当前位置: 仪器信息网 > 行业主题 > >

自容式藻类荧光计

仪器信息网自容式藻类荧光计专题为您提供2024年最新自容式藻类荧光计价格报价、厂家品牌的相关信息, 包括自容式藻类荧光计参数、型号等,不管是国产,还是进口品牌的自容式藻类荧光计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自容式藻类荧光计相关的耗材配件、试剂标物,还有自容式藻类荧光计相关的最新资讯、资料,以及自容式藻类荧光计相关的解决方案。

自容式藻类荧光计相关的仪器

  • 产品概述BGA-3000藻类自动分析仪采用荧光光谱分析方法,通过分析不同门类藻类的特异性荧光光谱,实现藻类快速监测。设备可同时监测藻密度和叶绿素a,无需试剂,整体便携手提箱设计,适合车载、船载等便携应用形式。产品特点1)自带温度补偿和浊度补偿功能,测量更准确2)多波长测量方法,数据更可靠3)背景扣除算法消除水中荧光有机物干扰,结果更准确4)具备水深监测功能,准确识别藻在水深方向的变化,支持不同水深剖面监测藻类密度,最深可在水下200m实现藻类测量5)创新性采用高集成度关键器件,相较同类产品具有低故障率、易维护的优势6)数据查看方便,提供安卓端、IOS端、Windows端三种软件查看数据7)可同时监测藻密度和叶绿素a浓度8)设备轻便,体积小,易携带应用领域湖泊、水库、饮用水源地、城市内河等
    留言咨询
  • 产品概述流式藻类在线分析系统,采用光学激光束激发快速直线流动状态中的单列浮游植物细胞或颗粒,通过采集分析散射光与荧光,并对浮游植物细胞拍照,从而对浮游植物细胞进行多参数的、快速、定量分析和识别。该系统具有灵敏度高、分析速度快、精确度高、多参数分析等特点。产品特点1)超大流通池设计,专业分析藻类生物2)全光谱荧光同时采集,提供藻类丰富的荧光全谱信息3)高速流动成像技术,图像识别藻类4)循环鞘液系统,无需外接销液维护量低应用领域湖泊、水库、饮用水源地、城市内河等
    留言咨询
  • 自容式藻类荧光计 400-860-5168转1218
    WETStar 自容式藻类荧光计特点: 一种使用简单、高精度、多功能自容式水下荧光计。WETStar荧光计可对环境水体中的叶绿素荧光提供高灵敏度的精确测量。叶绿素荧光作为水生生物聚集程度的一种因子用以估计水体中生物量的活动。WETstar采用新型流动池设计,避免了环境光波动的影响,外壳材料采用高级工程防腐设计,可长时间放置于水中进行测量。控制程序可以预设仪器的采样间隔 利用自动量程控制,仪器可以在复杂的条件下应用,能适应剧烈的动态变化,可以进行剖面测量,也可进行定点测量;使该荧光计可以单独工作,也可以和现有的CTD系统整合使用。参数:探头长:17.1cm,直径:6.9cm,重量:0.8kg,额定深度:600m,响应时间:0.17秒光学精度&ge 0.03&mu g/l,激发波长:470nm,发射波长:685nm,动态测量范围:标准0.03-75&mu g/l,或0.03-125&mu g/l软件界面:
    留言咨询
  • YZQ-201C藻类荧光-光合仪 YZQ-201C藻类荧光-光合仪,是在201A藻类光合仪基础上增加了藻类荧光测量的新款仪器。该仪器能够监测光合放氧和呼吸耗氧,又可以测量藻类OJIP荧光动力学曲线,从而得到最大光化学效率。首先仪器特色是恒温控制、光谱可以调节、光强可以调节,控温精度达到±0.1℃。光谱分为暖白、R、G、B四种光谱可选,也可以多光谱定制。搭载荧光氧传感器(光学测量原理)测量微动态氧变化,自带搅拌功能使得测量更加稳定。实验设计可以是相同温度,不同光强,还可以是不同温度,同一光强对比测量均可实现。在恒温恒光环境下可连续监测藻类、根系、微生物、叶绿体等样本的微动态氧的变化,从而计算光合速率变化的状况。其次是将藻液收集到荧光测量室内进行荧光指标测量,藻反应杯包括藻液收集装置和藻液暗适应装置,收集和暗适应完毕即可将荧光传感器插入荧光测量室内进行荧光测量。 功能与特点(1)主机集成了荧光测量功能和光合放氧(呼吸耗氧)测量功能。(2)荧光氧电极(光学原理)的优势在于反应速度快,稳定性好,重复性好;对比极谱(CLARK)氧电极(电化学原理),不需要每次测量前要标定,不需要更换溶氧膜,不需要更换电解液,不需要打磨电极,不需要活化复新电极。(3)恒定温度、不同光强下样本光合速率的变化测量。不同温度梯度下的同一样本光合速率的变化测量(4)自带搅拌使得测量数据更稳定。(5)自带控制软件可进行实时控制。(6)自带智能藻液收集装置和荧光暗适应测量室。应用(1)藻类光合生理生态的研究(2)微生物、根、花粉等呼吸速率的研究(3)叶绿体等高等植物光合速率的研究
    留言咨询
  • AquaPen AP110便携式藻类荧光测量仪是一款用于快速、精确测量水体藻类与蓝藻叶绿素荧光参数的手持式荧光仪。AquaPen有两种探头型号。AP110-C配备比色杯试管测量室,将要测量的水体、悬浊液或培养溶液采集到比色杯中进行测量,配备455nm蓝色和620nmLED红色光源,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度。AP110-P配备了浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类。AquaPen 具备极高的敏感度,可检测最低0.5μg Chl/L的叶绿素荧光,可以检测浮游植物浓度极低的自然水体,可用于野外和实验室测量。AquaPen采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。 AquaPen AP110便携式藻类荧光测量仪应用领域 藻类、蓝藻光合特性研究 水体藻类含量检测 光合突变体筛选与表型研究 生物和非生物胁迫的检测 藻类抗胁迫能力或者易感性研究 经济藻类育种、病害检测、长势与产量评估 功能特点:§ 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅180g§ 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数§ 内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP–test等§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数§ AquaPen两种探头型号:比色杯试管测量室,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度;浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类§ FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量§ 具备无人值守自动监测功能
    留言咨询
  • ALGcontrol藻类在线监测仪采用7种不同波长的光(365、450、525、570、590、615、710nm),以极高的频率依次照射藻类,检测器记录每次的信号强度值用于计算藻类的浓度,计算的结果以µ g/l的形式显示在仪器屏幕上。并且为了消除DOM(溶解性有机物)和浊度对藻类测量结果的影响,监测仪还分别测定365 nm和710 nm的荧光对DOM和浊度进行补偿,从而提高藻类监测的准确性,相应的DOM和浊度值也自动计算并显示。nanoFlu 微型荧光计工作原理ALGcontrol监测仪采用特定波长的一组LED激发光照射水体中藻类的叶绿素分子,叶绿素分子将部分吸收的光以特定波长的荧光形式发射出来,检测荧光强度来计算叶绿素浓度。同一种藻类都含有等量的叶绿素a,这些叶绿素a发射的荧光峰值是相同的,即被激发出的荧光是一样的(都被激发出680nm的荧光)。但同一种藻类受到不同波长单位强度的光照射时,发出的荧光强度不同;不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。 产品特征全自动监测水体中藻类浓度的变化可同时测定叶绿素a、DOM、浊度自动DOM和浊度值补偿快速检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发易于集成到iTOXcontrol在线生物综合毒性监测系统数据快速存储和自动图形显示触摸屏数据显示和操作界面支持多种标准通信接口可设置藻类浓度阈值报警可编程泵和阀门用于进样或清洗自动清洗防污染,易维护、低费用产品应用地表水、河流、湖泊、水库、海洋技术参数测量参数:(绿藻+蓝-绿藻) 叶绿素a,DOM(溶解性有机物),浊度 含氰基叶绿素(蓝-绿藻) 叶绿素a,DOM(溶解性有机物),浊度叶绿素测量范围:0~200 μg/l chl.a测量精度:0.2 μg/l浊度测量范围:0~400 NTU波 长:365、450、525、570、590、615、710nm检 测 器:DTGS(24位ADC信号采样)操作方式:集成于Linux电脑窗口 触摸屏,用户图形界面 直接通过LAN局域网连接标准接口:CAN-Bus,LAN,Modem,RS232,RS485数字通讯:Modbus TCP,Modbus RTU或其他可定制协议模拟输出:2个4~20 mA模拟输出其他输出:Profibus转换器箱体材质:铝样品压力:0 bar (最大0.05 bar)功 耗:45W防护等级:IP54(可选IP65)尺寸(HxBxD:450×450×260 mm样品温度:10~35 ℃环境温度:15~30 ℃样品流速:2~10 L/h(无悬浮物)操作系统:内置Linux可选配置:Modem卡槽可选UMTS、ISDN或模拟 第2路样品和额外清洗装置 传 感 器:pH、DO、浊度、ORP 输 入:4~20 mA、2×数字输入、泄露监测传感器 PC软件(SQL数据库) 清洗系统 清洗溶液:(次氯酸钠溶液0.05%活性)可在数周内防止结垢和无人值守的使用电 源:24 VDC
    留言咨询
  • FastOcean APD原位藻类荧光仪采用多波长快速重复荧光技术,测量原位总初级生产力Gross Primary Productivity (GPP),是测量光合生物可变荧光的有力工具。特征全自动同步环境光和暗适应的传感器三个激发波长:450,530和624 nm多激发波长组合连续测量FastPro8软件提供自动数据处理,演示,归档和导出自动重新计算所有相关参数,除去样品空白和其他用户修改参数两个FastOcean APD的系统内的传感器可以用于实验室工作,可以结合FastAct系统一起工作FastOcean APD原位藻类荧光仪参数测量范围:有效FRR数据信号相当于叶绿素a浓度0.02-200mg/m3最大深度:600m输入电压:18-36V功耗:4.8W(峰值5W)电池持续时间:连续工作6小时数据软件:FastOcean APD 剖面测量系统能通过编程后,通过电池包自动运行,也可通过FastPro8软件实时操作。连续采样频率为10Hz,LED强度单位为(photons m-2 s-1 x 1022)。自然环境下和暗适应下的荧光曲线
    留言咨询
