当前位置: 仪器信息网 > 行业主题 > >

中空纤维超滤设备

仪器信息网中空纤维超滤设备专题为您提供2024年最新中空纤维超滤设备价格报价、厂家品牌的相关信息, 包括中空纤维超滤设备参数、型号等,不管是国产,还是进口品牌的中空纤维超滤设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中空纤维超滤设备相关的耗材配件、试剂标物,还有中空纤维超滤设备相关的最新资讯、资料,以及中空纤维超滤设备相关的解决方案。

中空纤维超滤设备相关的资讯

  • 上新!赛多利斯推出RC(再生纤维素)膜超滤管
    p style=" text-align: justify text-indent: 2em " 2020年8月31日,上海 —— 国际领先的制药和实验室设备供应商赛多利斯中国公司宣布,推出新一代RC(再生纤维素)膜超滤管Vivaspin& reg Turbo 15 RC。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 529px height: 300px " src=" https://img1.17img.cn/17img/images/202009/uepic/87b21663-7234-43d7-8ea0-c0a5b773a535.jpg" title=" Vivaspin& reg Turbo 15 RC.JPG" alt=" Vivaspin& reg Turbo 15 RC.JPG" width=" 529" height=" 300" / /p p style=" text-align: center " RC(再生纤维素)膜超滤管Vivaspin& reg Turbo 15 RC /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 作为蛋白质相关研究的基础耗材,Vivaspin& reg Turbo 15 RC 超滤管秉承赛多利斯超滤管一贯的高流速、实用、简洁的设计风格,专注于满足实验室蛋白质、病毒等小分子样品的浓缩和缓冲液置换。Vivaspin& reg Turbo 15 RC 系列超滤管将作为PES(聚醚砜)膜和hydrosart膜超滤管的重要补充使赛多利斯成为目前市场上超滤管膜材质最全的供应商,满足生物和医学实验室各种样品的不同需求。 /span /p p style=" text-align: justify text-indent: 2em " 蛋白质的性质多种多样、带电性质不同、缓冲液不同,造成其适用的过滤膜材质也不同。选择合适的膜材质,才能得到最佳的过滤速度和回收率。赛多利斯全面的膜材质和截留分子量选择方案,将帮助用户找到最适合自己珍贵样品的超滤管型号。 /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo 15 RC 超滤管继续采用专利设计的尖角死体积技术,让样品收集更加方便。Turbo优化的膜高度、内部坡度和双片膜设计,保证快速浓缩最后几毫升样品,可以大幅缩短离心时间。此外Turbo的pp外壳和表面处理,保证在极端温度下也不会开裂,并且兼容性优异。 /p p style=" text-align: justify text-indent: 2em " 从事生命科学和医学研究的科学家们,对样品污染问题越来越关注,并且研究的样品也日趋多样化。这就要求超滤管不仅可以节省研究者的时间,还要具有稳定的质量和优异的回收率。正是基于这样的需求,Turbo 系列超滤管将RC膜和PES膜双剑合璧,提供全面且表现优异的超滤解决方案。 /p p style=" text-align: justify text-indent: 2em " strong Vivaspin& reg Turbo 15 RC超滤管的主要特性和优势包括: /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 高流速和绝佳回收率 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC优化的管和膜高度设计,实现了快速的离心过滤速度。同时,秉承Vivaspin& reg Turbo系列膜和外管的平滑融合工艺,在保证过滤速度的同时也能兼顾回收率。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 舒适方便的设计 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC秉承了Vivaspin& reg Turbo系列专利的尖角死体积回收器,让样品的回收更加方便可控。同时,外管上增加的刻度标识,可以更加精确的控制浓缩倍数和样品体积,让样品浓缩和缓冲液置换更加容易控制和记录。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(165, 165, 165) " strong 稳定的质量和安全性 /strong /span /p p style=" text-align: justify text-indent: 2em " Vivaspin& reg Turbo RC革命性的应用了耐腐蚀材料,不易受温度影响,没有胶黏剂,可以有效减少因为保存温度变化而导致的裂管,也大大降低了样品污染的可能性。对于有严格分析测试要求的珍贵生物样品,安全性大为提高。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) background-color: rgb(255, 255, 0) " strong 关于赛多利斯 /strong /span /p p style=" text-align: justify text-indent: 2em " 赛多利斯集团是国际领先的生命科学研究及生物制药行业的合作伙伴,包含两大业务部门:实验室产品与服务事业部和生物工艺事业部。实验室产品与服务事业部通过创新型实验室仪器及耗材,专注于为实验室研究、制药和生物制药的质量保证以及学术研究机构提供产品和服务。生物工艺事业部拥有广泛的产品组合,主要致力于一次性使用解决方案,帮助客户安全有效地生产生物技术药物和疫苗。截止2019年末,集团在全球设有约60个生产和销售基地,拥有9,000多名员工,所服务的客户遍及世界各地。 /p p br/ /p
  • 超滤膜水通量测试的经典装备完美升级
    如果您用过Amicon?超滤杯,您一定在进行大体积样品( 50-400m L) 的大分子溶质分离时把Amicon?超滤杯作为首选工具。或者您是膜通量分析方面的行家,您也会习惯于将待测的膜片放入这个装置中进行测定。 饮用水、污水处理、海水淡化过程中,膜污染导致通量下降或膜压差上升会造成成本上升,因此对影响膜通量的因素(样品成分、预处理、压力、时间、温度、膜材质或处理等)进行分析以及新型膜材质开发(滤膜表面添加石墨、纳米材料等成分)对于提高膜通量有一定意义。而在此过程中,常用的研究模型是超滤杯或简易超滤装置。另外,在药物、饮料、果汁等的浓缩过程中,采用不同材质的膜会产生不同的通量以及浓缩效果,考察不同材质膜的效果以及开发新材质膜时的一个重要指标是膜通量。 通常,膜通量测试是采用简易超滤装置(一次性水杯+滤膜),由于此设备容易发生渗漏,手工制作带来不可避免的误差,因此更多实验者选择品质更可靠的超滤杯。使用超滤杯,一定压力下,每隔一定时间检测通过膜的流体量: 采用超滤杯进行膜通量测试的方法已经很成熟,默克密理博的Amicon超滤杯自1965年量产以来,已经成为膜通量测试的金标准。 Merck Millipore提供两种类型的超滤杯(stirred cell和solvent-resistant stirred cell),分别对应不同的最大压力,体积、膜面积,客户可根据实验条件选择参数合适的超滤杯进行膜通量实验。 第二代Amicon 搅拌式超滤杯新特点: 1.全新设计的盖子,易于开合和组装 2.管路连接更方便 3.压力操作时更安全、稳定,无泄漏 4.结构紧凑节省占用台面空间 5.更多配套膜片选择 6.搅拌棒设计更合理,保护宝贵的超滤膜 7.详细的操作视频和说明书,很快学会使用Amicon 超滤杯适用如下使用环境: 1.环境科学与工程学院、废水处理/水净化实验室 2.材料研究实验室、膜开发实验室 3.药企、食品饮料行业的研发部门。??点此查看详细介绍
