当前位置: 仪器信息网 > 行业主题 > >

数字健康检测器

仪器信息网数字健康检测器专题为您提供2024年最新数字健康检测器价格报价、厂家品牌的相关信息, 包括数字健康检测器参数、型号等,不管是国产,还是进口品牌的数字健康检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字健康检测器相关的耗材配件、试剂标物,还有数字健康检测器相关的最新资讯、资料,以及数字健康检测器相关的解决方案。

数字健康检测器相关的论坛

  • 皮肤生物传感器,检测你的健康

    验血也许是目前跟踪某些人体健康指标的常用方法,但美国军方主导的一个新项目有可能改变监测健康状况的方式。据美国趣味科学网站6月3日报道,事实表明,人体血液中流动的健康指标有很多在汗液中也存在。美国军方的这个项目旨在开发出能对军人汗液中的流动物质进行跟踪的皮肤“生物传感器”,以监测他们的健康状况,提升他们的表现。研究人员说,这种高技术装置看上去和摸上去都像胶布绷带,可以用来收集心率、呼吸频率等实时测量数据。这种传感器是一种被嵌入绷带中的扁平状电子芯片,其设计初衷是记录可以下载到智能手机和电脑上的健康信息。美国军方希望利用这种技术学会如何最有效地部署军人,如何让他们以最佳状态投入战斗。以后,人们也可以有效分享这一科技成果吧。

  • TB-168 PR0数字电池检测器电路解析及使用注意事项

    TB-168 PR0数字电池检测器电路解析及使用注意事项

    [font=宋体] 实验室的小工具,一款数字电池检测器,只需将被检测电池的正负极接触检测电极两端,就会立即显示出被测电池的电压值。作为对实验室仪器、办公电器电池的电量检测,十分快捷方便。下面对其电路原理进行解析,提出使用注意事项。[/font][font=宋体][b]一、外貌及测量方式[/b][/font][font=宋体]TB-168 PR0[/font][font=宋体]数字电池检测器外貌见下图,正规厂家产品。仪器上全英文标识(难道是出口转内销产品?)。[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011008257842_5854_1807987_3.jpg!w690x517.jpg[/img][font=宋体]仪器正面的两检测触点,用于检测1号、2号、5号、7号干电池,柱形锂离子电池,锂纽扣电池,检测电压范围1.2V~4.8V:[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011009048017_99_1807987_3.jpg!w690x517.jpg[/img][align=left][/align][align=left][font=宋体]仪器侧面的两检测触点,用于检测6F22/9V叠层电池的电压情况:[/font][/align][align=left][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011010222154_303_1807987_3.jpg!w690x517.jpg[/img][/align][align=left][font=宋体]仪器背面是对1.5V及9V电池检测结果的提示,也是英文:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011010533709_4016_1807987_3.jpg!w690x517.jpg[/img][/font][/align][font=宋体][b]二、仪器电路结构及工作原理[/b][/font][font=宋体]1[/font][font=宋体]、电路结构[/font][font=宋体]卸下仪器背面两颗固定螺丝,打开后端盖,看见内部结构,一块玻纤PCB板背面,真是太简单!有一股山寨风迎面而来,还以为是假货。[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011011309616_3680_1807987_3.jpg!w690x517.jpg[/img][align=left][font=宋体]继续卸下电路板两颗固定螺丝:[/font][/align][align=left][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011012105176_7995_1807987_3.jpg!w690x517.jpg[/img][/align][font=宋体]将电路板翻面,看见只有寥寥个位数的元件,内部结构非常精简,元件很少。电路板上的16脚IC被抹去了型号,应该是一款专用IC:[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011012484673_197_1807987_3.jpg!w690x517.jpg[/img][font=宋体]下图,电路板上的三端贴片元件V2TH,是3V稳压IC;红色圆玻璃柱贴片元件是二极管:[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011014589197_4718_1807987_3.jpg!w690x517.jpg[/img][font=宋体]下图,电路板上的三端贴片元件W5UK,是DC-DC电源管理IC;标示101的元件是续流电感([back=white]100uH[/back]):[/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011013230431_8914_1807987_3.jpg!w690x517.jpg[/img][font=宋体]2[/font][font=宋体]、电路工作原理[/font][font=宋体]根据PCB上的元件分布,整理出电路图如下:[/font][img=,690,450]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011015328442_407_1807987_3.png!w690x450.jpg[/img][font=宋体][b]工作原理:[/b]U1是DC-DC电源管理IC,它与电感L、电容C组成电压变换电路,将1.2~4.8V电池触点所连接的电池电压变换为3V给U3供电;U2是三端线性稳压IC,将9V电池触点所连接的电池电压降压为3V给U3供电;D是防9V电池反接二极管;C是3V滤波电解电容;U3是专用IC,它与LCD液晶显示屏构成数字直流电压表。接上被测电池后,仪器内部的电源电路工作,给U3提供3V直流工作电源(VCC)。R1、R2、R3、R4是被测电池电压取样电阻,分别将所测电池电压信号送入U3的14、15脚,经过计算后,结果由LCD显示屏显示出来。[/font][font=宋体]3[/font][font=宋体]、仪器工作电流[/font][font=宋体] [/font][font=宋体]根据电路原理图,该电池检测器内部无工作电池,需要由被测电池提供电能,才能正常工作。[/font][font=宋体] [/font][font=宋体]在检测工作中,将数字万用表电流档串联接入被测电池回路,测量被测电池向电池检测器输入的工作电流。不同被测电池(电池不全是新电池)的工作电流如下:[/font][img=,646,151]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011016486067_2805_1807987_3.jpg!w646x151.jpg[/img][font=宋体]从上面列表看到,1.5V电池向检测器提供的工作电流2.37mA,随着被测电池电压提高,工作电流减小;被测电池电压降低,工作电流将增大。[/font][font=宋体] [/font][font=宋体]4[/font][font=宋体]、仪器测量准确度[/font][font=宋体] [/font][font=宋体]先使用准确度较高的数字万用表测量被测电池电压,然后再用电池检测器测量被测电池电压,结果对比见下表。除了纽扣锂电池CR2032外,电池检测器对其余类型电池的测量准确度较高,可以放心使用。[/font][img=,690,186]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011017454171_7621_1807987_3.jpg!w690x186.jpg[/img][font=宋体] 通过上面列表看到,该电池检测器向被检测电池“索取”的工作电流虽然只是1~3mA,但对于纽扣电池来讲,也是不小的负载。特别是测量使用过一段时间的旧纽扣电池,准确度较差。见下面图片,一枚旧CR2032纽扣电池,用万用表测量为3.132V,电池检测器测量无显示。这枚旧电池剩余的电量很少、内阻增大,根本无法带动电池检测器工作:[/font][img=,690,440]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011018244865_3253_1807987_3.jpg!w690x440.jpg[/img][font=宋体][b]三、使用注意事项[/b][/font][font=宋体] 这款数字电池检测器没有内置电池,即使长时间搁置,也没有电池漏液腐蚀问题。检测的准确度较高,满足常规使用。[/font][font=宋体] 但在使用时,由于该款数字电池检测器使用被测电池提供的电能进行检测工作,对7号(AAA)、5号(AA)电池、叠层电池、锂电池检测都没有问题。[/font][font=宋体] 鉴于纽扣锂电池CR2032本身电量小,哪怕工作电流只有1.68mA,也是一个重负载,对电池电量消耗很大,故对新CR2032纽扣电池进行测量应短时、单次进行,以免过多消耗被测纽扣电池的电量,缩短电池使用寿命。相应地,在检测旧CR2032电池时,只要检测器不工作(无显示),就不要在仪器上使用这个电池,因为它的寿命已经不长了。[/font][font=宋体] 而对一些更微小尺寸的纽扣电池(例如手表电池),禁止使用该仪器对其进行测量,避免测量数据不真实及损坏电池。[/font][font=宋体] [/font][font=宋体]使用数字万用表测量电池电压,虽然比较准确,但也不完全是电池真实电量的反映。往往旧电池的电量几乎耗尽、带不动负载,但电池空载的端电压用数字万用表测量却基本正常,在实际运用中,要注意到这个问题。[/font]