  • AquaPen AP110手持式藻类荧光测量仪是一款用于快速、精确测量水体藻类与蓝藻叶绿素荧光参数的手持式荧光仪。AquaPen有两种探头型号。AP110-C配备比色杯试管测量室,将要测量的水体、悬浊液或培养溶液采集到比色杯中进行测量,配备455nm蓝色和620nmLED红色光源,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度。AP110-P配备了浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类。AquaPen 具备极高的敏感度,可检测最低0.5μg Chl/L的叶绿素荧光,可以检测浮游植物浓度极低的自然水体,可用于野外和实验室测量。AquaPen采用调试式荧光测量技术,可设置多种参数,方便测量多种植物叶绿素荧光。外观小巧,方便携带,设计新颖,操作简单,经济耐用,精度高稳定性好。应用领域 藻类、蓝藻光合特性研究 水体藻类含量检测 光合突变体筛选与表型研究 生物和非生物胁迫的检测 藻类抗胁迫能力或者易感性研究 经济藻类育种、病害检测、长势与产量评估 教学功能特点:§ 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅180g§ 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数§ 内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP–test等§ 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数§ AquaPen两种探头型号:比色杯试管测量室,既可以测量叶绿素荧光,又可以测量680nm和720nm光密度;浸入式光学探头,可直接插到要测量的水体、悬浊液或培养溶液中进行测量,也可测量大型藻类§ FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量§ 具备无人值守自动监测功能§ 内置蓝牙与USB双通讯模块, GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表§ 配备多种叶夹型号:固定叶夹式(适用于大批量样品快速测量)、分离叶夹式(适用于暗适应测量)、开放叶夹式(适用于温室、培养箱进行监测)、用户定制式等§ 可选配野外自动监测式荧光仪,防水防尘设计测量程序与功能 Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0 QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态)。 OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化 NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。 LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。 OD:光密度,反映藻类密度(限AP110-C)。技术参数 测量参数包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,OD680和OD720(限AP110-C)及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等 OJIP–test时间分辨率为10μs(每秒10万次),给出OJIP曲线和26个参数,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等 测量程序:Ft、QY、OJIP、NPQ1、NPQ2、LC1、LC2、LC3、OD(限AP110-C)、Multi无人值守自动监测 测量光:每测量脉冲0-0.09μmol(photons)/m2.s,0-100%可调 光化学光:0–1000μmol(photons)/m2.s,0-100%可调 饱和光:0–3000μmol(photons)/m2.s,0-100%可调 探头型号:AP110-C试管式、AP110-P探头式 光源:AP110-C:620nm红光和455nm蓝光测量叶绿素荧光,680nm和720nm红外光测量OD;AP110-P:455nm蓝光 试管容积(限AP110-C):4ml 叶绿素荧光检测限:0.5μg Chl/L 检测器:PIN光电二极管,667–750nm滤波器 尺寸大小:超便携,手机大小,165×65×55mm,重量仅290g 存贮:容量16Mb,可存储149000数据点 显示与操作:图形化显示,双键操作,待机8分钟自动关闭 供电:可充电锂电池,USB充电,连续工作48小时,低电报警 工作条件:0–55℃,0–95%相对湿度(无凝结水) 存贮条件:-10–60℃,0–95%相对湿度(无凝结水) 通讯方式:蓝牙+USB双通讯模式 GPS模块:内置 软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统操作软件与实验结果产地: 欧洲参考文献1. X Chen, et al. 2018. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere 196: 280-2872. C M' Rabet, et al. 2018. Impact of two plastic-derived chemicals, the Bisphenol A and the di-2-ethylhexyl phthalate, exposure on the marine toxic dinoflagellate Alexandrium pacificum. Marine Pollution Bulletin 126: 241-2493. P Steinrücken, et al. 2018. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions. Algal Research 30: 11-224. T Kieselbach, et al. 2018. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities. Photosynthesis Research 135(1-3): 149-1635. E Bermejo, et al. 2018. Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of Bioscience and Bioengineering, Available online 20 January 2018, In Press6. W Noh, et al. 2018. Harvesting and contamination control of microalgae Chlorella ellipsoidea using the bio-polymeric flocculant α-poly-l-lysine. Bioresource Technology 249: 206-2117. S Arisaka, et al. 2018. Genetic manipulation to overexpress rpaA altered photosynthetic electron transport in Synechocystis sp. PCC 6803. Journal of Bioscience and Bioengineering, Available online 5 March 2018, In Press8. J Tang, et al. 2018. Sustainable pollutant removal by periphytic biofilm via microbial composition shifts induced by uneven distribution of CeO2 nanoparticles. Bioresource Technology 248: 75-819. T Antal, et al. 2018. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiologia Plantarum, https://doi.org/10.1111/ppl.1269310. SB Ouada, et al. 2018. Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). Journal of Applied Phycology 6: 1-12
    留言咨询
  • 1.用途:用于区分与定量绿藻、甲藻、硅藻、蓝藻、隐藻等不同类群。计算水体中各类群藻类细胞丰度。仪器方便携带,可以单独应用于河流、湖泊、库区及近海水体浮游植物监测,可以进行水体垂直剖面调查或水样快速检测,也可以结合浮标、走航船舶、无人船、水质自动站等连续监测平台,实现对水生态健康的长时间、高频、连续监测与评估,以及对水华等生态灾害事件进行应急、快速、大面的溯源和范围调查。2.主要技术指标2.1.测量方法:荧光光谱法 2.2.激发光波长:15个;2.2.测量频率:1秒~60分钟一次可自定义 2.3.测量参数:叶绿素、藻类(蓝藻、绿藻、硅藻、隐藻、甲藻等)、深度、温度、浊度、有色溶解物(CDOM);2.4.水温:-2-45°C 2.5.浊度:0~200NTU 2.6.有色溶解物:0-500 ppb 2.8.叶绿素测量范围:0-500ug/L 2.9. 硅藻/甲藻/隐藻/绿藻/蓝藻:0-500ug/L 2.10.分辨率:0.01ug/L 2.11透光性: 0-100%2.12测量深度:0-100m(标配)3.功能要求3.1适用于野外现场对叶绿素进行定量分析以及对各种藻类进行定性、定量分析。能够实现对藻类分类检测,区分蓝藻、绿藻、硅藻、甲藻、隐藻等并检测其叶绿素浓度并估算其细胞丰度。可以进行水下剖面测量分析,在淡水与海洋环境浮游植物分布水层均可使用,可应用于湖泊、河流、水库、近海等不同水域。3.2通讯接口:RS485/RS232/USB3.3内置贮存空间: 16G/32G 3.4内置电池续航时间: 12小时(2秒一次连续测量) 15 天(30分钟一次)3.5.光学窗口清洁:带自动清洁刷3.6.工作模式:支持离线与在线工作两种模式3.7 U盘模式:支持U盘模式数据文件直读3.8设备可以根据用户的需求定制如下参数:藻类类群数量、内置贮存空间。4. 配置清单4.1 野外藻类分析仪主机 l台4.2 润滑油脂 (lOml 注射器装) 1瓶4.3 128GB U盘 1个 4.4 硬壳保护箱 1个4.5 中文说明书及软件U盘 1套4.6 115V/230V电源 1个4.7 RS485/USB 多用途防水线缆 1条4.8 防水堵头 1个4.9 平板电脑 1台 4.10 校正容器 1套
