当前位置: 仪器信息网 > 行业主题 > >

中子低散射辐照器

仪器信息网中子低散射辐照器专题为您提供2024年最新中子低散射辐照器价格报价、厂家品牌的相关信息, 包括中子低散射辐照器参数、型号等,不管是国产,还是进口品牌的中子低散射辐照器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中子低散射辐照器相关的耗材配件、试剂标物,还有中子低散射辐照器相关的最新资讯、资料,以及中子低散射辐照器相关的解决方案。

中子低散射辐照器相关的资讯

  • 又成功一台!散裂中子源大气中子辐照谱仪出束
    作者:倪思洁 来源:中国科学报记者从中科院高能物理研究所获悉,4月2日15时20分,中国散裂中子源(CSNS)大气中子辐照谱仪成功出束。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。谱仪成功出束,标志着谱仪设备研制与安装成功。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,也是CSNS继多物理谱仪后完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV-GeV)的高通量中子束流。相关负责人介绍,为确保大气中子辐照谱仪多项指标的先进功能,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。大气中子辐照谱仪将为新型半导体器件、大规模集成电路、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等方面提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生、及高性能计算等高新技术开发与行业标准制定,提供了一个先进的、功能强大的大气中子测试与科研平台。据悉,CSNS总共可建设22台谱仪,包括目前已经开放运行的通用粉末衍射仪、小角中子散射仪、多功能反射仪、多物理谱仪,以及正在建设和规划建设的若干合作谱仪和二期谱仪等。去年1月,CSNS的首台合作谱仪——多物理谱仪研制与安装成功。
  • 中国散裂中子源大气中子辐照谱仪通过验收
    作者:倪思洁 来源:中国科学报6月6日,中国散裂中子源的大气中子辐照谱仪通过验收。验收专家认为,基于中国散裂中子源,利用已规划和建设的靶站大气中子孔道,建设了大气中子辐照谱仪试验平台,高质量完成了各设备的设计、研制、安装、调试与谱仪联合调试,完成了预定任务,达到了项目建设指标;与世界同类设施相比,本项目建成的谱仪中子性能更接近大气中子真实环境的能谱,具有中子通量高、通量调节范围宽、束斑尺寸大且调节灵活等特点;项目组在宽能区脉冲中子辐射场测量、强辐照环境下中子束调控、高能中子屏蔽、大气中子辐照效应测试平台等技术上实现了突破,对国内相关工作的开展具有较好的参考价值。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子第五研究所共同建设的国内首台大气中子地面模拟加速测试平台。中国散裂中子源从2011年开始规划大气中子辐照谱仪并建设靶站内大气中子专用孔道,在广东省科技厅的资助下,大气中子辐照谱仪于2018年开始建设,于今年4月2日成功出束,并开展束流谱仪联合调试、中子束流参数测量以及辐照效应验证实验。据了解,大气中子辐照谱仪将为新型半导体器件、大规模集成电路、高可靠电子设备、新型功能材料、生物辐照效应、核数据测量等提供大气中子试验环境,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗电子及高性能计算等领域的高可靠电子信息系统研发与产品制造,提供一个先进的、功能强大的大气中子测试与科研平台。
  • 散裂中子源大气中子辐照谱仪研制成功
    11日,记者从中科院高能物理研究所获悉,中国散裂中子源大气中子辐照谱仪近日成功出束,标志着该谱仪设备研制与安装成功。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。  据了解,大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,由广东省科技厅支持建设,也是继多物理谱仪之后,中国散裂中子源完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV~GeV)的高通量中子束流。  为确保大气中子辐照谱仪性能指标的先进性,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。  大气中子辐照谱仪将为新型半导体器件、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生及高性能计算等领域的高新技术开发与行业标准制定,提供一个先进的、功能强大的大气中子测试与科研平台。
  • 又成功一台!散裂中子源大气中子辐照谱仪出束
    从中科院高能物理研究所获悉,4月2日15时20分,中国散裂中子源(CSNS)大气中子辐照谱仪成功出束。束流性能测试表明,已测工况的中子束尺寸与分布、中子能谱、通量等重要参数与预期相符。谱仪成功出束,标志着谱仪设备研制与安装成功。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子五所共同建设的国内唯一的大气中子地面模拟加速测试平台,也是CSNS继多物理谱仪后完成建设的第二台合作谱仪,可提供与大气中子能谱相匹配、能量范围覆盖毫电子伏特至吉电子伏特(meV-GeV)的高通量中子束流。相关负责人介绍,为确保大气中子辐照谱仪多项指标的先进功能,大气中子辐照谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与工业和信息化部电子五所相关部门通力合作,克服众多重大技术挑战,克服谱仪建设期间多次疫情影响,保证了谱仪设计、研制、安装与调试的顺利进行。大气中子辐照谱仪将为新型半导体器件、大规模集成电路、关键电子设备、新型功能材料、生物辐照效应、核数据与测量等方面提供大气中子加速辐照试验环境,填补我国在该领域的空白,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗卫生、及高性能计算等高新技术开发与行业标准制定,提供了一个先进的、功能强大的大气中子测试与科研平台。
  • 中国散裂中子源微小角中子散射谱仪通过验收
    2023年7月12日至13日,广东省科技厅在中国散裂中子源园区组织召开了“微小角中子散射谱仪”验收会,程正迪院士担任验收组组长。验收组专家来自华南理工大学、中国科学院长春应用化学所、中国科学院上海高研院、中国原子能科学研究院、香港城市大学等单位。 验收组一致认为:微小角中子散射谱仪具有散射矢量范围宽、实验模式多样、准直长度切换灵活、本底低等优势,在多狭缝光阑精确准直、滚筒高精度定位、GEM探测器等技术上实现了突破。该谱仪是世界首台基于散裂中子源的微小角中子散射谱仪,可广泛服务于生物医药、软物质、合金、陶瓷、磁性及纳米材料等相关领域的研究,具有广阔的应用前景。验收组一致同意该项目通过验收。 微小角中子散射谱仪由广东省科技厅资助,2019年11月开始建设,于2023年1月4日成功出束,经过调试、测试与中子散射实验验证,全面达到了项目验收指标。微小角中子散射谱仪将应用于关系国计民生的重大前沿科学问题攻关,为粤港澳大湾区和我国的相关产业技术升级提供先进的研究支撑平台。
  • CSNS微小角中子散射谱仪成功出束
    2023年1月4日下午,中国散裂中子源(CSNS)微小角中子散射谱仪成功出束,开始带束调试。微小角中子散射谱仪由广东省科技厅资助,是国际首台飞行时间多狭缝微小角中子散射谱仪,兼具常规小角、极化小角和多狭缝微小角模式,配备液体、高温、流变、停-留、磁场、小角/广角X射线等样品环境和实验条件,可同时测量0.3-1000纳米的多尺度范围,获取样品的中子衬度分布、绝对质量、基本形状以及散射体之间相互作用等信息。微小角中子散射谱仪是CSNS第四台出束的合作谱仪,2019年11月开始建设,时逢疫情,微小角中子散射谱仪项目组、中子科学部相关专业组、高能所东莞研究部相关部门团结奉献,协力创新,克服谱仪建设期间疫情的多重影响,攻克激光辅助多狭缝位置调节、陶瓷基体高位置分辨GEM探测器等首创关键技术,保证了谱仪设计、研制、安装与调试的顺利实施。首次出束测试获得的小角模式样品处中子飞行时间谱、微小角模式VSANS探测器处中子强度分布等结果表明谱仪光路与设计相符,标志着谱仪多狭缝技术方案有效实现,机械设备研制与安装成功。微小角中子散射谱仪将应用于关系国计民生的重大前沿科学问题攻关,例如:生命科学领域信使疫苗结构和作用机理、化学领域高分子基特种纤维加工成型关键技术、材料科学领域量子材料结构和性能关系、能源科学领域电池隔膜形貌调控等。微小角中子散射谱仪也将与CSNS已运行的小角散射谱仪互补,广泛应用于生物、医药、化学、材料、环境、物理等多学科领域研究,为粤港澳大湾区和我国的相关产业技术升级提供先进的研究平台支撑。
  • 高能非弹性中子散射谱仪在东莞揭牌
    作者:朱汉斌 张玮 来源:中国科学报11月12日,由中国科学院高能物理研究所(以下简称高能所)与中山大学共建的高能非弹性中子散射谱仪(以下简称高能非弹谱仪)在中国散裂中子源园区揭牌。这是中国散裂中子源首台非弹性散射类型谱仪,也是国内首台中高能非弹性中子散射谱仪,填补了我国百meV以上中高能非弹性中子散射的空白。记者获悉,高能非弹谱仪是中国散裂中子源建设的八台合作谱仪之一。自2019年9月开始,建设团队攻克了一系列关键技术,克服了疫情等重重困难,最终于今年1月12日成功产出第一束中子,标志着谱仪设备研制与安装的成功,开始进入调试阶段。非弹性中子散射谱仪既可获得散射中子的空间分布信息,同时也可获取散射中子的能量变化,可以在动量与能量空间测量物质微观结构的动力学行为,是研究材料元激发(如晶格、自旋动力学)最直接的工具。中国散裂中子源根据元激发的能量尺度和能量分辨的需求,规划了三台直接几何非弹性中子散射谱仪。“此次揭牌标志着双方合作取得又一代表性成果。”中国科学院院士、高能所所长王贻芳在致辞时表示,高能所和中山大学有悠久的合作历史和良好的合作基础,高能所在粤的三个重大设施的建设都有中山大学的贡献,双方于2017年底签署了《战略合作协议》,高能非弹谱仪的建设是协议重点内容之一。中国科学院院士、中山大学校长高松致辞时表示,中山大学和高能所将以高能非弹谱仪建设合作为契机,在科学研究、人才培养等方面继续深入合作,共同为粤港澳大湾区建设和国家科学技术发展做出更大贡献。同时期待高能非弹谱仪开放运行后,坚持面向世界科技前沿和国家战略需求,主动服务粤港澳大湾区,积极推动我国中子科学与技术发展。“高能非弹谱仪将为高温超导物理机制、量子磁性作用机制、热电材料输运性质、电池中离子扩散机制、以及生物材料活性等前沿基础研究工作提供晶格热振动、自旋波、晶体场等关键微观结构动力学信息,从而为相关材料的性能提高与新材料开发提供重要的基础支撑。”高能非弹谱仪首席科学家、中国散裂中子源学术委员会主任童欣表示。据介绍,本次建成的高能非弹谱仪的入射中子能量为10-1500 meV,最佳能量分辨率3%,提供1.5-800K高低温环境和7T磁场环境,利用费米斩波器和带宽斩波器协同工作,可实现多波长模式和单波长模式的快速切换。
  • 我国首个中子散射科研平台在绵阳投运
    图 中子散射科研平台核心、2012年通过国家验收的我国科学实验用反应堆&ldquo 中国绵阳研究堆&rdquo 首次揭开面纱。   科技日报绵阳11月5日电 记者5日从中国工程物理研究院(简称中物院)获悉,我国首个中子散射科研平台日前已在该院核物理与化学研究所完成建设并投入运行。利用我国科学实验用反应堆&ldquo 中国绵阳研究堆&rdquo 提供稳定中子束的该平台,目前已&ldquo 搭载&rdquo 国内首个中子应力分析谱仪等9台达到国际水平的中子散射和中子成像装置。这也标志着我国在探索科学的&ldquo 微观世界&rdquo 方面又多了一个先进的技术手段。   中子散射科研平台就像&ldquo 超级显微镜&rdquo ,是材料科学、生命科学、环境科学和能源科学等领域研究物质结构、动力学性质的重要实验研究装置,是国家科技综合实力的体现。与正在建设的&ldquo 中国散裂中子源&rdquo 不同,中物院中子散射科研平台依托的是反应堆中子源,由2012年6月通过国家验收的&ldquo 中国绵阳研究堆&rdquo 提供稳定冷中子、热中子束进行中子散射研究。   中物院中子技术团队于2002年从&ldquo 零&rdquo 起步、克服重重困难启动中子散射和中子成像等平台建设攻关,先后完成了国际先进的中子应力分析平台,国内首个高压原位中子衍射分析平台、极化中子反射谱仪、冷中子非弹性散射装置、热中子、冷中子三维成像装置等建设,总体性能指标达到国际先进水平。中物院核物理与化学研究所中子散射技术与应用研究室主任孙光爱介绍说,在高压、高低温中子衍射谱仪建设中,团队自主研制了&ldquo 原位中子衍射对顶砧高压装置&rdquo ,突破了高压中子衍射实验样品精确定位关键技术,可实现压力从常压到大于10GPa,解决了用于原位子中子衍射的大腔体静高压加载和系统集成技术难题。
  • 【喜讯】热烈祝贺中国散裂中子源微小角中子散射谱仪通过验收
    热烈祝贺中国散裂中子源微小角中子散射谱仪通过验收NEWS 近日,经过来自华南理工大学、中国科学院长春应用化学所、中国科学院上海高研院、中国原子能科学研究院、香港城市大学等单位的验收组专家的一致同意,世界首台基于散裂中子源的微小角中子散射谱仪项目顺利通过了验收。图片来源于https://ihep.cas.cn/xwdt2022/gnxw/hotnews/2023/202307/t20230717_6810784.html重要意义 微小角中子散射谱仪将应用于关系国计民生的重大前沿科学问题攻关,为粤港澳大湾区和我国的相关产业技术升级提供先进的研究支撑平台。解决方案 中国散裂中子源的科研工作者在能量分辨中子成像谱仪上开发了小角中子散射和小角X射线散射(SAXS)的联用方法学。 其中,由Xenocs公司提供的Nano-inXider作为重要基础硬件,根据科研工作者对联用SAXS技术参数和相关结构的要求,Xenocs公司的专业SAXS工程师在标准版Nano-inXider做出了以下改造:针对面向线站轨道及中子真空管道的物理结构,对Nano-inXider进行了整体框架及底部轨道的重新设计及改造;为了更好地使用联用方法学对样品进行测试,Xenocs团队同时对样品腔及样品台进行了联用改造,考虑到固体样品、粉末样品及液体样品等不同形态下的测试需求,满足了实时原位同步采集中子散射及X射线散射结果的要求;另外为了最大提升Nano-inXider的测试效率,对其进行了联用模式和离线模式的不同适配。在联用模式下,通过电子学器件的联动,使其可与中子谱仪实现安全联锁联控,并通过软件的控制实现联用模式测试结果的一键触发及同步采集。硬件部分- 整体框架- 底部轨道- 样品台- 样品腔软件、电子学部分- 安全联锁- 测试模块 Nano-inXider因其简单易用的特点,以及智能化、集成化的设计使其适用于各种实验室环境。Xenocs致力于为客户提供全方位、专业化、实时且周到的服务,满足您多样化的需求。
  • 我国首台高能非弹性中子散射谱仪建成
    图为高能直接几何非弹性中子散射飞行时间谱仪。(中山大学供图)中山大学与散裂中子源科学中心合作建设的高能直接几何非弹性中子散射飞行时间谱仪(以下简称“高能非弹谱仪”)于11月12日揭牌,预计明年正式投入使用。这是我国首台非弹性中子散射飞行时间谱仪,填补了我国高能非弹性中子散射领域的空白,主要性能指标达到国际先进水平。中子散射谱仪是一种能深入研究材料内部结构和运动等性质的测量仪器。用特定速度的中子轰击样品,能够在了解材料微观结构和关联强度的基础上反映其特性,为物理、化学、材料、力学和交叉学科研究提供有力支撑。中山大学物理学院中子科学与技术中心主任、教授王猛介绍,高能非弹谱仪正式投入使用后,团队可以利用中子谱仪观察镍氧化物的磁激发谱,获取磁性、自旋动力学等数据,助力高温超导的机理研究。2021年和2022年,高能非弹谱仪共获批专项博士研究生指标15名,面向谱仪的学科发展设置,采取双导师制,由中山大学物理学院的教授和散裂中子源的导师共同指导。高能非弹谱仪将为中子谱仪研究领域培养青年人才提供平台。中国科学院院士、中山大学校长高松表示,谱仪开放运行后,将坚持面向世界科技前沿和国家战略需求,主动服务粤港澳大湾区,积极推动我国中子科学与技术发展。
  • 高分子表征技术专题——小角中子散射技术及其在大分子结构表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角中子散射技术及其在大分子结构表征中的应用The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules作者:左太森,马长利,韩泽华,李雨晴,李明涛,程贺作者机构:中国科学院高能物理研究所 中国散裂中子源 2.散裂中子源科学中心,东莞,523803 中国科学院大学,北京,100049作者简介:程贺,男,1978年生. 中国科学院高能物理研究所东莞研究部研究员. 1996年考取中国科学技术大学,2006年在吴奇教授课题组获得博士学位. 随后赴中国科学院化学研究所韩志超研究员课题组工作,建设我国第一台SANS(2012年国家验收). 2014年加入中国散裂中子源,中国科学院高能物理研究所东莞研究部,现正在主持建设世界上第二台基于散裂中子源的VSANS. 致力于使用和发展散射方法,研究软物质多相多尺度结构和动态学行为.摘要小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在软物质大分子结构表征方面发挥着独特的作用. 随着中国散裂中子源(CSNS)在2018年正式对外接受机时申请,国内SANS用户群逐年扩大. 本文首先简要介绍小角中子散射技术的基本原理、谱仪结构和实验技巧,然后紧扣小角谱仪的特点和方法学方面的最新进展,介绍小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子等研究领域的结构表征方面的典型应用. 小角中子散射和其他表征手段,如小角X射线散射(SAXS)相互紧密配合和补充,成为连接大分子内部多相多尺度的微观结构和宏观性的桥梁.AbstractSmall angle neutron scattering (SANS) is a powerful tool to characterize multi-scale structures in macromolecules. Deep penetration and H/D isotope labeling make it a unique scattering method. To make it more familiar to the users, basic principle of SANS, instrumentation and experimental skills were firstly demonstrated. Then typical applications in the fields of polymer solution, polymer blends, nanocomposites, crystallization, gels, porous materials and biomacromolecules were introduced. As for the data analysis of complex systems, such as biomacromolecules, in addition to the traditional data analysis methods, advanced methods such as the ab initial analysis and Reverse Monte-Carlo (RMC) simulations provide more detailed information. Combine with small angle X-ray scattering (SAXS), static light scattering (SLS), electron microscope (EM)et al., SANS enables us to solve the structure and interaction of more complicated systems such as interaction of biomacromolecues and solvation of polymers in mixed solutions. As the China Spallation Neutron Source (CSNS) was officially opened to the users around the world in 2018 and SANS instruments equipped with various sample environments are being built, more opportunities are opened to the SANS communities domestically and abroad.