  • 【求助】有做健康监测的实验室吗

    我们公司是做健康监测的,实验所用仪器涉及光纤光栅位移计、钢筋计、加速度传感器等仪器,这些仪器一般国家都没有标准的,不知道大家都送往哪里检测?希望有经验的能够分享一下。

  • 【原创】何时可以重视我们检测人员的身体健康

    一直都在说“以人为本”,尤其我们的工作性质就是检测一些水、食品、化妆品、工作场所空气……等等一些预防人体健康的检测,但是从来就没有人关心过我们在预防别人受侵害的同时,我们检测过程中接触的化学试剂比那些水、食品……里面含量高出不知道多少倍,内行人当然都知道其中的危害程度,但是作为一些领导,可能有点外行吧,我们要求买一些防护用品(口罩、手套之类),结果领导尽然说“原来没有不是也能做么,为什么现在就非得要有”。简直当场晕倒。

  • 【原创大赛】解读健康草席的检测方法与要求

    解读健康草席的检测方法与要求 在很久很久以前,我们勤劳的祖先们,就知道用草编织很多物件,包括房顶,卧具,甚至草鞋,草帽,披风等等,几乎都是草做的,人们虽然不富裕,但大多数人身体健康,谁也不能说没有这些草的功劳,这些草制品养育了一代又一代的中国人。 由于经济的高速发展,近年来,各种草制品都几乎绝迹了,就连农村也很少能使用草制品了,生活中更多的物品取代了‘她‘,草制品大多成了工艺品摆放在商店中了,不仅仅是草制品,人们对天然的制品越来越不喜欢了,变成了一些所谓高科技的产品,庆幸的是还是有一些人在做一些返璞归真的事情,很多人慢慢的希望一切能回归自然。 说到草制品,就不得不说说草制品的标准了,草编制品的执行标准为QB/T2934-2008,质量标准包含内在和外在的标准。 首先说说外在的质量技术要求:要求颜色要均匀,无病草,无杂草,不允许有虫蛀,不允许发霉,含水率太高的容易发霉,在潮湿的环境下储存也会发霉 草制品一般指天然草和芳草制品,标准要求编制材料编织的要均匀,美观,有印花或装饰时要完整,清晰,无疵点 草席是否是安全的,健康的,那就要进行检测分析,以下就是各个分析项目: 染色牢度:要求染色部位不能脱色,这个项目很难做到合格的,其实这个操作方法是不严谨的,这个操作方法的过程是这样的:用脱脂纱布在65%乙醇溶液中湿润,然后 在染色部位来回摩擦10次,看纱布是否有沾色,如有,即为脱色。这个操作有很大的不确定性,原因如下① 检测人员摩擦的距离(擦拭的长度和宽度都没有要求)② 检测人员所使用摩擦纱布的大小(尺寸也很关键)③ 检测人员使用 纱布的含乙醇率(纱布吸附酒精的量)④ 检测人员 摩擦的力气大小(本身的力量有不同)⑤ 检测人员手力气的大小(每个人手大小也不同)⑥ 检测人员摩擦纱布的脱色程度(有些很仔细才能看到一些脱色,毕竟是白纱布)含水率:出厂前不能超过10%,这个太潮湿的话,会发霉的。重点的基本安全要求 草席内不允许有针头和金属异物:这个用验针机可以检测,如果有断针或者金属异物,就会报警.甲醛含量:草席的甲醛测试是采用gb/t2912.1-2009标准-水萃取法进行检测禁用偶氮染料,可能致癌,这个也是衡量草编制品辅料纺织品内在质量的一个重要项目Ph值:这个没有明确要求,其实应该是要测试,毕竟偏高偏低会引起身体不适 总结:我们怎么才能选购一床优质的草席呢, 首先看品牌,品牌质量比较有保障,看席的表面,色泽是否均匀,有没有病草,杂草,发霉,异味,再看草席辅料,如包边布,复合布,拼接等,这些用纸巾用来来回摩擦,看看纸巾是否沾色,严不严重,然后再看车缝的是否牢固,均匀;用鼻子靠近席面闻是否有异味。 草席,夏天一般是直接贴身使用的,而且夏天穿的很少,直接和我们肉身接触的,如果购买的草席不安全,那么轻者皮肤瘙痒,起红点,起包,重则可能需要去医院;这可不敢大意哦! 大家要注意:草席是最适合老人,小孩,孕妇使用的,因为他本质很温和,就是直接睡‘她’,冬天不会感觉太凉,影响身体不舒服,夏天也不会感觉太热,因为她是天然的草做成的,想想是不是很惬意呢!言尽于此,你是不是突然感觉你家床上少了一床健康的草席呢!

  • 【原创】从事药品检测的人员要不要进行健康检查呢?

    食品药品被污染时会对人们的身心健康造成危害,所以食品药品生产和经营人员要定期进行健康检查,那么我们从事食品药品检测的人员,尤其是从事微生物限度检查的人员,是否需要定期进行健康检查呢?你们单位是怎么做的呢?欢迎大家讨论!!!

  • 说说检测器里的那些辐射源

    气相色谱的检测器有好几种都是带辐射源的,你都知道多少呢1、气相色谱哪些检测器有辐射源,都是哪些源?2、听说辐射源还有维护办法,真的吗?3、不同的辐射源,你是否区别对待?都说说我们的使用与经验,让仪器更健康!!!!http://simg.instrument.com.cn/bbs/images/default/em09502.gif

