台,感谢支持。”2月2日,永新光学又收到一份捐赠申请。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 365px " src=" https://img1.17img.cn/17img/images/202002/uepic/59b972d0-95d9-4786-bade-66afe843d63d.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 365" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 事实上,自从向武汉发出第一批实验室荧光显微镜后,部分永新人就放弃了休假,随时在待命。“除了向我们寻求捐助的医疗机构外,我们也主动联系了其他需要帮助的医疗机构,希望尽一份微薄之力。”永新光学相关负责人说,与病魔较量,就是要同时间赛跑,国家允许捐赠者直接与定向医疗机构对接捐赠,这样可以很大程度上缩短捐赠物资运转时间,为医疗机构赢得更多研究病毒的时间。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 398px " src=" https://img1.17img.cn/17img/images/202002/uepic/7193c8c4-2971-4bce-b063-b4dd184767ff.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 398" border=" 0" vspace=" 0" / /p p br/ /p p style=" text-indent: 2em " 据了解,这12台套实验室研究级显微镜结合相关试剂盒,可紧急用于医院实验室内病毒和细胞的筛选及分析。受赠的医院有武汉协和医院、同济医院、人民医院、肺科医院等9家三甲核心医院,涉及的科室有血液科、病理科、检验科等。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" " text-indent:=" " strong style=" margin: 0px padding: 0px " 关于永新光学 /strong /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" " text-indent:=" " img src=" https://img1.17img.cn/17img/images/202002/uepic/2ecdf779-fea4-402a-a329-40f9a3033ba3.jpg" title=" logo永新.jpg" alt=" logo永新.jpg" width=" 200" height=" 63" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 200px height: 63px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial=" " white-space:=" " text-indent:=" " 宁波永新光学股份有限公司(永新光学)是中国光学精密仪器及核心光学部件供应商、国家级高新技术企业、中国仪器仪表行业协会副理事长单位、光学仪器分会理事长单位和光学显微镜国家标准制订单位,主导ISO9345显微镜国际标准制订,拥有“NOVEL”、“NEXCOPE”和 “江南”等自主品牌。2016年承接国家重大科学仪器设备开发项目“高分辨荧光显微成像仪研究及产业化”,2017年荣膺工信部制造业单项冠军培育企业。2018年上交所A股主板上市。