    留言咨询
  • 藻类荧光在线监测仪 400-860-5168转1895
    仪器简介:AOM藻类荧光在线监测仪为超高灵敏度藻类在线测量监测仪器,可以测量监测到30ng/L的叶绿素荧光;具有广谱生物检测功能,可以对绿藻、蓝藻、蓝绿藻及棕色藻类进行测量监测,测量参数包括Fo、Ft、Fm、Fm&rsquo 及OJIP等,同时还可以测量浊度。广泛应用于饮用水在线监测及河流、湖泊、海洋藻类测量监测和研究。仪器便携性能强,可用于野外和实验室研究,所附软件可以进行荧光参数及藻类荧光动力学分析,数据可导出到Excel表。技术参数:AOM藻类荧光在线监测仪具体性能指标如下: 测量参数Fo、Ft、Fm、Fm&rsquo 、OJIP、浊度测量极限(灵敏度)绿藻:10cells/ml,蓝绿藻(藻氰菌):100cells/ml光化学光和饱和光0-3000uE可调光波探测器光电二极管,660nm-750nm滤波器数据通讯串口232或USB口内存8MB,内置数采防水性能IP65温度范围0-45大小198mm x 60mm x 295mm,重量1800g
    留言咨询
  • ALGcontrol在线荧光藻类分析仪 荷兰microLAN ALGcontrol可以连续实时对不同藻类的叶绿素荧光值进行测定。与耗时的显微镜计数法相比,在线荧光测定法可以快速测定湖泊、河流和水库中的叶绿素含量。 一、技术原理ALGcontrol采用激励荧光对藻类进行激发。当激励光照射到叶绿素分子上时,叶绿素分子会将一部分吸收的激励光再以特定波长的荧光的形式发射出来。同类的藻体中含有等量的同种色素,而且所有的藻被激发出来的荧光是一样的(都被激发出波长680nm的荧光),但是研究发现:一是同一种藻受到不同波长单位强度激励光激励时,发出的荧光强度不同;二是不同的藻在受到相同波长单位强度激励光激励时,发出的荧光强度也不同,所以可以通过这个特性对藻进行分类测定。 除此之外,仪器还会对其它干扰物质和参数进行测定以提高藻类测定的准确性。其中包括:通过测定365nm的荧光和710nm的荧光分别对DOM(可溶解有机物)和浊度进行补偿ALGcontrol选用7个不同波长的激励光对被测对象进行激励并测定,分别是365nm, 450nm,525nm, 570nm, 590nm,615nm 和 710nm仪器在工作时,7种不同波长的激励光以极高的频率逐次对被测对象进行照射,每次的信号值都会被仪器测定并记录,所以每个波长的激励光对不同藻的“激励值”都会被记录并用于藻类的浓度的计算,计算所得的结果图像会以μg/l的形式在仪器屏幕上显示。相应的DOM和浊度的结果也会被自动的计算。 二、技术参数 测定参数 ALGcontrol可测定5类不同的藻:绿藻、蓝藻(蓝藻、藻蓝蛋白)、褐藻(硅藻和甲藻)、红藻(包括隐藻)和总叶绿素。测定范围 总叶绿素:0-200μg/l(叶绿素a,绿藻+蓝藻)蓝绿藻叶绿素:0-200μg/l(叶绿素a,蓝藻)精度:0.2μg/l浊度:0-400 TU1个可编程泵(样品/清洁)2个可编程阀。通信 集成式PC与基于Windows的操作系统图形用户界面与交互式触摸屏操作通过直接LAN连接实现全网络功能支持所有标准通信接口,LAN、RS232或RS485协议:Modbus RTU,Modbus TCP1个4-20mA输出设备参数 防护等级:IP 54(可选IP65)尺寸(高x宽x深):470 x 450 x 321柜体材质:不锈钢样品压力:0 bar(最*大0.05 bar)样品温度:10-35°C样品流量:3L/h环境温度:15-35°C电源:220V–50Hz或110V–60Hz功耗(平均):45W。认证:CE自动清洗 用户可选择自动清洗周期清洗溶液(活性小于0.05%的次氯酸钠溶液)或过氧化氢,可在无人值守的情况下使用数周。
    留言咨询
  • 多波长藻类传感器 400-860-5168转6075
    工作原理:多波长激发式荧光光度仪不同于其他叶绿素荧光光度仪,采用9波长测量得出植物荧光特性《激发荧光光谱》。这种荧光谱的特征和各种浮游植物的色素组成具有相关关系。像指纹一样,每一类浮游植物都有其独特的荧光特性,可以用来区分不同的种类。依据这个原理,就能推断出绿藻类、甲藻类、硅藻类、蓝藻类、隐藻类等浮游生物群体的种类。此外。通过多变量分析,还可以推算出各种浮游生物的数量。叶绿素荧光光度计 自动识别、分类浮游植物多波长激发式荧光光度仪可以通过对生物光谱的测量,确定微生物的生物量和种类。同传统的单一荧光光座计相比,性能更为卓越。 精度更高,应用范围更广 9波长激发机制能够提供高精度的大波长激发谱。在高反射率的浑浊水体中的信噪比也得到了大大的提高。升级后的荧光光度计能更准确地对浮游植物进行分析归类。为了防止长期观测中,生物附着在光学窗口上,仪器配备了机械式清洁刷自动清洁光学窗口,即使在浮游生物繁多的水域也可以放心进行长期观测。多波长激发式荧光光度仪还配备了浊度、水温和深度传感器,大大拓宽了仪器的应用范国。本仪器有自容式和有线输出(RS485通讯缆线》两种规格,后者可以进行实时观测,并与其他设备平台联合使用。
    留言咨询
  • 主要用途 利用调制叶绿素荧光技术,测量野外自然水体或培养的微藻样品的光合作用(叶绿素荧光诱导加淬灭分析、光响应曲线等),也可测量叶绿素含量,是进行野外光合作用研究的良好工具。除了测浮游植物外,可扩展探头测量附着藻类或大型藻类。除了取水样到样品杯中测量外,可扩展探头进行水下原位、连续测量,特别适合于连续监测海洋、湖泊、水库、河流等水体的叶绿素含量以及光合活性。 主要功能 1)可测荧光诱导曲线并进行淬灭分析 2)可测光响应曲线和快速光曲线(RLC)3)可测水样的叶绿素a浓度4)可测量水样的下列光合指标活性:* 光合效率和光合速率(相对电子传递速率)* 藻类的潜在最大光合效率(“生长潜能”)* 藻类的光保护能力* 藻类耐受强光的能力5)51个内置模式菜单,方便参数设置和标准测量 6)系统I用于浮游植物研究,系统II用于大型藻类研究,系统III用于连续监测水体光合作用 应用领域测量野外自然水样或实验室培养的微藻样品的光合作用,三套系统可供选择,可应用于水生生物学、水域生态学、海洋学、湖沼学等领域,检测限达0.1 μgChl/L。可用于有害藻华的早期预警。与PHYTO-PAM的最大区别在于,WATER-PAM不能进行浮游植物分类。测量参数Fo, Fm, Fv/Fm, F, Fm', Fo', Y(II)=ΔF/Fm', qP, qN, NPQ, ETR,alpha,ETRmax, Ik, PAR和Chla含量等主要技术参数测量光:3个波长为650 nm的LED阵列光化光:12个波长为660 nm的LED阵列,最大连续光强2000 μmol m-2 s-1。饱和脉冲:12个波长为660 nm的LED阵列,最大闪光强度4000 μmol m-2 s-1。信号检测:光电倍增管检测器(H6779-01,Hamamatsu),过载保护功能,检测信号λ710 nm。数据存储:CMOS RAM 128 KB,可存储4000组数据。 系统组成系统I浮游植物版系统II附着藻类/大型藻类版系统III连续监测版野外现场自然水体的光合作用检测、叶绿素含量测定;室内培养的微藻样品的生理特性研究等。野外现场附着藻类(如底泥中的藻类)、大型海藻的光合活性测量;室内大型海藻生理特性研究。野外现场水体光合活性监测、叶绿素含量的连续测定。可选附件1:搅拌器,可置于系统I的上部对水样进行搅拌,带内置电池 可选附件2:球状微型光量子探头,可放入系统I的样品杯中测量PAR
    留言咨询
  • 1、概述YZQ-201A藻类光合仪(以下简称"仪器",如图1所示),是我公司“自主研发”的藻类生理的系列产品之一。该仪器特色是恒温控制、光谱可以调节、光强可以调节,控温精度达到±0.1℃。光谱分为暖白、R、G、B四种光谱可选,也可以多光谱定制。搭载荧光氧传感器(光学测量原理)测量微动态氧变化,自带搅拌功能使得测量更加稳定。实验设计可以是相同温度,不同光质,还可以是不同温度,同一光质对比测量均可实现。在恒温恒光环境下可连续监测藻类、根系、微生物、叶绿体等样本的微动态氧的变化,从而计算光合速率变化的状况。 2、功能与特点 (1) 荧光氧电极(光学原理)的优势在于反应速度快,稳定性好,重复性好。测量前不需要要标定,不需要更换溶氧膜,不需要更换电解液,不需要打磨电极,不需要活化复新电极。 (2)恒定温度、不同光质、不同光强下样本光合速率的变化测量。(3)不同温度梯度下的同一样本光合速率的变化测量。(4)自带搅拌使得测量数据更稳定。(5)自带控制软件可进行实时控制。3、应用(1)藻类光合生理生态的研究(2)微生物、根、花粉等呼吸速率的研究(3)叶绿体等高等植物光合速率的研究
    留言咨询
  • 测量原理 ALGcontrol采用特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。 同类藻体中含有等量的同种色素,被激发出的荧光是一样的(都被激发出680nm的荧光)。但同一种藻类受到不同波长单位强度的光照射时,发出的荧光强度不同,并且不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。 另外,DOM和浊度会干扰藻类的测定,因此仪器还分别测定365nm和710nm的激发荧光对DOM和浊度进行补偿,以提高藻类测定的准确性。 仪器采用7种不同波长的光(365,450,525,570,590,615,710nm),以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以μg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。全自动监测藻类浓度在水体中的变化 可同时测定总叶绿素、蓝藻叶绿素、DOM(溶解性有机物)、浊度,DOM和浊度值可自动修正叶绿素浓度 几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发 易于集成到iTOXcontrol在线生物综合毒性系统 数据快速存储和自动图形显示 藻类浓度超过设定值快速给出报警信号 易维护、低费用 地表水:河流、湖泊、水库、海洋
    留言咨询
  • AquaFlash手持式藻类活性荧光仪 AquaFlash是一款轻便、经济的手持藻类活性荧光仪,是实验室外实现藻类叶绿素浓度及光合效率快速测定的理想工具。AquaFlashTM提供快速准确的测定藻体内总叶绿素浓度及活体藻类光合效率的检测。样品经过高强度光照达到饱和,藻类快速获得最大荧光状态。这个经优化的固定的饱和脉冲,使仪器不到15秒即可获得准确结果。只需插入一个含有样品的10x10mm方形玻璃或石英比色皿到仪器,点READ,结果稍后显示在屏幕上,并自动存储到仪器内。AquaFlashTM可存储1000个测量数据。 产品特性……………………………………………………………………. ● 快速: -测量时间不超过15秒。 总叶绿素浓度(ug/l) 光合量子效率(导出) -快速校准检测● 便携:小巧轻便,可放入衣袋中,收藏时也很方便。防水设计。内置数据记录功能。 附件………………………………………………………... ● 固体标定块:用于快速校准、稳定性和性能检测。● 比色皿:10*10mm方形玻璃比色皿。 ● AquaFlashTM校准溶液:仪器校准使用。 产品规格…………………………………..……………………... 最小检测限: - 叶绿素:0.30 μg/L测量范围:0-100ug/l线性: R20.99尺寸:4.45 cm x 8.9 cm x 18.4 cm 重量:0.4 kg温度范围:5-40°C预热时间:5秒钟检测器:光电二极管,测定范围300-1000nm内置数据采集器:1000个数据电源:4个AAA电池每个AAA电池测定量:1000次数据输出:ASCII外壳:符合IP67标准,防尘防水