  • 流过生命之网:切向流超滤技术解锁GLP-1药物制备新境界
    2023年年底,Science期刊将GLP-1类药物评为年度十大科学突破(Science’s 2023 Breakthrough of the Year)之首,同时,Nature也将GLP-1研究先驱 Svetlana Mojsov 评为年度十大人物之一。在商业层面,GLP-1类药物也无愧年度明星,2023年,诺和诺德旗下王牌产品司美格鲁肽大卖211.57亿美元,排名全球第二,距离全球药王席位仅一步之遥。在治疗2型糖尿病中,GLP-1类药物因其卓越的降糖效果,成为了糖尿病治疗的新宠。然而,GLP-1的快速降解特性在一定程度上限制了其作为药物的广泛使用。为了克服这一挑战,在GLP-1药物的下游工艺中,切向流过滤技术(TFF)扮演了至关重要的角色,它通过精密的过滤过程,有效延长了GLP-1类药物的稳定性和半衰期,从而为患者提供了更为安全和有效的治疗方案。一、关于GLP-1GLP-1全名胰高血糖素样肽-1,是一种由肠道细胞分泌的激素,它在餐后迅速释放,刺激胰岛β细胞分泌胰岛素,从而降低血糖。GLP-1的作用不仅限于此,它还能减缓胃排空速度,增加饱腹感,减少食物摄入,从而帮助控制体重。然而天然的GLP-1进入体内后并不稳定,很容易被快速分解,因此人们一直在研发改进,想要生产一种长效的GLP-1药物。二、关于GLP-1药物GLP-1药物是由多个氨基酸通过肽链链接成的多肽类药物,其生产制备是一个复杂的过程。分为生物发酵合成和化学合成两类。生物发酵合成通过大肠杆菌或酵母发酵表达包涵体,然后经过一系列收菌、破菌、变复性、澄清等步骤。化学合成法则通过固相或液相合成技术,将氨基酸逐个添加到生长中的肽链上。无论哪种方法,最终都需要通过层析、超滤等工艺步骤来纯化和调整药物的浓度。*科普小贴士:GLP-1受体激动剂是一类能够模拟GLP-1作用的药物,它们与GLP-1受体结合,发挥降糖作用。与天然GLP-1相比,这些激动剂具有更长的半衰期,能够更持久地控制血糖水平。三、切向流过滤在GLP-1药物制备中的应用1、膜材质的选择在GLP-1的化学合成工艺以及后续的化学修饰中,通常会需要使用有机溶剂溶解反应物和产物,加速反应进程并促进产物的分离与纯化。常见的有机溶剂包括甲醇、乙醇、丙酮和二甲基亚砜等。在这些溶剂中,纤维素材质展现出比聚醚砜更佳的兼容性,同时,纤维素对蛋白质的吸附性较低,这使得再生纤维素(RC)成为GLP-1超滤/透析(UF/DF)工艺中的首选过滤材质。2、膜孔径的选择GLP-1目标多肽的分子量为3.4KD,在超滤过程中,选择截留分子量的标准通常是目标分子量的1/3至1/5。基于这一原则,我们推荐选用1-2KD截留分子量的膜来进行浓缩和缓冲液的置换,以确保多肽的完整性和活性。3、下游工艺运用从工艺流程可看出,UF/DF参与了GLP-1下游工艺的很多流程,不仅起着浓缩、缓冲液置换等功能,还有效减轻了后续层析工艺的压力,提高了整体生产效率和产品质量。GLP-1药物和切向流过滤技术的结合,不仅提高了糖尿病治疗的效率,也为患者带来了更安全、更便捷的治疗选择。随着科技的不断进步,我们有理由相信,这一领域将不断涌现新的突破,为糖尿病患者带来更多的希望和光明。
  • OPTON微观世界|电镜下的净水器滤芯
    随着全民健康消费理念的日益普及,健康类家电需求升温,其中净化类型的家电,如家用净水器等。近年来呈现爆发式增长。虽然净水器进入我国只有短短二十余年的历史,但是其发展速度却非常惊人。净水器最主要的作用就是改善自来水,能够生饮、替代桶装水、更廉价、更卫生。净水器的关键部件就是滤芯。不论是什么品牌的净水器,其功效皆由滤芯的种类和品质决定。另外很多小区周围水站的桶装水,也是由自来水经过滤芯过滤得到的。客户订A品牌的水,水站就用A品牌的的滤芯过滤水,订B品牌的水,就用B品牌的滤芯过滤。所以滤芯是净水的关键。那么市场上不同类型的净水器太多了,要怎样区分怎样选择呢?这里小编带大家梳理一下,关于净水器滤芯的小知识!其实呢,净水器的主要滤芯主要有这几种类型:PP棉,活性炭,微滤MF/超滤UF/纳NF滤膜,反渗透膜(RO)。其中PP棉滤芯主要拦截大颗粒污染物,活性炭可以吸附异味,而更关键的技术则在于滤膜类的滤芯。不同分离膜滤芯的孔径大小和可透过的物质,如下图所示:小编特地采购了PP棉滤芯、中空纤维滤芯以及反渗透滤芯,将他们剖开,用电镜来解析他们的微观形貌。PP棉空隙尺寸较大,所以只能拦截较大的颗粒物,如泥沙、隐孢子虫、毛发、红虫和一些悬浮物。 接下来流经活性炭,吸附水中异色异味,祛除余氯。之后流经下一级滤芯---微滤或超滤膜滤芯。根据膜组件的结构,这类膜有中空纤维状式、管式和平板式等,小编买到了是中空纤维膜,一般净水器中多用这种结构。
  • Millipore超滤原理、操作及工艺优化交流讨论会
    北京昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第二季系列活动之东北行 &mdash &mdash Millipore超滤原理、操作及工艺优化交流讨论会 2011年11月17、18日,北京昊诺斯科技有限公司及同一集团下负责仪器生产的北京鼎昊源科技有限公司,携手Merk-Millipore,在中国农业科学院哈尔滨兽医研究所和东北农业大学举办了两场&ldquo Millipore超滤原理、操作及工艺优化交流讨论会&rdquo ,这是继去年昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第一季东北行活动在吉林长春举办后,又一次走进了东北,选择了北国冰城黑龙江省哈尔滨市。 本次活动邀请了Merk-Millipore生物制药工艺部行业市场主管陈建锋及其台湾同事郑慧中、销售主管林红波,从超滤的原理、膜的特性及选择、超滤操作、工艺优化、除菌及除病毒过滤、搅拌技术、一次性产品等方面做了介绍。Merk-Millipore生物制药工艺部的销售经理戴欣和黑龙江地区的销售李鹏也受邀出席了本次讨论会。在讨论会进行过程中,前来参加的老师、学生及企业工作人员和Merk-Millipore的专家们进行了友好的互动,就工艺优化、除菌过滤、与传统超滤技术的对比等方面展开了讨论,与会人员表示收获颇多。 中国农业科学院兽医研究所讨论会现场 东北农业大学讨论会现场
  • 北京昊诺斯科技有限公司在昌平生命科学园举办密理博超滤知识讲座
    2011年4月20日,在默克密理博的支持下,北京昊诺斯科技有限公司在昌平生命科学园万泰药业会议室举行了密理博超滤操作及工业优化交流讨论会。此次研讨会由默克密理博行业市场主管-工艺解决方案部陈建锋主讲,为各位研究人员讲解超滤的各种基础知识与下游分离纯化工艺,并为各位与会者提供精美礼品,大家纷纷表示此次讲座受益匪浅,希望以后能多举办此种类型讲座。 照片 北京昊诺斯科技有限公司系致力于为生命科学、生物检测、生物工程、药物研发等领域提供先进的实验室仪器设备及多层次服务的高科技公司。我们代理的国外产品绝大部分是专业领域内的世界一流品牌,主要有:美国赛默飞世尔公司索福,贺利氏品牌离心机、培养箱、生物安全柜、超低温冰箱等各类产品;默克密理博公司纯水、超滤、层析系统、流式细胞仪、完整性测试仪、生物反应器、多功能液相芯片平台;德国QIAGEN荧光定量PCR仪;日本Malcom超微量紫外分光光度系统、全自动核酸提取仪;泰世达系列实验室冻干机等。同时,同时,我们还销售同一集团下属的制造子公司北京鼎昊源科技有限公司生产的多种自产仪器,包括凝胶成像系统,各种小型台式离心机,恒温金属浴,各类振荡器,磁力搅拌器,组织研磨仪,及原位杂交工作站等等.