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 点击下图了解更多 /strong /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial=" " white-space:=" " text-align:=" " a href=" https://www.instrument.com.cn/zt/xxgzbd" target=" _blank" style=" margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none " img src=" https://img1.17img.cn/17img/images/202002/uepic/241329b1-91f4-4348-9f66-fee1327122c9.jpg" title=" banner.png" alt=" banner.png" width=" 550" height=" 123" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 550px height: 123px " / /a /p
  • 徕卡175周年:徕卡品牌的发展历程,也是显微技术的发展史
    2024年是徕卡显微成立第175周年。这175年,既是徕卡品牌的发展历程,也是世界光学显微技术的发展史。这175年,徕卡始终满怀热忱,以创新将可视化、分析能力推向更高更远。徕卡的愿景是瞰见未知,赋能客户,同创世界健康与美好。让我们共同回顾徕卡品牌走过的百年风雨历程感受人类在光学显微技术领域的不断开拓创新1849 - 2004年品牌早期历程1849年德国数学家卡尔凯尔纳 (Carl Kellner) 博士在德国韦茨拉尔成立 Optical Institute 光学公司,开始镜头与显微镜的研究。早期的徕卡显微镜工厂1853年Optical Institute在美国成立 Bausch & Lomb 仪器部门。1865年恩斯特徕兹一世 (Ernst Leitz I) ,加入了公司并成为公司的合伙人。恩斯特徕兹一世 (Ernst Leitz I)1869年Ernst Leitz 接管“Optical Institute”并将公司改名为“Ernst Leitz”。早期的Leitz徕兹显微镜1872年Rudolf Jung在德国的海德堡成立精密工程公司。一个世纪以后,海德堡将诞生一家培养了十多位诺贝尔奖得主的全球著名研究所——欧洲分子生物学实验室EMBL(European Molecular Biology Laboratory)。鲁道夫荣格 (Rudolf Jung)1876年 C. Reichert在奥地利的维也纳成立光学公司。卡尔赖希特 (Carl Reichert)上述两家公司后来合并为Reichert-Jung。1881年霍勒斯达尔文 (Horace Darwin) 创立剑桥仪器光学公司 (Cambridge Instruments),该公司也是徕卡集团的前身之一。而霍勒斯达尔文的父,亲,正是《物种起源》的作者,进化论的奠基人,英国生物学家查尔斯达尔文 (Charles Darwin)。霍勒斯达尔文 (Horace Darwin) 查尔斯达尔文 (Charles Darwin),进化论之父1907年徕卡将第10万台量产显微镜赠予诺贝尔奖获得者罗伯特科赫 (Robert Koch)。罗伯特科赫是德国科学家,因发现结核杆菌及细菌学相关研究而获得诺贝尔医学奖,被誉为“细菌学之父”。罗伯特科赫 (Robert Koch)徕卡赠送给罗伯特科赫的显微镜罗伯特科赫在使用徕卡显微镜1913年徕卡推出首台双目筒显微镜。首台双目筒显微镜1914年奥斯卡巴纳克 (Oskar Barnack) 发明 Leitz 35 mm 小画幅相机。由此开启了相机界的顶流——Leica徕卡相机的历史。第一台徕卡相机UR-LEICA1921年Wild Heerbrugg在瑞士创建光学公司。海因里希怀尔德 (Heinrich Wild)1925年徕卡推出首台偏光显微镜。1929年徕卡发布光子显微镜。1932年徕卡推出入射光荧光显微镜。1950年代的徕卡显微镜工厂1967年 徕卡发布图像分析产品 (定量分析显微镜) 。1972年Leitz Wetzlar 和 Wild Heerbrugg 开始合作。1976年公司拓展金属材料研究业务,并收购了达尔文创立的Cambridge Instruments(首家扫描电子显微镜制造商)。