    留言咨询
  • 多通道藻类光合仪 400-860-5168转6247
    YZQ-201E多通道藻类光合仪 主要特色是三通道同步监测三个不同藻种,或者同一藻种三个不同处理;也可以是物理指标温度和光实验设计,诸如可以是相同温度,不同光质,还可以是不同温度,同一光质对比测量均可实现,也可以是恒温恒光环境下可连续监测藻类、根系、微生物、叶绿体等样本的微动态氧的变化。温度精度可达±0.1℃;光谱选用了红光660NM和蓝光450NM均为叶绿素吸收光谱以及525NM绿光三种光谱单独调控和组合调控。当温度、光,我们都能控制与监测了,那么我们最重要的保障是搭载最新的荧光氧传感器(光学测量原理)测量微动态氧变化,自带搅拌功能使得测量更加均一稳定。功能与特点荧光氧电极(光学原理)的优势在于反应速度快,稳定性好,重复性好;对比极谱(CLARK)氧电极(电化学原理),不需要每次测量前要标定,不需要更换溶氧膜,不需要更换电解液,不需要打磨电极,不需要活化复新电极。恒定温度、不同光质、不同光强下样本光合速率的变化测量。不同温度梯度下的同一样本光合速率的变化测量自带搅拌使得测量数据更稳定。自带控制软件可进行实时控制。三通道同步监测三个不同藻种,或者同一藻种三个不同处理。应用(1)藻类光合生理生态的研究(2)微生物、细菌、花粉等呼吸速率的研究(3)叶绿体等高等植物光合速率的研究
    留言咨询
  • 便携式藻类分析仪 400-860-5168转4695
    便携式藻类分析仪(AlgaeTorch)是款能够对蓝绿藻浓度及叶绿素a总量进行定量分析的检测设备,该设备具有轻便、易携带、分析快速、操作方便、测量准确度高等特点。不需要任何样品准备过程,只需打开设备电源开关并将设备浸入水中,20秒后即可得到检测结果。该设备适合野外作业,选配相关装置可深入水下 100米进行藻类检测。详细介绍便携式藻类分析仪(AlgaeTorch)是款能够对蓝绿藻浓度及叶绿素a总量进行定量分析的检测设备,该设备具有轻便、易携带、分析快速、操作方便、测量准确度高等特点。不需要任何样品准备过程,只需打开设备电源开关并将设备浸入水中,20秒后即可得到检测结果。该设备适合野外作业,选配相关装置可深入水下 100米进行藻类检测。便携式藻类分析仪检测原理:基于藻类细胞中的自然荧光特性,依据藻类的特征 光谱及其强度,对藻类进行定量分析。 技术参数:测量参数总的叶绿素a/总藻密度 蓝绿藻浓度/密度测量范围0-500μg chl-a/l测量时间小于20秒分辨率0.1 ng chl-a/l精 度0.015ng chl-a/l(总藻)检出限0.1 |jg chl-a/l(单一藻)重 量1.3kg测量光源470nm 525nm 610nm尺 寸500*60mm(H*∮)电 源110/230V 50/60HZ 12V DC样本温度0-35°C浊度补偿0-200FTU保护等级IP68深度范围Algae Torch 10 10mAlgae Torch 100 100m数据接口USB内存容量2000组数据软 件bbe++ Windows 版选 配伸缩杆、肩袋、10m绳缆、 探头性能附件应用场合:&bull 蓝绿藻评估&bull 科研与教学&bull 毒性报警&bull 水库管理&bull 湖沼学工作&bull 水华监测产品主要特点&bull 分析快速(整个检测过程小于20秒)&bull 高灵敏度&bull 操作简便 内置充电电池&bull 配备GPS传输模块&bull 重量轻、易携带 无需样品制备&bull 自动浊度补偿&bull 操作显示传输单元一体化软件特点&bull 图像的方式显示浓度数据 图像的方式显示时间数据&bull 以ASCII文档形式输出数据将GPS坐标导出到谷歌 Earth&bull 数据以excel或文本形式输出&bull 对每个测量进行备注
    留言咨询
  • 荷兰microLAN ALGcontrol在线藻类分析仪 一、应用领域地表水、河流、湖泊、水库、海洋 二、技术特性1、全自动监测藻类浓度在水体中的变化。2、可同时测定总叶绿素、蓝藻叶绿素、DOM(溶解性有机物)、浊度,DOM和浊度值可自动修正叶绿素浓度。3、几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发。4、易于集成到iTOXcontrol在线生物综合毒性系统。5、数据快速存储和自动图形显示。6、藻类浓度超过设定值快速给出报警信号。7、易维护、低费用。 三、测量原理ALGcontrol采用特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。同藻体中含有等量的同种色素,被激发出的荧光是一样(都被激发出680nm的荧光)。但同一种藻类收到不同波长单位强度的光照射时,发出的荧光强度不同,并且不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。另外,DOM和浊度会干扰藻类的测定,因此仪器还分别测定365nm和710nm的激发荧光对DOM和浊度进行补偿,以提高藻类测定的准确性。仪器采用7种不同波长的光(365,450,525,570,590,615,710nm),以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以ulg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。 四、技术参数 波长365,450,525,570,590,615,710nm测量藻类的种类能测多种藻类,可根据用户的要求调整所测量藻类的种类对DOM(溶解有机物)和浊度进行补偿分别测定365nm和710nm的激发荧光测量精度0.2ug/L补偿水样浊度补偿叶绿素测量范围(蓝藻和绿藻)0-200ug/L chl.-a浊度测量范围0-200NTU透光率0-100%水样温度0-30℃电源24VDC防护等级IP54(IP65可选)尺寸(高*宽*深)450*450*260mm箱体材质铝样品压力0 bar(最大0.05bar)样品温度10-35℃样品流速2-10L/h(无悬浮物)环境温度15-30℃操作系统内置Linux功耗45W通讯集成Linux电脑窗口。触摸屏,用户图形界面。直接通过局域网组网。标准接口:CAN-Bus,LAN,Modem和RS232或RS485协议:Modbus TCP和Modbus串口或其他要求;Profibus转换器;2*4-20mA输出可选设置Modem卡槽可选UMTS、ISDN或模拟。第2路样品和额外清洗装置。传感器:pH,DO,浊度,ORP。输入:4-20mA,2*数字输入,泄露监测传感器。PC软件(SQL数据库)(荷兰microLAN ALGcontrol在线藻类分析仪 )
    留言咨询
  • 荷兰microLAN ALGcontrol在线藻类分析仪 一、应用领域地表水、河流、湖泊、水库、海洋 二、技术特性1、全自动监测藻类浓度在水体中的变化。2、可同时测定总叶绿素、蓝藻叶绿素、DOM(溶解性有机物)、浊度,DOM和浊度值可自动修正叶绿素浓度。3、几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发。4、易于集成到iTOXcontrol在线生物综合毒性系统。5、数据快速存储和自动图形显示。6、藻类浓度超过设定值快速给出报警信号。7、易维护、低费用。 三、测量原理ALGcontrol采用特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。同藻体中含有等量的同种色素,被激发出的荧光是一样(都被激发出680nm的荧光)。但同一种藻类收到不同波长单位强度的光照射时,发出的荧光强度不同,并且不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。另外,DOM和浊度会干扰藻类的测定,因此仪器还分别测定365nm和710nm的激发荧光对DOM和浊度进行补偿,以提高藻类测定的准确性。仪器采用7种不同波长的光(365,450,525,570,590,615,710nm),以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以ulg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。 四、技术参数 波长365,450,525,570,590,615,710nm测量藻类的种类能测多种藻类,可根据用户的要求调整所测量藻类的种类对DOM(溶解有机物)和浊度进行补偿分别测定365nm和710nm的激发荧光测量精度0.2ug/L补偿水样浊度补偿叶绿素测量范围(蓝藻和绿藻)0-200ug/L chl.-a浊度测量范围0-200NTU透光率0-100%水样温度0-30℃电源24VDC防护等级IP54(IP65可选)尺寸(高*宽*深)450*450*260mm箱体材质铝样品压力0 bar(最大0.05bar)样品温度10-35℃样品流速2-10L/h(无悬浮物)环境温度15-30℃操作系统内置Linux功耗45W通讯集成Linux电脑窗口。触摸屏,用户图形界面。直接通过局域网组网。标准接口:CAN-Bus,LAN,Modem和RS232或RS485协议:Modbus TCP和Modbus串口或其他要求;Profibus转换器;2*4-20mA输出可选设置Modem卡槽可选UMTS、ISDN或模拟。第2路样品和额外清洗装置。传感器:pH,DO,浊度,ORP。输入:4-20mA,2*数字输入,泄露监测传感器。PC软件(SQL数据库) 荷兰microLAN ALGcontrol在线藻类分析仪
    留言咨询