  • 密理博推出购超滤管赠贴纸换咖啡券活动
    即日起凡购买Amicon Ultra-0.5超滤管一支,即可获赠Amicon贴纸一枚 集满10枚贴纸,可兑换星巴克咖啡券一张,在全国各大星巴克门店,换取香浓的星巴克咖啡一杯(中杯),尽享午后无限惬意!   离心时间更短!   ― Amicon Ultra-0.5只需一半的Microcon离心时间就能取得相当的浓缩效果   ― Amicon Ultra-0.5有双倍于其它品牌离心超滤管的膜面积,当然效率更高   回收率更高!大于90%   浓缩倍数更高!25倍 ~ 30倍   For protein Applications   直接沿用之前使用Microcon时的MolecularWeight CutOff (MWCO)   For DNA Applications - Large DNA: Plasmids, BACs, genomic DNA   直接沿用之前使用Microcon时的MolecularWeight CutOff (MWCO)   For DNA Applications – Small DNA: PCR (primer removal)   原来使用Microcon-100 或 - 50KDa,现在改用Amicon Ultra 0.5-30Kda
  • 苏州大学王殳凹团队成果:新型超滤分离法“降伏”核废料镅
    近日,苏州大学放射医学与辐射防护国家重点实验室王殳凹教授团队联合中外科研团队,研发了一种新型超滤分离方法,有望用于乏燃料后处理、放射性污染控制、放射性同位素分离纯化、放射化学诊断分析等重要任务。相关研究成果4月20日发表在《自然》期刊上。  核电是人类应对能源短缺以及碳排放问题的重要途径。但是,如何安全高效处理处置核燃料循环所产生的强放射性核废料,仍是尚未解决的世界性难题。相关研究表明,次锕系元素镅是核能发电过程的副产物,也是核废料长期放射毒性的主要来源。核废料经过铀钚分离后,其具有多个长半衰期放射性同位素(如镅-241和镅-243)。  为了将镅进行高效分离并通过中子嬗变使其变为低毒性、短寿命的核素,科学家将目光集中在与镅的化学性质十分相似的三价镧系元素上,因为镧系元素作为中子毒物会显著影响镅的嬗变效率。理想的方法是将三价镅氧化到六价,利用六价镅与三价镧系在配位构型上的差异实现分离,可有望从根本上解决镧锕分离难题。  但六价镅在传统萃取分离过程中仅能存在数秒时间,从而给分离带来困难。因此,国际上还没有能让六价镅保持稳定的可行性方法。  为了解决这一核废料处置中的重大技术瓶颈问题,王殳凹团队从六价镅的配位化学性质出发,设计了一例可精准匹配六价镅配位构型的无机缺位多酸簇合物。该多酸簇合物通过与六价镅离子间的强络合作用形成水溶性纳米级复合物,从而率先实现了水溶液中六价镅的超长时间稳定。  据此,研究人员发展出一种基于镧锕物种尺寸差异的新型超滤分离方法,获得了高达780的二元镧锕单步分离因子和91%的单步镅回收率。  这是迄今为止国际上报道的六价镅和三价镧系之间的最好分离效果。王殳凹教授表示,此方法具有高效、安全、环境友好、快速且低能耗等系列优势,具有良好的应用前景。
  • 借助中空AFM悬臂梁实现亚微米-亚毫米金属微结构的增材制造
    目前,微米尺度金属结构的增材制造主要采用三种策略:微立体光刻模板的金属化、金属材料的转移-烧结以及原位金属合成。其中,基于金属离子局部电化学还原反应的电化学沉积3D打印技术采用原位金属合成的方式,无需进行任何后处理。该技术使用金属盐溶液作为原料,在打印过程中,金属盐溶液通过打印喷嘴喷射到导电基底上,当溶液接触到基底时,金属离子发生还原反应形成金属沉积层。本研究论文介绍了一种基于力学控制的金属电化学沉积3D打印技术,该技术采用中空原子力显微镜(AFM)悬臂梁在标准三电极电解池中局部喷涂金属离子,从而发生局部电镀反应。中空悬臂梁偏转反馈信号可以实时监测体素的生长,进而实现打印过程的自动化;而且该技术无需进行参数校准,可在导电基底任意位置进行打印。基于以上优势,该技术可自动成型任意形状的3D结构。研究人员利用该技术打印了两个不同比例的大卫雕像铜复制品。虽然铜是最合适的电沉积金属,但该技术同样适用于可宏观电镀的所有金属。 图1. 基于力学控制的电化学沉积3D打印技术制备两个并排支柱的示意图图2. 比例为1:10000和1:70000的大卫雕像复制品的SEM图。a-c:比例为1:10000、高度为700μm的复制品;图a插图、图b插图及d图:比例为1:70000、高度为100μm的复制品
  • 如何选择仪器进行集中空调通风系统检测
    近年来,办公室、写字楼、商场和宾馆都已较普遍地采用了集中空调通风系统。统计发现,20世纪90年代后建成的写字楼、饭店、商厦玻璃窗都是封闭的,可开启的窗户没有了。换气通风均靠空调系统,如果空调系统的新风量不符合卫生标准要求,很难保证室内空气质量,极易引起人群发生军团病、过敏性疾病等。由于有些使用集中空调系统的单位为了省电,减少空调通风次数,致使新鲜空气不足。更重要的是,有些物业只注重集中空调的外部清洁,即清洗通风口,而对黏附在通风管道内部的灰尘,甚至死苍蝇、蟑螂、老鼠却无可奈何。管道内藏污纳垢,成为病菌生长的温床。所以,我们更要充分的认识集中空调通风系统污染给我们造成的危害。  集中空调不及时清洗带来的危害的有:  1.空气置换效果较差  2.积尘诱发细菌滋生  3.寄生物和昆虫的摇篮  4.滋生细菌,传染疾病  5.风阻加大、损耗能源  因此,提高公共场所集中空调通风系统的卫生质量,对减少传染病通过公共场所传播的机会,保障广大消费者的身体健康有着重要的作用。因此,对公共场所集中空调系统卫生指标需要进行经常性的监测,并对空调通风系统进行定期的消毒、除尘、清洗,以保证公共场所的空气质量。  为此,国家卫生部还先后颁布了《公共场所集中空调通风系统卫生管理办法》,《公共场所集中空调通风系统卫生规范》,《公共场所集中空调通风系统卫生学评价规范》,《公共场所集中空调通风系统清洗规范》明确规定了空调系统卫生指标,检验检测方法,空调系统净化消毒装置的检测方法,空调通风系统卫生学评价等详细内容。  