当前位置: 仪器信息网 > 行业主题 > >

紫外共振拉曼仪

仪器信息网紫外共振拉曼仪专题为您提供2024年最新紫外共振拉曼仪价格报价、厂家品牌的相关信息, 包括紫外共振拉曼仪参数、型号等,不管是国产,还是进口品牌的紫外共振拉曼仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外共振拉曼仪相关的耗材配件、试剂标物,还有紫外共振拉曼仪相关的最新资讯、资料,以及紫外共振拉曼仪相关的解决方案。

紫外共振拉曼仪相关的论坛

  • 紫外共振拉曼具体原理是怎么一回事?

    一直没有搞清楚共振拉曼是怎么一回事,为什么激发光是紫外的就能大幅提高拉曼信号强度?很多地方都在说,都是简单带过,诸如“在深紫外波段,激光照射被测样品,在激光波长与样品吸收峰相近时,会产生共振效应,这将极大地提高散射的效率”,为什么激发光与样品吸收峰相近,就会让拉曼信号强度大幅提高。还有一个一直困扰我的问题,拉曼散射代表的是分子的振动-转动光谱,而很多地方给的解释过程,明明在说“电子一开始处于基态,受到激发后跃迁到某一虚态,然后再向下跃迁,发出某频率的光”,这个同分子的振动和转动有什么联系?

  • 简述“共振拉曼”特点

    以分析物的紫外-可见吸收光谱峰的邻近波长作为激发波长,样品分子吸光后跃迁至高电子能级并立即回到基态的某一振动能级,产生共振拉曼散射。与荧光(10-6-10-8秒)相比,该过程很短(10-14秒) 。共振拉曼强度比普通的拉曼光谱法强度可提高102-106倍,检测限可达10-8摩尔/升,因此用于高灵敏度测定以及状态解析等。

  • 【原创】紫外拉曼光谱仪技术 技术转让

    4月28日,中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司“紫外-可见区拉曼光谱仪技术”技术转让合同正式签字在京举行。参加签字仪式的有大连化物所李灿院士、冯兆池研究员;卓立汉光公司苏大明厂长等。 这是自4月8日中国科学院大连化学物理研究所和北京卓立汉光仪器有限公司共同成立“现代仪器联合实验室”后的又一重要合作。标志着双方的合作再上台阶。 李灿院士是中国科学院大连化学物理研究所研究员、催化基础国家重点实验室主任,中法催化联合实验室中方主任,中国科学院大连化学物理研究所学位委员会主任。中国化学会催化委员会主任、中国物理学会光散射委员会主任、国际催化学会理事会副主席、英国皇家化学会Fellow。2003年当选中国科学院院士、2005年当选第三世界科学院院士。辛勤耕耘,不断进取, 李灿院士和他领导的试验室取得了多项重大科技成果。是在国际上最早利用紫外拉曼光谱应用于催化研究, 筹建了具有自主知识产权的国内第一台用于催化材料研究的紫外共振拉曼光谱仪,获得国家发明二等奖。激光拉曼光谱是一项重要的现代分子光谱技术,是研究物质分子结构的强有力工具,已应用于物理、化学、材料、生物、环境和能源等各个领域中。可见激光作为激发光源的常规拉曼光谱由于存在灵敏度低和荧光干扰的困难,使许多领域的拉曼光谱研究工作无法开展。紫外激光拉曼光谱能成功地避开了荧光干扰大幅度提高了灵敏度,是进行催化、材料和生物等领域原位光谱研究的强有力的手段。例如,在过渡金属杂原子分子筛、担载型高分散过渡金属氧化物催化剂、催化剂表面积炭失活以及固体氧化物超强酸体系等多个研究领域中,陆续取得了一系列引人注目的研究成果。通过紫外共振拉曼光谱首次获得了TS-1分子筛中有关骨架钛物种存在的直接证据。紫外拉曼光谱的另一重大应用研究领域是生物科学。利用深紫外拉曼光谱可以获得蛋白氨基酸残基之间的相互作用,辽宁信息网蛋白质的二级结构,如蛋白的折叠和解折叠,蛋白质侧链的构象变化等重要结构信息。北京卓立汉光仪器有限公司于2000年首先推出国内第一台量产型三光栅光谱仪,通过不断努力,卓立的光谱仪系列产品已经拥有了多种规格的光谱仪和配套完善的光谱仪组件。成为国内知名的仪器生产厂商,其中光谱仪有Omni-λ、PalmSpeZ、SSM 三个系列;光谱仪组件包括:多种光源和相应的电源、各种探测器、样品室、数字采集器、光子计数器及连接附件。形成了产品模组化,配套齐全,灵活性强,自动化程度高,软件实用,可组成各种光谱仪应用系统,多年来已经为多个科研院所配置开发了多套如(● 光源(灯,LED,LCD, PDP等)特性(辐射光谱、色座标、相关色温、显色指数等)光谱测试系统;● 光学/光纤元器件,材料透射率光谱、反射率光谱系统;● 光电探测器(或CCD)的光谱响应测量系统;● 发射(Emission)光谱系统;● 吸收(Absorption)光谱系统;● 荧光(Fluorescence)光谱仪系统;● 拉曼(Raman)光谱系统;● LIBS - Laser-Induced Breakdown Spectroscopy 光谱仪系统;● LIF Laser Induced Fluorescence光谱仪系统;● 环境监测光谱仪分析系统;● 镀膜监测光谱仪分析系统。)光谱系统;现在产品已经成功登陆欧美市场,并与多家国外光电公司建立了合作关系。这次技术转让使双方共同得益,大连化物所通过转让使得科研成果确实的转变成产品,实现了为提升中国科学仪器的设计生产水平并进一步研发具有国际先进水平的仪器设备,为国家科学仪器的研究与生产的现代化做出贡献宏愿的第一步。卓立汉光通过转让使得光谱产品线日趋完善,可以为客户提供更多的服务,同时也为赶超国际水平,迈出了坚实的一步;签字仪式结束后,李院士一行饶有兴趣的参观了卓立汉光的研发部、光谱试验室以及全部生产线。