  • S100是迅数的藻类智能鉴定计数仪,专为基层监测站和供水企业而设计。系统采用了最新增容的藻类形态数据库,结合多层次辅助智能搜索功能,可以帮助藻类知识不够丰富的实验人员快速鉴别藻类种属。除了流程化藻类计数以外,系统还具备三维景深拓展、超视野图像拼接、生物量分析、胶被群体和链状体分析等多种高级功能。全新扩容的藻类数据库、多模式查询S100藻类智能鉴定计数仪建立了11个门(蓝藻门、绿藻门、硅藻门、裸藻门、黄藻门、褐藻门、甲藻门、隐藻门、金藻门、红藻门、轮藻门)、862属、8093个种的藻类形态数据库。所有藻种的显微照片、手绘图和文字描述,都经过藻类专家的校验,力求全面、准确地反映藻类的形态特征。分设海洋藻、淡水藻数据库(海洋藻270属,2818种;淡水藻622属,5275种),并允许用户对藻类库进行扩容。用户可用多种方式进行藻种搜索和查询,如形态学搜索、分类学查询和常见藻查询等。 图形智能搜索,让经验欠缺者也能快速鉴定藻类形态学搜索是根据光学显微镜下能看清的特征,如细胞形态、大小、突起或棘刺、鞭毛、表面纹路、细胞的多少和排列等,进行快速图形搜索,把形态相似的藻类汇总,分类排列。通过数据库中的藻类显微照片、手绘图和文字叙述进行快速比对,无需工具书即能鉴定到属,形态特征典型的藻能鉴定到种。 按门类智能搜索,精确快速搜索鉴定首先选择门类,系统即自动显示该门类所包含的各类生物特征。根据所搜索细胞与某个生物特征的相似性,选择该生物特征,系统即自动搜索出与该生物特征相似的所有藻细胞。通过观察对比,判断未知藻细胞所属种属。 多细胞分析(胶被群体、链状体)针对用户渴望准确分析微囊藻、直链藻的子细胞数量,“迅数”研究了专门的算法,为类似的胶被群体和链状体藻类研究,提供了方便、快速的分析工具。 显微测量、生物量分析为满足用户对藻类微观形态的研究,“迅数”提供了专门的显微分析工具。透明数字标尺可在不同物镜倍率下实现显微测量;生物量分析模块可根据显微测量数据、藻类几何模型,快速计算当前藻种的生物量。 仪器主要功能与技术指标一、显微数字成像科研级彩色CCD相机,大视场显微图像动态观察、静态捕获手动、自动双模式控制拍摄多层三维聚焦:扩展高倍物镜景深,显现不同液层细胞超视野拼接:适合丝状、链状藻类的观察分析二、藻类智能鉴定1. 藻类专家数据库藻类类群:蓝藻、绿藻、硅藻、裸藻、黄藻、褐藻、甲藻、隠藻、金藻、红藻、轮藻共11个门、862属、7470个 种的藻类,其中海洋藻2695种,270属;淡水藻5275种,622属。主数据库:藻类形态文字介绍、手绘图、彩色显微照片用户数据库:允许用户完善、补充藻类图库和文字。2. 智能查询名称查询:根据中文名、拉丁名查询分类学查询:根据藻细胞所在门、属、种,进行查询关键词查询:根据藻细胞的文字描述中的特征词进行查询常见藻查询:可分别查询水华、赤潮、有毒藻、海洋藻、淡水藻三、藻类计数与分析1. 混合藻流程式计数浮游藻分类标记:采用不同颜色、不同大小的色圈标记各种微藻浮游藻分类计数:对各视野画面的藻类,按类点击、自动累积计数胶被群体分析:对胶被包围的多细胞群体,自动解析换算子细胞数链状体分析:对链状多细胞群体,自动解析换算,估算出链状细胞数藻类总数统计:对样本各种藻类的总数进行自动累计优势种自动排序、按门排序、优势群落组成百分比分析藻密度自动换算,自动计算生物量2. 藻类测量、生物量分析标尺测量:具有透明、不透明2种标尺,可用鼠标拖动标尺,对藻细胞快速测量任意测量:鼠标点击划线测量藻细胞生物量分析:依据藻类形态数学模型,测量、计算生物量四、数据管理、报表打印标注:可在已拍摄的藻细胞图片上,进行任意的文字、尺寸标注数据库:自动保存每批显微照片、统计标识和统计数据报告编辑、打印:提供报告编写模板、文本输入、打印预览数据导出:藻类统计数据、图片导出到EXCEL五、仪器规格与配置科学级彩色CCD(2580×1944)Algacount藻类智能鉴定计数软件品牌商务液晶电脑 用户自配:显微镜和摄像接口
    留言咨询
  • ALGcontrol在线藻类分析仪 荷兰microLAN 一、应用领域地表水、河流、湖泊、水库、海洋 二、技术特性1、全自动监测藻类浓度在水体中的变化。2、可同时测定总叶绿素、蓝藻叶绿素、DOM(溶解性有机物)、浊度,DOM和浊度值可自动修正叶绿素浓度。3、几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发。4、易于集成到iTOXcontrol在线生物综合毒性系统。5、数据快速存储和自动图形显示。6、藻类浓度超过设定值快速给出报警信号。7、易维护、低费用。 三、测量原理ALGcontrol采用特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。同藻体中含有等量的同种色素,被激发出的荧光是一样(都被激发出680nm的荧光)。但同一种藻类收到不同波长单位强度的光照射时,发出的荧光强度不同,并且不同藻类受到相同波长单位强度的光照射时,发出的荧光强度也不同,因此可通过藻类的荧光激发光谱对藻进行分类测定。另外,DOM和浊度会干扰藻类的测定,因此仪器还分别测定365nm和710nm的激发荧光对DOM和浊度进行补偿,以提高藻类测定的准确性。仪器采用7种不同波长的光(365,450,525,570,590,615,710nm),以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以ulg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。 四、技术参数 波长365,450,525,570,590,615,710nm测量藻类的种类能测多种藻类,可根据用户的要求调整所测量藻类的种类对DOM(溶解有机物)和浊度进行补偿分别测定365nm和710nm的激发荧光测量精度0.2ug/L补偿水样浊度补偿叶绿素测量范围(蓝藻和绿藻)0-200ug/L chl.-a浊度测量范围0-200NTU透光率0-100%水样温度0-30℃电源24VDC防护等级IP54(IP65可选)尺寸(高*宽*深)450*450*260mm箱体材质铝样品压力0 bar(最大0.05bar)样品温度10-35℃样品流速2-10L/h(无悬浮物)环境温度15-30℃操作系统内置Linux功耗45W通讯集成Linux电脑窗口。触摸屏,用户图形界面。直接通过局域网组网。标准接口:CAN-Bus,LAN,Modem和RS232或RS485协议:Modbus TCP和Modbus串口或其他要求;Profibus转换器;2*4-20mA输出可选设置Modem卡槽可选UMTS、ISDN或模拟。第2路样品和额外清洗装置。传感器:pH,DO,浊度,ORP。输入:4-20mA,2*数字输入,泄露监测传感器。PC软件(SQL数据库)
    留言咨询
  • 产品概述EXPEC 8100 流式藻类分析仪(实验室版)是基于流式荧光光谱和流式影像术相结合的浮游植物(藻类)高精密检测仪器,可提供丰富的荧光、图像等多维参数信息。EXPEC 8100 通过流体聚焦技术实现藻类细胞处于流体中心平面进样分析,结合深度神经网络AI智能图像识别技术,实现藻类自动、高效、精准的定性和定量。EXPEC 8100可广泛应用于河流、湖泊、海洋等水体藻类调查、监控、预警。 性能优势适用范围广 适用于大范围藻类尺寸(1-1000μm)和藻密度(102-1011cells/L)样品检测需求。检测准确度高 定性到属,定量以藻细胞计数,可获取藻类荧光光谱和显微图像等多维信息,结合藻类数据库使仪器优异性能充分发挥,此外人工辅助修正功能进一步提升仪器检测准确性。检测高效 一般单个样品的检测时间不超过10min,也可根据需求设置检测停止条件,藻细胞检测个数或检测时间等。前处理服务 综合考虑实际样品复杂性,针对不同藻类样品,开发相应前处理方法及技术。软件智能便捷全中文界面符合使用习惯,具有开机自检,分析过程向导式操作,支持藻类检测视频展示,支持数据多种筛选、统计、展示方式,支持藻类数据库升级更新。仪器维护方便具有自动维护功能,自动进行仪器周期性自检,系统维护等操作,维护操作简单,配备专业运维团队可快速响应仪器维护需求及上门服务。 应用领域应急监测,环境监测,公共安全,科学研究,水产养殖等
    留言咨询
  • 便携式底栖藻类分析仪(Bentho Torch)是一款能够测量底栖藻类浓度的检测设备,该设备具有轻便,易携带,分析快速,操作方便,测量准确度高等特点,能够对不同基地,例如石头和沉积物上的藻类进行定性定量分析。该设备适合野外作业,使用时无需预先准备样本,只需打开设备电源开关并将设备探测面平放于被测面上,20秒后即可得到检测结果。 产品特点:分析快速,整个检测过程小于20秒;操作简便;无需样品制备;配备GPS传输模块;高灵敏度;重量轻,易携带;自动校正基底;内置充电电池。 检测原理:基于藻类细胞中的自然荧光特性,依据藻类的特征 光谱及其强度,对藻类进行定性、定量分析。 应用场合:恢复和重建项目;环境监测;湖沼研究;科研与教学。 软件:图像的方式显示浓度数据、图像的方式显示时间数据、 检索和管理以文本文档形式、将GPS坐标导出到Google Earth
    留言咨询
  • 新Algacount S200是迅数的升级版藻类智能鉴定计数仪,专为大中型企业、科研和监测机构而设计。新S200采用了大幅度增容的藻类形态数据库和迅数最新开发的核心技术——生物相似性高精度智能搜索,实现了藻种的快速辅助鉴定。同时还配备景深拓展拼接、生物量分析、单细胞微藻自动计数等多种高级藻类分析功能。生物相似性高精度智能搜索生物相似性高精度智能搜索是迅数新一代藻类智能鉴定的核心技术,通过“形态相似性”与“生物相似性”的有效结合,准确提取并融合藻种的生物特征,并使用支持向量机的分类器进行训练,极大地提高了藻类搜索精度,使得快速藻类鉴定成为可能。精细、直观的藻类数据库、多模式查询 显微镜下的藻类复杂多样:同一藻类的观察图像会不同,如针杆藻,可以单细胞存在,也可以每个细胞的一端相连成放射状群体,从壳面看针形,而从带面看是长方形… … 不同门类的藻类鉴别要点完全不同,甲藻观察的重点是纵沟、横沟、板片,硅藻观察的重点是壳面的花纹… … S200藻类智能鉴定计数仪参考了《中国淡水藻类》、《中国海藻志》和水生生物学主流教材以及大量的权威藻类学文献,听取了藻类生物学家和藻类环境监测专家的建议,依据中国藻类系统分类学的主流学派,对原数据库藻种的类别和描述进行校验补充,增添了大量精美的图片。用户还可用多种方式进行藻种搜索和查询,如生物相似性高精度智能搜索、形态学搜索、分类学查询和常见藻查询等。 单细胞微藻自动计数为了促进新能源、新食品原料微藻的研究和生产工艺控制,“迅数”开发了“卵形细胞辅助计数”和“复杂细胞辅助计数”两种图像分割算法,可以快速实现微藻细胞浓度测定。 多细胞分析(胶被群体、链状体)针对用户渴望准确分析微囊藻、直链藻的子细胞数量,“迅数”研究了专门的算法,为类似的胶被群体和链状体藻类研究,提供了方便、快速的分析工具。 显微测量、生物量分析为满足用户对藻类微观形态的研究,“迅数”提供了专门的显微分析工具。透明数字标尺可在不同物镜倍率下实现显微测量;生物量分析模块可根据显微测量数据、藻类几何模型,快速计算当前藻种的生物量。 主要功能与技术指标一、显微数字成像 1)科研级彩色CCD相机,大视场显微图像动态观察、静态捕获 2)手动、自动双模式控制拍摄 3)多维景深融合:扩展高倍物镜景深,显现不同液层细胞 4)超视野拼接:适合丝状、链状藻类的观察分析二、藻类智能鉴定1. 藻类专家数据库 1)主数据库:藻类形态文字介绍、手绘图、彩色显微照片 2)用户数据库:允许用户完善、补充藻类图库和文字。2. 智能查询 1)名称查询:根据中文名、拉丁名查询 2)分类学查询:根据藻细胞所在门、属、种,进行查询 3)关键词查询:根据藻细胞的文字描述中的特征词进行查询 4)常见藻查询:可分别查询水华、赤潮、有毒藻、海洋藻、淡水藻3. 