关键词小角中子散射  大分子  多相多尺度  结构表征  中国散裂中子源KeywordsSmall angle neutron scattering  Macromolecules  Multi-scale and multi-phase  Structure characterization  China spallation neutron source 小角散射,通常包括小角光散射(SLS)、小角X射线散射(SAXS)和小角中子散射(SANS),都是表征物质纳米到微米的多尺度特征结构的有力手段[1,2]. 它们的基本原理[3]和数据处理分析方法[4]十分类似,三者可以互补和互相验证. 3种散射方法有两点主要不同之处:一是光源与样品的作用机理不同,所以使用不同散射方法时样品的衬度不同;二是波长不同,所以研究的特征尺度范围不同. 首先,衬度直接决定了散射实验的可行性. 光散射衬度来自样品的微分折光指数;X射线与核外电子相互作用,衬度来自于电子云密度,所以原子序数高的元素衬度高;对于中子,由于中子直接作用于原子核,与核的性质有关而与原子序数无关,反而同一元素的各种同位素的中子衬度有很大不同. 小角中子散射的衬度等于样品与分散剂的相干散射长度密度之差,这里的相干散射长度密度(ρcoh,单位:Å-2)是散射体中所有的元素或同位素的相干散射长度(bcoh, 单位:Fermi,1 Fermi = 10-15 m)的加权平均与散射体的摩尔体积之比;同位素的散射截面相当于原子核与中子相互作用被散射的概率( σσ,单位barn, 1 barn = 10-24 cm 2),正比于散射长度的平方. 中子与原子核相互作用,除了被散射外,还会有一定的概率被吸收. 常见天然元素和同位素对于1.8 Å中子的相干散射长度、相干和非相干散射截面以及吸收截面的数据如表1所示[5]. 设计SANS实验的第一步需要估算样品的中子衬度和透光率,前者决定了SANS实验的可行性,后者决定了数据分析的可行性. 根据表1,已知大分子体系的元素、同位素组成和密度,可以计算中子衬度,溶液体系衬度为溶质和溶剂的中子相干散射长度密度差,二元共混体系衬度为二元组分大分子的中子相干散射长度密度差. 衬度低的样品无法进行SANS实验(比如一般的非晶碳氢化合物样品,化学组成一般为CH2,根据表1,bc+2bH≈0bc+2bH≈0,在不进行氘代的情况下无法进行SANS实验);而样品对中子的透过率可以通过式(1)所示的朗伯-比尔定律计算.其中:d为样品厚度.nini为样品中第ii种元素的原子比例,pij、σij(λ)σij(λ)和ρijρij分别为第i种元素的第j种同位素的丰度、全截面和数密度. 其中全截面包含相干、非相干和吸收截面,同位素截面相关数据可以参考ENDF数据库[6]. 传统的散射基本理论是建立在单次散射的基础上的,如果样品太厚,透光率较低,可能在实验中引入多次散射,造成数据无法用常规分析方法解析,所以一般的SANS实验要求 Ttrans85%,如果是溶液样品,尽量采用氘代溶剂.Table 1Coherent scattering length and coherent, incoherent and adsorption scattering cross section of common elements in macromolecules and commonly used isotopes in SANS experiments[5].一些吸收截面非常大的天然元素或者同位素通常用于中子吸收材料,如表1中的B-10,在实验样品中要尽量避免这类对热中子具有强吸收的同位素,除B-10外,还有Cd-113、Gd-155、Gd-157、Sm-149、Eu-151等同位素.对于结构表征的各类技术,能够覆盖的尺寸范围很大程度上决定了这一技术的应用范围. 用于光散射的激光波长在可见光范围,所以小角激光光散射观察尺度在微米的数量级,而静态激光散射的观察尺度在20~300 nm;由于X射线和中子的波长在埃的数量级,所以常规的SAXS和SANS可以测量1~300 nm的特征尺度.表2总结了3种小角散射方法的一些基本特征,可以看到每种方法都有其特点和不足. 小角光散射波长较长,需要样品透明并且容易受到灰尘的影响;小角X射线散射的优势是亮度非常高,特别是同步辐射X射线小角,缺点是穿透能力一般,容易被吸收(当然共振散射赋予了它另外的特点);小角中子散射的特点是穿透能力强,可以加载各类样品环境,同时还能够识别同位素,可以得到样品的绝对散射强度,缺点是中子源亮度太低. 所以实际使用中,用户需要依据自身样品的特点和需要观察的特征尺度范围,选择合适的散射手段,互相验证和补充.Table 2Comparison between SLS, SAXS and SANS.随着小角中子散射方法的应用越来越广泛,谱仪和方法学上出现了2种趋势,一方面通过中子束的聚焦或准直向更小散射矢量方向扩展1~2个量级,研究特征尺度更大的体系,典型的就是发展微小角(VSANS)[7]甚至超小角(USANS)中子散射谱仪[8];另一方面利用波长更短的中子的散射将散射矢量扩展到50 Å-1以上,研究无序体系在原子尺度上的结构,即所谓的无序大分子中子全散射方法[9]. 谱仪技术发展的驱动力在于实现通过一次散射实验来表征样品从原子到分子,再到组装体,甚至相区的多相多尺度结构的梦想. 虽然这些谱仪的设计思路和物理结构千差万别,但是它们的基本散射原理完全相同. 下文将着重介绍SANS谱仪.1小角中子散射谱仪、基本原理、实验技术和方法小角中子散射谱仪通常分为两类,一类是基于反应堆的固定波长小角谱仪[10],国内有绵阳研究堆的狻猊谱仪和中国先进研究堆的小角中子散射谱仪;另一类是基于强流脉冲中子源的飞行时间小角谱仪[11],国内有CSNS的小角中子散射谱仪. 固定波长小角谱仪,利用速度选择器将中子单色化后进行散射实验;而飞行时间小角谱仪则采用白光中子进行散射实验,利用脉冲中子从中子源运动到探测器的飞行时间标定中子波长. 两类SANS的基本原理完全一样,准直系统通常为如图1所示的小孔几何,源光阑和样品光阑用于中子准直,1个或者多个探测器接收散射中子[7].Fig. 1(a) Schematic diagram of the SANS instrument (b) The relationship between the characteristic length scaled and the scattering vector q⇀q⃑ (Bragg's Law). 运动的中子从量子力学的观点可以看成一种物质波,其波长λ = h/(mnv)(其中h为普朗克常数,mn为中子质量,v为中子速度),入射中子的波矢量记作k⇀i,其绝对值为2π/λ,中子被样品散射后,散射波矢量记作k⇀s,如果是弹性散射,中子波长不变,其绝对值仍为2π/λ.散射前后,入射波矢量和散射波矢量的差值k⇀s−k⇀i定义为散射矢量q⇀.图1是CSNS的VSANS谱仪在小角模式下的示意简图. 根据如图 1所示的几何关系和矢量加减规则得到布拉格公式:其中θ为散射角. 如果样品的特征长度为d,根据如图1几何关系和布拉格方程,两束被样品散射的中子的波程差为2dsin(θ/2),当波程差等于波长λ的整数倍时,散射中子相干增强,即:当n取1时,由公式(4)可知,正空间的样品特征长度与散射矢量q是倒易关系,即1/q是正空间的尺子,在计划实验时,需要对样品的特征尺寸范围有一个预判. 根据香农采样定理[12]:如果谱仪q范围为0.001~0.3 Å-1,其可表征的样品特征尺寸范围为300~1 nm. 如果能将中子聚焦,或者放弃一个方向的分辨率,将最小q向低q方向推进1~2个量级,从而能够表征的样品的特征尺度将增加1~2个量级. 我们将这类谱仪称为微小角中子散射谱仪(qmin=10-4 Å -1)[7]和超小角中子散射谱仪(qmin=10-5 Å -1)[13].考察一个由N个大分子链组成的链间有相互作用的体系,假设每根链聚合度为n,并粗粒化单体作为基本的散射单元. 为了方便表示,如图2所示,考察体系中的链α和链β. 链α和链β的质心距离坐标原点分别为Rα和Rβ,链α和第i个单体距离链α的质心为Sαi,链β的第j个单体距离链β的质心为Sβj,链α和链β之间的距离为Rαβ,i,j距离原点分别为rαi和rβj. 根据散射基本原理,中子入射到单个单体后形成球面波,其散射振幅:Fig. 2Schematic draw of the polymer chain and the vectors between atoms and polymers.一条链的散射振幅:考虑大分子与周围介质的散射长度密度差为Δρ,大分子单体的体积为υ,体系总体积为V.α和β遍历体系中的每一根链,i,j遍历链的每一个单体,得到体系的宏观散射截面可表示为公式(8).公式(8)右边第2项可以近似为倒易2根链的质心相互作用的相干散射得到公式(9).根据如图2所示的几何关系,代入(9)得到:其中F(q)为形状因子的散射振幅,定义单粒子的形状因子P(q),注意,这里的i,j位于同一个散射体或者同一条链上.散射体可近似视为连续介质,P(q)可改写为:其中,Vpart为散射体的体积,ρpart(r)为散射体内部的密度空间分布.定义散射体之间的结构因子SI(q),式(11)适用于所有散射体系对于密度分布均匀的散射体,∣∣F(q)2∣∣=|F(q)|2,而这里的dΣ(q)dΩ是散射矢量为q时的绝对散射强度(单位为cm-1). 小角中子散射实验中,经过样品散射进入立体角为ΔΩ的探测器的中子计数Is(q)(单位为count/s)与q的关系为:其中T(λ)为样品透过率,d为样品厚度,定义入射中子强度I0(λ):Φ(λ)为入射中子波长分布,ε(λ)为探测器效率,A为样品光阑面积,t为数据采集时间.所以对于典型的小角散射实验,如果实验的q值范围已经覆盖了样品的多相多尺度结构,通过一次SANS实验,可以得到Δρ(衬度),n(分子量),P(q) (基本形状)和SI(q) (相互作用),但需要注意的是SANS用了一个粗粒化的模型,所能观察的最小尺度是π/qmax,一般不小于1 nm.2小角中子散射实验一个完整的小角中子散射实验过程包括(1)计划实验:根据科学目标准备合适大小和数量的样品;(2)确定实验方案,并采集小角中子散射数据;(3)对散射数据进行处理和分析.2.1样品准备和要求在样品准备阶段需要注意几个问题,第一,衬度:样品中散射体与周围介质的散射长度密度的差异是否足够. 一般而言,如果衬度Δρ≥1×10-6 Å -2就完全没有问题,否则就需要与谱仪科学家进行沟通,依据谱仪本身的信噪比进行调整. 如果衬度不够就可能需要对溶剂或者散射体进行氘代. 第二,样品的特征尺寸是否在谱仪的测量范围内,通常谱仪的测量范围在π/qmax到π/qmin内;第三,做一些前置实验,如小角X射线散射、电镜等确定合成的样品状态是否由于聚集、结晶等过程的发生而改变. 此外,还需要注意样品的使用量和样品厚度. 根据样品内散射体的尺寸和与周围介质之间的衬度,样品量从300~1500 mg不等,样品厚度根据散射强度选择,通常为1和2 mm. 对于强散射样品,如果样品太厚会产生多重散射;对于溶液样品需要注意样品的结构与浓度有关,稀、亚浓和浓溶液结构会随着样品间相互作用而改变,为区分‍P(q)和‍SI(q)对‍I(q)的影响,除硬球体系之外,一般需要在稀溶液中先确定样品P(q),这时也许需要在0.1 wt%~5 wt%之间做多个样品,从而外推到无限稀溶液的情况.2.2实验数据处理实验数据处理是通过对原始实验数据进行一系列的物理校准和校正,最终得到与实验仪器和样品厚度等无关的,体现样品本质特征的绝对散射强度(dΣ(q)dΩ,cm-1)随着散射矢量(q,Å-1)变化的信息. 一个完整的实验通常包括5组数据的采集:空样品池透过率数据Tc(λ)、空样品池散射数据Iexpcb(q)、样品加样品池透过率数据Tsc(λ)、样品加样品池散射数据Iexpscb(q)、空背底测量Ibackground(下标s表示样品,下标c表示样品池,下标b表示背底). 小角中子散射实验中,散射信号Iexpscb(q)有以下来源:样品、样品池和各种背底(如天然背底、空气散射和电子学噪声等).各种散射信号之间的关系可以用式(1)和式(2)表示,其中I0(λ)代表零散射角度的散射强度. 扣除样品池的散射和其他各种背底,最终计算得到dΣ(q)dΩ. 式(1)和式(2)只是简化和近似,真实SANS数据处理还需要考虑探测器效率、死时间和入射中子波长分布等因素[14].2.3实验数据分析SANS数据分析方法多种多样. 一般来说,可分为不依赖于模型的分析方法和依赖于模型的分析方法. 不依赖于模型的分析方法植根于数学,是数据分析的起点. 具体来说,包括吉尼尔(Guiner)、Porod、Kratky等分析方法. Guiner分析方法是样品的散射强度的自然对数对散射矢量的平方作图,即1n(I(q))对q2作图,在qRgPorod分析方法是主要用于分析散射体尺寸的局部结构信息,要求qRg1. Porod作图即是将散射强度对散射矢量作图,即1g(I(q))对lgq作图,其斜率即为散射体的Porod因子n. 高q的散射数据通常可表示为或者对于长棒形散射体,n=1;对于二维光滑散射体,n=2;如果三维散射体拥有光滑表面,n=4; 否则,n为3~4之间. 对于大分子链,Porod因子与排斥体积参数ν有关,即n=1/v,对于稀溶液中的有排斥体积高斯链n=5/3(或者1/0.588),对于稀溶液中没有排斥体积的高斯链n=2,对于完全蹋缩的大分子链n=3.n为2~3之间可能是枝状大分子或者是形成网络结构.图3为半径为R=50 nm的硬球的散射模型,可以用贝塞尔方程拟合. 对曲线低q区域(qRg≤1)进行Guinier拟合,如图3中的小插图所示,得到均方旋转半径为38.94 nm,与理论值500 × (3/5)0.5 = 38.73 nm相符. 需要注意的是在得到 Rg之后需要进行一次验证,验证拟合区间确实满足qRg≤1.Fig. 3Guinier and Porod fit of the form factor of the hard sphere with a radius of 50 nm.对高q区域(qRg1)进行Porod拟合,得到斜率为-4.0,符合光滑球体表面分形维数. 更详细的关于Guiner、Porod和Kratky作图的图文解释和示例,读者可以参考Hammouda的SANS TOOLBox的第15章[15].常用的依赖于模型的分析方法是借助已知的样品信息,以有限多个初始参数建立正空间中散射体的几何模型,并根据公式(13)计算与之对应的倒空间的数学曲线,采用最小二乘法,不断迭代输入参数,直到模型的计算散射曲线与实验曲线的偏差在可接受范围内. 常用的分析软件有Igor[16]和SASView[17]等. Svergun和McGreevy等发展了新从头算起(ab initio)和逆蒙特卡罗模拟的分析方法[18~21],可以将正空间三维结构的傅里叶变换与散射曲线进行比较.对依赖模型的分析方法,初始模型的设计至关重要. 所以在SANS实验之前,需要进行一系列的前置散射、光谱或者成像实验,估计样品的初始结构. 根据不依赖于模型的Guinier和Porod等方法对一维散射曲线的分析结果,验证初始模型的选择是否正确. 需要注意的是,拟合参数或者基本假设越少,分析结果的准确性越高. 拟合参数多的方程可以拟合大多数SANS曲线,但必须通过结合其他研究手段固定大部分的参数.3大分子相关领域典型应用小角中子散射在物理学、化学、材料、生命科学和工业界等均有大量应用. 本文主要聚焦于大分子领域,即合成高分子、生物大分子和大分子材料领域的典型应用. 为方便讨论,依据样品的特点进行分类,分为高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子. 以下就这些方面的一些经典案例和最新发现进行讨论. 由于小角中子散射应用领域众多,并且各个领域之间还会出现交叉和重叠,所以以下分类讨论并不一定严格和全面,本文只是抛砖引玉,旨在说明小角中子散射的特点和在各领域的典型应用.3.1高分子溶液体系大多数用户使用SANS研究溶液体系是为了得到溶质的多尺度形貌,所以高分子溶液体系的样品处理,实验方法,数据处理与分析具有普适性[22,23]. 大分子在溶液中的基本构象(confor-mation)的确定需要使用SANS进行证明,一般在稀溶液测定. 1974年,Cotton等使用SANS研究了线形聚苯乙烯(PS)在二硫化碳(良溶剂)和环乙烷(θ溶剂)中的构象,验证了高分子在良溶剂中是有排斥体系的高斯链,分形维数5/3,在θ溶剂中是无扰高斯链,分形维数是2[24]. 随着高分子化学的进步,科学家们合成了不同几何形状的单分散大分子. 2014年,Goossen等使用SANS研究了环形PS在氘代甲苯(良溶剂),氘代环乙烷(θ溶剂)和氘代线形PS(类θ本体)中的构象,如图4所示[25]. 环形PS在良溶剂中,Porod区间的表观分形维数1.56,小于线形PS在良溶剂中的5/3,作者解释是由于第2维利系数(A2)的影响,通过扣除A2,得到没有端基的环形PS在良溶剂中的分形维数;环形PS在θ溶剂和相同分子量的PS本体中,分形维数为2. 我们需要着重指出两点:一是对θ溶剂体系,或者高分子本体体系,图4的拟合区间在0.006~0.2 Å-1,对于低q区间,0.002 Å-1qP(q)的基本定义(公式(13))进行计算[15].Fig. 4Scattering functions and representative slopes for the overall and internal structure of ring polystyrene in good andθ solvents at different length scales. The linear polymeric matrix in the ring/linear blend is congruent with the θ‍-solvent. (Reprinted with permission from Ref.‍[25] Copyright (2015) American Chemical Society).相分离过程的研究是高分子溶液研究领域的重点之一. 大多数情形下,基于平均场理论的Ornstein-Zernike方程可以描述溶液中相分离过程的浓度涨落的变化[26,27]. Jia等使用SANS,研究了聚(N,N′-二乙基丙烯酰胺)(PDEA)在氧化三甲胺(TMAO)水溶液中的相分离发生前浓度涨落(concentration fluctuation)的变化,如图5所示[28]. 浓度涨落的强度和幅度都随温度升高而增大,随TMAO含量的增高而增大;通过外推零散射角度散射强度的倒数随着温度的倒数曲线,得到浓度涨落趋近无穷时的温度,就可以得到该共混体系的旋节线相图. 