  • 市场监管新利器:农药残留检测仪守护消费者健康

    在现代社会,随着农业生产的快速发展和农产品消费量的不断增加,农药残留问题日益受到社会各界的广泛关注。农药残留不仅影响农产品的品质和口感,更对消费者的健康构成潜在威胁。因此,确保农产品中的农药残留量在安全范围内,成为了保障消费者健康的重要任务。而农药残留检测仪,正是这一任务中的关键工具,它如同一道坚实的防线,守护着消费者的健康。   农药残留检测仪采用先进的检测技术,能够快速、准确地检测农产品中的农药残留量。这种技术不仅灵敏度高,而且操作简便,能够在短时间内对大量农产品样品进行筛查。通过农药残留检测仪的检测,我们可以及时发现并处理农药残留超标的产品,防止这些不安全的农产品流入市场,从而保障消费者的饮食安全。   在农产品质量控制中,农药残留检测仪的应用不仅限于生产源头和加工过程,还贯穿于整个供应链的始终。从农田到餐桌,每一个环节都需要农药残留检测仪的严格把关。在农产品生产阶段,种植者可以通过定期检测土壤、灌溉水和农产品本身的农药残留情况,及时调整农药使用方案,确保农产品的初始安全性。在加工、运输和储存过程中,农药残留检测仪同样发挥着重要作用,通过对各个环节的农产品进行抽样检测,确保农产品的农药残留量始终保持在安全范围内。   农药残留检测仪的广泛应用,不仅提升了农产品质量控制的效率和准确性,更重要的是,它为消费者筑起了一道坚实的健康防线。通过这道防线,我们可以有效地防止农药残留对消费者健康的危害,保障消费者的饮食安全和身体健康。   此外,农药残留检测仪的应用还促进了农业生产的可持续发展。它鼓励农民采用更加环保和可持续的农业生产方式,减少农药的使用量,降低对环境的污染。同时,它也推动了农产品行业的健康发展,提升了农产品的国际竞争力。   综上所述,农药残留检测仪是守护消费者健康的重要工具。它以其精准的检测技术和广泛的应用范围,在农产品质量控制中发挥着不可替代的作用。我们应该进一步推广和应用农药残留检测仪技术,为消费者的健康保驾护航。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/08/202408141431451747_4032_6238082_3.jpg!w690x690.jpg[/img]

  • 【讨论】食品检测人员的健康

    大家应该都是长期从事食品检测的同志们吧?我想跟大家讨论也算是咨询一下健康问题...因为长期呆在实验室,做实验的时候难免会发生一些小小的意外,比如说有机试剂(甲醇啊,四氯化碳之类的)洒在了手上,之后就进入皮肤里了,应该怎么办呢?还有实验时难免会闻到有机试剂的味道,也是伤害身体的,在做好自我防护,避免这种事件发生之外,该怎么保护自己呢?比如,喝牛奶豆浆绿豆汤之类的解毒东西?大家都是怎么做的呢?教教我吧。

  • ECD检测器的镍放射源与手机辐射哪个强?

    一听到核辐射就让人害怕,可是做气相色谱,用ECD检测器辐射却天天在身边,讨论:1、你认为ECD检测器的镍放射源与手机辐射哪个强?2、你认为检测器中的镍放射源需要环保部门收回吗?(好像现在有很多都是豁免管理)3、你实际工作中考虑过镍放射源对人的健康影响么?4、环保部门回收要好几万块呢,你处理过么?

  • 从源头到餐桌:食品安全检测仪系列如何筑牢健康防线

    在当今社会,食品安全已成为公众关注的焦点。随着生活水平的提高和健康意识的增强,人们对食品质量的要求越来越高。从农田到餐桌,每一个环节都直接关系到我们的健康与安全。为了确保食品的安全性,食品安全检测仪系列应运而生,它们如同忠诚的卫士,从源头上开始,直至食品最终到达消费者的手中,都在默默筑牢着健康防线。   源头把控:农业生产的绿色守护   食品安全的第一步始于农业生产。在农作物的种植过程中,农药和化肥的使用是不可避免的,但过量使用则可能导致农产品中残留有害物质。此时,食品安全检测仪便发挥出了重要作用。通过检测土壤、水源及农产品中的农药残留、重金属含量等关键指标,农民和农业监管部门能够及时调整种植策略,减少有害物质的使用,从源头上保障农产品的绿色安全。   生产加工:严格监控,确保品质   食品进入生产加工环节后,其安全性面临着更多挑战。加工过程中可能添加的防腐剂、色素等添加剂,以及加工环境的卫生状况,都可能影响食品的最终品质。食品安全检测仪在这一阶段同样不可或缺。它们能够迅速检测食品中的添加剂含量是否超标,以及微生物污染情况,确保食品在加工过程中符合安全标准。同时,对于肉类等易腐食品,病害肉检测仪更是能够精准识别问题产品,防止其流入市场。   流通环节:全程追溯,责任到人   在食品流通环节,食品安全检测仪同样扮演着重要角色。通过建立食品追溯体系,结合检测仪的检测结果,可以实现对食品从生产到销售全过程的监控和追溯。一旦发现问题食品,可以迅速锁定源头,追究责任,并采取措施防止事态扩大。这种全程追溯的机制,不仅提高了食品安全的可控性,也增强了消费者的信任感。   餐桌守护:家庭检测,安心享用   对于消费者而言,家用食品安全检测仪成为了守护餐桌安全的新利器。这些便携式设备操作简单、结果准确,能够帮助家庭用户快速检测食品中的有害物质含量。无论是购买回来的蔬菜水果,还是自家烹饪的菜肴,都可以通过简单的检测来确认其安全性。这种即时的检测反馈,让消费者在享受美食的同时,也能更加安心和放心。   结语   从源头到餐桌,食品安全检测仪系列以其高效、精准的检测能力,为食品安全的每一个环节都筑起了一道坚实的防线。它们不仅是科技进步的产物,更是人类对健康生活的追求和保障。在未来,随着技术的不断进步和应用的不断拓展,食品安全检测仪将在保障食品安全、维护公众健康方面发挥更加重要的作用。

  • 【“仪”起享奥运】+哪些属于亚健康土壤?

    生态粮仓建设就是提高耕地的“健康”水平,不仅要保障耕地“体壮”,生产能力高,而且要保障耕地“没病”,土体无污染,同步实现粮食安全与食品安全。无论是粮食安全工程,还是食品安全工程,其治本之策是抓源头建设,只有狠抓耕地质量工程建设的源头,保证土地健康,才能建成生态粮仓,这就要对耕地进行健康“体检”。耕地健康“体检”工程的主要任务是对我国耕地进行全面普查与诊断,查清健康土地、亚健康土地和不健康土地的面积、比例及分布,并建立土地健康档案。健康土地是指“体壮无病”的土地,既能保障高产稳产,又没受任何污染,符合生态粮仓建设的要求。不健康土地是指“体壮隐大病”的土地,即使高产稳产,但因其受到污染,生产的粮食不可食用。由于其形象好,口感好,肉眼不能识别,所以隐患很大,只有通过检测才能发现。亚健康土地包括三种类型,一是“无病体不壮”的土地,即土地没受污染,但属于中低产田,生产的粮食可以放心食用;二是“体壮有小病”的土地,即土地能获得高产稳产,但受到了不同程度的污染;三是“体弱有小病”的土地,即受到了不同程度污染的中低产田;后两类耕地生产的粮食必须经过检测。