  • 紫外拉曼光谱仪研制和在催化研究中的应用

    紫外拉曼光谱仪研制和在催化研究中的应用“UV Raman Spectrograph and Its Applications in Catalysis 拉曼光谱是鉴定物质分子结构的有力工具,它已应用于化学、物理、生物和材料科学等领域。传统的拉曼光谱在可见区极易产生荧光,而荧光的强度往往是拉曼强度的几万倍乃至百万倍,因此常规拉曼光谱受到荧光的严重干扰,常常得不到拉曼光谱。这一难题成为拉曼光谱应用的主要制约因素。传统拉曼光谱的另一个弱点是其本征灵敏度很低,这也限制了它的广泛应用。 上述两个难题在催化研究中尤其突出,因为催化剂表面极易产生荧光,特别是有碳氢物种存在时,表面荧光往往非常强,而绝大部分石油化工过程的催化剂在工作状态下不可避免地生成各种表面碳氢物种。所以,消除或避开表面荧光的干扰和提高灵敏度是拉曼光谱成功应用于原位催化研究的关键所在。 针对荧光干扰和灵敏度低这两个难题,提出研制采用连续波紫外激光作为激发光源的紫外拉曼光谱仪的想法,克服一系列实验上的困难,于1997年建成我国第一台紫外拉曼光谱仪并将其应用于催化研究。 经过大量的实验和理论分析,发现催化剂表面的荧光主要出现在可见区,即300-700nm。因此将激发波长从可见区移开,则有可能避开荧光干扰。我们提出将激发波长从传统拉曼光谱的可见或近红外向紫外和深紫外波段位移以避开催化剂表面荧光干扰的想法,即研制采用紫外激光作为光源的紫外拉曼光谱仪。从理论上分析紫外拉曼光谱有以下几个优势:①由于荧光主要出现在可见区,将激发波长向紫外波段移可以有效地避开荧光;②由于光散射强度与波长的四次方成反比,将激发波长向紫外区移可以提高灵敏度;③很多化合物的电子吸收带在紫外区,因此可以进行紫外共振拉曼光谱,使仪器灵敏度提高几个数量级。 在上述想法的基础上,结合催化原位研究,采用紫外激光光源、三光栅和紫外区灵敏的CCD探测器研制了收集紫外拉曼散射光的椭圆内反射镜、外光路系统和催化研究的高温高压装置、用于催化反应研究的特殊拉曼光谱池以及适用于动态和原位紫外拉曼研究的吸附和原位反应装置。最后,研制成功用于催化原位研究的紫外拉曼光谱仪。