同样,这里需要注意两点:一是SANS是唯一的直接测量旋节线相图的研究手段,其他研究手段,例如浊度法,测量的都是双节线相图;二是越靠近相边界,浓度涨落的尺度越大(图5),这与温敏性高分子靠近最低共溶温度(LCST)时体积收缩[29]并不矛盾:由于图5的SANS实验的衬度来源于浓度涨落的微区,而不是单链高分子. 如果需要看到PDEA单分子链的LCST塌缩(就像使用动静态激光光散射观察PDEA极稀水溶液一样),需要使用衬度匹配技术. 典型的例子可以参考Hammouda等的实验,使用氘代和氢化聚(N-异丙基丙烯酰胺)(PNIPAM)在衬度匹配的重水/水混合溶剂中,用SANS观察PNIPAM单链的塌缩过程[30].Fig. 5SANS profiles of 4% mass fraction PDEA in TMAO-d9/D2O mixtures. (a) Temperature dependence of PDEA atcTMAO = 0.28 mol/L the arrow is used to guide the eye, indicating the increase of concentration fluctuations with temperature. (b) TMAO concentration dependence at 15 °C when TMAO concentrations are 0, 0.1, 0.28, 0.44, 0.58, 0.76, 0.90, 1.13 and 1.25 mol/L, respectively. (Reprinted with permission from Ref.[ 28] Copyright (2017) American Chemical Society).随着大分子在溶液中的浓度增加,分子之间相互作用(SI(q))逐渐变强,这时相互作用在散射曲线上将会表现为最小散射矢量附近的散射强度相对无相互作用时变小,中间q区间的散射强度相对无相互作用时变强. 如果体系中存在复杂的相互作用,如氢键相互作用、静电相互作用、憎水相互作用、π-π堆叠作用[31]等,在溶液中将形成亚稳的并且能够响应外界刺激的微相自组装结构,在污水净化、废油回收、药物输送等方面有着广泛的应用[32]. 小角中子散射是研究这类体系的非常有效的方法,既可以研究大分子或组装体在溶液中的结构(P(q))的变化[33],又可以研究组装体的结构在溶液中的相互作用(SI(q)).大分子组装结构是小角中子散射研究的一个热点. Sternhagen等合成了一系列的两亲性离子类肽嵌段共聚物,这些共聚物唯一不同的是肽链序列的离子单体的位置不同. SANS研究表明,这些肽嵌段共聚物组装成星形胶束结构,并且离子单体的位置越靠近星形胶束中心,胶束的均方旋转半径越小,并且二者呈现一定的指数关系[34]. 此项研究为利用肽键氨基酸序列调控组装胶束结构开辟了新的道路.3.2高分子共混物和复合材料通过将高分子共混、复合,石油化工工业只需要生产常见的几十种高分子材料,如聚乙烯、聚丙烯、聚酰胺等,就可以大致满足人们日常生活对高分子材料的硬度、弹性、机械强度、疲劳强度、导电性、透光性、耐热性、阻燃性、吸水性、耐酶性等多方面的需求. 这表明高分子共混物和复合材料的多相多尺度微观结构及其演化过程与宏观性能密切相关. 小角中子散射适用于实时追踪这类体系的微观结构的变化.通常非晶高分子本体或者共混物中,由于要观察的目标大分子与其周围环境的化学结构大致相同,对大部分研究手段而言衬度几乎都为0,无法看到单一高分子链或者选择性观察某一相高分子. 少部分的观察手段,包括单分子荧光或者核磁虽然有选择性地观察能力,但是前者引入了大尺寸的荧光基团,有可能影响体系的动力学和动态学行为;后者直接观察的是能量空间. 只有SANS可以通过衬度匹配具有选择性地观察单链结构的能力[35].高分子共混物在双节线相区,初级成核过程究竟是如何发生的?到现在仍然是一个非常具有挑战性的课题. Balsara课题组曾进行了深入的研究[36]. 他们使用时间分辨SANS,研究了氘代聚乙基丁烯(dPE)、聚甲基丁烯(PM)和聚(甲基乙烯-b-乙基丁烯)的三元共混物相分离初期的成核过程,如图6所示. SANS的中子束流强度低,需要较长时间(通常大于3 min,依赖于不同中子源或者SANS谱仪)才能得到满足统计误差的散射谱图. 嵌段共聚物hPM-hPE的加入是为了增强dPE/hPM的相容性,降低相分离温度并延长相分离时间,从而满足SANS采样所需时间.图6(a)表明,相分离未发生时,体系为均相,相对散射强度不随散射矢量q变化;随着相分离发生,低q散射曲线随相分离时间增长,不断向上倾斜,这说明有相分离成核的尺寸逐渐增大,零散射矢量处散射强度随之增长. 使用不依赖具体模型的Guinier方程对SANS数据进行拟合(图6(b)),可以得到零散射矢量处散射强度(In)随其均方旋转半径(Rg)变化的标度关系,分形维数1/0.54,说明初级成核也许并不是Gibbs成核过程(分形维数3),而是浓度涨落诱导过程(分形维数2).Fig. 6(a) Dependence of SANS profiles on time during the early stage of the sample with 50 vol% block copolymer. The solid lines in represent fits to the Guinier model. (b) A lg-lg plot ofRg at a given time versus In(In = I(Q=0,t)/I(Q=0,t=0)) at that time. The solid line represents the best power law fit. (Reprinted with permission from Ref.‍[36] Copyright (1996) The American Physical Society).复合大分子材料在工业界有着十分广泛的应用. Liu等利用小角中子散射和电子显微镜研究纳米二氧化硅球(20 nm左右)和橡胶复合体系,发现SiO2会形成24~97个硅球的聚集体,聚集体尺寸随着SiO2球体积分数增加线性变小,最佳的二氧化硅的体积分数在40%~50%之间[37,38].具有刺激响应的智能大分子材料,如自愈(self-healing)复合材料是目前研究的热点. Staropoli 等利用小角中子散射和流变实验研究靠氢键结合而成的瞬态枝化梳状大分子在熔融状态下的氢键形成机理[39]. 结果表明,瞬态链合结构对此类材料至关重要.3.3高分子结晶高分子结晶过程极为复杂,尽管科学家们进行了多年不间断地研究,一些基础性的问题仍有疑问. 1977年,Sadler等使用SANS研究了氘代聚乙烯经过溶液和熔融结晶生成的晶体内部的单链构象[40],在一系列假设下(氘代和氢化聚乙烯无相分离、同时结晶),证明了高分子单链在溶液中优先按照近邻折叠模型结晶;在熔融过程中,优先按照插线板模型结晶. 这个结果争议不大,已经写入了高分子物理的教科书. 而串晶(shish-kebab)中shish的生成机理则至今仍争议不休:究竟是高分子链的拉伸、缠结网络变形或者是壁滑导致了shish的产生?Kimata等的SANS研究使shish成核理论的研究向前迈出了关键的一步[41]. 实验观察结晶过程中分子链结构变化的关键难点还在于衬度:如何能够在shish的狭小范围内看到高分子链的结构. 如之前表2所示,X射线的衬度来源于电子云密度的差别,因此SAXS可以看到二维的大分子片晶结晶区与非晶区片层之间的电子云密度差别,从而得到片晶厚度,但是SAXS看不到一根结晶大分子链与其周围链段之间的任何差别;而常规的SANS均聚物氘代和氢化二元共混同样存在问题,它虽然提供了氘代分子与周围分子之间的衬度差别,但是也引入了结晶的氘代大分子与非晶的氘代大分子之间的衬度差别. 所以Kimata之前,科学家们没有设计出合适的可以在shish中提取分子链结构的实验方法. Kimata等使用了氘代短链(S),中等链(M)和长链(L)等规丙烯(iPP)与多分散非氘带iPP进行共混,在不同温度下进行剪切实验,用SANS观察散射图样的变化,如图7所示.图7(a)中S链的各向异性散射更加显著,温度升高到168 ℃时shish开始熔化,各向异性开始逐渐消失. Kimata等用166 ℃ 时shish刚刚开始取向的散射图样减去168 ℃或者180 ℃完全熔融的背景散射,如图7(b)所示,成功得到了d-iPP链在shish中的取向信息.图7证明了长链在shish中只起引发作用,但扩散较慢,不是shish的主体.Fig. 7(a) Temperature dependence of SANS profiles of deuterium labeled iPP during heating from 25 °C to 180 °C. The labeled fraction is denoted by S, M, and L for short D, medium D, and long D, respectively. (b) The change in SANS scattering intensity between 166 and 180 °‍C (left) and between 168 and 180 °‍C (right) for each of the three deuterium-labeled blends. (Reprinted with permission from Ref.[41] Copyright (2007) American Association for the Advancement of Science).3.4凝胶溶胶或者溶液中的胶体粒子或者大分子在合适条件下相互连接,形成空间网络结构,最后失去流动性,整个体系变成一种外观均匀,并保持一定形态的弹性半固体,这种弹性半固体称为凝胶. 凝胶在有机体的组成中占重要地位,人体内的肌肉、皮肤、细胞膜、血管壁,以及毛发、指甲、软骨等都可看作是凝胶. 相对于稀溶液,凝胶体系中的结构和相互作用更加复杂,小角中子散射方法,可用于研究此类体系的微观结构[42,43]、凝胶相的形成过程[44]和形成机理等[45].Endo等利用SANS研究不同浓度的间规聚丙烯(sPP)在氘代十氢萘溶剂中形成的物理凝胶的结构[46],散射曲线如图8(a)所示. 散射曲线在某一q范围的斜率表示在相应正空间尺度上散射体的分形维数. 浓度最低的sPP十氢萘溶液(2 wt%)的散射曲线低q区间分形维数1,说明在交联点之间有棒状结构,中等q值范围内分形维数4,类似光滑球形外表面. 所以假设sPP纳米晶为球形结构(用贝塞尔方程拟合),纳米晶之间存在的非晶sPP链形成的网络结构(用Ornstein-Zernike方程拟合),纳米晶球之间进行Percus-Yevick近似,就可以得到交联点形状、尺寸随sPP浓度和温度变化的定量关系(图8(b)).Fig. 8(a) SANS profiles of the nitrogen quenched gel with differentsPP concentrations (symbols) and corresponding fitting results (solid lines). The profiles are vertically shifted to avoid the overlap. (b) Schematic illustration of hierarchical structures in gel LN suggested by the SANS profiles. (Reprinted with permission from Ref.‍[46] Copyright (2019) The Royal Society of Chemistry)3.5多孔材料中子直接作用于原子核,具有很强的穿透性,可以轻松穿透较厚的多孔材料,从而在1~100 nm范围内研究其内部孔隙的孔隙率、尺寸分布、各向异性、孔的连接性和比表面积,并且可以追踪这些参数对其容纳和吸附性能的影响.Yang等利用小角中子散射研究我国四川盆地龙马溪页岩的多孔结构[47,48]. 用多分散球形孔模型和Porod方法分析中子散射数据得到的比表面积和孔隙率,都大于压汞法得到的结果,说明样品中存在盲孔. 随着样品埋藏深度的增加,盲孔数量也随之增加,并且与有机碳含量存在相关性. 这个例子需要注意样品多重散射对散射曲线的影响,通常页岩样品厚度在200 μm的情况下可以保证单次散射;具体实验中需要测量不同厚度样品散射曲线来避免多重散射.碳纤维是重要的工业材料,小角中子散射可以对碳纤维内的孔隙缺陷进行精确的表征. Jafta等利用小角中子和小角X射线对多孔碳纤维内的孔隙率和比表面积进行了精确的分析[49]. 同时还用弦长分布函数分析了体系中孔隙的空间分布,发现孔的分布相对无序. 如果多孔材料的孔隙分布比较窄,就可以用于研究液体在空间受限行为、各种气体在孔隙内的吸附和脱吸附. Melgar等利用多金属氧酸盐为水分子提供含有不同配体的孔隙,研究水分子在孔隙内的分布情况[50],研究表明,当孔隙小于1.1 nm,水分子将不能进入孔隙从而去润湿. Bahadur等利用小角中子散射研究二氧化碳在多孔碳材料内的高压吸附行为[51]. 观察到二氧化碳在微孔内随着压强的非线性吸附,微孔尺寸从约5 Å增加到7 Å. 但氩气在同样压强作用下的吸附并没有引起孔隙尺寸的变化. 说明吸附二氧化碳后,孔隙内的压强大于外界压强,推测孔内存在很强的吸附引起的溶解压.3.6生物大分子生物大分子种类丰富,多尺度结构复杂,其内部结构和作用原理的解析对解开生命的奥秘、开发新型药物等意义重大. Shi和Li对小角X射线在该领域的研究进展和一般分析方法进行了详细的阐释[52],介绍的分析方法和研究方向与本小节介绍的内容有一些类似和重叠,有兴趣的读者可以自行查阅. 中子凭借其特性和与X射线的互补在生物大分子方面的应用前景也十分广阔[53].生物大分子的小角中子散射表征难度相对较高,第一,氘代样品的制备难度大,需要利用氘水和氘带碳源培养特定的细菌,粉碎后再纯化需要的氘带样品;第二,小角中子散射是一种低空间分辨率的表征手段,对于复杂体系的散射,人们通常将小角中子散射与其他实验手段和分析方法如透射电镜、X射线晶体衍射、核磁共振以及模拟方法等结合起来对散射数据进行分析,如图9所示. David等综述了利用小角散射研究生物大分子[54]. 在生物大分子方面小角中子散射的研究内容包括但不限于:(1)肽链、核酸、蛋白质[55]、双层磷脂膜、淀粉、纤维素等生物大分子在不同环境下的结构;(2)肽链、核酸、蛋白质和双层磷脂膜等的相互作用和组合结构;(3)病毒、细胞器等.Fig. 9A scheme of an SAS experiment, structural tasks addressed and the joint use with other methods. The nominal resolution of the scattering data is indicated asd = 2 p/s. (Reprinted with permission from Ref.[56] Copyright (2007) Elsevier Ltd.).对于生物大分子这类复杂体系,在能够达成科学目标的前提下,模型设计需要尽可能地简单,将变量维持在可接受范围内. 如果散射体非常复杂,由多个具有不同结构、功能的部分组成,需要使用氘代对各个部分进行衬度匹配. 数据分析方面,第一步,对散射数据做定性或半定量的分析,例如稀溶液,可以通过Guinier作图分析散射体均方旋转半径,Porod作图分析体系拓扑结构或者分形维度;第二步,依据已知数据建立模型,分析数据. 数据分析模型通常有以下2种:第一种是依赖于散射数据的可迭代优化模型,依据模型的计算曲线和实验曲线的均方差对模型的一些变量进行迭代优化,如规则几何模型拟合、逆蒙特-卡洛(RMC)方法[21,57]、从头计算(ab initio)方法[20]等;第二种是不依赖于散射数据的独立模型(强烈依赖于所用力场),例如独立的分子动力学或者蒙特-卡洛模型,独立模型的计算SANS曲线可以与实验曲线对比,或者依据实验曲线与模型得到的可能结构进行筛选[58].限于篇幅,以下举几个有代表性的实例. 如图10为天冬氨酰-tRNA合成酶(Aspartyl-tRNA synthetase complexed)与tRNA复合物结构的小角X射线和小角中子散射联合研究图示[59]. Petoukhov和Svergun分别利用ab initial的串球模型分析复合体系的低分辨结构,如图10(A)和10(B)所示,然后利用复合物各个部分的X射线晶体学结构和刚体建模方法拟合X射线和中子散射数据,得到体系在溶液中的高分辨结构模型.Fig. 10(A) Aspartyl-tRNA synthetase complexed with tRNA. (a, b) Comparisons of the crystal structure with the ab initio bead models generated by the program MONSA. In the high resolution model, the protein and tRNA are shown as blue and magenta backbones, in the bead model corresponding phases are presented in gray and yellow, respectively. (c) Best rigid body model generated by SASREF. (d) A SASREF model with different orientations of tRNA. Right view is rotated by 90° about horizontal axis. (B) Scattering profiles from the Aspartyl-tRNA synthetase complex with tRNA. The simulated data are shown by dots, the fits obtained by the program MONSA and the program SASREF are displayed as red solid and blue dashed lines, respectively. 1 and 2 are X-ray scattering curves of the dimeric protein and the entire complex, respectively. 3-7 are neutron scattering patterns at 0, 40%, 55%, 70% and 100% D2O, respectively. The patterns are displaced in logarithmic scale for better visualization. (Reprinted with permission from Ref.[59] Copyright (2006) Springer European Biophysics Journal).同步辐射和X射线晶体学是研究生物大分子结构的利器,在得到蛋白质的晶体结构后,利用刚体建模方法,或者分子动力学模拟,结合小角X射线和小角中子散射,可以研究各类蛋白在溶液中的结构和相互作用. Shrestha等利用小角中子散射、小角X射线散和分子动力学模拟研究天然无规蛋白(intrinsically disordered protein)结构[60],发现Flory指数为0.54,介于理想链的0.5和自避行走链的0.588之间.4总结小角中子散射技术在基础、应用、产业化的各个领域中都有广泛的应用. 