  • 【资料】电子捕获检测器被污染后处理方法

    [size=3]电子捕获(electron capture detector ,ECD) 是一种选择性强、灵敏度高的检测器,目前在分析领域得到了广泛应用,但由于ECD 检测器线性范围窄,往往因受复杂性组分浓度的影响或使用不当引起检测器有污染,致使检测器性能下降。对受污染的检测器一般是采取热清洗法、热水蒸汽法和氢气还原清洗法进行处理,此类方法适用于检测器管道的污染或进样量过载引起的放射源轻微的污染。而对于污染严重的检测器,以往方法是将检测器经过拆卸取出放射源进行处理。但检测器拆卸处理的成功率只占30 % ,而且处理后放射性同位素Ni63将会流失,缩短检测器的使用寿命。更为严重的是拆卸处理过程中放射源Ni63暴露于外环境中,污染周围环境,危害人体健康。为此根据电子捕获检测器的结构和特点,以岛津[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] - 9A 电子捕获检测器为例,在放射源Ni63处于封闭状态的情况下,利用活性溶剂—超声洗脱的方法对受污染检测器进行处理,使检测器的性能得到恢复,并处于正常工作状态。[/size]

  • 【原创】Agilent气相常用检测器原理简介

    Agilent [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测器原理 1、 火焰离子化检测器(FID)样品和载气经过柱子后进入FID的氢气-空气火焰中。氢气-空气火焰本省只产生少许离子,但是有机化合物燃烧时,产生的离子数量增加。极化电压把这下离子吸引到火焰附近的收集极上。产生的电流与燃烧的样品量成正比。用一个电流计检测电流并转换成数字信号,送到输出装置。2、 热导检测器(TCD)TCD比较两种电流的热导率。两种气流是纯的载气(也叫参比气)和带样品成分的载气(也叫柱流出物)。这种检测器有一个电加热的热丝,因此热丝比检测器本体要热。当参比气和不含样品的载气交替通过时,热丝温度保持恒定。当加上加上样品时,为保持热丝温度恒定其电流会有变化,每秒钟两种电流在热丝上切换5次,电流的差别被测量并记录下来。氦(或氢)作为载气时,样品引起热导率下降。使用氮气时,由于大多数物质都比氮气的传导好,所有热导率通常增加。因此,在检测过程中TCD不会破坏样品,所以这种检测器可串联装在火焰离子检测器和其他检测器前面。3、 氮磷检测器(NPD)NPD通过氢气/空气等离子体传送样品和载气。一个加热陶瓷元---常叫铷珠---处于喷嘴上方。低的氢气/空气比率不能维持火焰,使碳氢化合物的电离减至最小,而铷珠表面的碱离子促进有机氮或有机磷化合物的电离。输出的电流与收集到的离子数正比。用静电计测量并将其转换数字形式,传送到一个输出设备。4、 电子捕获检测器(ECD)Agilent有两种型号的电子捕获检测器,与微池检测器(简称u-ECD)相比,“常规”检测器(简称ECD)的内部体积大(大约10倍)。这两种型号可以通过检测器的顶盖来区分---ECD的顶盖是实心的,而u-ECD的顶盖是有孔的。电子捕获检测器(ECD)包括一个镀有63Ni(一种放射性同位素)的检测器池。63Ni释放β粒子,它与载气分子碰撞,产生低能电子---每个β粒子能产生大约100个电子。这些自由电子形成小电流---称为参比或固定电流---在一个脉冲回路中被收集并被测定。当样品组分的分子进入并与自由电子碰撞,电子则被样品分子捕获而产生负电荷离子。池电极被通过以脉冲电压以收集剩余自由电子,而较重的离子相对不受影响并且由载气带出检测器出口。测定池电流并与参比电流比较。调解脉冲频率以保持恒定的池电流。未被捕获的电子越多,所需的与参比电流相匹配的脉冲频率越低。当捕获电子的一个组分通过池时,脉冲频率增加。此脉冲频率被转化为电压并被记录下来。5、 火焰光度检测器(FPD)样品在富氢火焰中燃烧,在此一些碎片被还原并受到激发,气体把激发的碎片带到火焰上方的低温发射区,衰变并出现光辐射,通过带宽狭窄的滤光片选择特定的碎片,进入到光电倍增管(PMT)的碳发射光被屏蔽掉。光碰撞到光电倍增管的光敏表面,光子逐出电子,在光电倍增管中电子被放大到100万倍以上。从PMT出来的电流又被放大并在FPD电路上得到数字化处理,得到的信号要么作为数字信号输出,要么以电压的模拟信号输出。FPD不能在高于50度的条件下存放,对PMT要根据厂家的指标来对待。

  • 质谱检测器抗干扰脱气研究

    质谱检测器抗干扰脱气研究

    作者: Quan Liu, Ph.D., Carl Sims • IDEX Health & Science LLC简介美国环境保护局(EPA)一直在调查和规范PFOA、PFOS和其他氟化调聚物,因为一些最新研究表明在不同动物样本中发现了其对健康的威胁。全氟化合物(PFCs)已有50多年的生产史,它作为表面活性剂和保护剂在地毯和织物中获得了广泛使用,并作为化学品用于灭火泡沫、地板蜡和香波等产品中。EPA方法537已推荐使用LC/MS/MS的取样方法来分析地下水的PFCs浓度,以便判定其是否为危险源。为了改善该仪器的PFCs的检测极限,科学家曾尝试用PEEK™或不锈钢替代含氟聚合物(如PTFE、FEP)的流路,以消除干扰效应。广泛用于HPLC的薄膜式脱气器一般由TFE/PDD共聚物或PTFE制造。这些氟化聚合物膜将PFCs慢慢释放到溶剂流中,可能造成MS本底改变,严重影响到分析准确性。作为一家重要的脱气器供应商,IDEX Health & Science公司推出了质谱检测应用(如测量微量PFOA)的Systec™ 抗干扰脱气装置。这些高级脱气器具有和标准脱气器相同的脱气能力,但它们没有PFOA,并极大地减少了其他PFCs。该脱气技术与无氟化聚合物流路联用时能实现极为精确的PFCs分析。为何在HPLC中需要脱气? 在低压混合HPLC中,在进入HPLC泵之前先将两个或更多溶剂混合。Tokunaga在1976年做出了一项意义深远的工程研究,分析了酒精和水中以及两者混合液中的空气浓度,明确指出在混合之前需要除去空气以消除气泡。简而言之,酒精中的空气浓度几乎为水中空气浓度的七倍,但两者混合液中的空气量并不等于酒精和水分别带入混合液中的空气总量。Tokunaga发现在大气压下,30%到70%浓度的甲醇和水混合物只能容纳两者带入混合物的空气总量的38%。对其他溶剂-溶剂反应的研究也在混合曲线上显示出相似的溶解度降低。 http://ng1.17img.cn/bbsfiles/images/2012/01/201201101439_345000_1732309_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/01/201201101440_345002_1732309_3.jpg现有脱气器对PFC检测的限制PFCs仪器分析受到若干限制。其中最为严重的对高能级本底的限制。该本底来自PFCs多个仪器组件。这个污染可能由自动取样器样品瓶垫片、泵密封或管道等一切因素导致。要实现PFCs分析的高灵敏度和可复制性,推荐仪器的所有部件都用不锈钢或PEEK管代替Teflon®。此外,还建议不采用脱气器。可是,这会导致图2中显示的色谱结果不稳定。其他研究人员尝试过用溶剂冲洗整个HPLC系统若干天,以减少或消除仪器中的污染物。Systec试验结果抗干扰脱气器IDEX Health & Science公司和赛默飞世尔公司合作,提供了新Systec抗干扰脱气器样品用于评估。抗干扰脱气器(在赛默飞世尔公司的说明中称为“预清洁无PFC”脱气器)使用IDEX Health & Science公司的PEEK管而非Teflon管,为Thermo Scientific开发新UHPLC/MS方法提供了前提,以提高微量级PFCs分析的灵敏度、精确度和可复制性。http://ng1.17img.cn/bbsfiles/images/2012/01/201201101448_345006_1732309_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/01/201201101448_345007_1732309_3.jpg还分析了PFBS、PFHxS、PFHpA、PFUnA和PFDoA等其他PFCs。在0.04-2.5 ppb的范围上观察到理想的检测器响应。图4为不同SRM跃迁的10 ppt PFBS和10 ppt PFDS的分离和检测,以及相应的空白作为对照。该方法的灵敏度取决于出现在空白和所用溶剂中的干扰级别。表1显示的是检测限制(LODs)和定量限制(LOQs),信噪比分别定义为3和10。试验结果证明,使用Systec抗干扰脱气器可以实现非常低的本底(非常低的干扰),从而为研发出具有高灵敏度、精确度和可复制性的HPLC/MS/MS方法提供了保障。http://ng1.17img.cn/bbsfiles/images/2012/01/201201101449_345008_1732309_3.jpg更多细节参见Thermo Scientific应用说明51936——“通过LC/MS/MS和选择反应检测分析对人乳中全氟化合物进行精准定量” 结论Systec抗干扰脱气器配合无PFC泵和流路,让客户的仪器实现最高灵敏度和可重复精确度,保证了PFC检测和定量的可靠性。致谢: 作者感谢 IDEX Health&Science公司的Mark Joiner和Joe Rotter以及Thermo-Fisher Scientific公司的Guifeng Jiang和Robert Szilasie 在此项工作中给予的帮助。免责声明:PEEK™聚合物是威格斯公司(Victrex plc)的商标Teflon® 是杜邦公司(E.I. du Pont de Nemours and Company)的注册商标。只有杜邦公司生产Teflon。Vantage™ 是赛默飞世尔公司(Thermo Fisher Scientific, Inc.)的商标 * 使用的数据和表格已获得赛默飞世尔公司的许可© 2011, IDEX Health & Science LLC 版权所有