  • 【资料】拉曼相关技术-共振拉曼光谱技术

    [size=5][b]共振拉曼光谱技术[/b] [/size][size=5]  激光共振拉曼光谱(RRS)产生激光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,并观察到正常拉曼效应中难以出现的、其强度可与基频相比拟的泛音及组合振动光谱。与正常拉曼光谱相比,共振拉曼光谱灵敏充高,结合表面增强技术,灵敏度已达到单分子检测 。 [/size]

  • 共振拉曼增强

    共振拉曼增强与SERS有什么关系啊,共振拉曼增强激发光与待测物质吸收峰相吻合还是和待测物与基底有关啊,相同条件下工共振拉曼增强与待测物的量有没有关系。

  • 共振拉曼光谱光路调节

    使用共振拉曼光谱仪时,在用小纸片调节光路时可以采集到很高的信号(信号饱和),而换上液体样品后(ACN),一直没有相应的拉曼信号出现,求解,谢谢

  • PE Lambda950 紫外漫反射使用温度问题

    本人现在设计实验,原位漫反射测紫外光谱,在此想咨询在紫外可见漫反射光谱仪能够搭配原位漫反射池进行高温反应吗?我见很多文献都是测的低温300°以下,而我的原位反应是要做500度以上,现在500以上时候紫外377nm处突变,只有温度升高才会发生而低温时候没问题,求大神帮助。

  • 紫外原位漫反射光谱

    紫外原位漫反射光谱

    我们实验室使用的事PE公司的Lambda950紫外-可见-近红外光谱仪,搭载的是Harrick高温高压原位漫反射池,仪器参数设置主要的两项是:狭缝=2nm;数据间隔=1nm;积分时间=0.2s现在问题是:我们在测试不同温度下以硫酸钡扫背景,再测硫酸钡谱图,理论上不同温度下都是一条直线才对,但是300℃、400℃、500℃、600℃随着温度升高在450℃时候,378nm处开始出现一个尖峰,可以确定是有温度变化引起的,和其他无关。http://ng1.17img.cn/bbsfiles/images/2017/04/201704061442_01_3163857_3.jpg这是再以上仪器默认参数的设置下,之后我们通过优化积分时间让此处尖峰消失但是此处震荡还是有的http://ng1.17img.cn/bbsfiles/images/2017/04/201704061444_01_3163857_3.jpg之后考虑,可能是积分时间变大,使得此处尖峰被平滑掉,并没有从根本上解决或者解释问题。特此,在此求助各位大虾1、中高温原位漫反射哪位大虾做过,交流下经验。2、温度对紫外可见漫反射的影响3、如此现象如何解释如果方便,请站外联系,谢谢! 企鹅918343184

  • 【“仪”起享奥运】固体核磁共振技术应用——在玻璃上的应用

    固体核磁共振作为常用测试之一,但仍有许多同学不太了解[color=#3598db][url=https://www.shiyanjia.com/buffet-details-43.html]固体核磁测试[/url][/color]的原理及应用。 Sangeeta 等采用熔体淬火技术合成了各种玻璃成分的55[(PbxCa1-x)OTiO2]-44[2SiO2B2O3]-1V2O5 体系(0.0 = x =0.7)。通过 X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、紫外可见光谱(uv -visible)、扫描电子显微镜(SEM)和核磁共振光谱(NMR)对合成的玻璃进行了研究。随着氧化铅(PbO)浓度的增加,玻璃样品的实验密度从 1.48 g/cm3 增加到 2.19 g/cm3。XRD结果与 SEM 观察结果一致,证实了玻璃的非晶态性质。红外光谱和拉曼光谱分析表明,存在由 V-O-V、Pb-O-B、B-O-B、Si-O-Si、B-O-Si和 B-OH 组成的各种化学键,它们是由不同的振动引起的。随着 PbO含量的增加,带隙值从 2.07 eV 降至 1.65 eV。Si-29 和 B-11 魔角旋转固态核磁共振谱分析表明,随着玻璃态体系中 PbO 浓度的增加,硅酸盐和硼酸盐网络中非桥联氧的数量增加。 [img=,449,581]https://shiyanjia-files.oss-cn-hangzhou.aliyuncs.com/tutor/1616566826211_2.png[/img] 在玻璃系统 55[ (PbxCa1 -x)OTiO2]-44 [2SiO2B2O3]-1V2O5 中,(a)CT1V0.0, (b) PCT1V0.1, (c) PCT1V0.3,(d)PCT1V0.5 和(e)PCT1V0.7 玻璃样品的 11B MAS NMR 谱图,和(f)PbO 的掺杂比例为 x= 0,0.1,0.3,0.5 和 0.7 时,B 在四配位中的占比。