保证公共场所集中空调通风系统通风质量,执行国家卫生部的管理办法,达到规范要求,主要措施归纳为两个方面:1.监督监测;2.综合治理。  依据公共场所集中空调通风系统的卫生管理办法和三个规范要求,结合仪器的性能指标,考虑现场快速检测、使用方便、便于携带、易于维护、稳定可靠、智能化、系统集成和国际国内领先技术等多方面因素,就实施公共场所集中空调通风系统的监督监测和综合治理所需仪器,我们在此与各位领导、专家来讨论如何选择和优化配置仪器。以下是我们推荐的相关产品。  一、集中空调通风系统新风量检测仪器  卫生规范中规定新风量卫生要求为≥10~30(m3/h.人)(不同的公共场所)  检测方法:风管法,即直接在新风管上测定新风量。  选用仪器:皮托管法,风速计法(当风管内的动压值小于4Pa时,可用热电风速仪测量风速)  1、 新风管内的新风量测量  新风管的风量是通过某一断面的面积与该断面的平均风速计算出来的。  美国TSI公司生产的9555型多参数通风表是测量新风管新风量的最佳选择。  它具备如下主要特点  1.手持式仪器,携带方便;  2.操作简单:直接将风速探头插入新风管就能自动计算平均风速并根据输入的风管截面积直接显示风量;  3.具有差压检测和风速检测功能,当风管内的动压值大于4Pa时可采用皮托管法;当小于4Pa时用风速计法检测风量。完全适合各种风管内的风量的检测;  4.提供温度和湿度测试功能,同时支持露点温度测试功能,可有效监测管道内的露点温度避免管道内结露从而滋生微生物。  方便性:仪器具有可拉长带有刻度的风速探头,拉杆上的标尺可以测量风管的尺寸并可直接输入仪器,仪器直接显示出新风管内的新风量。  智能化:包含 TRAKPROTM 和 LogDat2TM软件,用户可自定义测试数据组的名字,手动或连续的数据记录功能。  多样化:可选配差压传感器,配备有多个宽量程、插拔式探头。用户可根据实际测试的需要,从多种具有不同功能的探头中选用最合适的。只需简单的插上探头,即可实现多种测试。这些探头可测量风速、温度、相对湿度、CO 和 CO2。可以计算的参数包括风量、热流、紊乱度、湿球温度和露点温度。  2、出风口的风量测量  美国TSI公司8371型和8375M型套帽式风量罩是非常有效的选择。  直接读数:避免传统的风管截面测试风量的繁琐的工作,同时由于出风口的湍流使在出风口测试风速在计算风量无法实现,选择套帽式风量罩则避免该问题能直接测到风量。  便于携带:TSI 8375M是一种在风口可以快速读取空气流速流量的多功能电子检测仪。8375M套帽风量罩采用人体工学设计,重量轻便,便于个人操作携带,节省测量时间。  多样化:丰富的可选的附件,满足多种参数测量的要求,可分离的数字压力计配合皮托管,空气流量,温度,矩阵速度或相对湿度探头可进行其它应用:测试压力差,皮托管法测量风速和风量,手持式16点风速矩阵测量风速,选择空气流量探头测量风风速和风量,温度探头,温度湿度探头,多种可选套帽尺寸满足各种风口的风量测量。  二、可吸入颗粒物(PM10)浓度的检测  空调风口的风带有灰尘会污染直读式可吸入颗粒物检测仪器的气室,但是如果仪器带有鞘气系统就可以隔离光学室内的气溶胶,保持光学洁净。对于准确的检测可吸入颗粒物(PM10)和保护仪器的气室减少维护成本是非常重要的。  DUSTTRAK II 8530型可吸入颗粒物(PM10)浓度监测仪可以直接测量灰尘、烟雾、浓烟和薄雾中的气溶胶。并具有鞘气系统有效的解决了灰尘的污染问题。  智能化:可编程数据资料记录功能使 DUSTTRAK II 台式监测仪适用于无人监测。  数据远传:仪器可以和USB(设备和主机)、以太网、模拟计算机和警报输出一起,可以远程接收实时的PM10浓度数据。  PM10超限报警性:针对瞬时或 15 分钟短期暴露限定(STEL)。用户设定点的报警输出会发出警告。当PM10浓度超过标准值时,可以有声光报警提示。  光散射法和称重法集于一身:采样光散射法瞬时粉尘浓度测量的同时,可以使用一个 37mm 的过滤盒进行重量分析,方便进行参考校准。  准确性:可以通过外部调零模块进行自动调零。这个选件可用于长时间采样。采样期间对仪器进行调零,可以把零点漂移带来的影响最小化。  数字和图形显示:新型绘图式界面以及彩色触摸屏;通过数值或者实时变化曲线同时显示测量统计值。  三、送风中微生物检测仪器  QT30&4046型空气微生物采样器,采用国际公认的安德森采样器,稳定性好,电源采用交直流两用型,配套美国TSI生产的高精度4046型流量校准器,连续监测采样流量,使采样更可靠。  采样原理:六级筛孔空气撞击式采样器,符合国家规范要求,可以与国产的90厘米采样平皿配套使用。  方便性:充电锂电池供电,充满电后可以工作5小时;也可以连接AC/DC电源变换器用交流供电。  准确性:4046型数字流量校准器,连续监测采样流量,使采样更可靠。  四、空气净化消毒装置的卫生安全性检测  1、紫外吸收原理的臭氧检测仪测量臭氧浓度,克服了电化学原理臭氧仪的横向干扰,具有高的精度,小巧的体积和低功耗。是远程和监测的理想选择。  特点:  高精度:(1.5 ppbv),  可分析的范围:1.5 ppbv 到 100 ppmv  低功耗:12V DC (4.0 W)  智能化:RS-232输出时间/日期,O3浓度、温度和压力(加上附加的输入)  2、国标法总挥发性有机TVOC气体检测(符合GB/T 18883,热解析/毛细管气相色谱法)  SP530和730型个体采样器配合TVOC 专用吸附管是现场采集TVOC气体的合理选择。  智能式电池管理系统:以分钟显示运作时间;对电池寿命实时计数而不是以%显示  高级的流量控制:内置精确的流量计。只要设置能需要的流量值并开始采样,就可以简单的进行校正,而无须再像以往那样逐日监测校正如此费时了。  流量数据采集 :内置数据采集器,可连续记录流量读数,并且即使存在干扰气流也能准确计算总样品量。此外,使用TRAKPRO数据分析软件把数据归档并下载到您的电脑,就可以显示和打印样品记录历史,一个样品记录模板还包含了您的额外记录需求。  简易键盘编程:采样时间;流量设置;键盘锁  低流量采样和显示:SP730已内置低流量适配器,可进行低流量采样和显示流量。  当人们在不断提高生活质量的同时,也越来越多开始关注到空气污染,讲究空气质量更成为人们追求健康的重要方式之一。  通过上面我们介绍的几款集中空调检测设备以及我们从事经营空调通风检测设备的丰富经验和专业认知能力,相信我们的建议或彼此更多的交流能给您提供一个更好的方案和解决办法。真正的使您拥有一个健康舒适的生活环境。