  • 公共交通运营单位关于公共场所公共卫生、职业健康检测、环境检测方面资质的问题

    各位老师: 我公司是从事地铁运营的,涉及到很多关于公共卫生、职业健康、环境检测方面的要求,我们想自己建立实验室,这些项目我们自己做检测,有以下问题:1、我们企业营业范围涉及了影响公正性的营业范围,类似销售等,能不能申请资质?如果不能,能不能在企业内部设立一个独立的部门,通过公司授权开展检测工作(公司营业执照没有“检验检测”的)?2、根据国家法规要求,以上项目是否必须经过CMA资质认定才能开展,如果不是,麻烦指导下,哪些可以直接做检测,哪些不行。3、国家对于以上项目的要求,有没有相关法律法规(实在太多了,看花眼了)麻烦精简告诉一下。。。

  • 【原创大赛】给仪器建立健康档案

    【原创大赛】给仪器建立健康档案

    (一) 前言患者看医生,病历档案是必不可少的参考资料,医生们可以根据患者以往的病史,迅速准确地判断出病因所在,这是生活常识,地球人都知道。但是给仪器建立“健康档案”,就不一定为人所知了。不错,我在许多地方,确实看到了许多仪器的使用者给仪器立了一个记录本本,里面记录着某年某月,谁使用过仪器,谁检修过仪器等等;但是关于检修内容的记录,却少之又少。如果在仪器“健康”(状态正常)之时为仪器建立了一个档案,那么无论是今后的使用还是维修,都是一个难能可贵的原始资料。以紫外可见分光光度计为例:在仪器初始安装后的验收指标记录如:波长精度,基线平坦度,基线噪声以及光源能量的图谱和数据,就是一组不错的最佳的原始档案。例如,在紫外可见分光光度计的使用当中,经常遇到仪器初始化通不过或者噪声大的故障。而上述故障大多为光路系统不良的原因。如果这时翻出原始仪器档案资料,无论是对使用人员还是维修人员而言,对迅速找到故障的原因都是很有帮助的。(二)光源能量档案分光光度计的光能量档案可以说是最重要的健康档案了;例如仪器初始化通不过,基线噪声大的故障90%的原因都是光能量下降所致。但是这个重要的指标往往被忽略,甚至有的仪器厂家也未给出标准参考数据。光源能量是一个综合指标,它的大小并不完全取决于发光体(氘灯,钨灯,氙灯)的能量,其中还包括扩:光源镜,单色器,反射镜,检测器等因素;下面请看我记录的一台紫外可见分光光度计的光源能量原始资料:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031049_449087_1602290_3.jpg图-1 氘灯和钨灯的正常能量图谱通过图-1可以演绎假设故障原因如下:1. 氘灯能量基本正常而钨灯能量明显降低:这种现象多为钨灯寿命到期的缘故。因为如果假设是光路中的光学器件(如各种反射镜)老化的原因,那么紫外区也就是氘灯能量的变化应该最为突出,但目前仅仅是钨灯的能量减弱,因此推断出是钨灯老化。2. 钨灯能量基本正常而氘灯能量明显降低:首先更换氘灯,如果能量得以提升,说明是氘灯本身的缘故,这种情况居多。当然还有其他的原因,例如光源镜老化等。参见图-2所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031051_449088_1602290_3.jpg图-2 表面劣化的光源镜3. 两只灯的能量均下降且更换新的光源后效果不明显:这种现象多为反射器件由于受到环境的影响,表面已经产生严重劣化的缘故。例如光源镜,切光镜,反射镜,光栅等等;图-3和图-4是严重污染的切光镜及光栅的案例照片:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031052_449089_1602290_3.jpg图-3 严重被污染的扇形镜(镜子右侧为对比原貌)http://ng1.17img.cn/bbsfiles/images/2013/07/201307031052_449090_1602290_3.jpg图-4 为严重劣化的光栅(表面已经变白了)(三)基线档案基线的平坦度也是一个重要的综合指标;它的平直度好坏不但牵扯到反射器件,还可以反映出滤光片的好坏及检测器的放大能力。图-5就是我记录的一台仪器安装后的良好基线案例:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031054_449091_1602290_3.jpg图-5 良好的基线记录通过图-5可以演绎假设故障原因如下:(1) 如果紫外区基线很平坦仅仅是可见区域基线很差,并且在340~850nm区间两端基线噪声大的话,这种原因多为钨灯老化所致,例如图-6所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031055_449092_1602290_3.jpg图-6 钨灯老化所致的基线(2)紫外区和近红外区的基线很好,仅仅是可见区的基线不良;这种故障最大的可能是滤光片劣化所致,见图-7,图-8 所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031057_449093_1602290_3.jpg图-7 可见区滤光片不良的基线http://ng1.17img.cn/bbsfiles/images/2013/07/201307031057_449094_1602290_3.jpg图-8 表面劣化的滤光片(3)整个区域的基线均为不良并有大的跳动。该故障多为波长电机不良所致,见图-9所示:http://ng1.17img.cn/bbsfiles/images/2013/07/201307031058_449095_1602290_3.jpg图-9

  • 【讨论】关于电导检测器的精确控温

    电导检测器对温度非常敏感,电导检测器又分好几种,比如:五极电导,双极脉冲等,该怎样对每一种检测器进行数字化精确控温呢?怎样进行温度补偿 ?难度在哪?