1981年Wild Leitz 集团开始规划成立。1984年ELSAM 超声显微镜荣获德国商业创新奖。1986年Ernst Leitz 和 Wild Heerbrugg 合并成立 Wild Leitz 集团。1990年Wild Leitz、Cambridge Instruments、Reichert & Jung 和 Bausch & Lomb 合并成立徕卡集团。1993年徕卡集团在中国设立第一家样本制备合资公司。1998年徕卡集团的徕卡相机、徕卡显微系统和徕卡测量系统三大业务单元成为三家独立公司。徕卡相机 徕卡显微系统徕卡测量系统2003年徕卡 DUV 物镜获得德国商业创新奖。2004年第一台超分辨率共聚焦 (4Pi) 显微镜。2005 - 2014年加入丹纳赫继续引领世界光学显微技术发展2005年徕卡显微系统正式加入美国丹纳赫(Danaher)集团,成为丹纳赫生命科学平台的一个重要分支。丹纳赫是全球科学和技术的创新者,徕卡与之携手,加速科技对今日生活之影响,改善人类健康。2005年大事记推出创新激光显微切割系统TCS SP5共聚焦显微镜面世,具备当时单台共聚焦显微镜有史以来最高的成像速度和分辨率AF6000 LX集成系统适用于高级宽场荧光成像和分析,使研究人员能够在几天内通过快速细胞动力学成像或 4D 实验来研究生命过程。徕卡 LMD6000 可处理较厚的样本和较硬的材料2006年大事记徕卡推出组织病理学网络解决方案徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖)2007年大事记徕卡与超高分辨率技术之父斯特凡黑尔 (Stefan Hell) ,推出超越当时显微分辨率极限的TCS STED 光学显微镜。这是世界首款商用STED显微镜,光学分辨率小于90纳米。Max Planck Innovation 签署 RESOLFT 技术的许可证协议;哈佛大学科技发展办公室向徕卡授予其 CARS 显微镜技术许可证。徕卡显微系统公司新成立生物系统部门,后来发展为丹纳赫集团诊断平台旗下运营公司。徕卡推出M165 C和M205 C高端体视显微镜,采用 FusionOptics 融合光学技术,树立了体视显微镜领域的新标杆。2008年大事记徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。而德国海德堡正是徕卡公司的前身之一——1872年鲁道夫荣格 (Rudolf Jung)的精密工程公司——成立的地方。徕卡推出 M720 OH5 是小巧的神经外科显微镜,配有水平光学系统,采用移动设计理念,具有出色的头顶操作性。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。2009年大事记2010年大事记徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。2011年大事记
  • 徕卡175周年:徕卡品牌的发展历程,也是显微技术的发展史
    2024年是徕卡显微成立第175周年。这175年,既是徕卡品牌的发展历程,也是世界光学显微技术的发展史。这175年,徕卡始终满怀热忱,以创新将可视化、分析能力推向更高更远。徕卡的愿景是瞰见未知,赋能客户,同创世界健康与美好。今天,作为丹纳赫集团旗下一员,徕卡显微正在加速科技对今日生活之影响,改善人类健康。让我们共同回顾徕卡品牌走过的百年风雨历程,感受人类在光学显微技术领域的不断开拓创新。1849 - 2004年品牌早期历程1849年德国数学家卡尔凯尔纳 (Carl Kellner) 博士在德国韦茨拉尔成立 Optical Institute 光学公司,开始镜头与显微镜的研究。 早期的徕卡显微镜工厂 1853年Optical Institute在美国成立 Bausch & Lomb 仪器部门。1865年恩斯特徕兹一世 (Ernst Leitz I) ,加入了公司并成为公司的合伙人。 