生物相似性高精度智能搜索 1)生物特征信息包含:藻细胞的颜色、形态、纹理特征 2)智能搜索:将特征信息融合为藻细胞图像的特征向量,使用支持向量机的分类器进行训练,实现对藻细胞图像的分类鉴 别搜索。4. 形态学搜索 1)一级形态:单细胞、多细胞群体、不分枝丝状体、分枝丝状体、膜状体、管状体、链状体、网状体 2)二级形态:细胞形态、细胞结构、群体形态、母细胞壁、子细胞排列与数量、藻丝结构与分枝等三、藻类计数与分析1. 混合藻流程式计数 1)浮游藻分类标记:采用不同颜色、不同大小的色圈标记各种微藻 2)浮游藻分类计数:对各视野画面的藻类,按类点击、自动累积计数 3)胶被群体分析:对胶被包围的多细胞群体,自动解析换算子细胞数 4)链状体分析:对链状多细胞群体,自动解析换算,估算出链状细胞数 5)藻类总数统计:对样本各种藻类的总数进行自动累计 6)优势种自动排序、按门排序、优势群落组成百分比分析 7)藻密度自动换算,自动计算生物量2. 单细胞微藻自动计数 1)卵形细胞辅助计数:对轮廓清晰的单细胞微藻,动态调节、分割计数 2)复杂细胞辅助计数:对背景清晰、形态复杂的单细胞微藻分割计数3. 藻类测量、生物量分析 1)标尺测量:具有透明、不透明2种标尺,可用鼠标拖动标尺,对藻细胞快速测量 2)任意测量:鼠标点击划线测量藻细胞 3)生物量分析:依据藻类形态数学模型,测量、计算生物量四、数据管理、报表打印 1)标注:可在已拍摄的藻细胞图片上,进行任意的文字、尺寸标注 2)数据库:自动保存每批显微照片、统计标识和统计数据 3)报告编辑、打印:提供报告编写模板、文本输入、打印预览 4)数据导出:藻类统计数据、图片导出到EXCEL五、仪器规格与配置 1)科学级彩色CCD(2580×1944) 2)Algacount藻类智能鉴定计数软件 3)品牌商务液晶电脑 4)用户自配:显微镜和摄像接口
    留言咨询
  • 仪器简介:特纳 叶绿素a/藻类分析荧光探头 C7即可单独使用也可与多参数平台集成到一起进行使用,具有高精度、低价格和体积小等特点,使得它在海洋、淡水及染料示踪等方面具有广泛的应用价值。尽管体积小巧,但它的灵敏度及动态监测范围并未受到影响。它可避免浊度的干扰,保证了在多种环境条件下都具有很好的监测效果。不同种类的Cyclops-7荧光计可用于在线监测,叶绿素a、若丹明WT、荧光素、原油(苯及苯的同系物)、精炼油,CDOM、藻蓝蛋白和藻红蛋白等多种物质。 Cyclops-7需要一个外置电源,可对外接的显示记录仪进行0~5V的标准输出。三种设置功能提供了较宽的测量范围,对于叶绿素为0.03~500 μg/L,对蓝绿藻为150~2万个细胞/mL,对若丹明WT为0.04~1000 ppb。技术参数: 线性:0.99R2应用最小检出限线性范围活体叶绿素0.025 μg/L0-500 μg/L蓝绿藻150 cells/m0-150,000 cells/mLCDOM0.15 ppb(硫酸奎宁)0.5 ppb(焦油脑四磺酸钠)0-1250 ppb(硫酸奎宁)0-5000 ppb(焦油脑四磺酸钠)水中原油0.2 ppb(焦油脑四磺酸钠)0-2700 ppb(焦油脑四磺酸钠)水中精炼油2 ppb(1,5-萘二磺酸二钠盐)0-10,000 ppb(1,5-萘二磺酸二钠盐)荧光增白剂0.6 ppb(硫酸奎宁)0-15,000 ppb(硫酸奎宁)荧光素染剂0.01 ppb0-500 ppb若丹明染剂0.01 ppb0-1000 ppb硫酸奎宁染剂0.01 ppb0-650 ppb浊度0.05 NTU0-3000 NTU物理参数长×宽14.48 x 2.23 cm 重量160g 工作环境温度范围环境温度 0-5-℃水温-2—50℃深度600米信号输出0-5VDC工作电压3-15VDC功率< 300mW主要特点:Cyclops-7荧光仪特点:体积高度集成可作为传感器方便的安装到多参数装置上比传统的荧光仪耗能较低; 300 mW实时模拟信号输出优越的性价比
    留言咨询
  • 藻类高通量光合作用测量系统具备叶绿素荧光成像和光合放氧测量的功能,通过测定微藻的叶绿素荧光参数和气体交换参数,评价其光化学转化效率和光合速率,全面评估微藻光合作用物质和能量的转化。系统具备快速、高通量的特点,可同时对96个样品进行测量。系统广泛用于藻类光合生理研究、藻类突变体筛选、藻类遗传改良、藻类养殖、污水处理、生物燃料和生物肥料的制造等研究和应用领域。 功能特点l 高通量:近百个样品同时测量l 全面评价光合作用:藻类叶绿素荧光参数和光合速率均可测定l 非侵入性和非破坏性测量l 系统简单易用l 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间 技术参数1. 测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数以及光合速率、呼吸速率2. 可同时对近百个藻类样品进行测量3. 叶绿素荧光成像单元具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑,包括Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线LC。4. 叶绿素荧光数据分析模式:具备在低信噪比的情况下使用的“信号平均再计算”模式,以过滤掉噪音带来的误差,适用于低浓度的藻类样品。5. 叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单6. 叶绿素荧光成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000)7. 氧气检测技术:光纤氧传感器技术。8. 测量呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。9. 氧气测量主机:单个重670 g,162 x 102 x 32 mm10. 氧气主机内置温度传感器:0-50°C,分辨率0.012°C,精度±0.5°C11. 氧气主机内置压强传感器:300-1100mbar,分辨率0.11mbar,精度±6mbar12. 氧气最大采样频率:单通道激活时可达10-20次每秒13. 氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L14. 氧气测量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L15. 测量通道数:96 应用案例1. Perin等人采用藻类高通量光合作用测量系统初步筛选微拟球藻(Nannochloropsis gaditana)的高光效突变体。研究小组使用化学引变剂乙基甲烷磺酸盐(EMS)诱导突变和插入突变两种方式生成突变体库,使用叶绿素荧光成像技术检测其光合活性的可能变化,使用的叶绿素荧光参数包括最小荧光F0、最大光化学效率Fv/Fm、有效光化学效率ΦPSII、光系统调节能力NPQ(Perin et al., 2015)。 2. 不列颠哥伦比亚大学生物多样性研究中心使用了藻类高通量光合作用测量系统评估了全球变暖对斜生栅藻(Scenedesmus obliquus)光合速率和呼吸速率的影响,发现两者均对测试温度表现出一定的可塑性。不同选择温度(12℃、18℃)的栅藻光合速率无差异;而高温选择(18℃)的栅藻相对低温选择(12℃)的栅藻,具有更高的呼吸速率(Tseng et al., 2019)。 参考文献 1. Claudi, R., Alei, E., Battistuzzi, M., Cocola, L., Erculiani, M.S., Pozzer, A.C., Salasnich, B., Simionato, D., Squicciarini, V., Poletto, L., La Rocca, N., 2021. Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life 11(1): 102. Dann, M., Ortiz, E.M., Thomas, M., Guljamow, A., Lehmann, M., Schaefer, H., Leister, D., 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat. Plants 7, 681–695. 3. Gavel, A., Mar&scaron álek, B., 2004. A novel approach for phytotoxicity assessment by CCD fluorescence imaging. Environmental Toxicology 19, 429–432. 4. Herdean, A., Hall, C., Hughes, D.J., Kuzhiumparambil, U., Diocaretz, B.C., Ralph, P.J., 2023. Temperature mapping of non-photochemical quenching in Chlorella vulgaris. Photosynth Res 155, 191–202. 5. Macário, I.P.E., Veloso, T., Frankenbach, S., Serô dio, J., Passos, H., Sousa, C., Gonç alves, F.J.M., Ventura, S.P.M., Pereira, J.L., 2022. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front Microbiol 13, 840098. 6. Nowicka, B., 2020. Practical aspects of the measurements of non‐photochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. Physiologia Plantarum 168, 617–629. 7. Perozeni, F., Stella, G., Ballottari, M., 2018. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. IJMS 19, 155. 8. Tseng, M., Bernhardt, J.R., Chila, A.E., 2019. Species interactions mediate thermal evolution. Evolutionary Applications 12, 1463–1474. 9. Bernhardt, J.R., Sunday, J.M., O’Connor, M.I., 2017. An empirical test of the temperature dependence of carrying capacity. bioRxiv, 210690.