  • 生物药行业快速发展,设备耗材国产替代正当时
    1. 生物制品行业蓬勃发展,上游制造产业链迎来黄金发展机遇1.1. 单抗药物快速增长,基因/细胞疗法蓄势待发根据沙利文的统计,2020 年,全球生物药的市场规模达到 2979 亿美元, 2019年的增速为 9.7%,2020年受到疫情的影响,增速有所下降,预计疫情之后 将恢复 9-10%左右的增长。中国 2020 年的规模达到 3457 亿元,2016-2019 年 维持在 19-20%的高速增长,国内生物药市场维持大幅高于全球市场的增速。2010 年以来,全球处于研发阶段的生物制品数量急剧增加。2010-2021 年, 处于 3 期的数量从 115 个提升至 398 个,CAGR 为 11.95%,处于 2 期/2-3 期的 数量从 98 个增加至 802 个,CAGR 为 21.06%,处于临床 1 期/1-2 期的数量从 59 个增加至 926 个,CAGR 为 28.44%。中国来看,2010-2021 年,处于 3 期的 数量从 6 个增加至 78 个,CAGR 为 26.26%,处于 2 期/2-3 期的数量从 8 个增加 至 220个,CAGR为 35.16%,处于 1期/1-2期阶段的产品数量从 5个增加至 237 个,CAGR 为 42.02%。无论从全球还是中国来看,处于临床更早期的项目数量 增速更快,项目储备充足,随着临床阶段的推进,将有更多的项目从临床阶段走 向商业化阶段。从细分领域来看,国内 3 期前的生物药中,抗体占比 58.6%,细胞疗法占比 25.4%,疫苗占比 13.1%,在 3 期及商业化的项目中,抗体类占比 71.3%、疫苗类占比 21.7%。3 期至上市状态的药品中,抗体药物占比超过 70%,疫苗占比超过 20%。从临床进程推演产业发展趋势,抗体是商业化生产中规模最大的种类, 其次是疫苗,细胞治疗项目大多处于较早期,随着时间的推进,预计后续细胞治 疗商业化的需求将增加。1.1.1. 抗体类药物千亿市场,国内企业积极布局2018 年以来,中国抗体类药物进入蓬勃发展阶段,市场规模快速扩大,根 据沙利文的预测,2018 年市场规模仅为 160 亿元,2021 年达到 735 亿元, CAGR 为 66.24%,2026 年之前仍将保持 20%以上的高速增长,预计到 2030 年 能够达到 3678 亿元。2018 年以后,获批药品数量在快速增加,2021 年一年获批的抗体药物数量 达到 18个。在研数量来看,2018年以后,在研管线数量快速增加,2021年,处 于临床 3 期的抗体类数量达到 54 个,2 期/2+3 期数量 168 个,临床 1 期/1-2 期 的为 169 个,随着在研项目的推进,更多抗体类项目将获批上市,预计未来 2-3 年国内上市的抗体类项目将迎来快速增长期。药物处于不同的开发阶段,对药品的需求量差异较大,药物发现阶段,需求 量在毫克级别,临床前研究阶段,需求量在克级别,临床研究阶段,需求量在千 克级别,上市后销售后,随着药品销售量的增加,需求量有望在吨级。从生产方 式看,药品在上市之前,药品在实验室合成,进入商业化阶段后,药品需求通过 工厂合成,在新建工厂的过程中,需要进行厂房设施建设的同时,对生产用的设 备和耗材的需求量也会大量增加。随着抗体类药物临床及上市进程的推进,更多生物药企业开始了大规模的产 能建设,以百济神州为例,已建成产能 2.4 万升,在建产能 4 万升,规划产能最 高可达 13.6 万升,在建和规划产能量远远大于现有产能。随着药品临床及上市 进程的推进,我们预计,中国抗体类药物大规模的产能建设刚刚开始,后续将有 更多的产能进入在建阶段,从而拉动产业链设备及耗材的需求增加。1.1.2. 细胞/基因治疗蓄势待发,国内企业占据重要地位国内目前共 2 款细胞治疗药物获批,分别是复星凯特的阿基仑赛注射液 (2021 年 6 月获批),药明巨诺的瑞基奥仑赛注射液(2021 年 9 月获批)。2 款 基因治疗药物获批, 腺病毒注射液(商品名:今又生)和重组人 5 型腺病毒注射液(商品名:安柯瑞)。从在研数量来看,2021 年,国内细胞治疗药物共 2 款处于临床 3 期,8 款处 于临床 2 期/2+3 期,30 款处于 1 期/1-2 期,基因治疗领域有 5 款药物处于临床 3 期,2 款处于 1 期/1-2 期。国内细胞和基因治疗药物实现了从无到有,2018 年以来,在研产品数量也快速增加,预计随着在研产品进度的推进,国内将迎来更多 的细胞及基因治疗产品的上市,商业化产能的建设也将随之增加。根据沙利文的数据,2020 年全球CAR-T 细胞疗法市场规模为 11亿美元,预 计中国2021年CAR-T细胞疗法市场规模为2亿元。预计未来全球及中国的CART 细胞疗法市场规模将快速增加,2030 年全球预计达到 218 亿美元,2021-2030 年 CAGR 为 31.14%,2030 年预计中国市场规模为 289 亿元,2021-2030 年 CAGR 为 73.77%,中国 CAR-T 细胞治疗市场规模增速远远高于全球。基因治疗来看,2020 年全球基因治疗市场规模为 20.8 亿美元,中国为 0.2 亿元,预计到 2025 年,全球基因治疗市场规模达到 305.4 亿美元,中国达到 178.9 亿元,2021-2025 年全球 CAGR 为 71.14%,中国 CAGR 为 289.33%。预 计未来几年,全球及中国的基因治疗产业均飞速发展,中国的景气程度高于全球。