由于篇幅所限,本文只是首先从原理和实践两个方面对这一技术进行了简要的介绍,然后列举了小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料和生物大分子等体系结构表征方面的一些典型应用,希望能够进一步扩展我国的SANS用户群体. 如果需要更深一步了解SANS或者中子散射技术在高分子科学中的应用,可以参考一些专业书籍[12,61,62].参考文献1Borsali R,Pecora R.Soft-Mattter Characterization.Springer,2008.377-9522Cebe P,Hsiao B S,Lohse D J.Scattering from Polymers Characterization by X-rays, Neutrons, and Light.Washington DC:American Chemistry Society,2000.1-1163Roe R J.Methods of X-ray and Neutron Scattering in Polymer Science.Oxford:Oxford University Press,2000.1-804Feigin L A,Svergun D I.Structure Analysis by Small-Angle X-Ray and Neutron Scattering.New York and London:Plenum Press,1987.275-320.doi:10.1007/978-1-4757-6624-0_95Dianoux A J,Lander G.Neutron Data Booklet Second Edition (July 2003).2020-10-25.https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf6National Nuclear Data Center.Evaluated Nuclear Data File (ENDF).2020-10-25.https://www.nndc.bnl.gov/exfor/endf00.jsp.doi:10.2172/9818137Zuo T S,Cheng H,Chen Y B,Wang F W.Chinese Phys C,2016,40(7):76204.doi:10.1088/1674-1137/40/7/0762048Carpenter J M, Agamalian M.J Phys:Conference Series,2010,251:012056.doi:10.1088/1742-6596/251/1/0120569Han Z,Zuo T,Ma C,Cheng H.Instrum Sci Technol,2019,47:448-465.doi:10.1080/10739149.2019.159773310Zhang H,Cheng H,Yuan G,Han C C,Zhang L,Li T,Wang H,Liu Y T,Chen D.Nucl Instrum Meth A2014,735:490-495.doi:10.1016/j.nima.2013.09.06511Anderson K.Reactor & Spallation Neutron Sources.Oxford:Oxford School of Neutron Scattering,2013.55-7612Higgins J S,Benoît H C.Polymers and Neutron Scattering.Oxford:Clarendon Press,1994.86-9513Rehm C,Barker J,Bouwman W G,Pynn R.J Appl Crystallogr,2013,46(2):354-364.doi:10.1107/s002188981205002914Du R,Tian H L,Zuo T S,Tang M,Yan L,Zhang J R.Instrum Sci Technol,2017,45(5):541-557.doi:10.1080/10739149.2016.127822915Hammouda B.Probing Nanoscale Structures-The SANS Toolbox.Gaithersburg:National Institute of Standards and Technology Center for Neutron Research,2010.31-19116Kline S.J Appl Crystallogr,2006,39(6):895-900.doi:10.1107/s002188980603505917Butler P,Doucet M,Jackson A,King S.SasView for Small Angle Scattering Analysis (July 2020).2020-10-25.https://www.sasview.org/18Konarev P V,Svergun D I.IUCrJ,2018,5(Pt 4):402-409.doi:10.1107/s205225251800590019Petoukhov M V,Svergun D I.Acta Crystallogr D Biol Crystallogr,2015,71(Pt 5):1051-1058.doi:10.1107/s139900471500257620Volkov V,Svergun D.J Appl Crystallogr,2003,36:860-864.doi:10.1107/s002188980300026821Gereben O,Pusztai L,McGreevy R L.J Phys Condens Matter,2010,22(40):404216.doi:10.1088/0953-8984/22/40/40421622Li Z,Cheng H,Li J,Hao J,Zhang L,Hammouda B,Han C C.J Phys Chem B,2011,115(24):7887-7895.doi:10.1021/jp203777g23Hu W T,Yang H,He C,Hu H Q.Chinese J Polym Sci,2017,35(9):1156-1164.doi:10.1007/s10118-017-1969-724Cotton J P,Decker D,Benoit H,Farnoux B,Higgins J,Jannink G,Ober R,Picot C,des Cloizeaux J.Macromolecules,1974,7(6):863-872.doi:10.1021/ma60042a03325Goossen S,Bras A R,Pyckhout-Hintzen W,Wischnewski A,Richter D,Rubinstein M,Roovers J,Lutz P J,Jeong Y,Chang T,Vlassopoulos D.Macromolecules,2015,48(5):1598-1605.doi:10.1021/ma502518p26Hao J,Cheng H,Butler P,Zhang L,Han C C.J Chem Phys,2010,132(15):154902.doi:10.1063/1.338117727Hore M J A,Hammouda B,Li Y,Cheng H.Macromolecules,2013,46(19):7894-7901.doi:10.1021/ma401665h28Jia D,Muthukumar M,Cheng H,Han C C,Hammouda B.Macromolecules,2017,50(18):7291-7298.doi:10.1021/acs.macromol.7b0150229Cheng H,Wu C,Winnik M A.Macromolecules,2004,37(13):5127-5129.doi:10.1021/ma049620130Hammouda B,Jia D,Cheng H. OAJoST,2015,3:101152.doi:10.11131/2015/10115231Datta S,Kato Y,Higashiharaguchi S,Aratsu K,Isobe A,Saito T,Prabhu D D,Kitamoto Y,Hollamby M J,Smith A J,Dagleish R,Mahmoudi N,Pesce L,Perego C,Pavan G M,Yagai S.Nature,2020,583(7816):400-405.doi:10.1038/s41586-020-2445-z32Zhang H V,Polzer F,Haider M J,Tian Y,Villegas J A,Kiick K L,Pochan D J,Saven J G.Sci Adv,2016,2(9):e1600307.doi:10.1126/sciadv.160030733Wang Z,Faraone A,Yin P,Porcar L,Liu Y,Do C,Hong K,Chen W R.ACS Macro Lett,2019,8(11):1467-1473.doi:10.1021/acsmacrolett.9b0061734Sternhagen G L,Gupta S,Zhang Y,John V,Schneider G J,Zhang D.J Am Chem Soc,2018,140(11):4100-4109.doi:10.1021/jacs.8b0046135Zuo T,Ma C,Jiao G,Han Z,Xiao S,Liang H,Hong L,Bowron D,Soper A,Han C C,Cheng H.Macromolecules,2019,52(2):457-464.doi:10.1021/acs.macromol.8b0219636Balsara N P,Lin C,Hammouda B.Phys Rev Lett,1996,77(18):3847-3850.doi:10.1103/physrevlett.77.384737Liu D,Song L,Song H,Chen J,Tian Q,Chen L,Sun L,Lu A,Huang C,Sun G.Compos Sci Technol,2018,165:373-379.doi:10.1016/j.compscitech.2018.07.02438Liu D,Chen J,Song L,Lu A,Wang Y,Sun G.Polymer,2017,120:155-163.doi:10.1016/j.polymer.2017.05.06439Staropoli M,Raba A,Hövelmann C H,Krutyeva M,Allgaier J,Appavou M S,Keiderling U,Stadler F J,Pyckhout-Hintzen W,Wischnewski A,Richter D.Macromolecules,2016,49(15):5692-5703.doi:10.1021/acs.macromol.6b0097840Sadler D M,Keller A.Macromolecules,1977,10(5):1128-1140.doi:10.1021/ma60059a04541Kimata S,Sakurai T,Nozue Y,Kasahara T,Yamaguchi N,Karino T,Shibayama M,Kornfield J A.Science,2007,316(5827):1014.doi:10.1126/science.114013242Shibayama M,Li X,Sakai T.Colloid Polym Sci,2018,297:1-12.doi:10.1007/s00396-018-4423-743Gao J,Tang C,Elsawy M A,Smith A M,Miller A F,Saiani A.Biomacromolecules,2017,18(3):826-834.doi:10.1021/acs.biomac.6b0169344Srivastava S,Andreev M,Levi A E,Goldfeld D J,Mao J,Heller W T,Prabhu V M,de Pablo J J,Tirrell M V.Nat Commun,2017,8:14131.doi:10.1038/ncomms1413145Nishi K,Fujii K,Katsumoto Y,Sakai T,Shibayama M.Macromolecules,2014,47(10):3274-3281.doi:10.1021/ma500662j46Endo F,Kurokawa N,Tanimoto K,Iwase H,Maeda T,Hotta A.Soft Matter,2019,15(27):5521-5528.doi:10.1039/c9sm00582j47Yang R,He S,Hu Q,Sun M,Hu D,Yi J.Fuel,2017,197:91-99.doi:10.1016/j.fuel.2017.02.00548Sun M,Yu B,Hu Q,Zhang Y,Li B,Yang R,Melnichenko Y B,Cheng G.Int J Coal Geology,2017,171:61-68.doi:10.1016/j.coal.2016.12.00449Jafta C J,Petzold A,Risse S,Clemens D,Wallacher D,Goerigk G,Ballauff M.Carbon,2017,123:440-447.doi:10.1016/j.carbon.2017.07.04650Melgar D,Zhou Q,Chakraborty S,Porcar L,Weinstock I A,Ávalos J B,Wu B,Bo C,Yin P.J Phys Chem C,2020,124(18):10201-10208.doi:10.1021/acs.jpcc.0c0101951Bahadur J,Melnichenko Y B,He L,Contescu C I,Gallego N C,Carmichael J R.Carbon,2015,95:535-544.doi:10.1016/j.carbon.2015.08.01052Shi Ce(史册),Li Yunqi(李云琦).Acta Polymerica Sinica(高分子学报),2015, (8):871-883.doi:10.11777/j.issn1000-3304.2015.1504853Fitter J,Gutberlet T,Katsaras J.Neutron Scattering in Biology: Techniques and Applications.Berlin Heidelberg and New York:Springer,2006.doi:10.1007/3-540-29111-354Jacques D A,Trewhella J.Protein Sci,2010,19(4):642-657.doi:10.1002/pro.35155Koruza K,Lafumat B,ÁVégvári,Knecht W,Fisher S Z.Arch Biochem Biophys,2018,645:26-33.doi:10.1016/j.abb.2018.03.00856Petoukhov M V,Svergun D I.Curr Opin Struct Biol,2007,17(5):562-571.doi:10.1016/j.sbi.2007.06.00957Ma Chang-li(马长利),Cheng He(程贺),Zuo Taisen(左太森),Jiao Guisheng(焦贵省),Han Zehua(韩泽华),Qin Hong(秦虹).Chinese Journal of Chemical Physics(化学物理学报),2020,33(6s):727-732.doi:10.1063/1674-0068/cjcp200507758Jiao G,Zuo T,Ma C,Han Z,Zhang J,Chen Y,Zhao J,Cheng H,Han C C.Macromolecules,2020,53(13):5140-5146.doi:10.1021/acs.macromol.0c0078859Petoukhov M V,Svergun D I.Eur Biophys J,2006,35(7):567-576.doi:10.1007/s00249-006-0063-960Shrestha U R,Juneja P,Zhang Q,Gurumoorthy V,Borreguero J M,Urban V,Cheng X,Pingali S V,Smith J C,O’Neill H M,Petridis L.Proc Natl Acad Sci,2019,116(41):20446-20452.doi:10.1073/pnas.190725111661Han C C,Akcasu A Z.Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems.Singapore:John Wiley & Sons (Asia) Pte Ltd,2011.1-98.doi:10.1002/978047082484962Zemb T,NeutronLindner P.X-rays and Light.Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002.1-552.doi:10.1107/s0021889803001808原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20242&lang=zhDOI:10.11777/j.issn1000-3304.2020.20242《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 国内首台中子全散射谱仪已完成300多项用户实验
    8月12日,中国散裂中子源“多物理谱仪关键技术与应用”项目科技成果鉴定会在广东东莞举行。经专家鉴定,多物理谱仪填补了国内中子全散射谱仪的空白,综合性能达到同类型谱仪国际先进水平,关键指标国际领先,取得了一批国际一流研究成果。鉴定现场。张玮 摄多物理谱仪是散裂中子源科学中心、东莞理工学院和香港城市大学共同建设的国内首台中子全散射谱仪,也是在国家重大科技基础设施中国散裂中子源上建成的第一台合作谱仪。东莞市副市长黎军在致辞时表示,多物理谱仪的建设,显示了粤港科技合作的巨大潜力,要充分发挥大科学装置的引领作用,深化粤港科研合作,带动东莞乃至粤港澳大湾区科技企业的蓬勃发展。据中国科学院高能物理研究所研究员、多物理谱仪负责人殷雯介绍,多物理谱仪运行3年来,完成300多项用户实验,研究领域包含电池与能源、化学与环境、合金材料、稀土与磁性材料等,为材料科学、物理学、化学、环境等领域提供了不同有序度的结构研究平台,在服务国家重大需求、产业需求与基础研究领域取得了一批重要成果,在《自然》等期刊上发表高水平论文100余篇。来自松山湖材料实验室、大湾区大学(筹)、中国科学院物理研究所、中国科学院金属研究所、中山大学、北京大学深圳研究生院、香港中文大学、澳门大学、南方科技大学的9位专家组成的鉴定委员会,认真听取了项目完成单位的报告,审查了相关资料,考察了现场,经过认真、细致质询讨论,他们一致认为,多物理谱仪填补了国内中子全散射谱仪的空白,综合性能达到同类型谱仪国际先进水平,关键指标国际领先,同意通过科技成果鉴定。多物理谱仪关键技术指标,样品处单位功率中子通量处于国际同类型谱仪的领先水平,谱仪衍射分辨率和实空间分辨率达到国际同类型谱仪的最好水平。同时,多物理谱仪研制过程中,也产生了一系列关键技术突破,首次成功研制了国产位置灵敏型氦三管探测器,并实现工程应用,性能达到了国际先进水平,实现“从0到1”突破,为后续谱仪探测器自主化研制奠定了坚实的基础。此外,研究团队自主开发了首个用于中子衍射与对分布函数数据规约的国产软件,构建全散射数据采集与分析技术全链条,实现中子全散射数据规约软件的国产化。记者了解到,多物理谱仪是港澳地区首次参与投资建设的大型科学实验设施,支撑了包括粤港澳大湾区在内的高校、科研院所与企业的前沿研究和技术开发,具有不可替代的示范引领作用。多物理谱仪为先后成立的“中国科学院-香港地区中子散射科学技术联合实验室”和“粤港澳中子散射科学技术联合实验室”提供了关键支撑。