    留言咨询
  • ALGcontrol在线藻类分析仪用于全自动监测藻类浓度在水体中的变化,可同时测定水体中的总叶绿素、蓝藻叶绿素、绿藻、褐藻、红藻、DOM(溶解性有机物)、浊度,还可几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发。测量原理 ALGcontrol采用荧光激发原理,将特定波长的一组LED光照射藻体中的叶绿素分子,叶绿素分子将部分吸收光以特定波长的荧光形式激发出来,检测荧光强度来计算叶绿素浓度。仪器采用7种不同波长的光,以极高的频率依次照射藻类,并记录每次的信号值用于计算藻类的浓度,测量结果以ulg/l的形式显示在屏幕上,相应的DOM和浊度值也自动计算并显示。应用领域可应用于各种水体,如地表水、河流、湖泊、水库、海洋。主要特点l 几秒钟内检测含氰基的叶绿素浓度,有效预测毒性蓝藻的爆发;l 易于集成到iTOXcontrol在线生物综合毒性系统;l 数据快速存储和自动图形显示;l 藻类浓度超过设定值快速给出报警信号;l 易维护、低费用;主要参数1.波长:365,450,525,570,590,615,710 nm ;2.测量藻类的种类:能测多种藻类如蓝藻叶绿素、绿藻、褐藻、红藻等,可根据用户的要求调整所测 量藻类的种类;3.DOM(溶解有机物)和浊度进行补偿:分别测定365nm和710nm的激发荧光;4.测量精度:0.2ug/L;5.补偿:水样浊度补偿;6.叶绿素测量范围(蓝藻和绿藻):0-200ug/L chl.-a;7.浊度测量范围:0-200NTU;8.透光率:0-100 %;9.水样温度:0-30℃;10.电源:24V DC;11.防护等级:IP54(IP65可选);12.尺寸(高*宽*深):450*450*260mm;13.箱体材质:铝;14.样品压力:0 bar(最 大0.05bar);15.样品温度:10-35℃;16.样品流速:2-10L/h(无悬浮物);17.环境温度:15-30℃;18.操作系统:内置Linux;19.功耗:45W;20.通讯:集成Linux电脑窗口;触摸屏,用户图形界面;直接通过局域网组网;标准接口:CAN- Bus,LAN,Modem和RS232或RS485;协议:Modbus TCP和Modbus串口或其他要求;Profibus转换 器;*4-20mA输出;21.可选设置:Modem卡槽可选UMTS、ISDN或模拟。第2路样品和额外清洗装置。传感器:pH,DO,浊 度,ORP。输入:4-20mA,2*数字输入,泄露监测传感器。PC软件(SQL数据库)。产地与厂家:荷兰 microLAN
    留言咨询
  • FMT150藻类培养与在线监测系统——光氧细菌和藻类培养与状态在线监测的完美结合光养生物反应器是指用于培养藻类、光养细菌等的技术系统,一般由培养系统(如光、培养容器、温度控制等)和监测系统(如PH值等)组成,可分为开放式和封闭式。广泛应用于生物工程领域如食品、水产养殖、营养保健制剂、医药如抗体及抗肿瘤药物等,生态环境工程领域如水体生态修复、CO2吸收、污水处理如重金属吸收等,能源领域如微藻生物柴油等。同时,随着全球碳排放的增加,海洋藻类对全球变化的响应也逐渐成为光养生物反应器应用的重要领域。FMT150藻类培养与在线监测系统将生物反应器与监测仪器独特地结合在一起,用于淡水、海水藻类和蓝细菌(蓝藻)等的模块化精确光照培养与生理监测。FMT150可以通过控制单元(包括电脑与预装软件,软件分为基本版与高级版)中用户自定义程序动态自动改变培养条件并实时在线监测培养条件与测量参数。光强、光质、温度和通入气体的组分与流速都可以精确调控。加装恒浊和恒化模块后还可以调控培养基的pH值和浊度。FMT150可连接多达7个蠕动泵进行不同恒化与pH条件培养。培养条件可以根据用户自定义方案动态变化,既可以进行恒定条件下的培养,也可以一定的周期自动变化。控制单元可同时控制多台FMT150进行同步实验,保证不同处理实验间的一致性。仪器内置叶绿素荧光仪和光密度计等。培养藻类的生长状况由光密度计测定OD680和OD720实现实时监控,并可以通过OD值监测相对叶绿素浓度。叶绿素荧光仪实时监测Ft并可测定F0、Fm、Fm′和QY来反映培养藻类的光合生理状态。应用领域:1. 环境科学与环境工程——藻类的利用与有害控制用于水体中水华和赤潮现象的模拟、预警防治研究,水体污染治理与生态修复研究如利用藻类进行水体重金属污染及面源污染的消纳研究等,大气污染生态修复研究如利用藻类对污染排放进行吸收的研究等,及利用藻类吸收大气二氧化碳的研究等等。2. 生态学与生态工程海洋初级生产力研究,海洋碳循环,浮游植物等光养生物生理生态研究,藻类对全球变化的响应机制,生物圈模拟研究,水体生态修复研究等。3. 生物工程与生物医学工程用于藻类保健营养品的开发研究,藻类转基因抗肿瘤药物的开发研究,水产养殖藻类培养等等。4. 生物能源开发——向藻类要能源地球上的石油、煤炭等常规能源面临资源枯竭及环境污染、温室气体排放等严重问题,用玉米等粮食进行生物柴油的开发一度引起全球的粮食危机,目前国际上已将生物柴油的开发焦点转向藻类,藻类独居植物产油率榜首。FMT150已成为欧美国家用于藻类生物能源培养研究的热门设备。5.藻类基因组学与分子生物学为分子、基因实验提供可靠的预培养样品,精确模拟培养条件,研究不同环境条件下藻类表型变化。主要特点:国际首个将藻类光生物反应器技术与藻类生理监测技术(叶绿素荧光技术、光密度测量)结合起来的系统,集成了目前几乎所有主要的藻类在线培养与生理监测技术内置双调制叶绿素荧光仪,实时监测培养藻类的生理状况,测量记录荧光参数Ft,Fm,QY等内置光密度计,测量OD680和OD720,经过校准可计算生物量(藻类细胞数量)、叶绿素浓度配备气泡阻断阀和气泡加湿器,使荧光和OD值的测定更加精确可同时测量监测温度、pH值、溶解氧等多种参数精确控制温度、光质、光强、培养周期等,并可进行恒化或恒浊培养培养容器使用高强度耐热耐腐蚀材料,可进行高温灭菌光化学光强度达1500 umol photons m-2 s-1(蓝绿藻培养正常光强为90 umol photons m-2 s-1),可升级达3000 umol photons m-2 s-1,光质可根据用户需求在红光、蓝光、白光中选择单色光或双色光,扩展光源中还可以加入红外光气流速率、CO2及O2浓度可精确控制(备选)可通过专用的电脑软件实现外部控制、数据监测和保存,操作简单技术参数指标1 测量参数:1)叶绿素荧光参数:暗适应条件下F0, Fm, Fv(Fm-F0), QY(Fv/Fm) 光适应条件下Ft, Fm‘, Fv‘(Fm‘-Ft), QY(ΦPSII即量子产额)2)光密度:OD680、OD7203)环境参数:温度、光照强度、pH、溶解氧(选配)、溶解CO2(选配)2 调控环境参数:温度、光强、通气速度、通入气体组分与含量(需选配GMS高精度气体混合系统)、恒化(恒定pH)培养与恒浊(恒定OD)培养(需选配相应模块),所有参数都可以单独同步控制。3 容积:400 ml/1000 ml/3000ml可选4 温度精确控制范围:400 ml/1000 ml标准培养容器15 - 55℃,3000ml标准培养容器18 - 55℃, 400 ml增强培养容器5 - 75℃,1000 ml/3000 ml增强培养容器10 - 75℃(实际控温效果与环境温度有关)5 控温系统:2个珀耳帖元件(200W,400W)6 双显示:主机控制显示和外部控制单元实时显示7 LED光源:1)标准配制:红光、蓝光或白光、红光双色光源,可选白光、蓝光双色光源或白、蓝、红单色光源2)光强:1500 umol (photons).m-2.s-1 PAR(蓝光750/红光750;白光750/红光750;可选白光1500,蓝光1500,红光1500,白光750/蓝光750)可升级至3000 umol (photons).m-2.s-1 PAR(蓝光1500/红光1500;白光1500/红光1500;白光或蓝光单色3000)8 外部扩展光源(备选,用于不同有机体培养或者高光强胁迫):单色光、单色光+红外光、双色光9 光密度测量:通过两个LED (720nm,680 nm)实时测量OD10 检测器:PIN光敏二极管、665 nm-750nm滤波器11 传感器:pH/温度传感器、溶解氧传感器(备选)、溶解CO2传感器(备选)12 GMS高精度气体混合系统(备选):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备13 选配Oxzala 差分式O2/CO2通量监测系统,在线双通道监测进气口和出气口O2和CO2:1) 高精度差分式氧气分析仪,双燃料电池技术,双通道差分测量,测量范围0-100%,精确度0.1%,分辨率0.0001%;温度补偿、气压补偿,气压分辨率0.0001kPa,显示屏同时显示通道1O2浓度、通道2O2浓度、通道3ΔO2、通道4气压2) 双通道CO2分析仪,单光束双波长红外技术,测量范围0-1000ppm,可选配0-2000ppm,精确度优于1.5%,差分测量可达0.3-0.5ppm,自动温度补偿、自定义压力及相对湿度补偿,分辨率1ppm,双通道数据采集显示器,LCD背光显示屏,可显示双通道CO2浓度及变化曲线14 恒浊培养模块(可选):包含一个蠕动泵pp600和内置支持控制软件,通过检测光密度(OD680或OD720),蠕动泵自动补充培养基实现恒浊培养15 恒化培养模块(可选):包含2个蠕动泵pp600和内置支持控制软件,通过检测pH,2个蠕动泵分别自动补充酸液或碱液实现恒化培养16 pH稳定/恒浊模块(可选):包含1个带气体阀的蠕动泵pp600和内置支持控制软件,可以进行恒浊培养,也可以通过调节通入培养基的CO2气流流速来实现pH稳定调控(两个功能不可同时实现)。