恩斯特徕兹一世 (Ernst Leitz I)1869年Ernst Leitz 接管“Optical Institute”并将公司改名为“Ernst Leitz” 早期的Leitz徕兹显微镜1872年Rudolf Jung在德国的海德堡成立精密工程公司。一个世纪以后,海德堡将诞生一家培养了十多位诺贝尔奖得主的全球著名研究所——欧洲分子生物学实验室EMBL(European Molecular Biology Laboratory)。 鲁道夫荣格 (Rudolmatchf Jung)1876年 C. Reichert在奥地利的维也纳成立光学公司。 卡尔赖希特 (Carl Reichert)上述两家公司后来合并为Reichert-Jung。1881年霍勒斯达尔文 (Horace Darwin) 创立剑桥仪器光学公司 (Cambridge Instruments),该公司也是徕卡集团的前身之一。而霍勒斯达尔文之父,正是《物种起源》的作者,进化论的奠基人,英国生物学家查尔斯达尔文 (Charles Darwin)。霍勒斯达尔文 (Horace Darwin) 查尔斯达尔文 (Charles Darwin),进化论之父1907年徕卡将第10万台量产显微镜赠予诺贝尔奖获得者罗伯特科赫 (Robert Koch)。罗伯特科赫是德国科学家,因发现结核杆菌及细菌学相关研究而获得诺贝尔医学奖,被誉为“细菌学之父”。罗伯特科赫 (Robert Koch)徕卡赠送给罗伯特科赫的显微镜罗伯特科赫在使用徕卡显微镜1913年徕卡推出首台双目筒显微镜。首台双目筒显微镜1914年奥斯卡巴纳克 (Oskar Barnack) 发明 Leitz 35 mm 小画幅相机。由此开启了相机界的顶流——Leica徕卡相机的历史。 第一台徕卡相机UR-LEICA1921年Wild Heerbrugg在瑞士创建光学公司。 海因里希怀尔德 (Heinrich Wild)1925年徕卡推出首台偏光显微镜。 1929年徕卡发布光子显微镜。1932年徕卡推出入射光荧光显微镜。 1950年代的徕卡显微镜工厂1967年 徕卡发布图像分析产品 (定量分析显微镜) 。1972年Leitz Wetzlar 和 Wild Heerbrugg 开始合作。 1976年公司拓展金属材料研究业务,并收购了达尔文创立的Cambridge Instruments(首家扫描电子显微镜制造商)。1981年Wild Leitz 集团开始规划成立。 1984年ELSAM 超声显微镜荣获德国商业创新奖。1986年Ernst Leitz 和 Wild Heerbrugg 合并成立 Wild Leitz 集团。1990年Wild Leitz、Cambridge Instruments、Reichert & Jung 和 Bausch & Lomb 合并成立徕卡集团。 1993年徕卡集团在中国设立第一家样本制备合资公司。1998年徕卡集团的徕卡相机、徕卡显微系统和徕卡测量系统三大业务单元成为三家独立公司。徕卡相机 徕卡显微系统徕卡测量系统2003年徕卡 DUV 物镜获得德国商业创新奖。2004年第一台超分辨率共聚焦 (4Pi) 显微镜。2005 - 2014年加入丹纳赫继续引领世界光学显微技术发展2005年 2005年,徕卡显微系统加入丹纳赫集团。由此,丹纳赫开始进入生命科学业务领域。 徕卡很自豪能成为丹纳赫的一员。丹纳赫是全球科学和技术的领导者。一起携手,我们正在加速科技对今日生活之影响,改善人类健康。 2005年大事记推出创新激光显微切割系统TCS SP5共聚焦显微镜面世,具备当时单台共聚焦显微镜有史以来最高的成像速度和分辨率AF6000 LX集成系统适用于高级宽场荧光成像和分析,使研究人员能够在几天内通过快速细胞动力学成像或 4D 实验来研究生命过程。徕卡 LMD6000 可处理较厚的样本和较硬的材料2006年大事记徕卡推出组织病理学网络解决方案徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖)2007年大事记徕卡与超高分辨率技术之父斯特凡黑尔 (Stefan Hell) ,推出超越当时显微分辨率极限的TCS STED 光学显微镜。这是世界首款商用STED显微镜,光学分辨率小于90纳米。