  • 我国中子散射技术旗帜人物、物理学家章综院士病逝,享年90岁
    p   中国科学院院士、著名物理学家、中国科学院物理研究所研究员章综,因病医治无效,于8月27日在京逝世,享年90岁。章综是我国第一代从事中子散射技术和应用研究的旗帜人物, 80年代主要从事科研管理工作,同时担任中法合作在我国建造三台中子散射谱仪的中方负责人,近几年仍在关注着我国散裂中子源的建造和有关中子散射方面的研究工作。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 412px " src=" https://img1.17img.cn/17img/images/201908/uepic/e5a67efd-7db8-4b97-99ef-a35570a2efcc.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 300" height=" 412" border=" 0" vspace=" 0" / /p p   章综是我国中子散射科学研究领域的主要奠基人之一,长期从事磁学与磁性材料和中子散射方法学等交叉前沿领域的研究,领导和推动了我国散裂中子源的建设,为我国中子科学和中子技术的发展做出了卓越的贡献,于1978年获得中国科学院重大科技成果奖和全国科学大会奖。科研之外,章综也十分关心科普,并主编了两本科普图书《我们生活在磁的世界里——物质的磁性和应用》《触摸无形的物质之网》。 /p p   1929年5月16日,章综出生在江苏宜兴。1948年7月,他从重庆南开中学毕业后,考入国立中央大学(1949年更名为南京大学)理学院物理系。4年后,章综从南京大学物理系毕业,进入中国科学院物理研究所并一直在该所工作。 /p p   入所后,章综在陆学善等的指导下做科研。 1957年左右,他用以X射线粉末衍射为主的方法对Al-Cu-Ni三元合金系的部分相图进行研究,解决了长期遗留下来的τ相晶体结构变迁问题,首次发现了单相区内晶体结构可按一定规律变化的现象,修正了“一个单相区只能有一种晶体结构”的传统观念,并于1957年将研究成果《铝-铜-镍三元合金系中τ相的晶体结构变迁》一文发表在《物理学报》和《中国科学》(英文版)上,该成果后来多次被晶体化学和物理学方面的研究者引用。 此外,他还研究了单晶和多晶体石榴石型铁氧体的软磁特性及其机理,成功研制了当时具有最高起始磁导率的多晶石榴石型铁氧体,阐明了变价铁离子间的电子扩散过程对石榴石型铁氧体射频磁谱的影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/e3a57fb9-9ff8-41e1-9553-295a340ccbba.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 1957年章综(左二)与陆学善等在工作 /p p   1959年,章综前往苏联科学院半导体研究所铁氧体、铁电体实验室进修,学习苏联在软磁铁氧体领域的先进经验。3年后,他学成归来,回到中科院物理所,进入磁学室工作并担任软磁铁氧体组组长,继续软磁铁氧体的研究,主要研究方向为软磁铁氧体材料和变价离子对镍锌铁氧体的磁导率及磁后效的影响。 /p p   70年代,章综先后完成了几项具有特殊用途的小型接收天线的任务。1978年,他担任中国科学院物理研究所负责人、副所长,并于同年晋升为研究员。两年后,章综当选为中国科学院数学物理学部学部委员,年仅51岁的他成为中科院院士。 /p p   80年代起,由于现实需要,章综的工作发生了变化,开始从科学研究转到科研管理方面。1982年,章综出任中国科学院数学物理学部副主任,两年后担任主任。这时候,章综不仅要负责中科院数学物理学部的行政工作以及其他科研管理工作,同时还是中法合作在中国建造三台中子散射谱仪的中方负责人,并担任中子散射组组长。身兼数职的章综,尽管科研管理工作十分繁忙,但他的目光始终注视着中国散裂中子科学的发展方向,时刻关注着我国散裂中子源的建造和有关中子散射的研究进展。 /p p   这一期间,作为中法合作项目的主要负责人,章综还在原子能院研制建成了中子三轴谱仪、中子四圆衍射仪和中子小角散射谱仪,填补了我国在这方面的空白。该成果获1985年中国科学院科技进步二等奖。 /p p   进入21世纪后,章综开始积极倡导并推动中国散裂中子源的立项和建设,领导物理所中子科学团队开展散裂中子源靶站和谱仪的设计研究。 2001年,他参加了香山科学会议和数理学部“散裂中子源”院士咨询会议 2004年,又参加了中国散裂中子源(CSNS)概念设计结题验收会。 也是从2004年开始,章综筹划召开了多年的散裂中子源多学科应用研讨会,亲自设计各种专题报告内容和打电话邀请相关专家学者,该会议现已发展成为我国中子散射界的全国中子散射学术年会。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 275px " src=" https://img1.17img.cn/17img/images/201908/uepic/c4fe63a7-d86a-4421-af31-391646d07ceb.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 275" border=" 0" vspace=" 0" / /p p   2011年10月20日,章综参加中国散裂中子源工程奠基仪式 /p p   2011年10月20日,章综亲自到广东东莞参加中国散裂中子源工程的奠基仪式,而这时候他已经82岁高龄了。 /p p   去年8月,我国重大科学装置中国散裂中子源工程顺利通过国家的验收,我国中子科学再添大国重器,如虎添翼,章综奋斗了40年的目标终于在生命的最后一年实现了! /p p   他一生埋首科研,几乎没有接受过采访,桃李虽不言,下自成蹊。章先生千古,我们永远铭记! /p
  • 国内首台中子全散射谱仪关键技术指标实现突破
    8月12日,中国散裂中子源“多物理谱仪关键技术与应用”项目科技成果鉴定会在广东东莞召开。记者从会上了解到,多物理谱仪关键技术指标,如样品处单位功率中子通量处于国际同类型谱仪的领先水平,谱仪衍射分辨率和实空间分辨率达到国际同类型谱仪的最好水平。同时,在多物理谱仪研发过程中,首次成功研制出国产位置灵敏型氦三管探测器,并实现工程应用,性能达到了国际先进水平,为后续谱仪探测器自主化研制奠定了坚实的基础。此外,研发团队自主开发了首个用于中子衍射与对分布函数数据规约的国产软件,构建全散射数据采集与分析技术全链条,实现中子全散射数据规约软件的国产化。中国散裂中子源靶站谱仪大厅。图片来源:散裂中子源科学中心据了解,多物理谱仪是散裂中子源科学中心、东莞理工学院和香港城市大学共同建设的国内首台中子全散射谱仪。多物理谱仪运行3年来,完成了300多项用户实验,在服务国家重大需求、产业需求与基础研究等方面取得了一批重要成果。
  • “钴60事件”引出“辐照”食品之惑
    “钴60事件”引出“辐照”食品之惑   辐照,一种新的灭菌保鲜技术,粮、蔬、果、肉、调味品、中药等领域均已应用,我国相关食品产量已占全球总量的三分之一。 然而,对大多数消费者来说,“辐照”一词还相当陌生——   新闻背景   河南杞县“钴60事件”   河南省开封市杞县利民辐照中心于1997年成立,业务是用钴60放射源对方便面调料包、辣椒粉等进行辐照灭菌。放射源通常被放在墙壁厚达2米的水井辐照室内,用时提出,用完放回。   2009年6月7日,中心辐照装置运行时货物意外倒塌,导致放射源保护罩倾斜,钴60放射源被卡住,无法回到水井中。   6月14日15时,由于放射源的长时间照射,接受辐照加工的辣椒粉自燃。24时,火势得到控制。   7月12日开封市政府召开新闻发布会,通报相关情况:安全无事,正在处理。   7月16日环保部发布通告,卡源事故不会造成环境污染。   7月17日有谣传称辐照中心钴60将爆炸,致使许多群众逃离家乡,前往附近县市“避难”。当地政府随后召开新闻发布会,专家出面辟谣,警方抓获5名造谣者。大部分群众返回家中。   怎样让大蒜不生芽、中药丸不生虫、方便面调料包不变质?   答案之一是——进行辐照。   从6月7日,装有钴60的放射源无法正常回到铅井内,到目前仍未公布此次故障最终解除的确定时间——河南杞县利民辐照中心不但在一个多月的时间里成为了新闻热点,也把“辐照技术”这个陌生的专业字眼带到了公众面前。   随着辐照技术的应用范围浮出水面,人们不禁发问,我们日常食用的哪些食品是经过了辐照的?放射性物质辐照过的东西人吃了安全吗?   中国辐照食品已占全球总量1/3   北京消费者李先生在浏览河南杞县利民辐照中心“钴60事件”新闻的时候,发现了一个以前他从来没有注意过的现象,那就是,钴60照射的物品竟然包括自己日常吃的辣椒粉。   “一个县不仅有存放放射性物质的辐照厂,而且竟然辐照辣椒粉、大蒜、甚至方便面的调料包,而我和我周围的人竟然都是第一次知道。”李先生告诉《中国经济周刊》记者,“那我除了要关心辐射源的管理会不会出问题以外,可能更要关注那些被辐照的食品对我是不是安全了。可是我查了很多资料,却很难有一个很清晰的答案。”   媒体资料显示,在河南开封,杞县是第一人口大县,同时也是地域大县和农业大县,盛产大蒜等。上世纪八九十年代,因花生、大蒜、棉花等农作物在保存一段时间后会发芽和易生虫等,其产品在国内市场一度受到很大冲击。1997年,民营企业“杞县利民辐照厂”投入运行。该企业的“辐照作业”,主要就是对大蒜、花生、棉花、方便面调料包、辣椒粉、中药材等进行辐照灭菌。   “能够长期保存并且不希望发生变化的食品,目前已经越来越多地应用辐照技术进行处理了。”现已退休的中国疾病控制中心辐射安全所(原卫生部工业卫生试验所)原所长王作元告诉《中国经济周刊》,“比如大蒜,辐照以后就不会发芽了,而且保存的时间要长得多 我们现在吃的中药丸也很少看到长虫子的现象。要获得这些成果,一个重要的技术应用就是辐照技术。”   据王作元介绍,食品辐照技术是20世纪发展起来的一种灭菌保鲜技术。它是一种辐射加工技术,运用γ-射线的照射对食品进行加工处理,在能量的传递和转移过程中,产生强大的理化效应和生物效应,从而达到杀虫、灭菌、保持营养品质及风味和延长货架期的目的。   “食品辐照以其减少农产品和食品损失,提高食品安全质量,控制食源性疾病等独特技术优势,越来越受到世界各国的重视,成为21世纪保证食品安全尤其是固态食品安全的有效措施之一。”王作元说。   目前,我国约有近百种辐照食品通过了鉴定,早在1998年之前国家就已颁布批准了粮食、蔬菜、水果、肉及肉制品、干果、调味品等6大类固态辐照食品的卫生标准,在28个省市自治区建立了50多个商业化规模的辐照装置。“目前类似的辐照厂已经越建越多,而源量为30万居里以上的大型辐照单位也已达到80—100家左右。”王作元说。   另据中国核农学会早前的调查显示,2005年我国辐照食品产量就已达到14.5万吨,占世界辐照食品总量的36%,产值达到35亿元。   但是,几乎很少有消费者知道,自己吃的食品可能就是被辐照过的。   辐照食品安全与否有争论   “辐照食品对人类的健康是否有影响,就像转基因食品一样在世界上是有争议的。”王作元介绍说,“因为我们只能用动物或者离体细胞做实验,所以到底辐照食品对人体有什么样的影响,研究起来还很困难。”据悉,目前辐照研究能够依据的还是美国在日本投下原子弹以后的研究结果。所以尽管第一个商业食品辐照工厂在1991年就已经在美国的佛罗里达州开业,但截止到目前,世界上只有42个国家正式批准了240多种辐照食品的标准。有些国家则严格禁止辐照食品。   “欧盟对辐照食品持相当严格和谨慎的态度。”来自河南相关科研院所的一位专家告诉《中国经济周刊》,他说,欧盟有关食品辐照的指令有两个,即“离子照射处理的食品”的框架指令1999/2/EC和执行指令1999/3/EC。   “第一个指令规定了实施辐照处理的总体概念和技术要求,辐照食品的标示和辐照设施的授权等有关要求,包括‘必须具有合理的技术要求,没有健康危害,有利于消费者’ ‘不作为替代卫生措施的手段’ ‘所有经辐照的食品或含有辐照食品成分的必须在食品标签上标明’等内容。第二个指令规定在欧盟允许辐照的食品,目前只允许辐照处理药草、香料和植物调味料一类物质。”这位专家对记者介绍说。   “日本北海道的土豆辐照设施是世界上较早的商业化运行的辐照设施,但日本除了在1972年批准土豆辐照抑制发芽外,一直没有批准其他食品的辐照处理。”该专家说,“我们国家的辐照厂却批了很多。”   “辐射育种是当前的研究课题之一。”王作元告诉记者,“比如我们把蔬菜种子带到外太空,宇宙线的辐射要比地面强得多,经过宇宙线辐照的外太空种子种出来的蔬菜都超级大,比如黄瓜,都能长到人的胳膊那样粗。而太空蔬菜我们已经食用了很多年。”   “有些食品经过辐照以后是能够鉴别出来的。”王作元说,“比如白砂糖,辐照过的就会发亮光。但现在仍未大面积推广。”   “辐照过的食品或者药品的确发生了化学性质的改变。”一名不愿透露姓名的从事药品加工工艺研究的专业人士告诉《中国经济周刊》,他对辐照技术的关注已经有10年之久,担忧溢于言表。“近年来我发现很多药厂在盲目地使用钴60来灭菌,食品行业也尤为突出,但是这种方法使用不当可能会产生辐解产物,要么造成食物营养素的破坏,要么造成药物的有效成分破坏,抗病毒能力降低。”   该人士告诉记者,目前关于辐解产物的研究工作国内外还不多,但是在有限的研究中,大量检测和临床显示,使用不当产生的辐解产物会产生不可估量的危害,“比如辐照过的青霉素钾会引起摄用的小白鼠罹患癌症,所以美国已经严禁辐照技术应用于液体药物。”据他介绍,因为滥用辐照灭菌,国内的一些厂商和部分出口产品已经多次受到欧盟、日本、美国等国家和组织的警告、退货等处理。   “有意思的是,目前我国辐照企业的钴60大部分都是从国外进口的,他们一边把钴60推销给我们,一边又退我们的货,不能不令我们深思。”该人士说。   辐照食品标识为何有令不行   1980年,国际辐照食品联合专家委员会确认“为贮存的目的,任何食物受到10kGy(放射性计量单位)以下的辐照,不再需要进行毒理学方面的检测”。1983年,FAO(世界粮农组织)与WHO(世卫组织)的食品法典委员会(CAC)正式颁发了《辐照食品通用法规》,为各国辐照食品卫生法规的制订提供了依据。   我国也出台了关于辐照技术的很多文件,如卫生部1996年4月5日颁布了《辐照食品卫生管理办法》,规定辐照食品必须严格控制在国家允许的范围和限定的剂量标准内,如超出允许范围,须事先提出申请,待批准后方可进行生产。我国还规定,从1998年6月1日起,辐照食品必须在其最小外包装上贴有规定的辐照标识,凡未贴标识的辐照食品一律不准进入国内市场。   “遗憾的是目前从未见过该法律的执行。药品辐照更是无人管理。”上述从事药品加工工艺研究的人士告诉记者,“药品的辐照目前并无法律的允许。但是我国目前的辐照厂在批准的经营范围内基本都包含了此项目,并且几乎每天都在照。甚至一些乡镇都会有辐照厂存在。”   相对于企业来说,由于辐射穿透力极强,尤其是γ-射线,因此无须打开包装,可直接照射整体包装物品。操作简便,速度快,比较经济。这也成为了不少生产食品和药品的厂家乐于采用钴60灭菌的原因所在。   “由于辐照具有很好的灭菌效果,加大剂量的话微生物含量可以减至0,而且灭菌时间也能大大缩短,因此很多企业甚至放松了对中间过程的卫生控制,细菌病毒严重超标的产品拉去辐照一下‘达标’,辐照的剂量也远远超过国际标准。”上述人士告诉《中国经济周刊》,“如何科学地确定辐射剂量曾经是个有争议的题目。各个国家之间,对允许的剂量标准也有不同的看法,而我们的一些辐照厂和食品药品生产企业却为了减低成本任意加大辐照剂量,已3倍或5倍地超过国际剂量的最高标准,这如何能够保证食品和药品的安全呢?”   “辐照技术应用于商业化运作并不是一件坏事,问题是我们目前对它的监管到位了吗?”该人士说,“不科学辐照,甚至违法辐照比较突出,很难在我国市场上看到有标识的辐照食品??这些不仅让消费者的知情权得不到保护,给消费者的安全埋下隐患,同时也会对一些合法经营的企业造成不公平。”   中国疾病控制中心辐射安全所原所长王作元:   “我国放射事故发生率高出美国20倍”   “随着科学技术的发展,放射线技术已经广泛应用于工业、农业、医学和科学研究等领域,为人类做出了很大的贡献。”中国疾病控制中心辐射安全所原所长王作元告诉《中国经济周刊》,“但是如果大的对人体极易造成危害的放射源要是管理不好或设备失灵的话,就会造成操作人员伤亡,对周围百姓造成极大的心理影响。”   在王作元看来,大部分的辐射事故是“人为因素造成的”。“设备连锁装置带病运行,操作人员不按规范操作、放射物质在运输、保管、储存过程中疏忽大意发生丢失等,都在一定程度上给人民的生产生活带来了负面的影响。”   “放射事故发生率,美国每年、每万枚放射源约为0.25次,而我国约为5.6次,要比美国高出20倍。这不能不引起我们的重视。”王作元说。   “河南钴60事件既有设备带病运行的因素,也有人员操作失当的因素,更有对事故发生后处理不力的因素,因此有很多经验教训值得总结。比如夜里2点发生的事故,没有当夜进行处理,反而在层层汇报的等待中发生了越来越棘手的情况。对信息总不能作出正面的回答,加上人们基本防护知识的缺乏,自然都会引起人们的恐慌。”   针对人们的谈辐射色变,王作元告诉《中国经济周刊》,“大可不必过于恐慌。很多时候事故本身没有那么大,但是受心理因素的影响,事故就被成倍地放大了”   “关于辐射产生的效应分为两大块。”王作元说,“一是确定性效应,只有超过一定剂量值才会发生,后果可能是眼晶体混浊、明显口腔溃疡、掉头发、皮肤烧伤、脑型、肠型放射病,甚至死亡等。另一种是随机性效应,主要指的是癌症发病率的增加。受到照射的人并不是每个人都会发病,有一定概率,接受的辐射剂量越大,概率越高。所以,人接受的辐射剂量越小越好,或者说,尽量不要接受没有必要的辐射,”   据王作元介绍,目前国内核事故医学应急的相关培训每年都在进行,“但是相关的应急医务人员还是太少,甚至国内的大多数三甲医院都缺乏具有核事故医学处理知识的人员。如果每个省都能有1-2家医院能够处理核事故造成的人员伤害,那么很多损失就可以避免了。”   “中国目前正在大力发展核电站,而建核电站的地方大都是工业最发达、用电量最大、人口最密集的地区,发生或大或小的事故都会引起周边群众的恐慌。”王作元告诉记者,“核电站反应堆事故会释放出大量的放射性碘。因此对周围居民的碘预防就显得十分重要了。”   “目前的问题是我们怎样普及这样的知识,并且能够在事故发生之前就做好准备。比如稳定碘片的生产、储存、更新、发放等工作都要事前安排好。很多时候,未雨绸缪才是我们目前最应该做的事。”王作元说。
  • 中国散裂中子源工程材料中子衍射谱仪成功出束
    记者从中国科学院获悉,2022年12月29日下午,中国散裂中子源(CSNS)工程材料中子衍射谱仪成功出束,开始带束调试,标志着谱仪设备研制与安装的成功。工程材料中子衍射谱仪是散裂中子源科学中心与东莞材料基因高等理工研究院共同建设的国内唯一的飞行时间工程材料谱仪,也是中国散裂中子源继多物理谱仪和大气中子辐照谱仪后完成建设的第三台合作谱仪。为确保工程材料中子衍射谱仪的建设,工程材料中子衍射谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与东莞材料基因高等理工研究院相关部门克服众多重大技术挑战和疫情的影响,保证了谱仪设计、研制、安装与调试的顺利进行。工程材料中子衍射谱仪具备应变、应力、织构和布拉格边透射成像等功能,尤其适合大型、复杂工程结构件的应力测量分析,能实现原位拉压力学加载和高低温加载,以及长周期疲劳加载等模拟服役条件的多种不同研究条件的需求。工程材料中子衍射谱仪将为众多领域国家重大需求的新型材料研发、关键装备无损检测、服役寿命管理等提供不可替代的研究手段,为解决我国在材料与装备制造高技术领域的一些重大科学问题,提供关键技术支撑。