1.1.3. 在研疫苗品种数量丰富,商业化产业链需求稳步增加全球来看,已经批准上市的疫苗数量为 235 个,申请上市 13 个,处于临床 3 期 120 个,2 期 250 个。中国来看,已经批准上市的疫苗品种数量是 50 个,申 请上市 3 个,临床 3 期 27 个,2 期 30 个。全球及中国疫苗在研管线数量丰富, 获批上市数量稳步提升。与药品不同,疫苗研发的品种选择性难度较高,但单个 品种的销售金额及销售时间均长于一般的药品,故某个疫苗品种一旦获批,对整 个产业链的带动作用高于一般的药品,国内处于 3 期的疫苗不乏大品种,一旦获 批,对生产设备及耗材的带动作用也将非常明显。2018 年以后,国内陆续获批多个抗体类药物,百济神州、君实生物等公司 开始大规模建设抗体产能,在全球产业转移的背景下,以药明生物为代表的生物 药 CDMO 企业产能规划也迅速扩大,带动抗体类生物药生产制备所需的设备及 耗材产业链需求的快速增加,随着临床阶段的推进,更多药物完成临床并获批上 市,设备和耗材需求量将进一步扩容。在细胞和基因治疗领域,国内药品已经完 成了从无到有的阶段,在研管线丰富,未来几年内潜力巨大,将为生物药生产和 制备产业链带来增量市场。多个重磅疫苗品种已经处于 3 期阶段,未来几年将陆 续批复,非新冠领域的疫苗产业链需求也在增加。整体看,抗体类、细胞/基因 治疗、疫苗等生物药的持续扩容,将带动生产用设备及耗材产业链需求增加。1.2. 中国贡献全球生物药产能主要增量,成为产业转移主要承接地根据 BPI 的数据,2017 年,全球生物药的产能为 1671.94 万升,2020 年达 到 1738.09 万升,产能增加了 3.96%。分地区来看,北美、欧洲、中东生物药产 能下降,其中,北美是产能减少最多的地区,占 2017-2020 年全球生物药减少产 能的 87%。日本及亚洲其他国家、中国、印度、俄罗斯及东欧、南美/中美、非 洲产能增加,中国生物药产能增加了 97.5 万升,是全球产能增加最多的地区, 占 2017-2020 年全球生物药新增产能的 77%。从产能分布看,2017 年,北美、欧洲产能合计占比超过 69%,日本及亚洲 其他国家占比 12.53%,中国、印度分别占比 5.19%、5.63%。2020 年,北美、 欧洲产能合计占比为 63.07%,中国产能占比已经达到 10.60%。从产能建设来看, 2017-2020 年,中国是全球生物药产能建设量最大的国家,贡献了全球新增产能 的绝大部分。从产业趋势上看,生物药产能从欧美发达国家地区向中国、印度等 制造能力较强的国家和地区转移的趋势明显。同时,欧美、中东外的其他地区生 物药产能也在逐渐增加。产业转移的趋势下,国内 CDMO 企业产能也在快速增加,以药明生物为例, 现在产能 15 万升,在建产能达到 28 万升,国内其他 CDMO 企业也在陆续新建 或者扩建产能。CDMO企业承接的国外订单数量在增加,中国化的生产进一步增 加了产业链设备和耗材的需求。1.3. 生物制品生产与传统小分子差异巨大,对应设备及耗材不同1.3.1. 小分子生产工艺以化学合成为主,可拆解成多个中间体典型的小分子生产工艺繁琐,有多步中间体生成,多个中间体合成原料药, 再加以辅料最后合成制剂,中间步骤可拆解,中间体与原料药合成多以化学合成 为主。以近期热门的瑞德西韦为例: 根据吉利德公司公布的第二代瑞德西韦合成方法,共六步反应,得率分别为 40%,85%,86%,90%,70%,69%,其中合成所需的原料和关键中间体基本 是化工原料通过化学合成,具体种类如下:化合物 1,CAS:55094-52-5,原料中间体可购买。化合物2,使用原料(CAS:159326-68-8)合成 6。中间体 6,经过两步合成,得率分别为 80%和 39%,所需原料化合物 8 (CAS:946511-97-3),4-硝基苯酚(CAS:100-02-7),二氯化磷酸 苯酯(CAS:770-12-7)。得到化合物 GS-5734(即瑞德西韦原料药)后,需要进行制剂化:注射用瑞 德西韦冻干制剂是一种不含防腐剂的白色至灰白色或黄色冻干固体,除药物活性 成分外,冻干制剂还包含注射用水、磺丁基倍他环糊精(SBECD)和盐酸和氢氧 化钠等非活性成分。1.3.2. 生物药生产以发酵为主,整个过程连续生物药生产过程以发酵为主,整个过程连续,生产用的设施和设备与小分子 药物完全不同。从生物药的生产流程来看,主要包括上游发酵、下游纯化和制剂灌装三个主 要流程。上游一般从细胞株的培养到大规模生物反应器生产,主要包括摇瓶培养 -波浪式生物反应器-生逐级放大培养-生物反应器发酵几个环节,得到细胞及其产 物。下游纯化是将生物反应器出来的细胞及产物进行分离了纯化,得到制剂原液 的过程,主要环节包括收获-层析捕获 -低 PH 病毒灭活及深层过滤-两步层析-除 病毒过滤-浓缩超滤-无菌过滤等环节,得到药品原液。制剂灌装主要是将纯化获 得的原液进行制剂化处理,经过配置-除菌过滤及灌装-冻干-轧盖-灯检-贴签与包 装后,最终获得产品。整个生产过程连续,中间环节较少,生产过程中所使用的 设备、耗材与小分子药物有很大的不同。2. 生物制品生产工艺拆解2.1. 上游发酵:从细胞株到大规模生物反应器生产的一系列细胞放大培养过程以抗体生产为例,对生物药生产流程进行拆解,上游发酵需要经过细胞复苏、 常规传代、摇瓶放大培养等逐步放大培养阶段,最后接种到生物反应器中进行大规模细胞培养等一系列过程。发酵过程需要控制温度、溶氧等参数指标,由于细胞发酵过程中会产生较多 的气泡,需要加入消泡剂,整个过程需要 3-4 周的时间,进入生物反应器后,细 胞进行大规模的生产和繁殖,经过大约 13-14 天的培养后,细胞可以进行收获。 该过程需要控制的参数有 CO2、温度、空气、氧气、搅拌、PH、消泡剂,同时 还需要进行培养基补料。上游发酵主要用到的耗材包括细胞冻存管、培养基、不同规格的摇瓶,一次性细胞培养袋、培养基进入反应器前需要进行除菌过滤,需要用到除菌滤器;主 要用到的设备及系统包括细胞冻存阶段用到的细胞液氮罐、二氧化碳培养箱、摇 床、波浪式生物反应器、生物反应系统、培养基配置系统、生物反应器等。