Max Planck Innovation 签署 RESOLFT 技术的许可证协议;哈佛大学科技发展办公室向徕卡授予其 CARS 显微镜技术许可证。徕卡显微系统公司新成立生物系统部门,后来发展为丹纳赫集团诊断平台旗下运营公司。徕卡推出M165 C和M205 C高端体视显微镜,采用 FusionOptics 融合光学技术,树立了体视显微镜领域的新标杆。2008年大事记徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。而德国海德堡正是徕卡公司的前身之一——1872年鲁道夫荣格 (Rudolf Jung)的精密工程公司——成立的地方。徕卡推出 M720 OH5 是小巧的神经外科显微镜,配有水平光学系统,采用移动设计理念,具有出色的头顶操作性。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。
  • 大规模设备更新 | 光学显微镜专场直播
    大会介绍 近期,国务院常务会议审议通过《推动大规模设备更新和消费品以旧换新行动方案》。根据仪器信息网报告,重大科研设施与仪器国家网络管理平台所收录的重大仪器设备(价值100万以上),40%以上设备平均服役年份为10.1年。从使用10年以上的仪器设备数量来看,高校院所领域数量最多,高达31593台。 为帮助用户更快,更有针对性地筛选出各个品类中的新仪器、新设备,并放心选购,仪器信息网特推出系列直播活动。本期聚焦光学显微镜,携手徕卡显微系统,2024年5月13日13:30邀请行业资深专家共同探讨仪器技术新进展、行业应用趋势,为用户了解最新技术和选型采购带来实用经验。 亮点前瞻 圆桌论坛探讨显微成像前沿技术,现场互动,思想碰撞! 显微成像领域权威齐聚,行业大咖现场分享经验,探索未来发展新趋势! 徕卡显微镜产品家族:深度解读多通道成像、智能平台、宽场光学与工业新应用 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 见所未见 得见未来 | 光学显微镜在细胞分析中的应用——力显智能新品发布会成功举办
    新元肇始,辞旧迎新,伴随着新年的钟声敲响,宁波力显智能科技有限公司于2022年1月8日成功举办光学显微镜在细胞分析中的应用——力显智能新品发布会,此次会议邀请复旦大学药学院青年研究员王璐老师、中国科学院上海光学精密机械研究所副研究员付国老师以及宁波力显智能科技有限公司张猛博士共同出席,发布会内容包括精彩报告、产品演示等,为各位听者带来了一场学术视听盛宴。在线听众积极互动SESSION1:活细胞生物成像荧光探针首先,王璐老师作了题为“活细胞生物成像荧光探针”的报告,王璐老师表示传统的显微镜很难能对细胞的精细结构进行分辨研究,通过使用荧光探针对想要标记的蛋白进行特异性的标记,即可实现多色、高信噪比、实时、动态的追踪研究。王璐老师根据多年活细胞蛋白免洗标记、超高时空分辨率荧光成像、疾病相关重要代谢分子实时检测等领域研究经验,为我们详细讲述了根据不同的生物分子活性及性质对不同探针的设计策略。SESSION2:PALM/STORM超分辨显微术及生物应用付国老师就“PALM/STORM超分辨显微术及生物应用”展开详细阐述,以PALM/STORM超分辨显微术生物应用为基础进行技术展望,宁波力显iSTORM 3CM已通过软件实现了实时重构,也可以实现纳米级矫正精度,未来智能化、自动化的超分辨成像采集及图像处理软件势必会受到广大科研专家的喜爱。SESSION3:超高分辨显微镜- iSTORM产品介绍张猛博士的精彩演讲,不仅向各位听众展示了宁波力显智能科技有限公司强大的研发实力,同时也介绍了超高分辨率显微成像产品INVIEW iSTORM,作为一款自主知识产权的超高分辨率显微系统,该产品基于2014年诺贝尔化学奖得奖技术,通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几分钟到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环境对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。“傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,使得它能够帮助到科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究之外,还能更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。SESSION4:miniview产品重磅发布SESSION5:培养箱中的智能监控助手—miniview产品介绍会议最后,张猛博士代表宁波力显智能科技有限公司,为我们带来了力显智能最新研发的产品——miniview“培养箱中的细胞智能监控助手”这一迷你型显微镜,miniview MN-100是一款用于实时监测细胞生长状态的迷你型科研仪器,可多个放置在培养箱中,以PC端直观、实时方式观测细胞生长状态,提供视频回溯、汇合度分析、生长曲线等分析功能,完美适用于大多数细胞生长研究,为细胞质量控制、监控提供一站式解决方案,无缝衔接后续实验流程。无间断监控,不错过细胞培养的每时每刻24/7无间断定量显示细胞培养状态,实时拟合细胞生长曲线,提供视频回溯功能,并有效避免传统法所造成的污染,降低实验失败风险。智能分析、触线提醒,实验进入“懒人”时代图像分析功能提供汇合度精确定量数据,为实验结果提供可靠支持,并可根据实验需求自定义细胞生长汇合度警戒线,触线邮件提醒功能让实验安排更准确。兼容性高、经济性好,无隐形耗材消费 采用随动定焦技术使得z轴可进行自由对焦,兼容市面上绝大多数常规培养器皿,无专用耗材需求。一机多能、多场景适用,实验“小”帮手支持包括肿瘤细胞功能学监测、细胞体外药物功能学筛查、药代动力学、靶向药物筛选等多实验场景的应用。随着人类对自然的认识向更加微观的时空尺度,传统的显微手段已经不能完全胜任,没有技术先进的仪器,要想做出重大原始创新科研成果困难重重。力显智能科技将乘科研仪器国产化政策的东风,立足具有国际领先性的超高分辨率技术,持续进行超高分辨率显微镜技术研究及相关产品开发,将不断推出新技术、新品,推动高端显微技术在生命科学、医学、药学等领域的产业化和应用,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制,努力为我国的科学研究提供强大助力。
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • 高端光学显微镜国产VS进口:从“各行一路”到开始竞争——访宁波永新光学股份有限公司总经理毛磊
    光学显微镜是科学研究必不可少且应用广泛的科学仪器,相关技术曾多次获得诺贝尔奖,光学显微技术的不断进步也推动着生命科学、材料、工业等多个领域的发展。过去几十年,我国光学显微镜制造企业偏重于生产低端教育用显微镜,而绝大部分实验室和科研用显微镜依赖于进口。近几年,国产高端光学显微镜在生命科学、材料学等领域都取得了长足进步,出现了高端光学显微镜国产替代速度加快的趋势。2021年,国产光学显微镜头部企业宁波永新光学股份有限公司(以下简称“永新光学”)完成共聚焦显微镜首单销售,正式进军“百万级”高端光学显微镜领域。近日,仪器信息网专访了宁波永新光学股份有限公司总经理毛磊,深入交流了国家发展高端光学显微镜的意义、国产高端光学显微镜的行业现状以及永新光学在高端光学显微镜业务的布局考量。宁波永新光学股份有限公司总经理毛磊我国光学显微镜发展现状:存在产业分层当前,我国光学显微镜制造厂家有数十家,产品结构有清晰的分层:绝大部分厂家主要生产学前儿童和普通教学类显微镜,属于成本领先型;国内头部光学企业永新光学、舜宇光学和麦克奥迪则进入高端显微镜制造领域并已形成规模,属于成本和技术双领先型。这三家企业既有经济实力支撑,也有产业基础,且均为上市企业。而在早期,欧洲和日本的光学显微镜发展同样经历了产业分层的过程。20世纪初,欧洲有几十家显微镜工厂,而目前主流传统企业仅有两家,分别是徕卡和蔡司。日本在上世纪五六十年代也有数十家显微镜企业,现在规模较大的主要是尼康和奥林巴斯。