CO2气源需用户自备17 额外蠕动泵(可选):最多可同时控制8个蠕动泵18 其他备选部件:磁力搅拌器(用于无氧状态培养)、气体分析系统(测定CO2)、PWM泵(用于控制气体或液体流速,可以为培养液通气,也可用于无氧状态下代替磁力搅拌混匀藻液)19 控制单元:包括专用电脑、软件及硬件绑定的许可证,对一到多台反应器进行同步控制和数据采集,所有测量数据都可以实时图形化显示20 软件功能:基础版高级版l 可同时控制2台FMT150主机l 在线软件升级l 附件(如pH电极)校准l 修改实验培养程序l 电脑重启后恢复实验l 记录传感器原始数据l 记录用户/系统实验事件l 导出实验数据到Excell 实验记录过滤l 用户及权限管理l 支持OD调控(恒浊)程序l 支持pH调控(恒化)程序l 支持外部扩展光源调控程序l 支持PWM泵或磁力搅拌程序l Ft/QY测量l 可同时控制数量不限的FMT150主机l 包含基础版所有功能l Email通知l 允许发送低级设备命令l 支持修改程序脚本l 可在程序内设置单独的测量周期l 导入以前的实验l 预订实验计划l 监测并通知附件(如pH电极)值域l 用户自定义实验图数据系列l 实验图数据回归分析l 支持气体分析系统l 支持气体混合系统l 控制额外的蠕动泵21 控光模式:光质和光强均可通过软件按用户编制的程序自行动态变化,可模拟自然日照周期、云遮挡造成的光强光质变化等光节律变化22 控温模式:温度可通过软件按用户编制的程序自行动态变化,可模拟自然温度日变化、温度周期性骤升或骤降等23 Bios:可升级固件24 数据传输:RS-232串口接口或USB接口25 远程控制:可通过网络实现远程控制与数据下载(需配备固定IP)26 材料:防火耐热玻璃、飞机专用杜拉铝合金、不锈钢、硅化垫圈27 尺寸:400ml,42 cm(H)×35 cm(W)×31 cm(D),重量:15.5kg;1000ml,42 cm(H)×35 cm(W)×31 cm(D),重量:17.5kg;3000ml,50 cm(H)×35 cm(W)×31 cm(D),重量:28kg28 供电电压:90-240V29 可根据用户需求定制25升等各种大型光养生物反应器应用案例:产地:欧洲参考文献:1. Trivedi J, et al. 2022. Enhanced lipid production in Scenedesmus obliquus via nitrogen starvation in a two-stage cultivation process andevaluation for biodiesel production. Fuel 316: 123418.2. Zaki A, et al. 2022. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Advances 12(4): 2497-2510.3. Vasile NS, et al. 2021. Computational analysis of dynamic light exposure of unicellular algal cells in a flat-panel photobioreactor to support light-induced CO2 bioprocess development. Frontiers in microbiology 12: 639482.4. Rabouille S, et al. 2021. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Frontiers in Microbiology 12: 620.5. Polerecky L, et al. 2021. Temporal Patterns and Intra-and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Frontiers in Microbiology 12: 620915.6. Lang I, et al. 2021. Plasticity of the Red Alga Dixoniella grisea for the Production of Additives for Lubricants. Plants 10(9): 1836.7. Kedem I, et al. 2021. Juggling Lightning: How Chlorella ohadii handles extreme energy inputs without damage. Photosynthesis Research 6: 1-16. 8. Norsker NH, et al. 2021. Developing microalgal oil production for an outdoor photobioreactor. Journal of Applied Phycology. doi: 10.1007/S10811-021-02374-7.9. Klein BC, et al. 2021. Effect of light, CO2 and nitrate concentration on Chlorella vulgaris growth and composition in a flat-plate photobioreactor. Brazilian Journal of Chemical Engineering 38(2): 251–263. 10. Amer M, et al. 2020. Low Carbon Strategies for Sustainable Bio-alkane Gas Production and Renewable Energy. Energy & Environmental Science 13(6): 1818-1831.11. Kanygin A, et al. 2020. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H2 in vivo. Energy & Environmental Science 13: 2903-2914.12. Treves H, et al. 2020. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants 6(8): 1031-1043..13. Klassen V, et al. 2020. Wastewater-borne microalga Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production applying low-N cultivation strategy. Bioresource Technology 315: 123825.14. Canonico M, et al. 2020. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Frontiers in Plant Science 11:586543.15. Baránková B, et al. 2020. Light absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells. Algal Research 49: 2211-9264.16. Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): Evidence from transcriptomics and biochemical data. BMC plant biology 20(1): 424-424.17. Trivedi J, et al. 2020. Evaluating Cell Disruption Strategies for Aqueous Lipid Extraction from Oleaginous Scenedesmus Obliquus at High Solid Loadings. European Journal of Lipid Science and Technology 122(4): 1900328.18. Sukaová K, et al. 2020. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiologica 65: 901–908.19. Pattanaika B, et al. 2020. Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803. Metabolic Engineering Communications 10: e00125.
    留言咨询
  • AG 130-ECO藻类生长室 400-860-5168转1895
    AG 130-ECO藻类生长室AlgaeTron AG 130-ECO是一个立柜式振荡生长室,它可以精确设置培养皿和锥形瓶内藻类和蓝细菌的生长条件。仪器自带振荡器和一个大的可以清晰显示设定参数和实际值的显示屏。程序可对多个参数进行时间设置,光强,光质,温度,和震荡强度。AG 130-ECO结构紧凑,立地面积小,可以大大节省宝贵的实验室空间,尤其适用于较小规模培养应用。它带有一个具备额外底部支架的照明空间,并集成了一个可摆放35 x 50 ml三角瓶或者8 x 500 ml三角瓶的振荡器。应用领域:精确藻类或细菌培养环境因子胁迫研究同质化培养筛选品种转基因藻类性状研究藻类对全球气候变化的响应及其机制仪器特点:程序独立控制的LED照明:- 用户自定义照明调整模式- 1 % 到100 % 范围内光照强度精确控制- 可以秒到小时的跨度设置参数 - 白光+远红光LED(标准配置)光强:高达500 µ mol(photon)/m2.s的暖白光;高达1,000 µ mol(photon)/m2.s的冷白光温度控制:程序控制温度上升或下降范围为15 到 50 oC(最大照明情况下)直觉编程:允许对温度,光照,振荡速度和相对湿度(可选)进行设置搅拌方式:平台回转振荡器,最大转速40-400 RPM额外的高度可调的支架:增加托盘和样品的存放位置可选功能温控升级: 温控范围+10 to 55 oC (最大照明情况下)-可选光质可定制,例如,RGB光源或红蓝光源或其它辅助的气体混合系统GMS150,用于向培养室内通纯空气或混合气编程控制相对湿度(可选)集成叶绿素荧光测量(可选)仪器外观高质量的结构材料提供最优的耐用性和可靠性立地面积小节约空间外部尺寸:100 x 55 x 62 cm (H x W x D)内部尺寸:69 x 42 x 40 cm (H x W x D)内部体积:124L含台式回转振荡器振荡器结构材料强度高,耐腐蚀最优化的空间利用尺寸:39 x 32 x 9 cm底盘:37 x 30 cm (可用面积)重量:9 kg装载能力:3 kg (35个50ml锥形瓶,或23个100ml锥形瓶,或12个250 ml 锥形瓶,或8个500ml锥形瓶)振荡速度:40 - 400 RPM技术参数:温控范围:+15 º C to +50 º C (最大照明)+7 º C to +50 º C (无照明)+10 º C to +55 º C (最大照明) &ndash 可选,温控升级LED光源:25 x 35 cm最大照明:500 µ mol(photon)/m2.s 暖白光1,000 µ mol(photon)/m2.s 冷白光外部尺寸:100 x 55 x 62 cm (H x W x D)内部容积:124 L重量:55 kg / 70 kg制冷剂:R134a压缩机:220 - 240 V ~ 50 Hz 160 W 0,70 A振荡速率:40-400 RPM振荡器重:9 kg振荡器载重:高达3 kg振荡器尺寸:39 x 32 x 9 cm (W x D x H)振荡器供电:115/ 230 V +/-10% ~ 50/60 Hz输入功耗:500 W质保:一年有限质保
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制