上游发酵过程中,价值量较大的耗材是培养基及一次性反应袋。2.1.1. 上游发酵主要耗材之培养基:为细胞生长提供营养物质培养基是为细胞生长提供所需营养成分的物质,其进化历程是配方不断改进和优化的过程。1950-1960s 年代,培养基通常添加10-20%血清,血清含有上千种不同成分, 为细胞体外培养提供广泛而丰富的营养和各种因子,但动物血清的使用存在引进 外源病毒的风险,因此减少血清浓度甚至完全去除血清在培养基前期培养基改进 的主要方向。19 世纪 80 年代,科学家通过在培养基里面添加蛋白(如胰岛素、转铁蛋白 和白蛋白等),可以很大程度上替代血清,无血清培养基逐渐发展起来。 1997 年,第一个完全化学成分的培养基推出,培养基开发从此进入了一个 全新的时代,2000 年后,无动物源 CDM 持续优化,支持高密度培养和高产物表 达。生物制品的制备和生产均需要依赖细胞培养基,培养基是生物制品生产的关 键耗材。细胞培养基通常包含培养细胞的能量来源和调节细胞周期的化合物。培 养基的基本组分包括缓冲系统、无机盐、氨基酸、糖类、脂肪酸/脂质、维生素、 微量元素。补料培养基还包括补充氨基酸、维生素、无机盐、葡萄糖和血清等。培养不同类型的细胞,对培养基的成分需求均有较大的不同,CHO 细胞、 HEK293、杂交瘤细胞在无动物来源成分、化学合成、无蛋白成分、重组蛋白、 生长因子等方面的需求都不一样。培养基技术难度在于培养基的配方保密且培养 基需要根据细胞种类进行优化以获得较高的产物表达量。培养基主要的国外生产企业主要有 Cytiva、赛默飞、赛多利斯、默克等企业, 国内的生产企业主要有健顺生物、奥浦迈、澳斯康、多宁生物等,同时,由于培 养基在使用过程中需要调节较多,不同的细胞株对培养基适用情况也不一样,国 内也有较多的企业存在自配培养基的情况。2.1.2. 上游发酵主要耗材之生物反应器:细胞大规模繁殖的场所生物反应器是指利用生物反应机能的系统或场所,主要作用是为生物体代谢 提供一个优化的物理、化学环境,使生物体能更快更好的生长,以获得更多所需 要的生物量或代谢产物。传统的搅拌式生物反应器以不锈钢罐子为主,经过多年, 发展,一次性技术的应用领域不断扩充。一次性生物反应器的最初起源是因 Hyclone(目前为 Cytiva 旗下品牌)需要 大量供应血清,因此购买了一条大规模的食品袋生产线,用塑料袋包装血清并进 行运输,后逐渐发展为在储液、生物反应器领域应用。第一台一次性生物反应器 袋子被称为“波浪袋”,至今还在被广泛使用,而这个袋子的限制在于体积,为 了做得更大,人们回归到传统的搅拌槽设计,里面放置袋子作为衬垫,于是第一 代大型搅拌槽一次性生物反应器诞生了。与不锈钢设备相比,一次性生物技术可以提供更高的速度、效率和经济性。 一次性设备每批的生产成本可能更高,但批量吞吐量也更大。根据 Cytiva 对 50L 设备的经济模拟数据得出,由于不锈钢设备每次发酵完成后需要 CIP、SIP 的清 洁和验证环节,该过程所需时间大约 7 天左右,一次性不存在产品转结的清洗和 验证工作,故生产批次增加。基于 300 天的发酵,不锈钢每三天可以收获一批, 每年最多生产 100批,一次性发酵批次完成时间减少 33%,可以每隔一天收获一 次,每年最多收获 150 批。无论在单产品设备还是多产品设备生产中,一次性的 生产批次均高于不锈钢。在成本方面,一次性生物反应器消耗的成本更高,单一产品设施中每批一次 性使用的成本比不锈钢高出 29%,在多产品设施中高出 25%。但是,不锈钢的 资本投入,认证周期和年度维护成本更高,无论设备利用率如何,维护成本基本 不变,在设备利用率不高的情况下,不锈钢的综合性价比不高。不锈钢设备更多用于 2000L 以上大规模生产,广谱抗体药物(如 PD-1 等) 生产量大,生产集中,商业化阶段使用不锈钢设备生产具有较高的性价比。在临 床阶段及小规模生物药的生产过程中,由于无菌 GMP 环境的构建成本高,不锈 钢设备需要进行 SIP、CIP 清洗,造成清洗成本的同时停留时间较长,提高生产 效率带来的成本降低效应显著。在药品治疗的精准化趋势下,单个药品生产规模逐步降低。此外,基因细胞治疗与mRNA等新技术的发展,对于非标准环境下的洁净区提出要求,一次性反 应器在小批量生产中更具优势。一次性生物反应器在灵活性、便利性、快捷性等方面具有优势,在小规模生产中将被广泛使用,大规模生产中不锈钢的成本优势比较明显,更倾向于使用不锈钢设备,所以,在较长的时间周期内,一次性生物 反应器仍将与不锈钢罐共存。2.2. 下游纯化:从发酵液中获得制剂原液的一系列纯化行为上游发酵经过大规模细胞发酵后,获得细胞及其代谢产物,其中含有制剂原 液所需要的目标蛋白。细胞及代谢产物从生物反应器出来后,进入下游分离纯化环节,主要涉及收获、层析捕获、低 PH 病毒灭活及深层过滤、层析、除病毒过 滤、浓缩超滤、无菌过滤等环节。主要目的是从复杂的本体基质中分离、纯化和浓缩先前合成过的产物,从中分离出目标产物,得到制剂原液。下游分离纯化的第一步是离心,是实现液体与固体颗粒或液体与液体混合物 分离的主要方式。离心机通常分为过滤式离心机和沉降式离心机,主要使用进口 品牌阿法拉伐。整个过程中需要使用多种过滤器、膜包、亲和填料、离子交换填 料、一次性储液袋等多种耗材,需要使用超滤系统、除病毒过滤系统等多种过滤 系统及层析系统。下游纯化的两个核心环节分别为过滤及层析。2.2.1. 下游纯化核心环节之过滤:实现多种物质的分离和去除在生物药生产过程中,培养基过滤、深层过滤、澄清、细菌过滤、病毒过滤 等多个环节会使用到不同的孔径大小的过滤膜或者过滤器来实现不同尺寸颗粒的过滤,来实现分离和纯化。由于整个生产过程均需要在无菌的环境中进行,因此 培养基、缓冲液、进入生物反应器的空气等任何进入生产流程的物质均需要进行减菌过滤,发酵液从生物反应器出来后需要进行澄清过滤,层析之后需要进行除 病毒过滤、除菌过滤,浓缩置换过程中也需要通过 TFF 过滤完成。