毛磊认为,目前中国存在几十家显微镜企业也算正常,但最后做高端显微镜的厂家不会特别的多,产业总归会相对集中。近几年,国内涌现出一些高端光学显微镜科研成果转化型创业公司,率先在超分辨显微镜、共聚焦显微镜、光片显微镜等高端技术领域推出产品,而包括永新光学在内的头部光学企业虽然已经具备成熟的研发制造能力,在该领域却相对滞后一些针对当前这一现象,毛磊解释道,从“十二五”规划起,科技部支持了众多重大仪器专项,其中由高校和科研院所承担的一些项目成果转化而派生出一些创业公司。这些公司全面生产高端显微镜会有一些限制,因其专门研究仪器中的关键技术,生产某一类或少数几类产品,本身制造能力有限,零部件及主机系统等都需要购买,因此实现产业化还有很多问题要去解决。两大成果 开启高端光学显微镜元年永新光学成立于1997年,其前身是江南光学仪器厂和宁波光学仪器厂,其中江南光仪厂的历史可以追溯到1943年。经过几十年的发展,目前永新光学已成为我国光学显微镜制造业中的领军企业。2018年,永新光学在上海证券交易所主板上市,成为中国以显微镜为主营业务的第一家上市公司;2020年,永新光学经工信部复评升级为光学显微镜产品领域国家级制造业单项冠军示范企业。永新光学有两大核心业务板块,分别是科学仪器和光学元件组件。据介绍,2021年前三季度公司的光学显微镜业务增长超过20%,其中高端光学显微镜业务的增速远高于整体显微镜业务。毛磊表示,在疫情尚未结束的情况下,取得这样的成绩并不容易。关键是,公司光学显微镜的产品结构发生了变化,高端光学显微镜比重增加。在“十三五”国家科技重大专项和重点研发计划项目中,永新光学主导承担了“高分辨率荧光显微成像仪研究及产业化”项目,历时5年顺利完成,其中最具代表性的成果是共聚焦显微镜。2021年,永新光学研制的共聚焦显微镜实现首台/套的销售。毛磊称,对于中国来说,这算是一个标志性事件,因为国产制造企业对价值上百万的高端光学显微镜进行批量市场供应还是第一次。同时也意味着,我们与尼康、徕卡、蔡司、奥林巴斯这些企业,在高端光学显微镜领域开始有竞争了。对于永新光学,2021年还有一项重要成果,即公司承制的太空显微实验仪与天和核心舱一起升空。10月,永新光学接到中国宇航员中心的信息,称这台显微镜图像质量、视频、荧光效果都非常好。“这也是‘0到1’的突破,这款仪器是随着我国太空科技的发展应运而生的。”承担“十四五”重大仪器项目 研制SIM超分辨显微镜继两项重要成果后,近期,永新光学再一次从7家申报单位中脱颖而出,成功获得“十四五”国家重点研发计划“基础科研条件与重大科学仪器设备开发”重点专项的“超高分辨活细胞显微成像显微镜”项目。国家十分重视国产化率和自产自制能力,永新光学之所以能在激烈的竞争中得到该项目,很大程度归功于其出众的自产自制能力。“国家的目的是让整个高端光学显微镜系统能够国产化,关键的部件和技术也很重要,所以本次超高分辨率显微镜项目联合了西安光机所、浙江大学、北京大学等8家单位,由我们企业牵头进行整个系统的集成以及软件开发。”毛磊讲到,“成功研制共聚焦显微镜,说明我们已经达到国外高端显微镜的中低水平,待超分辨显微镜研制成功,就可达到国外高端显微镜的中档水平,将又上一个台阶,正一步一步往上发展。”永新光学战略规划:要实现显微科学仪器高端化据了解,目前国内高端光学显微镜的市场规模约为30亿元人民币,全球约50亿美元,增长空间很大。毛磊表示,永新光学开始布局高端显微镜领域,一方面是出于情怀,另一方面是通过转变发展方向来提升盈利能力。量大面广的显微镜属于成本领先型,厂家需要控制成本,但现在人力资源成本、能源成本、场地成本等越来越刚性化,一味控制成本将导致盈利空间有限。现阶段,需要通过技术能力的提升,来获取更大的盈利能力。2021年,永新光学新修定的五年战略发展规划(2021年-2025年)中明确以“赋能型精准突破式发展战略”为总体发展战略,计划通过5年时间,实现5倍产值规模和5倍效率。毛磊指出,这里5倍的产值规模的实现,仪器部分将主要来自于高端产品的增长。永新光学的战略规划把高端显微科学仪器的发展列入了其中,要实现显微科学仪器高端化。