  • 中国散裂中子源(CSNS)工程材料中子衍射谱仪成功出束
    2022年12月29日下午,中国散裂中子源(CSNS)工程材料中子衍射谱仪成功出束,开始带束调试,标志着谱仪设备研制与安装的成功。工程材料中子衍射谱仪是散裂中子源科学中心与东莞材料基因高等理工研究院共同建设的国内唯一的飞行时间工程材料谱仪,也是CSNS继多物理谱仪和大气中子辐照谱仪后完成建设的第三台合作谱仪。为确保工程材料中子衍射谱仪的建设,工程材料中子衍射谱仪项目组、中子科学部相关专业组、散裂中子源科学中心与东莞材料基因高等理工研究院相关部门和衷共济,克服众多重大技术挑战,克服谱仪建设期间多次疫情的影响,保证了谱仪设计、研制、安装与调试的顺利进行。工程材料中子衍射谱仪具备应变、应力、织构和布拉格边透射成像等功能,尤其适合大型、复杂工程结构件的应力测量分析,能实现原位拉压力学加载和高低温加载,以及长周期疲劳加载等模拟服役条件的多种不同研究条件的需求。工程材料中子衍射谱仪将为众多领域国家重大需求的新型材料研发、关键装备无损检测、服役寿命管理等提供不可替代的研究手段,为解决我国在材料与装备制造高技术领域的一些重大科学问题,提供关键技术支撑。
  • 九芝堂等药企存在重复辐照操作 超标辐照或致癌
    作为一种灭菌保鲜技术,“辐照”通常用于食品、药品等行业。近期,记者调查了解到,国内大部分中药材、中成药、原料药及部分药品制剂均可采用辐照方法进行灭菌处理,特别是对一些不耐高温、成分易挥发的原料、制剂、辅料、药材等非常适用。但由于行业管理较为混乱,重复辐照、大剂量辐照的情况较为突出。国内多家上市药企存在重复辐照操作。   记者采访中了解,由于辐照具有很好的灭菌效果,而且灭菌时间短,因此重复辐照、大剂量辐照的现象屡见不鲜。3月底就曾有媒体报道称,“九芝堂和千金药业等公司也有药品在湖南辐照中心辐照。”   中南大学教授陈玉详介绍,辐照说白一点就是一种核辐射技术,其“好”“坏”皆杀,不但杀死了病菌,也杀了对人类身体健康有益的分子,破坏了食物的营养结构,导致DNA损伤,所以在国际上一直存在争议。而重复辐照、超标准使用辐照剂量等乱辐照,对人的身体损害极大,或造成核物质残留,可引发癌症、青光眼。
  • 184万!重庆大学X射线辐照仪采购项目
    项目编号:CQU-SS-HW-2023-008项目名称:重庆大学X射线辐照仪采购预算金额:184.0000000 万元(人民币)最高限价(如有):184.0000000 万元(人民币)采购需求:序号产品名称(设备名称)※数量单位备注1X射线辐照仪1台本项目经批准可以采购进口产品合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。本项目( 不接受 )联合体投标。重庆大学X射线辐照仪采购-招标文件(定稿).docx
  • 辐照食品:身在“辐”中不知“辐”
    虽然公众尚且懵懂,辐照食品在中国的规模增长却十分快速。   辐照食品,一个曾经讳莫如深的话题,随着日本的核危机再度引发了公众的关注。   在大家还尚未对其有足够了解的时候,辐照食品在中国的增长已然十分快速。截至2010年,我国辐照食品总量已经达20万吨以上,约占世界辐照食品的一半。   身在“辐”中不知“辐”,这是我们目前大多数人的现状。与之伴随的,却是在对高剂量辐照食品安全性存疑的情况下,我国辐照食品标准和监管的缺失。   “在郑州,如果问同位素研究所在哪里,没几个人知道,可只要一提‘激光大蒜’,大家都知道。”   “激光大蒜”是农民们给辐照大蒜起的俗名。“最红火的时候,从我们单位门口开始,装大蒜的卡车停在马路边,一辆接一辆,足足能排上两三公里的队,交警还得过来维持秩序。”   四月底,在北京举行的一个辐照食品技术论坛上,河南省科学院同位素研究所有限公司副总经理朱军这样描述大蒜车队的“盛况”。   身在“辐”中不知“辐”   “我们照了很多,但是大家都不知道。”   在这个论坛上,这句话被包括朱军在内的多位辐照食品专家反复提及。   辐照食品,曾经是个讳莫如深的话题。   2009年夏天,从几家知名品牌方便面的调料包“辐照门”事件,到河南杞县的钴-60事件,辐照这一在食品行业应用多年的技术浮出水面,并引起热议。   但没过多久,辐照食品的话题在媒体上渐渐淡去。   此次日本的核危机让民众对“辐射”高度敏感,同时对于辐照食品也再度关注。   在国内一个大型母婴网站上,一位母亲提到了辐照食品话题。她觉得自己在日本核危机后,更迫切地想知道——“这个辐射,跟那个辐射是一样的吗?”   后面跟贴的二十来人中,不乏对辐照食品有所了解者,但更多的人则是表示惊讶——“晕,只听说过防腐剂,没想到还有射线!”   在“辐照门”事件发生近两年后,还有很多人不知道辐照食品为何物。记者在超市的食品柜台翻找,除了方便面,还很难看到其他辐照食品有标识。   虽然公众尚且懵懂,辐照食品在中国的规模增长却十分快速。   “我国绝对是世界辐照食品第一大国。”江苏省农科院原子能所研究员赵永富说。据统计,截至2010年,我国辐照食品总量已经达20万吨以上,约占世界辐照食品的一半。   赵永富还透露,我国相关部门和机构正在努力推动我国食品辐照加工产业的发展,计划在“十二五”期间使辐照食品增长3~4倍。   食品辐照技术是利用钴-60、铯-137等放射源产生的伽马射线,或加速器产生的10MeV以下的高能电子束,对食品和农副产品进行加工处理的技术。其中,钴-60辐照装置还是主要装备,目前全世界运行的大型装置250多座,总装源能力约3亿居里。   中国在其中所占比例很大。   此前我国曾批准6类辐照食品卫生标准和17项辐照食品工艺标准。“现在每年涉及的食品产值应该超过300亿元。”中国同位素与辐射行业协会辐射加工专业委员会主任赵文彦告诉《科学时报》。   据了解,世界上已有60多个国家批准了食品辐照技术的应用。食品辐照技术的主要作用是抑制发芽,杀虫灭菌,改善品质,保鲜耐贮。   由于射线穿透力强,辐照技术的一大好处是无须打开包装,既方便快捷,又可避免二次污染。   对于这种看不见摸不着的杀菌灭虫方式,很多人将信将疑。   江苏瑞迪生科技公司业务经理汪昌保讲了这样一件事情:   一位第一次合作的客户送货时留了个心眼,在包装上做了记号。结果收货时他发现记号完全没被动过,他马上质疑:“你们是不是根本没有给我们的产品杀菌?”   汪昌保给他作了解释。但是,这个客户还是不放心,拿了一部分回去做储藏实验,发现的确有效果,这才相信了汪昌保的话。   正如与会的多位专家所说,我们其实是身在“辐”中不知“辐”。   除了文章开头提到的大蒜,日常我们所用到的香辛料和脱水蔬菜调味品,也有相当一部分是经过辐照的。这些食品容易带有微生物和害虫,传统的加热杀菌工艺会使香气挥发,具有冷处理特色的辐照技术因此体现出优势。   据赵永富介绍,我国现在香辛料和脱水蔬菜的辐照量大概为10万吨左右,占世界辐照量的三分之一左右,约占我国辐照食品一半的产量。   而小食品近年来在辐照食品行业异军突起,几乎与香辛料平起平坐。泡椒凤爪是个典型的例子。赵永富介绍说,如不添加防腐剂,凤爪只能存放2~3天,而采用辐照技术可以使保质期延长到1~6个月。现在仅四川省每年泡椒凤爪辐照处理量就达到了1万吨以上。   此外,冷冻食品、白酒等都是辐照技术覆盖较多的领域。   辐照食品就像烤红薯?   “大家把食品辐照和原子弹联系在一起。其实,这两者完全不是一回事。”朱军说。   严建民、高美须等专家撰文指出,辐照处理食品时,射线透过不锈钢管壁照射到食品上,食品接受到的是射线的能量,而不是放射性物质,受辐照的食品皆严密包装,因此食品不可能直接沾染上辐射物质。   另外,从理论上讲,要使食品中的组成元素在辐照后诱发放射性,需要10MeV以上的能量。在此能量范围内,即使使用高辐照剂量,它们所生成的同位素的寿命也很短,放射性仅为食品天然放射性的15万分之一至20万分之一。钴-60的伽马射线平均能量为1.25MeV,铯-137的伽马射线能量仅有0.66MeV,远低于产生感生射线的能量阈值。因此,辐照食品本身不会产生感生放射性。而10MeV以上的食品辐照源能量是禁止的,这就从根本上杜绝了诱发放射性的问题。   “其实,对辐照食品安全所作的研究是全世界时间最长、成果最多的项目之一,曾经长达几十年,有30个国家分工做实验。”北京三强核力辐射公司总经理王传祯强调。   中国学者也曾经对世界食品辐照界作出重大贡献。1982~1985年在大量动物试验的基础上,我国组织了382人的辐照食品综合人体试食试验。结果表明,食用吸收剂量在10kGy以下的辐照食品对人体无异常影响,从而结束了由印度学者引发的长达10年之久的淋巴多倍体辐照改变之争。   而早在1980年,FAO(联合国粮农组织)/IAEA(国际原子能机构)/WHO(联合国世卫组织)联合专家委员会便作出结论:任何食品总体平均吸收剂量高达10kGy,没有毒理学的危害,不再要求做毒理学试验,同时在营养学和微生物方面也是安全的。   几乎每位专家谈及辐照食品安全时都会引用这个结论。   朱军则认为1980年的这个结论其实根本不用再提。“因为1997年上述委员会又提出,没有必要设定食品辐照剂量的上限。1999年该委员会作出结论:超过10kGy剂量的辐照食品也是卫生安全的。”   北京市射线应用研究中心分析检测中心主任胡金惠介绍了她前些天刚刚拿到的欧洲食品安全局关于辐照食品的推荐意见。该机构下属的两个小组去年对辐照食品的安全进行了调查总结。一个小组负责调查辐照食品的微生物安全和杀菌效率,另一个小组负责调查辐照食品的化学安全。   最后,前者得出如下观点:在辐照食品中,经过辐照的微生物不会给消费者带来新的风险。后者的观点是,食品经过辐照会产生新的化学物质,但这些化学物质主要是碳氢化合物、2-烷基环丁酮、乙醛等,这些物质在其他食品加工中也会产生,不是辐照处理独有的。而且,在辐照过程中这些物质产生的量低于热处理中产生的量。   食品工程博士、知名的科普作者云无心曾这样类比:吃辐射污染的食物,就像把着火的食物吃到嘴里,而且它到了肚子里还在燃烧 而辐照食品,则像精心烤好的红薯,可以安心享用。   “我们行业内的人士要坦然地面对公众,没有什么好怕的。”王传祯在会上发言时声音洪亮地说。   高剂量辐照仍存风险   但是,与王传祯的理直气壮不一样,他的同行中还是有一些人觉得这个话题“敏感”,面对《科学时报》记者的采访非常谨慎。   有报道指出,辐照食品没有那么“美”。   胡金惠分析上述标准和欧洲的调查结果指出,该机构除了对辐照食品安全表示肯定外,其实也表达了这样一种观点:即使有的食品被批准可以辐照,也不一定需要照。“要充分考察食品的微生物数量和状态,不应事先设定剂量和品种。”   她直言,一些专家笼统地说“辐照不会改变食品性状”是不对的。“辐照对于食品来说,肯定还是会产生影响的。我曾经辐照过牛奶,很快就凝固了。所以某种食品是否可以辐照、多大剂量都需要研究。”   朱军说,同为粮食,小麦及面粉、稻谷、杂粮的最高耐受剂量就各不相同。1 kGy以上辐照后的小麦及面粉,黏度值显著下降。稻谷超过0.5 kGy的辐照以后,口感发生明显变化。而0.8 kGy辐照对玉米渣、高粱米、燕麦片等的黏度产生明显影响。   据朱军介绍,目前,对于送到他们单位辐照的食品,一般都是根据国家标准,结合产品的含菌量、生产工艺、品种特点来确定合适剂量。他们也在这方面作了很多研究。但同时他也有几分无奈地表示:“国外一般都是食品厂商来提供剂量数据,而国内全都是由辐照厂来提供剂量。”   “其实作为辐照厂,我关注的是辐照工艺本身。至于辐照后产品品质、成分是否变化,这事应该由食品厂操心。”朱军说。   他举例说,因为原来只会传统的消毒方法,产量受限,河南的大豆蛋白产量曾经在全国排名第三。使用辐照技术后,现在河南的大豆蛋白产量跃居全国第二。但是,食品厂商对于剂量这件事情基本不了解,也不想去了解。   “我跟食品厂商的人开玩笑,说你这大豆蛋白照完后,还是不是大豆蛋白?他说‘我不管,我只管还有没有细菌’。”朱军说。“还有的食品厂家不讲道理,其实用不着那么大的剂量,但他跟你说‘我就是要无菌’。我们也没有办法。”   朱军的话印证了有的专家的观点:“由于辐照具有很好的灭菌效果,加大剂量的话微生物含量甚至可以减至0,而且灭菌时间也能大大缩短,因此很多企业甚至放松了对中间过程的卫生控制,细菌病毒严重超标的产品拉去辐照一下‘达标’,辐照的剂量也远远超过国际标准。这如何能够保证食品和药品的安全呢?”   在本次论坛上,记者也听到一些厂家和研究人员谈到,辐照过后,产品包装变色。“这瓶子都变色了,里面的东西还能吃吗?”有人质疑说。   汪昌保给出的解释是:玻璃瓶变色是因为内含的硅元素辐射后容易变色。如果塑料包装含有氯元素,也可能因为辐照发光变色。但只要剂量合适,变色过一段时间会褪下去。他个人认为“这些变化的物质不会从包装中逸出到食品中”。   不过,王传祯指出,对含水量高的食品高剂量辐照,有产生自由基的危险倾向。   进入标准、法律真空?   “现在辐照食品基本上是想照就照。”多位专家说。   2004年到2006年两年时间内,我国出口食品先后10次被欧盟通报存在有非法辐照问题。这是由于欧盟对于食品辐照的装置具有非常严格的审批程序。欧盟之外共有5个国家的10座辐照装置获欧盟批准。但是,辐照食品大国中国不在获批之列。因此,我国对出口欧盟的食品不得进行辐照处理。   胡金惠多年从事食品和医疗用品辐照法规制度、质量体系的研究,她认为这与我国食品辐照行业标准缺乏和监管不严有关,“还无法达到欧盟的要求”。   和其他食品安全问题一样,辐照食品的监管仍然采取中国特色的分段管理:卫生部负责辐照食品安全性评估,制定有关标准、目录和检验方法。环境保护部负责辐照装置单位辐射安全许可和监督管理、辐照人员资格和培训管理。质检总局负责规范辐照食品标签管理,对辐照食品及原料进行监督管理。   1986年卫生部发布了《辐照食品卫生管理暂行规定》,随后这个规定被1996年卫生部颁布的47号令《辐照食品卫生管理办法》替代。但在监管层面上,《管理办法》没有罚则,而是规定依《食品卫生法》相关罚则条文进行处罚。而2009年6月1日,《食品卫生法》被废止,《管理办法》的罚则也随之失去依据,相关部门无法对不标识辐照食品的企业进行处罚。   “现在,卫生部的官方网站显示《辐照食品卫生管理办法》也已废止。”胡金惠说。记者了解到,这是今年1月10日的卫生部公告。   2001年,国家质量技术监督总局发布《食品辐照通用技术要求》,作出了很多规定。“但这个标准仅是推荐性标准,在我国的食品辐照加工中并没有广泛使用,也没有得到足够的重视。”胡金惠说。   那么,我国的食品辐照现在是否进入标准和法律真空?   农业部辐照产品质检中心常务副主任哈益明说,相应的标准和法规已经在制订中。   哈益明对于一些媒体报道食品行业滥用辐射持保留态度。他告诉《科学时报》,实际上辐照厂生产建设投资不小,辐照成本也不低。“我估计每吨至少在千元以上。对于食品企业,一般来说还是能不辐照就不辐照。”   胡金惠则指出,目前对于辐照食品使用剂量的事后检测,定量分析检测手段还比较缺乏。哈益明表示:“方法是有,但的确比较复杂。”   辐照食品标识是大势所趋   在公众对辐照食品的认知方面,辐照食品是否标识是一个绕不开的话题。   国内国外,有关此问题的争论并没平息,支持者认为消费者有知情权,辐照处理的食品必须标明 反对者认为既然经多年的研究被承认是一种安全的、物理的食品加工技术,就像热加工一样,那就没必要进行标识,标识不利于辐照食品的发展。   “归根结底,还是食品商家和生产厂家担心消费者对辐照食品标识产生误解,不愿进行标识。”一位专家说。   辐照食品不进行标注,是否违法?   哈益明告诉《科学时报》,对于预包装食品的辐照标识,是有强制要求的。“但是的确没有相应的执行细则。”   与他的说法不同,胡金惠表示,现在辐照食品是否标识已经没有法规约束。朱军也谈到标识“并非行业强制要求”。   不过,大多数接受《科学时报》采访的专家都表示,辐照食品进行标识是大势所趋。   朱军对公众逐步接受辐照食品很有信心。   “2009年的辐照门事件,刚开始时对我们的行业打击非常大。一个星期之内,所有的仓库的东西都被拉空了。客户都害怕。”朱军说。   “比较幸运的是,食品行业协会联合出了文。给客户看了以后,再过一个星期,客户又都回来了。”   朱军认为“辐照门”事件不是一件坏事。“让大家敢说了。以前企业都不敢说自己的产品是辐照过的。现在我们河南很多企业都主动打辐照标识。”   同“辐照门”一样,赵文彦认为,日本核事故引起全民对辐射空前关注“并不是坏事”,他告诉《科学时报》:“短期内有不好影响,但长期看起来是好事,可以推动大家了解辐照概念。大家慢慢会接受,就像河南民众已经渐渐接受‘激光大蒜’一样。”
  • 中科院科研装备研制项目“晶片级器件辐照 及辐射效应参数提取设备”顺利验收
    p & nbsp & nbsp & nbsp & nbsp 5月26日,中国科学院条件保障与财务局组织专家对中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“晶片级器件辐照及辐射效应参数提取设备”进行了验收。 /p p   验收专家组现场考核了仪器设备的技术指标,认真听取了项目工作报告,经质询和讨论,专家组一致认为该设备同时实现了晶片级器件辐照试验、器件特性参数在线提取功能,在国内率先突破了晶片级器件加电偏置辐照技术,为器件辐射效应精确建模、商用代工线的抗辐射性能评估提供了有效的测试手段 研制的设备可适用不同种类器件的辐照,具有结构一体化、操作自动化的特点,全部技术指标均达到或优于预期目标。之前国内由于不具备适用于器件辐射效应提参建模的试验平台,无法在器件设计、流片阶段给出加固建议,评估抗辐射性能,一定程度上增加了研发成本,延长了生产周期。该设备突破了这一技术瓶颈,填补了该领域的国内空白,为晶片级器件辐照、提参提供试验条件,形成面向抗辐射器件研制全过程的辐射效应试验评估、提参建模共性技术服务平台,为元器件设计加固工艺的发展提供试验技术支撑。 /p p   该设备已成功应用于中科院微电子研究所、中电集团44所、杭州电子科技大学、长光辰芯光电公司等单位的微纳MOS器件、CCD器件、CMOS图像传感器、半导体射频电路的辐射效应评估验证,获得了用户的高度认可,为国产抗辐射器件的研制与试验评估提供了有效的试验手段。 /p p br/ /p
  • 日本核污染水排海!如何检测鉴定辐照?EPR技术在辐照领域应用广泛