  • 河湖水生态监测和健康评估有哪些“秘密武器”?

    [font=宋体][color=#000000]近年来,治水工作的重心不仅已经由水污染防治为主向“三水”统筹推进转变,而且在评价河湖健康状态时,基于理化指标的常规水质监测体系也已经开始向水生态监测转变,多地也已陆续开展了水生态评价与考核工作。基于此,水生态监测与健康评估工作的重要性日益凸显。[/color][/font][font=宋体][color=#000000]滇池,位于云南中部,是长江上游最大的湖泊;沱江,位于四川省中部,是长江的一级支流。一河一湖,他们的水生态优劣对长江水生态维护十分重要。那么,不同水域的水生态功能情况如何,发生了哪些变化,采用哪些监测手段和健康评估方法?此次采访了[b]昆明市高原湖泊研究院湖泊生态所工程师董晋延和四川省成都市环境保护科学研究院高级工程师欧阳莉莉[/b]。[/color][/font][align=center][size=18px][color=#0070c0][b][font=宋体]一湖一河,水生态发生了哪些变化?[/font][/b][/color][/size][/align][font=宋体][color=#000000]滇池位于昆明市,是典型的高原湖泊。“今年6月,生态环境部联合多部门印发《长江流域水生态考核指标评分细则[/color][/font][font=宋体](试行)[/font][font=宋体][color=#000000]》,其中将滇池列为长江流域水生态考核试点湖泊之一,对滇池保护理念提出了新的方向和更高的要求。”董晋延告诉记者。[/color][/font][font=宋体][color=#000000]2012年起,滇池就已经开始开展了水生态环境的调查工作。董晋延介绍,“在水环境监测方面,我们增设了20个点位进行监测。从相关指标监测情况来看,近年来滇池COD、总磷、总氮等指标虽有波动,但整体呈现下降趋势。而且,滇池富营养化程度目前也处于轻度富营养状态。”[/color][/font][font=宋体][color=#000000]“水生态监测方面,我们每年在滇池开展1—2次大型水生植物调查,监测水生植物的分布状态和面积。目前调查到滇池大型水生植物主要有86种。从生物量历史变化来看的话,大型水生植物生物量呈现先下降后上升的趋势。这得益于2009年开展的‘四退三还’工作,通过湖滨带生态建设使水生植物得到了一定的恢复。近3年来,浮游植物也保持在100种左右,部分水域出现喜清水物种。”[/color][/font][font=宋体][color=#000000]相较于云南滇池,位于成都的长江上游支流沱江发生了哪些变化?欧阳莉莉介绍,“成都市开展水生态相关工作较晚,从2016年开始陆续开展了一些调查工作,2022年再次开启了沱江流域水生态调查工作。根据沱江流域成都段水文特征,综合干支流特点,结合遥感影像及实地勘察,我们选取了沱江流域16个调查点位。”[/color][/font][font=宋体][color=#000000]欧阳莉莉总结道,从水质调查来看,沱江干流的水质整体优于沱江支流,上游支流水质优于中下游支流水质。而且,通过对比2016年水生态环境情况,可以发现[/color][/font][font=宋体][color=#000000]湔江点位特征[/color][/font][font=宋体][color=#000000]变化不大,均处于优良状态,[/color][/font][font=宋体][color=#000000]毗[/color][/font][font=宋体][color=#000000]河和沱江干流点位比2016年状态明显好转,水丝[/color][/font][font=宋体][color=#000000]蚓[/color][/font][font=宋体][color=#000000]等污染指示物种密度明显下降。[/color][/font][font=宋体][color=#000000]从生境和水生生物部分来看,“河岸大部分能保持自然形态,植被覆盖率较高,渠道化较少。2022年调查结果显示,沱江流域成都段主要河流共发现底栖动物27个分类单元,发现鱼类5目11科 52 种,数量最多的鲤形目有37种。”欧阳莉莉补充道。[/color][/font][align=center][b][font=宋体][size=18px][color=#0070c0]水生态监测和健康评估用上哪些高科技?[/color][/size][/font][/b][/align][font=宋体][color=#000000]通过水生态调查,不仅可以清楚了解水生态系统的具体情况,还能为分析[/color][/font][font=宋体][color=#000000]研[/color][/font][font=宋体][color=#000000]判下一步的保护工作奠定基础。那么,进行水生态监测和健康评估都有哪些方法?[/color][/font][font=宋体][color=#000000]智慧监测技术是目前能快速掌握水生态关键组分变化的创新技术。“目前,我们与中科院水生生物研究所合作,构建滇池浮游动植物图片数据库,通过开发自动识别藻类的软件,提升识别效率和鉴定能力。”董晋延介绍了智慧监测技术研发与应用方面的情况,他表示,目前滇池也投入使用了水华智能预测系统,用来进行蓝藻水华的预测预警。[/color][/font][font=宋体][color=#000000]“红嘴鸥是昆明滇池的一张亮丽名片,基于实时视频的鸟群密度估计与种类识别技术,通过相应的摄像头和分析设备,我们也在开展鸟类自动化监测,目前智慧识别系统正在进行不断训练以提高识别的准确度。”董晋延介绍。[/color][/font][font=宋体][color=#000000]而起步相对较晚的成都,在沱江流域进行水生态健康评估用到了哪些方法?欧阳莉莉告诉记者,水生态健康评估主要用到了两种方法。[/color][/font][font=宋体][color=#000000]“首先是选择了基于水质、生境、底栖动物BI指数和大型底栖动物BMWP指数等的[/color][/font][font=宋体][color=#000000]WEQIriver[/color][/font][font=宋体][color=#000000]指数,通过现场调查、采样分析等进行评价打分。评价结果显示沱江流域成都段水生态环境质量整体是良好状态。”欧阳莉莉介绍。[/color][/font][font=宋体][color=#000000]“ 河流RHI指数是我们用到的第二个方法。”欧阳莉莉补充道,“指数主要由以下指标体系组成:包含岸线自然状况、违规开发利用水域岸线程度等指标在内的‘盆’指标体系,包含生态流量满足程度、水质优劣程度、水体自净能力等指标在内的‘水’指标体系,包含鱼类保有指数的‘生物’指标体系以及包含公众满意度的‘社会服务功能’指标体系。”[/color][/font][font=宋体][color=#000000]欧阳莉莉表示,通过对比两种方法的评价结果,能够综合反映水生态系统自身的基本状态以及人类活动对水生态系统的影响,科学评估河流的生态健康状态。[/color][/font][来源:中国环境][align=right][/align]

  • 找压力蒸汽灭菌抗力检测器 要求:进口

    压力蒸汽灭菌抗力检测器:时间控制以秒为单位;温度控制以0.1℃为单位;加热至预定温度时间应≤10秒;排气时间≤5秒;柜内温度范围100-138℃±0.5℃。灭菌室容积5L。