“我们没有强调‘国产替代’,而是‘高端替代’,因为科学仪器无国界,只要我们的科学仪器达到了高端水平,那么德国、美国乃至全世界都会接受,有朝一日一定会像日本的尼康和奥林巴斯的显微镜一样卖到全世界。另外,科学仪器不像电视机等大众消费品,对大众消费品来说仅中国的市场就足够大了。而科学仪器很小众,它的销售不能只着眼于国内,而是一定要形成规模卖到全世界。”国家意志:切切实实提升我国核心装备和重大科学仪器的研制能力王大珩院士曾经讲过,如果经济是一条龙,仪器仪表就是龙的一双眼睛,如果没有眼睛,做事情就没有方向。毛磊讲到:“仪器仪表行业呈现散、小、分离的特点,是一个做起来比较辛苦的行业,但这恰恰也是我国最需要解决的问题,未来是一个方向性的行业和产业,只有仪器仪表产业真正强大了,才能够真正说明国家‘有实力了’。”曾经有相当长一段时期,巴黎统筹协议委员会专门对社会主义阵营实行禁运和贸易限制,仪器销售同样受限。“当时我国科研水平很低。假如今天美日德等发达国家对我们的科学仪器进行封锁,我国的科研水平将受到影响。因此,国家意志很清楚,就是要切切实实地提升我国核心装备和重大科学仪器的研制能力。”当前,发达国家经济构成中很大比例源于高端科技领域。毛磊认为,新的一百年,中国要做高质量的产品,发展高端技术,这样才能发展成为一个强国。当前国家和地方对国产科学仪器的发展政策十分利好,多地发布了相关政策鼓励医疗部门购买国产显微镜,因为一部分国产显微镜已经完全能够满足用户需求;与此同时,对高校科研设备采购的国产化比例也有了要求,而过去并没有限制。随着政策调整和制造业转型升级,国家就业环境也逐渐发生改变,传统行业和新兴技术之间的融合加大对交叉学科人才的需求,这驱使更多的年轻人才开始流到制造业,毛磊认为,人才流向也是国家支持政策的一大利好表现。国产仪器提升还需用户使用和反馈我国科研实验室使用进口仪器已经有几十年的历史,现在仍是如此。近期在清华大学做演讲时,毛磊发现,高校和科研院所领导的仪器国产化意识很强,但实验室里的实际使用者对于进口仪器存在惯性依赖。“这和大家用惯了苹果而不愿更换是一个道理。现在要想销售高端显微镜,往往需要先提供一台产品去试用,用户认为可以替代国外产品时才会购买。因此,我们就要生产很多样机,这样的销售方式实际上非常痛苦。让大家习惯使用国产仪器需要一个漫长的过程,但总要有个开始。我也相信,用户总会有认识到国产仪器并不差、并且会有用习惯的一天。”“如果说还需要政策或者社会一些支持,我认为最重要的是全社会共同呼吁使用国产仪器,因为如果没有用户使用和反馈,国产仪器就无法得到提升。同时,还需要我们整个行业共同努力做好国产化高端仪器的推进工作,真真正正解决‘卡脖子’问题。”毛磊最后讲到。后记:政策方面,毛磊还补充了近期广受业内关注的一个消息:2021年12月4日,国家主席习近平签署第103号主席令,对新修订的《中华⼈⺠共和国科学技术进步法》予以发布,其中第九⼗⼀条明确规定:对境内自然人、法人和非法人组织的科技创新产品、服务,在功能、质量等指标能够满足政府采购需求的条件下,政府采购应当购买;首次投放市场的,政府采购应当率先购买,不得以商业业绩为由予以限制。其中多处提及⿎励国产科学仪器研发和采购,这对高端仪器国产化替代无疑是重大利好。
  • 187万!徕卡中标中山大学生态学院荧光显微镜和荧光细胞成像仪采购项目
    一、项目编号:中大招(货)[2022]035号(招标文件编号:中大招(货)[2022]035号)二、项目名称:中山大学生态学院荧光显微镜和荧光细胞成像仪采购项目三、中标(成交)信息供应商名称:广东升捷仪器有限公司供应商地址:广州市黄埔区东荟二街81号438房中标(成交)金额:186.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 广东升捷仪器有限公司 倒置荧光显微镜(研究型倒置显微镜平台);正置荧光显微镜;宏观变倍荧光显微镜(荧光体视显微镜) LEICA;LEICA;LEICA DMi8;DM4B;M205 FA 2台;2台;1台 359800;349800;449800
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制