    近日,日本无视国际社会的强烈质疑和反对,单方面强行启动福岛核污染水排海,引发了全社会对可能到来的放射性污染物的担忧。据了解,核污水中含有多种放射性元素,如氚、锶、钴和碘等,由于生物富集效应,这些放射性污染物最终可能会随着各类海产品进入人们的口中。航拍福岛第一核电站排海口附近画面。图片来源:央视新闻EPR技术与辐照检测在日常生活中,可控、低剂量的辐照具有广泛应用,例如食品辐照、中药辐照、医疗器械辐照。那么,我们该如何判断食品或药品是否被放射性物质辐照?被辐射的剂量有多大?在国标中,电子顺磁共振波谱仪就是重要的检测方法之一。电子顺磁共振波谱(Electron Paramagnetic Resonance,EPR),亦称“电子自旋共振”(ESR),长期以来被用作研究辐射效应的定量工具,相关标准有ISO/ASTM 51607,GB/T 16639-2008等。EPR谱仪的工作原理是测量可变磁场中特定共振频率下未配对电子的能级跃迁。电离辐射可在许多形式的物质中产生自由基,比如丙氨酸CH3CH(NH2)COOH会形成自由基,这些自由基可以被EPR光谱仪定量地检测出来。EPR技术与核应急医疗核技术作为一种高科技技术,已应用到工业、医学、军事等领域,但是人类利用核能技术的同时也增加了核事故、辐射事故等潜在威胁。2011年3月11日的福岛核事故与昨日日本福岛排放核污水事件,再一次使人们清醒地认识到,在核事故发生后,快速有效的剂量重建可以对人群的受照水平进行筛查,从而进行合理有效的医学应急处理。核事故产生的电离辐射除了使受照者的骨髓、胃肠系统损伤外,还会诱导身体的钙化组织、角质层产生自由基,而且在这些组织中的自由基远比在其它生物组织中的自由基寿命长,如在常温下,电离辐射产生的CO2-自由基在牙齿化石中能存活107年。基于此,电子顺磁共振技术可检测电离辐射诱导产生的自由基,作为一种成熟的辐射剂量测定技术,可在较短时间内(≤10 min)得到吸收完成生物样品的剂量测量与重建。EPR技术的优势现有研究表明EPR在牙齿、指甲和头发等生物样品的辐射剂量重建中应用广泛,此外在其它物品的附属物上的剂量重建也有一定应用。例如EPR技术可以对口腔内未处理过的牙齿样本进行测量,这使在体辐射剂量评估成为可能。其优势在于可以适用于急性辐射损伤人员的快速剂量估算,并可以适用于“潜在显著照射”(≥2.0 Gy)。目前,EPR在不同样品的辐射剂量重建中的准确性仍需进一步研究。EPR技术与食品辐照食品辐照是利用电离辐照(60Co 或137Cs 放射源产生的γ射线、电子加速器产生的电子束或5 MeV以下的X 射线)对食品或其他农副产品进行加工处理。由于射线具有穿透力强的特点,可以在不破坏农产品原包装的情况下直接进行辐照加工处理,从而达到杀虫灭菌、防止霉变、延缓成熟和抑制发芽的目的。《辐照食品通用标准》中规定辐照处理的安全剂量在10 kGy以下,这也是各国长期以来在进行食品辐照处理中所遵循的安全剂量。高于10 kGy的剂量可以完全杀菌,产品需要再进行气密性处理防止再次污染,并在常温下存储。欧洲联盟(欧盟)指令明确规定,辐照食品以及含有辐照成分的食品(无论其百分比如何)都必须贴上辐照标签。国际食品辐照符号“radura”为了更好地加强辐照食品的规范管理,选择一种合适的辐照食品的检测方法显得尤为重要。食品在电离辐射作用下会使得内部化合物的共价键发生均裂而产生大量自由基,辐照食品的物理检测方法主要检测在辐照食品产生的自由基或者被固体物质俘获的电子,在不产生自由基和激发电子的前提下估计辐照吸收的剂量。基于此,电子顺磁共振技术就是强有力的检测手段。EPR技术能依靠检测辐照产生的长寿命自由基来对辐照食品进行鉴定,是被欧盟认可的检测辐照食品的有效方法,并有根据各种辐照食品制定的相关标准。辐照食品相关国家标准或地方标准如下:根据《食品安全国家标准 辐照食品鉴定 电子自旋共振波谱法》,针对于含骨类动物食品,当 g1=2.002±0.001,g2=1.998±0.001时,可判定样品经过辐照处理(g1和g2分别指示EPR图谱上出现的不对称信号)。当g=2.005±0.001时,无法判定样品是否经过辐照处理。下图所示为国家标准GB 31642-2016中的某猪排在辐照前后的EPR波谱对比图。(a)未辐照猪排的EPR波谱图,(b)辐照1.0 kGy猪排的EPR波谱图(选自国家标准GB 31642-2016)EPR技术与中药辐照中药辐照加工是核技术应用的重要领域,与食品辐照加工类似,均利用电离辐射射线与物质作用产生的物理效应、化学效应和生物效应达到杀虫灭菌、防止霉变、保持营养品质及延长货架期等目的。自从辐照灭菌法被纳入国家药典,辐照灭菌法就快速成为了我国中药原药材、饮片、辅料、中成药制剂生产企业的青睐对象。目前,针对辐照后的中药及其制剂进行检测的规范方法仅有国家食品药品监督管理总局于2015年公布的《中药辐照灭菌技术指导原则》,其中使用的检测技术是参考辐照食品的光释光法和热释光检测方法。而EPR技术是检测辐照后产生的长寿命自由基的有效方法,并且操作简单、检测迅速、具有较高重现性,值得在中药辐照检测领域做检测技术的补充推广。下图所示为某中草药在辐照前后的EPR波谱对比图。某中草药在辐照前后的EPR波谱对比图EPR技术与辐照剂量鉴定EPR技术可检测丙氨酸剂量计(辐照剂量标准品)中的丙氨酸自由基,从而有效鉴定其所受辐照剂量。如:辐照厂商可使用丙氨酸剂量计对辐照剂量进行质控鉴定 医院放射科或辐照站工作人员可长期随身配置丙氨酸剂量计,使用EPR检测长期所受辐照剂量,研究该行业职业病与辐照关系,为职业病防治奠定基础。根据国家标准《使用丙氨酸-EPR剂量测量系统的标准方法》(GB/T 16639-2008),丙氨酸-EPR剂量测量系统提供了一种可靠的吸收剂量测量方法,依赖于丙氨酸晶体受电离辐射照射后产生的特有的稳定自由基。用EPR波谱法测量自由基的浓度是一种非破坏性的分析方法。丙氨酸剂量计能反复测读,可用于剂量档案保存。丙氨酸剂量计辐照6 kGy吸收剂量的EPR波谱丙氨酸EPR剂量测量系统可作为参考标准和传递标准。也可作为辐射应用中(包括:医疗保健产品和药品的灭菌消毒、食品辐照、聚合物改性、医学治疗和材料的辐射损伤研究等方面)的工作剂量测量系统。国仪量子电子顺磁共振波谱仪国仪量子目前已推出具有核心自主知识产权,商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。在化学、环境、材料物理、生物医疗、食品、工业领域有着重要而广泛的应用。国仪量子电子顺磁共振系列产品人类只有一个地球,我们共享汪洋大海!EPR技术为科学家提供了研究辐射效应的手段,但可持续发展的未来,需要全人类共同守护!本文作者:国仪量子
  • “超级显微镜”带你探微格物——探访中国散裂中子源
    广东东莞大朗镇,松山湖科这里曾是一片荔枝林,如今坐落着一座“中子工厂”。中国散裂中子源(CSNS),我国迄今为止已建成的单项投资规模最大的大科学工程。它的建成,使我国成为继英国、美国、日本之后,世界上第四个拥有脉冲式散裂中子源的国家。前不久,中国散裂中子源二期工程组织了可行性研究报告评审。明年上半年,二期工程有望动工建设。散裂中子源是什么,为什么被称为“国之重器”?中国科学院高能物理研究所(以下简称中科院高能所)副所长、东莞研究部主任陈延伟打了个比方:“简单来说,散裂中子源就是一台‘超级显微镜’,其产生的中子如同‘探针’,可以清晰检测物质的内部结构。”陈延伟介绍,作为当今人类深度探索微观世界的有力工具,散裂中子源广泛应用于新材料研发、关键零部件的性能检测等热门领域,为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供先进的科研平台,对满足国家重大战略需求和解决前沿科学诸多领域的瓶颈问题具有重要意义。1 设备研制达到国际先进水平,核心设备国产化率达90%以上中子,组成原子核的基本粒子之一。中子有很多特质。它不带电,但有磁矩,能很好地帮助我们对磁性结构做研究;它穿透力强,具有非破坏性,能够原位地研究大的工程部件的残余应力和金属疲劳,为高端制造保驾护航;它对生命科学和能源领域极为重要的元素,如碳、氢、氧、氮等,都比较敏感;它跟原子核相互作用,能够区分同位素……“这些特质,决定了中子在微观研究领域的不可替代性。”中科院高能所东莞研究部副主任、散裂中子源科学中心副主任金大鹏对记者说。研究物质微观结构需要大量中子,这就要用到能安全、高效地产生中子的散裂中子源。中国散裂中子源主要由三大部分构成:2台加速器,包括1台负氢离子直线加速器、1台快循环质子同步加速器;1个靶站;多台中子谱仪。此外,还有相应配套设施。陈延伟介绍了其工作原理:将质子加速到16亿电子伏特,把速度相当于0.92倍光速的质子束当成“子弹”,去轰击原子序数很高的重金属靶。靶的原子核被撞击出质子和中子,科学家通过特殊的装置“收集”中子,开展各种实验。建设中国散裂中子源的建议,始于上世纪九十年代末期关于中国高能物理发展战略的研究。此后,中国散裂中子源被列入国家“十一五”大科学装置建设计划。2006年,中国散裂中子源选址广东东莞。2011年,中国散裂中子源开始正式建设。2017年8月,首次质子打靶,成功获得中子束流;2018年3月,正式建成;2018年8月,正式通过国家验收,投入运行。散裂中子源装置庞大,设备部件繁多,工艺复杂。“建设散裂中子源,很多技术都需要从头探索。6年半时间就能建成,离不开关键核心技术的突破。”金大鹏介绍。快循环质子同步加速器所用的25赫兹交流磁铁,在我国属首次研制。研制期间,遇到了超乎想象的技术难题。铁芯和线圈振动开裂、涡流发热……如何解决这些经验之外的新问题?科研人员与合作单位联合攻关,最终依靠自己的力量研制出合格的磁铁。科研人员还创新提出了谐振电源的谐波补偿方法,解决了多台磁铁之间的磁场同步问题。挑战接踵而至——高功率靶要用到钨材,而钨材不耐冲刷,需要在其外包覆一层钽金属。怎样把钽做到足够薄,并提高钽和钨的结合力?在零下253摄氏度左右低温下工作的液氢慢化器,其焊接都是难度极大的薄壁焊接,如何保证可靠性?中国散裂中子源的建设过程,也是自主攻关掌握核心关键技术的过程。金大鹏介绍,25赫兹交流磁铁、高功率靶、液氢慢化器、中子探测器等多项关键核心技术突破以后,对其他领域的发展也产生了一定影响。中国散裂中子源各项设备的批量生产在全国近百家合作单位完成。通过自主创新和集成创新,许多设备的研制达到国际先进水平,核心设备国产化率达90%以上,这不仅大大降低了装置成本,还有力提升了国内相关产业的技术水平和制造能力。金大鹏举了个例子:由于工艺水平高、产品质量好,中国散裂中子源靶体部件的制造单位,成功中标了世界上第五台脉冲式散裂中子源——欧洲散裂中子源的靶体部件。2 研发过程中的技术突破有望为肿瘤治疗带来重要技术革新位于地下17米的加速器隧道里,排列着各种颜色、连接各种管线的复杂设备。科研人员使用氢气产生负氢离子,并将它们在直线加速器里加速。当它们的能量达到8千万电子伏特时,将“飞奔”进入环形的快循环质子同步加速器。一秒钟之内,就有25波负氢离子奔来。在这里,负氢离子将转变为质子,并通过不断“狂奔”、反复加速,将能量提高到16亿电子伏特,速度提升到0.92倍光速。接近光速的质子束被引出,去轰击钨靶,由此产生中子。在加速器关键技术研发过程中,也产生了一些新技术成果,并已衍生出具体应用,开花结果。利用中国散裂中子源的射频四极加速器技术突破,2020年8月,研究人员成功研制出我国首台具有完全自主知识产权的加速器硼中子俘获治疗(BNCT)实验装置,可用于癌症治疗研究。这为我国医用BNCT装置整机国产化和产业化奠定了技术基础,有望为肿瘤治疗带来重要技术革新。首台临床设备已在医院安装,预计2023年5月完成安装调试。中国散裂中子源正式运行并向国内外科学家、工程技术人员、工业企业开放后,大科学装置的综合效应日益显现。“中国散裂中子源在多个领域开展重大创新研究,包括对深海潜水器等大型工程部件进行残余应力和服役性能检测等,为国家急需的许多高性能结构材料攻关提供了关键技术平台。在磁性材料、纳米功能材料、高效催化剂、自旋电子学、有机太阳能薄膜电池、金属玻璃、高分子聚合物、生物大分子等国际前沿科技研究中,也取得一大批成果。”陈延伟说。什么是残余应力?它是指在材料、部件加工、服役等过程中,保留在其内部的应力,可能导致工程部件的变形乃至失效。深海潜水器的壳体是钛合金焊接的。下潜海底万米,要扛住巨大的海水压强,焊接的可靠性至关重要。“我们对它的焊接模拟件进行检测,了解不同焊接工艺的残余应力参数,为壳体寿命预测、焊接工艺选择提供了关键数据支撑。”金大鹏说,高铁的车轮等大型高速运动工程部件将来也需要散裂中子源来验证其残余应力参数。作为粤港澳大湾区首个重大科技基础设施,中国散裂中子源的建成,为国内科技工作者带来了研究物质的“利器”,特别是为港澳科学家提供了前所未有的便利。香港大学黄明欣教授团队研发的超强超韧的“超级钢”,就是通过中国散裂中子源,来分析其成分、结构,验证了相关研究结果。3 为前沿科学研究和国家重大需求提供先进研究平台橙色、紫色、蓝色、浅蓝、浅绿……走进靶站谱仪实验大厅,一台台颜色各异的谱仪,以靶站为中心,宛如七色花的花瓣一般向外伸展排列。中子产生后,经过慢化,通过中子通道被引入谱仪。“中子在谱仪中和样品材料的原子核相互作用,产生散射、衍射、透射。”金大鹏解释说,中子就像派进去探查信息的侦察兵,我们可以根据它进去时的角度、能量,出来时的角度、能量等,经过测量,反推回去,研究样品的结构及动力学。探微格物,中国散裂中子源为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供有力支撑。目前,中国散裂中子源已完成8轮开放运行,全球注册用户超过3900人,完成课题800余项。伴随着国家重大战略部署的推进、新兴产业的发展以及国际前沿研究的需要,中国散裂中子源用户数量快速增长,申请使用装置的课题数快速增长。中国散裂中子源面临“升级”。其实,一期工程设计已经预留了升级改造空间。根据国家“十四五”规划,中国散裂中子源的二期工程即将启动。“中国散裂中子源一共规划有20条中子通道,能够建设22台中子谱仪。”金大鹏向记者介绍,目前共有5台谱仪已投入运行使用,其中包括一期工程国家投资建设的3台谱仪,还有与高校、研究机构合作建设的2台用户谱仪。另有6台不同类型的合作谱仪正在建设、调试中,其中4台预计今年年底将投入使用,满足更多用户的不同需求。不同的谱仪,有不同的用途。浅绿色的通用粉末衍射仪,主要用于研究物体的晶体结构和磁结构,现在也用于开展小部件的残余应力测试。刚投入使用不久的大气中子辐照谱仪,已吸引国内不少高科技企业将自家产品送来测试。研究人员使用高通量的中子加速电子元器件出现问题的进程,从而推动工艺迭代,确保电子元器件与系统性能高度可靠。即将在今年年底投入使用的工程材料应力衍射仪,可以在不破坏样品的情况下,对高铁的车轮、航空航天发动机叶片等设备的残余应力、金属疲劳数据进行研究,一方面为改进工艺提供参考,另一方面也可以评估出部件既能保证安全又能保证经济性的使用里程和时间。金大鹏介绍,目前投入使用的谱仪多为通用型谱仪。围绕国家重大战略部署、新兴产业需求等,专门规划了一批新的谱仪。正在建设中的谱仪,还有专门用来研究新能源电池的。二期工程建成后,中国散裂中子源的谱仪数量将增加到20台,覆盖广大用户各方面研究领域。同时,加速器打靶束流功率将从现在的140千瓦提高到500千瓦。这意味着,同等时间能产生更多中子,不仅能有效缩短实验时间,还能使实验分辨率更高。“新的谱仪和实验终端建成后,中国散裂中子源的设备研究能力将大幅提升,实验精度和速度将大大提高,能够测量更小的样品、研究更快的动态过程,为前沿科学研究、国家重大需求和国民经济发展提供更先进的研究平台。”陈延伟说。工作人员在调试直线加速器有关设备。靶站核心。在这里,接近光速的质子束轰击重金属靶,产生中子。谱仪实验大厅局部。中子产生后,经过慢化,通过中子通道被引入谱仪。不同颜色的谱仪,有不同的用途。中国散裂中子源的环设备楼,快循环质子同步加速器位于此。(中科院高能所供图)装置简介:中国散裂中子源(CSNS)是我国首台、世界第四台脉冲式散裂中子源,是国际前沿基础研究和国家发展战略领域多学科交叉研究的大型平台。中国散裂中子源的成功建设,填补了国内脉冲中子源及应用领域的空白,技术和综合性能进入国际同类装置先进行列,显著提升了我国在相关领域的技术水平和自主创新能力,实现了强流质子加速器和中子散射领域的重大跨越,为物质科学、生命科学、资源环境、新能源等方面的基础研究和高新技术研发提供了强有力的支撑。
  • 第16届全国光散射学术会议在厦门召开
    仪器信息网讯 2011年11月26日,由中国物理学会光散射专业委员会主办,厦门大学承办,四川大学协办,厦门市政府、厦门大学化学化工学院及厦门大学固体表面物理化学国家重点实验室赞助的“第十六届全国光散射学术会议”在厦门大学科艺中心隆重召开,来自全国各地高校及科研院所的代表约320余人参加了此次会议。   会议现场   厦门大学任斌教授主持开幕式   中科院大连化物所李灿院士、厦门大学田中群院士、厦门市科技局局长李伟华博士、厦门大学副校长孙世刚教授及中国物理学会光散色专业委员会主任刘玉龙研究员等出席开幕式。开幕式由此次会议主席厦门大学任斌教授主持。   厦门市科技局局长李伟华博士   厦门大学副校长孙世刚教授   厦门市科技局局长李伟华博士及厦门大学副校长孙世刚教授分别致辞,欢迎各位代表莅临厦门参加此次学术研讨会,希望各位代表借助此次平台积极交流,促进进步,并预祝此次会议圆满成功。   中国物理学会光散射专业委员会主任刘玉龙研究员   据悉,1981年第一届全国光散射学术会议在厦大召开,中国物理学会光散射专业委员会(以下简称为:专业委员会)由此诞生,今年正值专业委员会成立三十周年庆。在过去的三十年中,专业委员会成功举办了15届全国光散射学术会议,并协助北京大学举办了第17届国际拉曼光谱大会,以及组织参加国际拉曼光谱会及亚洲光谱会。刘玉龙研究员在回顾和总结专业委员会工作时表示:“通过三十年努力,目前我国在表面增强拉曼光谱、紫外拉曼光谱、一维材料及新型材料拉曼光谱及光散射理论方面均获得系统性研究成果,得到了国外同行的关注;在深紫外拉曼光谱仪、赫兹设备及新型共聚焦拉曼光谱仪研制方面做出了国际前沿性探索研究。相信随着光散射研究及应用领域的拓展,光散射学科前景将更加光明。”   南京大学王振林教授   简短的开幕式后进入大会报告环节,南京大学王振林教授以“胶体晶体为模板的有序金属纳米颗粒制备、形貌控制及新颖光学特性”为题介绍了其研究工作。王振林教授利用表面等离激元理论及纳米微球印刷方法研究了以胶体晶体为模板的表面等激元晶体光学特性理论研究、材料设计与制备。研究结果表明,超薄介质层修饰金属颗粒有荧光和拉曼增强效应,准三维SP晶体具有共振透射和增强传感效应等。   上海大学尤静林教授   上海大学尤静林教授以“高温原位拉曼光谱及其应用”为题介绍了极端条件下的物质结构研究。据其介绍高温状态物质及其熔体结构的原位研究得到了很多领域的关注,许多常温条件下的常规分析技术都不同程度地被应用到高温状态下的实测。而显微共聚焦等技术引入有效抑制了高温热辐射背景,但光谱解析还很大程度依赖于理论技术模型,该项技术具有极大发展空间和应用潜力,但也面临诸多挑战。   仪器展览   此外,本次会议还为与会者带来物理和材料、表面增强拉曼光谱等三个分会报告及152个墙报。会议还为青年教师和学生开设4个会前拉曼实验和理论技术讲座,及设立优秀论文奖和墙报奖。会议同期举办仪器展览,18家相关厂商展示相关新产品。   合影留念
  • 业内人士再揭方便面“辐照”内幕