  • 傅若农:吹口气,知健康——GC-MS检测呼气疾病标记物

    [b][color=#00b0f0]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b][color=#0070c0]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b][color=#0070c0]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b][color=#0070c0]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b][color=#0070c0]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b][color=#0070c0]第五讲:傅若农:气-固色谱的魅力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b][color=#0070c0]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b][color=#0070c0]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b][color=#0070c0]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b][color=#0070c0]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b][color=#0070c0]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b][color=#0070c0]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][b][color=#0070c0]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][color=#00b0f0][b][color=#0070c0]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url][url=http://www.instrument.com.cn/news/20150716/167186.shtml][color=#00b0f0][b][color=#0070c0]第十四讲:脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的故事[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url] 人体呼吸气体的测试是一种无损伤的检测方法,日益受到重视,它可以评估健康状态、检测疾病类型,呼吸气体的检测可以利用简单的分析仪器进行。古代希腊医生已经知道人类呼吸气体的气味可以用于疾病的诊断,糖尿病人的呼吸气味由于含有丙酮,具有恶臭,呼吸气具有尿骚味预示肾脏有毛病。肺脓肿病人的呼吸气具有下水道的气味,这是由于厌氧菌繁殖而形成的气味。而有肝病的病人呼出气体具有臭鱼烂虾气味。  当我们从口中呼出气体,有成千上万的分子排放到空气中,呼出气体样品常常是无机气体(如NO, CO2, 和 CO)、挥发性有机化合物(例如异戊二烯、乙烷、戊烷和丙酮)以及其他典型的非挥发性物质的混合物(例如:异前列素、过氧化亚硝酸盐、细胞激素等)。由于这些分子源于内源性和外源性物质,详细分析这些物质的组成,可以提供多种体内所发生的生理学过程的特征(即呼吸谱),以及摄取和吸收物质的途径。如果获取和分析得到的呼吸谱是正确的,那么他就可以为你提供一个当前的健康状态,以及可预示将来的可能的后果。  呼吸气检测相比其他通常医疗检测的最大优点是非侵害性和安全性,由于其在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法成为一些病人每天控制重要指标的必要测试项目(就像测血糖和尿液一样)。  已经开发了多种方法可以检测呼出气体,可以把它们分为几大类:  1. 基于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和质谱联用(GC-MS)(或其他类型的质谱方法)  2. 化学传感器  3. 激光-吸收光谱  在表 1 中列出这些分析方法以及相关信息。表 1 用于分析呼出气体的一些方法[align=center][img=,655,193]http://img1.17img.cn/17img/images/201508/insimg/e4ae96e5-f897-456e-9062-19d09d296e08.jpg[/img][/align]文献:  1 Cao W,et al, Crit Rev Anal Chem,2007, 37:3.  1. Pleil J D, et al, Clin Chem, 1997, 43:723.  2. Smith D, et al, Int Review Phys Chem, 1996,15:231  3. McCurdy M R, et al,J Breath Res, 2007,1 : 1.  4. Pleil J D, et al, J Toxicol Environ Health, B, 2008,11: 613.  5. Schubert J K, et al, G.F.E. Expert Rev Mol Diag, 2004, 4 : 619.  6. Zayasu K, et al, Am J Respir Crit Care Med, 1997,156:1140.  7. Hansel A, et al, Int J Mass Spectrom Ion Processes, 1995, 150: 609.  8. Boschetti A, et al, Postharv Biol Technol,1999, 17:143.  10 Huang H H, et al, Sens Actuators, B, 2004,101: 316.[b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析呼吸气体[/b]  使用最多的是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)或者[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱、离子淌度谱(IMS)结合来分析人的呼出气体。用GC直接进行分析,把样品直接注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口即可,样品混合物经色谱柱分离成单一化合物(或几个化合物),用各种检测器检测其含量,人呼出气多为极性化合物,要用极性色谱柱进行分析。GC-FID是使用最多的模式,因为FID灵敏度高,线性范围宽,噪声低。GC和MS结合是现代分析检测的极为普遍的方法。下面举一个例子说明用GC-MS来对肺癌和其他肺病病人呼吸气进行测定。  呼吸气体可以鉴定出由于细胞膜脂质中脂肪酸被过氧化而产生的饱和烃和含氧化合物,用以鉴别肺癌患者。意大利 Diana Poli等(J Chromatogr B,2010,878:2643-2651)研究发现通过呼吸气体中含有的VOCs(脂肪族和芳香族烃)的类别可以区分非小细胞肺癌患者(非小细胞肺癌(Non-small-cell carcinoma )属于肺癌的一种,它包括鳞癌、腺癌、大细胞癌,与小细胞癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚,非小细胞肺癌约占肺癌总敉的80-85% ,目前采用化疗的方式进行治疗 )、慢性阻塞性肺病(COPD)患者、非临床症状吸烟者和健康人,灵敏度达72.2%,特异性达93.6%。在此基础上研究者们进一步寻找呼出气体中的其他物质可以更灵敏地区分健康人和肺病患者,并早期检查出肺癌患者。  多种羰基化合物作为二级氧化产物,他们选择挥发性直链醛作为组织破坏的生物标记物,特别是饱和醛像己醛、庚醛和壬醛是n-3和n-6不饱和脂肪酸(PUFAs)的过氧化产物,它们是细胞膜磷脂的主要成分,同时因为挥发性醛不溶解在血液中,所以当它形成时就会进入到呼吸气体中。  在呼吸气体中这种物质的浓度在10?12M(pM)和10?9M(nM)之间,所以在测定时需要进行预浓缩。这一研究中使用固相微萃取(SPME)进行预浓缩,用纤维内衍生化方法可以很好地解决呼吸气体中挥发性化合物的浓缩,包括脂肪和芳香烃,以及羰基化合物。但是并非能把所有呼吸气中的各种化合物都直接萃取出来,这决定于吸附剂涂层和萃取化合物的物理化学性质。  这一研究的目的是使用SPME上进行衍生化方法结合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱的方法检测人呼气的最后一部分气体(肺泡气),肺泡气参与肺中的气体交换。