  • 【求助】关于原位紫外漫反射池

    我们实验室刚买了台紫外,Perkin Elmer公司的,型号是Lambda 650S可以做吸收和漫反射,测量时为双光路检测,沿着光路,仪器的中央放样品池和参比池,右边为固体漫反射装置,有两个白板(BaSO4片),做漫反射时将其中一个白板换成样品即可,另外样品池和参比池中不要加任何东西。测吸收时则利用仪器中间部分,样品池中加入样品即可,但要保证漫反射装置两个白板不变。不知道说清楚了没有,呵呵。话说正题,我们实验室做催化方面的研究,希望能做些原位的表征,例如利用原位紫外漫反射研究反应过程中样品的变化。这就要求装样品的装置中能通气,能加热,最好能抽真空。想问下大家有没这样的原位漫反射池,主要是积分球以及密闭体系的设计。先谢谢大家了。有好的文献或资料的话发邮件给我吧huanghua@pku.edu.cn

  • 【求助】求助Lambda750测固体紫外漫反射步骤

    Perkin-Elmer公司的lambda750,之前工程师来的时候很快带过,已经不知道怎么做。留下的手册,电子资料都没有测量步骤。站内搜到的那个Pekin-Elmer公司培训材料里面也没有。现在做出来,纵坐标是R%, 上下波动范围好几千,明显不对。各位老师多多指教。其实我的样品是膜,因为太厚直接测吸收分辨率比较低,后来听说漫反射紫外不受厚度影响,来这里之后发现似乎漫反射做的是粉末试样,还请大家多多给点建议啊。

  • 紫外漫反射

    您好,群友们,我想问下谁做过高温 紫外原位漫反射,有问题咨询?方便的话 加下 qq918343184

  • 【讨论】大家讨论一下紫外可见光谱理论是否错了

    很多分析书上讲的:紫外可见光谱是由于物质被特定光照射吸收能量产生电子向反键轨道跃迁而引起的。那么试想如果长时间用特定光照射某物质使之吸收能量饱和,当我们再次扫普时,就应该对此光无吸收或者吸收减弱。但事实并不是这样,所以用能量理论解释光谱是否欠妥,同时而引发的轨道理论是否也存在问题啊,再有光谱用波长来表征是否也有问题?我个人认为光谱用物质单元结构(由单原子或多原子组成的特征集团)的本振频率更贴切。物质遇到特征频率的光就产生共振,吸收了该频率的光波,当光波消失时共振停止,当下次在照射时又产生共振吸收,这样更能很好的解释光谱的稳定性。

  • 紫外摄影是怎么回事

    紫外线的波长在10-400毫微米之间,使用普通相机拍摄的是200毫微米以上的近紫外线光。一般摄影中,都视紫外线光为有害光。因玻璃材质和镀膜,摄影镜头可以滤去400毫微米一下的紫外线光。完全利用紫外线摄影时,要是用水晶镜头或者塑胶镜头。也有对被摄体进行发荧光处理进行拍摄的。一般主要用于医学和考古。紫外摄影通常也是透视摄影技术,对医学领域比较多,还有考古学,是对物质内部结构的探究的方法之一此外还有更多的非常规造影技术,包括超声波造影,核磁共振造影技术等,射电造影等,生物场造影。从成影方法来分析可分为透视造影,和反射造影另外由于射线造影早就超过人眼睛感受范围,所以早期图片都为黑白灰表现形式,但是随着科技发展,特殊的色彩渲染方法让我们可以看到彩色的超视觉感官图片,以往由于技术原因捕捉不到的影像也能够呈现和放大出来了