    本报率先独家爆出的统一和康师傅两大方便面品牌陷入“辐照门”事件后,在社会上引起高度关注。近日,有业内人士向本报进一步透露,食品辐照存在比较严重的安全问题和管理漏洞,在境内外市场,一些方便面在执行双重市场标准 而那么多企业热衷用辐照杀菌,主要是被“逼良为娼”,因为相关食品的卫生标准“太苛刻”。   方便面辐照:   “远不止统一和康师傅”   日前本报曾报道统一和康师傅两大方便面品牌,都存在料包用放射线杀菌(简称辐照)而不在外包装上标识的情况。近日,一位自称曾经在食品企业工作过的人士阿峰(化名)主动联系本报记者,表示愿意提供更多关于食品辐照的情况。据他称,方便面料包辐照在行业内已经不是秘密,“国内方便面料包(香辛料)基本上都经过辐照处理,范围之广令人咂舌,远远不止统一和康师傅两个品牌”。   为什么要辐照?“香辛料在制作过程中很容易被细菌污染,比如将辣椒加工成辣椒粉的制作过程。虽然通过加热也可以杀菌消毒,但是这样一来味道就会受到影响,所以国内几乎所有香辛料生产企业都选择以辐照这种方式来消毒杀菌。”阿峰说。   事实上,记者浏览了国内多家辐照中心的网站,发现所有中心所提供的食品辐照范围远远不止方便面的调料包。比如,许多中心资料都提及,大蒜、洋葱、土豆等蔬菜可通过辐照抑制发芽延长贮存期,然而市面上这类蔬菜却也没有任何相关标识,是否有经过辐照也成了一个谜。   但有一点是肯定的,辐照技术正大行其道。据阿峰透露,前几年各地辐照中心提供的食品辐照服务价格都非常便宜,每一吨只需要200元,后来由于越来越多企业有此需求,使得价格一度飙升至每吨1000元。   国内一些监管部门   没有专用检测仪   阿峰还表示,早在2004年、2005年前后,不少国产食品尤其是方便面在出口欧盟等地的时候已尝到了辐照的“苦头”,由于被检出经过了辐照而又未依法标识,被要求召回产品。   据了解,欧盟对辐照食品管理非常严厉,在全球范围内只认可5家辐照中心提供的服务,同时立法要求辐照食品标识。其对进口食品也必须进行辐照检测,检测结果在700单位以下的放行,700-5000单位之间的进一步检验,超过5000单位以上的立即要求企业或经销商进行召回。   中国市场上的产品怎么样?记者另从有关渠道了解到,2004年有机构曾对广州市场出售的方便面产品所做的检测,所有产品的脱水菜包、汤包和粉包都检出经过辐照(但均未在外包装上进行标识),其中检测数据最高的超过900万单位,差不多超过欧盟标准1800倍!   记者也在爱尔兰食品安全管理局网站上查到,2005年该局曾在一批未标识“辐照”的方便面蔬菜包、汤包或料包中检出辐照残留。“黑名单”上有产地为中国的“统一”(Presi-dent)和“统一100”(President Unif-100)、韩国生产的“农心”(Nong Shim)、香港地区生产的“日清”(Nissin)等。   阿峰进一步解释,大多数方便面企业都是从外面买回胡椒粉、辣椒粉、姜粉等调味料单品回厂里混合加工成调料包,然而这些调味料往往在进厂前都已经过辐照。“很多企业自己没有辐照食品检测仪,根本没办法知道哪些经过辐照。但这也不能完全怪企业,因为现在除了进出口检验检疫部门之外,连其它监管部门都还没有配有专用的检测仪,根本没办法对市场进行监管,企业自然也不会忌惮。”而且,国内虽有《辐照食品卫生标准》等法规,但其中仅规定“平均吸收剂量不得大于10kGy”,而并没有列出具体的检测手段和检测标准,这也给监管带来难度。   正因为如此,部分方便面企业开始采取“双重标准”,出口海外的产品专门找一些非辐照的食品原料,而在国内销售的产品则照用不误。然而最让人担忧的是,现在国内市场上到底有多少食品经过了辐照,由于缺乏专业的检测手段,根本无从得知。   企业为何对辐照趋之若鹜:   标准太严“逼良为娼”?   记者留意到,所有允许对食品进行辐照加工处理的国家和地区,都规定必须对辐照食品进行明确标注。比如,香港地区规定,所有储存辐照食物的容器均须清晰用英文大楷列明“IR-RADIATED”或“TREATED WITH IONIZ-ING RADIATION”及用中文列明“辐照食品”, 违法最高罚款50000美元及监禁6个月。澳大利亚、新西兰等国家,也都要求对辐照食品应在包装或容器上按规定进行标识。   即使是在辐照食品比较普遍的美国,也严格要求在产品包装上加贴国际辐射标志“radura”标识,和注明“经辐照处理”的字样。由于监管严厉,大多数食品企业不到万不得已,都不会使用辐照技术。然而,为何国内企业却对辐照趋之若鹜?   有企业人士则认为,方便面料包之所以成为最普遍使用辐照的食品,与强制性国家标准《方便面卫生标准》(GB17400—2003)中对大肠菌群的要求不无关系。标准要求,方便面(面块+调料)大肠菌群必须≤150(MPN/100g),而国外如澳大利亚、新西兰和英国等,对“即食食品”(ready-to-eat food)的相关标准中,对肠杆菌科这一近似指标的要求则将≤10000(CFU/100g)定为“满意”。   “国外的标准和国内的标准差太远。正因为国内标准太严苛,而香辛料又偏不宜加热杀菌,所以辐照就是最好的办法。哪怕想要做到无菌都可以,只需加强辐射。”该人士指出,一方面标准限制太死,但另一方面监管又不到位,所以才导致了如今大量“隐形”辐照方便面料包存在的局面,形成“逼良为娼”的局面。   -小链接   何谓辐照食品?   辐照食品是利用钴-60等放射源产生的伽玛射线,或是电子加速器产生的高能电子束,来进行加工、处理过的食品。由于电离辐射在食品中会产生辐射化学和辐射生物学效应,因此,辐照可达到抑制发芽、推迟成熟、杀虫灭菌等目的。本报6月29日在A4版独家率先报道的《“辐照食品”为何遮遮掩掩?》,披露了以统一、康师傅两大方便面料包为代表的一批食品虽经过辐照却又未依法标注,侵犯了消费者知情权。在社会上引起了强烈反响,并被各地媒体广泛转载。(本报率先独家爆出的统一和康师傅两大方便面品牌陷入“辐照门”事件后,在社会上引起高度关注。近日,有业内人士向本报进一步透露,食品辐照存在比较严重的安全问题和管理漏洞,在境内外市场,一些方便面在执行双重市场标准 而那么多企业热衷用辐照杀菌,主要是被“逼良为娼”,因为相关食品的卫生标准“太苛刻”。
  • 专家:标准线内辐照食品不影响人体健康
    据中国之声《新闻纵横》7时41分报道,河南开封杞县放射性物质钴60事件,一个多月来成为新闻热点,同时也把"辐照技术"这个陌生的专业字眼带到了公众面前。辐照--辐射的辐,照亮的照。这两个字的结合本属于核辐射的范围,可是如今,辐照这个词已经和我们吃的食品联系在了一起,于是产生了一个更新的名词:辐照食品。但是很少有人知道,自己吃的食品哪些可能就是被辐照过的? 辐照技术主要用于灭菌   辐照食品,是指用一种辐射加工技术,运用γ-射线的照射对食品进行加工处理,在强大的理化和生物效应下,对食品进行杀虫、灭菌、保持营养品质和延长保质期的特殊食物。   生活中究竟哪些食品是辐照食品?从干果果脯到水果蔬菜、从大蒜到辣椒粉、还有饭桌上的熟肉,冰箱里的冻虾仁,方便面里的调料,甚至是调理身体的中药丸,他们都有可能是辐照食品。   由于辐照食品要达到的灭菌效果,需要有放射源,所以当很多人知道自己吃下的中药丸、辣椒粉、甚至大蒜都是这种食品时,表现出的惊讶和后怕可想而知。于是不禁有人要问,为什么一定要用放射性物质进行食品的灭菌,甚至像中药丸这样的药品也要加入其中。一位长期从事中药生产管理的业内人士介绍了其中的缘由:“其实外人很陌生,干这个工作的人并不陌生。中药材本身从地下挖出来通过人的加工,在这个过程当中他有很多的细菌在里面,包括大肠杆菌和很多的杂菌。这些东西通过粉粹通过清洗晾干烘干,打成粉。打成粉以后装上袋子,送到农科所进行钴60灭菌。这在过去是不存在的,过去用硫磺熏,这样去一些虫子,不让他发霉变质。这个粉子钴60灭完以后回到工厂再加工成蜜丸,蜜丸(中药丸)蜡封以后装上盒,再重新装箱以后整箱的再去一次钴60,往往这样出来的产品没有菌了,到现在还是用这种方法。”   各国的辐照食品标准不一   世界上第一家商业食品辐照工厂1991年就在美国佛罗里达州注册。截至目前,世界上42个国家正式批准了240多种辐照食品的标准。有些国家则严格禁止辐照食品。   在我国,目前大约有近百种辐照食品通过了鉴定,已经有28个省市自治区建立了50多个辐照装置,专业的大型辐照工厂也已经达到了80-100家左右。2005年我国全年辐照食品产量就已达到世界辐照食品总量的三分之一,堪称辐照食品产量大国。   专家:标准线内的辐照食品安全   但是,河南钴60事件让辐照技术的应用范围浮出水面,也让人们的心提了起来。放射性物质辐照过的东西,人吃了到底安全不安全?下面我们就来连线中国疾病控制中心营养与食品安全所罗雪云教授:   主持人:从您的研究来看,我们想知道,辐照食品到底对我们身体健康有没有危害呢?   罗雪云:实际上这个辐照食品,世界各国对它的安全性都非常的关注。刚刚是提到了美国,从1955年就开始研究它的安全性,做一般的要求,辐照食品要求进行两种动物经过两年的实验研究,包括它的疾病毒性,致癌性、致畸性和致多变性,还有它的生长实验,一共要做4代甚至7到8代的动物实验,所以从动物实验上来讲是这样的,我们国家从50年代就开始进行了辐照食品的毒性研究,70年代在国家科委组织领导下,在全国范围内,比如说北京、上海、天津、四川、河南、山东、广东都进行了大量的研究工作,特别要提出来的就是我们卫生部组织先后在刚刚我们提到的那些省市自治区、直辖市进行了大量的人体实验,事实实验,就是吃辐照食品,一共做了将近450个人,试用时间从7周到15周。就是吃了一个50天到三个半月,吃的辐照食品的品种一共有35种,辐照食品占膳食食品的19%到70%,在做实验的期间,大米可以吃到一斤每天,就是辐照过的大米,所以那么进行了包括血液生化、还有染色体分析、肝肾的扫描进行了全项目的检验,都没有发现有什么问题。所以根据世界卫生组织,根据世界各国都进行了大量的研究,所以他们认为,得到的结论是10个kGy以下的产品,不需要再做毒理学的安全性评价,我们国家定的辐照的剂量,辐照食品的标准都在10个kGy以下,比如说肉、熟肉都是在8个kGy。   主持人:就是说在标准线以下的都是属于安全的?   罗雪云:对。   主持人:去商场,到超市,我们究竟怎样才能辨别出哪些食品是经过了辐照?   主持人:由于经过了辐照的食物口味基本不会改变,感观上也与一般食品没什么两样,仅凭肉眼您可能无法分清辐照食品与非辐照食品。所以,国家强制规定,经电离照射后的食品,必须在包装上加贴标识和中文解释。但现实是有令不行,我们发现,绝大部分辐照食品并没有加贴标识明示。所以,我们在提示大家购物时关注包装上辐照标志的同时,也要提醒广大商家别忘了在您的产品上亮出"辐照食品"的身份!
  • 新西兰对辐照食品提出标签要求
    近日,新西兰食品安全局对在新西兰销售的经辐照的,或含有辐照成分或组件的食品提出了新要求:   • 销售经过辐照的食品必须持有辐照食品澳大利亚和新西兰食品标准法典标准1.5.3规定的许可证。   • 食品必须符合法典中的标签要求(特别是标准1.5.3-辐照食品中的要求)   • 对于进口新鲜农产品,允许辐照,但是必须遵守有关该食品相应的生物进口卫生标准。新西兰初级产业部(MPI)负责生物进口卫生标准的制定。   所有经过辐照,或含有辐照成分或组件的食品,必须标记或有标签显示或附着相关声明其已接受电离辐射。   该标签要求适用于从进口到新西兰到销售给消费者这两个时间点内所有的包装食品。   如果该食品通常不要求贴有标签,那么强制性标签声明必须在销售时显示或另附标签。   虽然要求进行标记与安全原因无关,但进行辐照标签给消费者提供了选择。   标签上的语句没有规定,例如:   • “进行电离辐射处理”   • “辐照(食品名称)”   除了强制性标签,还可使用辐照的国际性符号 文章转载自:浙江检验检疫局
  • 辐照糖类食品的快速鉴别检测方法
    辐照糖类食品的快速鉴别检测方法一、实验目的本研究旨在开发一种基于超微弱化学发光技术的快速鉴别辐照糖类食品的方法。通过研究葡萄糖和蔗糖等糖类在不同辐照剂量下的化学发光特性,并探讨水分和辐照剂量对化学发光效应的影响,建立一种无需对照样品即可有效鉴别辐照食品的检测方法。二、实验使用的仪器设备和耗材试剂1. 仪器设备(1). 超微弱发光测量仪:BPCL-IV型,用于测量样品的化学发光强度。(2). 放射性源及辐照设备:用于样品的辐照处理。(3). 分析天平:用于精确称量样品质量。(4). 恒温室:用于控制样品测量时的温度2. 耗材试剂(1). 葡萄糖:真空包装的食品级葡萄糖。(2). 红蔗糖:真空包装的食品级红蔗糖。(3). 白蔗糖:真空包装的食品级白蔗糖。(4). 检测液:实验室自制,用于激活化学发光反应。三、实验过程1. 样品准备(1). 从食品超市购买真空包装的葡萄糖、红蔗糖和白蔗糖各500克。每种糖样品分成25克一组,封装在聚乙烯(PE)袋中。(2). 样品的水分活度约为15%。2. 样品辐照处理(1). 样品进行辐照处理,辐照剂量设定为0、0.1、0.3、0.5、0.7、0.9、1.5、3 kGy等8个剂量,剂量率为每小时1 kGy。(2). 辐照后的样品在常温(20-27°C)下存放10天后进行测量。3. 超微弱发光分析(1). 使用BPCL-IV型超弱发光仪进行发光分析。测量室温度设定为(35±0.5)℃,探测器电压设定为800V。(2). 每种样品称取0.05克,放入测量池中进行发光测量。(3). 发光测量包括两个步骤:第一步在干燥状态下测量100秒,记录每秒的光子计数;第二步在测量30秒后自动加入2 mL检测液,继续记录光子计数。四、实验结果与讨论1. 不同辐照剂量对化学发光的影响图1A-C分别显示了辐照后的红蔗糖、葡萄糖和白蔗糖在不同辐照剂量下的化学发光强度。实验结果表明,在干燥状态下,辐照糖类的化学发光强度与未辐照样品相近,光子计数波动不大。然而,当加入检测液时,化学发光强度显著增加,且随着辐照剂量的增加,光子计数呈现出线性增长的趋势。特别是在0.7 kGy以下,光子计数的上升速度较快,提示该方法在较低辐照剂量下具有较高的灵敏度。这些结果表明,化学发光效应与辐照剂量密切相关,可以通过测量光子计数变化来估算样品的辐照剂量。图1. (A) 辐照对红蔗糖化学发光的影响. (B) 辐照对葡萄糖化学发光的影响。(C) 辐照对蔗糖化学发光的影响.2. 水分对化学发光的影响图2D-F展示了加入检测液后的化学发光动态变化情况。结果表明,当样品遇水后,超微弱发光效应显著增强,光子计数迅速上升并达到峰值,随后逐渐回落到干燥状态时的水平。这一现象表明,糖类样品中的自由基在干燥状态下未被激活,而在加入水分后,自由基与检测液中的水分子发生反应,释放光子。这一特性为辐照糖类食品的快速鉴别提供了有效的手段。图2. (A) 未加检测液的辐照葡萄糖的化学发光动态变化图. (B) 未加检测液辐照白糖的化学发光动态变化图. (C) 未加检测液检测辐照红蔗糖的动态变化图. (D) 加检测液检测辐照葡萄糖的化学发光动态变化图. (E) 加检测液辐照白蔗糖的化学发光动态变化图. (F). 加检测液辐照红蔗糖的化学发光动态变化图.3. 含糖食品辐照检测应用实例为验证该方法在实际应用中的可行性,对辐照处理后的奶粉和饼干进行了检测。图3A和图3B显示了未加入检测液时,辐照奶粉和饼干的化学发光动态变化,光子计数几乎没有显著变化。图3C和图3D显示了加入检测液后的化学发光动态变化,辐照样品表现出明显的光子跃迁峰。这一结果表明,该检测方法不仅适用于纯糖样品的检测,也可有效应用于含糖食品的辐照鉴别。图3. (A) 未加检测液检测辐照奶粉的化学发光动态变化图. (B) 未加检测液检测辐照饼干的化学发光动态变化图. (C) 加检测液检测辐照奶粉的化学发光动态变化图. (D) 加检测液检测辐照饼干的化学发光动态变化图. 五、结论本方案提供了一种基于超微弱化学发光技术的快速鉴别辐照糖类食品的方法。实验结果表明,辐照后的糖类样品在加入检测液后会产生显著的化学发光效应,且发光强度与辐照剂量密切相关。该方法无需对照样品即可实现辐照食品的快速鉴别,具有良好的实用性和推广前景。本方案为食品辐照鉴别提供了一种新颖、有效的技术手段。**因学识有限,难免有所疏漏和谬误,恳请批评指正**资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • 第21届国际光散射年会将于2010年10月在美国召开
    第二十一届国际光散射年会将于2010年10月19~20日在美国加州Santa Barbara 市Four Seasons Biltmore Resort举行。 本次大会由美国wyatt技术公司主办,旨在促进光散射在各领域中的发展与应用,增进用户相互交流,共同探讨光散射给我们实验室带来的巨大变革。其主题涵盖了wyatt技术公司动态光散射仪(DynaPro)、静态光散射仪(DAWN系统)、在线粘度计(ViscoStar)以及场流仪(Eclipse AFFF)等仪器在高分子、生物医药、化工等领域的应用情况。 其中部分报告主题如下: Dr. James Burns, Senior Vice President and Head of Drug and Biomaterial R&D, Genzyme Corporation "Light Scattering and Product R&D at Genzyme" Professor Angela Gronenborn, Dept. Head Structural Biology and Rosalind Franklin Chair, University of Pittsburgh "Shining Light on Protein-Protein Interactions: Synergy Between Scattering and NMR" Professor Robert Grubbs, Victor and Elizabeth Atkins Professor of Chemistry, California Institute of Technology "Synthesis of Polymers of Precise Structures Using the Olefin Metathesis Reaction" Professor Bruce Hamaker, Director Whistler Center for Carbohydrate Research, Purdue University "Application of Light Scattering Analysis to Changes in Food Carbohydrate Structures" Professor Anton Middelberg, Director Centre for Biomolecular Engineering, University of Queensland "High-Resolution Quantitative Analysis of Compositionally Homogeneous Biomolecular Assemblies That Encode Quaternary Complexity" Dr. Anil Patri, Deputy Director Nanotechnology Characterization Laboratory, National Cancer Institute at Frederick "Light Scattering Application in Cancer Nanotechnology" Professor Andreas Plückthun, Biochemisches Institut, University of Zürich "Light Scattering as an Essential Tool in Protein Engineering" Dr. Reb Russell, Associate Director Protein Therapuetics Development , Bristol-Myers Squibb Co. "The Use of Light Scattering for Protein Therapeutics' Characterization and Process Development" 欲了解详情请登录: www.wyatt.com www.wyatt.com.cn
  • 科学家辐照缺陷影响热离子发电器件石墨烯电极功函数研究获进展
    近期,中科院合肥研究院核能安全所在辐照缺陷影响热离子发电器件石墨烯电极功函数研究方面取得新进展,研究成果发表在国际材料薄膜领域期刊 Applied Surface Science 上。   石墨烯作为微型堆热离子发电器件电极涂层材料具有巨大的应用潜力,能够显著提升电极表面的电子发射能力。热离子发电器件在服役过程中,电极材料将面临高能粒子的辐照作用,早期的理论计算和实验研究表明,在石墨烯内部辐照诱导的缺陷类型主要是Stone-Wales缺陷、掺杂缺陷和碳空位等。缺陷的产生将会影响电极间隙内碱金属和碱土金属在石墨烯表面的吸附性质,进而改变石墨烯涂层的电子发射性能(功函数)。   针对上述问题,科研人员通过第一性原理计算方法在原子尺度上研究了缺陷石墨烯表面碱金属和碱土金属的吸附和迁移行为。研究结果表明:(1)石墨烯表面缺陷位点作为陷阱对金属原子具有捕获作用,Stone-Wales缺陷和碳空位缺陷附近的金属原子扩散受到了严重的阻碍,在掺杂B或O的石墨烯表面,金属原子迁移势垒也有不同程度的升高;(2)Stone-Wales缺陷、碳空位缺陷及掺杂石墨烯的表面功函数均显著增加,电子发射能力明显降低,这主要归因于电偶极子形成概率的降低以及金属内聚能的增加。本研究工作为石墨烯涂层材料在反应堆热离子发电器件中的应用提供了理论指导。   上述研究工作理论计算部分在合肥先进计算中心完成。图1 热离子能量转换示意图图2 碱金属和碱土金属在原始和含氧缺陷石墨烯表面的迁移行为
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制