[b]1. 人体呼气取样[/b]  取样如图1 所示:[align=center][img=,352,366]http://img1.17img.cn/17img/images/201508/insimg/73c261c9-6342-4ddb-8b29-305dd7d51e26.jpg[/img][/align][align=center][img=,284,425]http://img1.17img.cn/17img/images/201508/insimg/307031d7-8bfe-4c5b-8ec7-b2c5624f1cf6.jpg[/img][/align]图1 人体用Bio-VOC管呼气取样 取样是让进行试验个体进行一次肺活量测试呼吸,以便得到最后150mL呼出气体。加入1μL 10[sup]?[/sup][sup]5[/sup]M内标物(IS)(丙醛, n-丁醛, n-戊醛, n-己醛, n-庚醛, n-辛醛,n-壬醛, 2-甲基戊醛),把Bio-VOC管在4℃下保存,在2 h内进行分析。Bio-VOC管在使用前要进行再生,即用氮气彻底吹拂干净。[b]2 SPME 进行样品衍生化[/b]  SPME萃取头保存在图 2 的装置里。  醛类用65μm PDMS/DVB萃取头进行萃取,新萃取头要先进行老和处理,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口中,在250℃下在氢气气流里加热30 min,每次使用前在气化室里于280℃下加热 1 min,目的是除去可能有的污染物,然后把萃取头插入4ml 带有聚四氟乙烯盖的茶色样品瓶中,瓶内装有浓度为17 mg/mL 的1mL PFBHA(五氟苄基羟胺盐酸盐)水溶液,在室温和电磁搅拌下萃取10 min,然后把此萃取头放入Bio-VOC呼吸气进样装置中于室温下处理45min(进行萃取头上的衍生化), 之后在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口中于280℃下进行热脱附。PFBHA试剂与醛类进行衍生化反应得到两种PFBHA-肟异构体(顺,反异构体)。[align=center][img=,453,310]http://img1.17img.cn/17img/images/201508/insimg/2be3e5b2-1340-448c-a51f-4586ba7b2969.jpg[/img][/align]图 2 SPME萃取头保存装置 保存管包括上管(A)和密封管(B),萃取头(C)必须旋紧在A管中 然后插入到下面的B管中,B管用带弹簧的聚四氟乙烯盖密封[b]3 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱分析(GC-MS)[/b] 使用HP 6890 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]和HP 5973质谱选择性检测器进行分析。色谱柱使用HP-5MS(30m×0.25mmID 0.50 μm膜厚),氢气作载气,载气流速为1ml/min。色谱条件:柱温:以8℃/min速度从100℃升温到150℃,然后再以30℃/min速度升温到250℃,然后保持1 min。整个分析时间为10.58 min。用选择离子检测(SIM) 进行定量分析。获取质谱碎片m/z181(间隔时间400ms),每个醛的鉴定离子为181,是五氟苄-肟的特征离子碎片。同时以纯化合物的保留时间进行确认。[b]4 测试对象[/b] 40个在接受肺切除治疗之前的非小细胞肺癌(NSCLC)I 或 II期患者,所有患者都进行了胸腹部CT扫描,做了脑CT,腹部超声检测或骨质的闪烁扫描,没有一个患者进行过抗癌治疗。 38个对照健康没有临床治疗的人员,他们没有肿瘤或临床肺病历史。研究对象的特点见表 2。 吸烟是根据受试者自己讲述目前的吸烟情况,他们报告了吸烟的数量和吸烟的年数,在一年前就停止吸烟者定义为前-吸烟者(ex-smokers)。NSCLC的确认是根据组织学检查确定的,有23个肺腺癌(ADCs)患者,13个鳞状细胞癌(SCCs) 患者,和一个大细胞癌患者,但是所有这些患者都是临床手术前I 或 II期,最后病理学显示I期有29人(18个IA期11个临床IB),6个IIB,5个IIIA。见表2.表2. 测试对象特点[align=center][img]http://img1.17img.cn/17img/images/201508/insimg/09890691-2141-4f44-970b-bbd4bcbd33c3.jpg[/img][/align][b]5 测试结果探究[/b] 肺癌的早期诊断可以提高存活率,呼吸气的检测可以探测出呼吸道肿瘤形成的信息,而且呼吸气体的检测无伤害、安全,有利于在临床实践中的应用。由于肺比其他器官更直接暴露于较高氧气浓度的环境中,所以更容易诱发呼吸道疾病。研究数据显示肺癌是由于脂质被氧化而引起,很少人知道在呼出气体中含有直链醛类,知道在呼出气中含有直链醛类和肺癌有关的人更少。有研究结果显示,在肺癌患者的其他生物样品(如尿样、血液/血浆以及凝缩的呼吸气)中含有醛类。在健康人、哮喘患者和慢性阻塞性肺病(COPD)患者的液态呼吸气体(EBC)中也检测到醛类,特别是丙二酰二醛。 呼吸气体分析需要娴熟的技术和昂贵的仪器,因为这些目标化合物来自脂质过氧化过程,含量很低(10[sup]?[/sup][sup]12[/sup]M 到10[sup]?[/sup][sup]9 [/sup]M) ,所以需要严格的预浓缩步骤。使用SPME可以简化人呼出气体的分析,而且SPME已经在VOCs分析中有大量应用,而且SPME不会受到大量水分的影响,所以这一方法十分适合于人呼出气体的预浓缩。呼出气体中含有大量水汽,会影响预浓缩和某些化合物的GC-MS分析。不过SPME需要进行严格的操作参数的优化和认证,特别是对痕迹量化合物的情况。并非所有呼出气体的组分都可以轻易地被萃取,这就要选择SPME萃取头的选择性了,在许多情况下就需要进行事先的衍生化处理。 SPME萃取头上用PFHBA进行衍生化从生物样品中萃取醛类乙腈有所使用,本研究作者改进了这一方法,使用Bio-VOC 能够检测到呼出气体中的痕迹量的醛类,可以无害地从呼吸道中抽取小气泡,除去己醛、庚醛和壬醛(它们是3n和16n不饱和脂肪酸被过氧化产生)外,本研究作者还研究了其他直链醛类,覆盖了整个丙醛(C3)到壬醛(C9),甲醛和乙醛没有包括,因为它们他们存在于户内和户外环境中,是烟草燃烧的产物,而且许多肺癌患者过去吸烟,或者现在还在吸烟。而且呼出气体中乙醛的含量还取决于乙醇的代谢。检测对象的呼出气中的醛含量见表3表3 不同人群呼出气体检测结果[align=center][img=,659,263]http://img1.17img.cn/17img/images/201508/insimg/8c5c169b-7177-4a9f-bd98-26787c3fb459.jpg[/img][/align][b]6 测试中的问题[/b] 呼出气体醛类的稳定性,醛是不稳定化合物,在呼出气体中的醛会随时间而降解,但是在SPME上吸附并衍生化的醛要稳定的多,见图3所示[align=center][img=,567,492]http://img1.17img.cn/17img/images/201508/insimg/6017e878-1352-44c4-8312-a7e6f23af89e.jpg[/img][/align][align=center][img=,515,484]http://img1.17img.cn/17img/images/201508/insimg/f8ad4a39-89b4-4347-9971-c2fed8a0e18d.jpg[/img][/align] 图 3 呼出气体中醛类随时间降解图(propanal 丙醛,butanal 丁醛,pentanal 戊醛,hexanal己醛,Heptanal庚醛, octanal辛醛)为了对比外源和内源醛含量,如图 4所示[align=center][img=,687,488]http://img1.17img.cn/17img/images/201508/insimg/ea38f46b-53ef-4901-b398-c6d336e70de4.jpg[/img][/align][align=center][img=,590,470]http://img1.17img.cn/17img/images/201508/insimg/cddaa414-9479-4894-a2f0-569187d430e8.jpg[/img][/align]图 4 内源和环境中醛类含量测定的对比(Exhaled Air 呼气,Environmant 环境)[b]小结[/b] 把这一方法用于NSCLC早期患者和一组无临床症状人群,结果证明所择的醛类谱对区分无临床症状不吸烟人群和NSCLC早期患者有效,鉴别NSCLC早期患者成功率为90%。鉴别对照健康人群成功率为92.1%。吸烟或年龄影响不大。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制