  • 【求助】克拉霉素分散片 紫外测定

    各位大侠好,我在做克拉霉素分散片时,紫外测定吸收度最后才0.25,这样的结果可信吗?请问紫外吸收度要在什么范围才最好啊?有没有规定必须在这个范围呢?你们有谁做国这个检品啊?急 谢谢了哈!!!

  • 紫外仪器测试固体样品的方法分析

    紫外测试固体样品的方法多种多样,具体方法取决于样品的性质和测试需求。以下是几种常见的紫外测试固体样品的方法: 对于不透光的固体样品,可以使用紫外可见漫反射测试。这种方法通过测量样品表面的漫反射光来获取样品的光谱信息。通常需要使用积分球来收集漫反射光,以确保准确测量[size=9px][color=var(--black)][back=#d0d5dd][/back][/color][/size]。 将固体样品压制成薄膜,然后将其放置在紫外可见分光光度计的样品槽中进行测试。这种方法适用于需要测量样品透射或反射光谱的情况[font=&][size=9px][color=#d92d20][/color][/size][/font]。 对于固体样品,可以将其溶解在适当的溶剂中,形成溶液后进行测试。这种方法适用于样品溶解性较好的情况,可以提高检测灵敏度[font=&][size=9px][color=#d92d20][/color][/size][/font]。 将固体样品压制成薄膜后,使用反射附件进行测试。这种方法适用于需要测量样品反射光谱的情况[size=9px][color=var(--black)][back=#d0d5dd][/back][/color][/size]。 在进行紫外可见漫反射测试时,可以将BaSO4作为参比,将样品压在BaSO4上进行测试。这种方法可以消除背景光的影响,提高测试的准确性[size=9px][color=var(--black)][back=#d0d5dd][/back][/color][/size]。 对于需要测量样品表面反射率或漫反射率的固体样品,可以使用积分球附件。积分球可以收集样品表面的漫反射光,从而获取准确的光谱信息[size=9px][color=var(--black)][back=#d0d5dd][/back][/color][/size]。 当配备光纤探头时,紫外可见分光光度计可以进行远程紫外-可见吸光度分析。这种方法适用于需要远程测量样品光谱的情况[size=9px][color=var(--black)][back=#d0d5dd][/back][/color][/size]。 将固体样品溶解后滴加到显微镜片上,形成固态薄膜后进行紫外-可见光谱测量。这种方法适用于需要在显微镜下观察样品的细节情况[font=&][size=9px][color=#d92d20][/color][/size][/font]。 紫外测试固体样品的方法多种多样,选择合适的方法需要根据样品的性质和测试需求来决定

  • 【金秋计划】+什么是波谱核磁共振?

    波谱核磁共振就是核磁共振波谱法,与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。 波谱核磁共振技术的原理: 在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个以上量子化的能级。吸收适当频率的电磁辐射,可在所产生的磁诱导能级之间发生跃迁。在磁场中,这种带核磁性的分子或原子核吸收从低能态向高能态跃迁的两个能级差的能量,会产生共振谱,可用于测定分子中某些原子的数目、类型和相对位置。 波谱核磁共振技术的分类: 核磁共振波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用最为广泛。

  • 关于TiO2紫外Raman光谱的问题

    我在XRD和可见Raman光谱下都看到了金红石的相,但是在紫外Raman谱中却只看到锐钛矿的峰,这是什么原因?P.S.样品是混晶的

  • 【求助】紫外漫反射谱线换灯时跳跃厉害

    我使用Lambda900 UV-Vis-NIR来测固体样品的漫反射光谱。使用BaSO4做背底进行基线校正,测样品时将样品抹平在BaSO4上。测量结果发现换灯时,即紫外和可见、可见和近红外交叉时谱线跳跃的相当厉害,导致测试结果基本上不可用。不知道是什么原因导致的?该怎么解决? 中国心

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制