多项过滤中涉及不同的过滤原理。发酵液从生物反应器出来,经过离心后, 需要进行深层过滤,实现初步的固液分离。深层过滤的基本原理是通过筛分、拦 截、吸附的方式去除细胞、碎片以及其他颗粒。深层过滤是细胞固液分离后进行 的第一步过滤,需要将离心后的含有众多杂质的液体进行分离,在这个过程中可以去除颗粒、亚微颗粒、胶质物以及可溶物质,理论上,粒径大于过滤器孔径的 污染物可以很容易地通过机械过滤去除。在除菌、除病毒过滤中使用的是超滤。超滤是一种加压膜分离技术,即在一 定压力下,使小分子溶质和溶剂穿过一定孔径的膜,是对溶质中极小颗粒及可溶性分子进行分离的方法。这种分离主要基于分子的大小,滤膜介质的通透性也会受到样品的化学、分子及电荷特性的影响。超滤通常只能分离大小相差 3-5 倍以上的分子,而不适合分离大小相似的分子。通常,糖类、氨基酸、盐、抗生素、寡核苷酸等分子量较小的介质用反渗透 /纳滤的方式进行分离,蛋白质、部分疫苗、哺乳类病毒等用超滤的方式进行分离,细菌、大肠杆菌等用微滤的方式进行分离。超滤过程用到的过滤耗材主要有中空纤维膜和超滤膜包。 中空纤维采用切向流过滤的方式,把一定孔径的膜(如 0.45μm)制成纤维状的膜管结构,细胞培养液在膜管内部流过形成切向流,目标抗体透过膜孔,而细胞和细胞碎片被截留,收集透过端即得到澄清的培养液。超滤膜包是一种使用亲水性聚醚砜超滤膜的半透膜,它既保持了传统的纤维素材料蛋白非特异性吸附的优点,又克服了纤维素材料化学兼容性差的缺点,可 在 PH2-14 的范围内使用,非常适合用于单克隆抗体和治疗用蛋白药物的分离。超滤膜包具有较高的技术壁垒,默克旗下的密理博、Pall、赛多利斯是全球知名的厂商,产品质量和性能受到广泛认可,也是现有生产中使用最多的品牌。 国产企业中,科百特在滤膜、过滤器等方面具有技术优势,有微电子事业部、生 命科学事业部、工业过滤事业部、医疗事业部、实验室应用五大部门,产品在各 个领域有较为广泛的应用。2.2.2. 下游纯化核心环节之层析:实现蛋白捕获的重要环节深层过滤后的液体经过澄清后进入亲和层析环节。亲和层析是整个下游纯化 工艺的核心环节,目标蛋白在该环节中被捕获。 根据物质性质的不同,层析填料的分离原理也不相同。亲和层析是通过配基 特异性识别来实现分离,主要在抗体领域应用。离子交换层析是利用分子所带电 荷的不同,通过正负电荷相互吸引来实现分离,在抗体、蛋白等领域有应用。体 积排阻层析主要利用分子大小的不同,在填料中滞留时间的长短来实现分离,在 胰岛素及小分子分离中应用较多。疏水层析利用分子表面极性的不同,来实现分 离,在抗体和蛋白中应用较多。常用的大分子分离纯化技术有凝胶过滤层析、疏水层析、离子交换层析、亲和层析等,小分子常用分离方法为反相层析。抗体生产过程中使用量最大的是亲和层析,也是填料中价值量最大的种类。亲和层析:一种通过分子间的特异性识别并相互作用来分离纯化物质的层析 方式,主要利用的是抗体的 Fc 片段与 Protein A 配基具有天然的特异性结合的特 点,来实现蛋白捕获。Protein A 是金黄色葡萄球菌的一个株系细胞壁蛋白,它通过 Fc 区与哺乳动物的 IgG 结合,含有四个 Ig Fc 结合位点,重组的 protein A 含 有 5 个 Ig Fc 区域结合位点,故带有 protein A 配基的亲和层析是用于特异性捕获 抗体蛋白的理想方法。体积排阻过滤层析:利用复杂的孔径结构,对应不同大小的分子或离子在填 料内的停留时间长短来达到分离的目的。 疏水层析:高度有序的水壳围绕着配体和蛋白质的疏水表面,疏水物质被迫 合并,达到分离的效果。在实际生产过程中,通常需要经过多步层析,一般有一步纯化、两步纯化、 三步纯化,达到捕获、中度纯化、精细纯化等不同的目的。 一步纯化:亲和层析;两步纯化:亲和+凝胶过滤;亲和+离子交换;三步纯 化:离子交换层析+疏水层析+凝胶过滤层析;疏水层析+离子交换层析+凝胶过 滤层析。填料选择规则:粒径越小,分辨率越高,反压越高,流速越低。第一步追求 流速的载量的时候通常选择高流速的填料作为捕获的第一步。通常,在捕获阶段, 填料粒径大小在 75-90 微米,较多的使用亲和层析和离子交换层析;中度纯化粒 径大小 34-75 微米,使用离子交换层析、疏水层析、亲和层析和反相层析填料; 精度纯化粒径大小 3-34 微米,常用的纯化方式有体积排阻、离子交换等。
  • Nanoscribe微纳加工技术应用于3D中空光波导微观结构研究
    光波导是集成光子电路的关键元素,影响了光子学的许多领域,包括电信,医学,环境科学等。对于小型几何尺寸结构而言,低折射率介质内部的高效波导对于各种需要光与物质间的强相互作用的应用都至关重最近,一个国际研究团队提出了一种全新的限制并引导厘米范围内无衍射光的芯片光笼概念。通过使用Nanoscribe的3D打印系统,科学家们实现了直接在硅基光子芯片上制作中空3D光波导的微观结构,即集成于芯片的用细条排列并围绕成中空的双环结构(见下图)。这项新颖的光笼研究成果能展现光与物质的强相互作用,并开辟全新的应用,例如基于气体和液体的检测以及生物分析和量子技术等。集成光子设备中光与气体、液体或者生物制剂之间的强相互作用能有效应用于环境监测和生物传感器中,而这依赖于先进的光学传感元件来增强光与物质的相互作用。为此,来自于布莱尼兹光子技术研究所(Leibniz Institute of Photonic Technology), LMU慕尼黑大学 (Ludwig-Maximilians-Universit?t Munich), 伦敦帝国理工学院(Imperial College London)以及德国耶拿大学奥托肖特材料研究所(Otto Schott Institute of Materials Research of theFriedrich Schiller University of Jena)的科学家们开创了一种新的3D光笼波导概念。该实验是通过波导借助微观细条捕获光,并借助光子带隙效应将其引导到数毫米距离上。光笼的开放式设计有利于光与物质(例如液体或气体分子)之间的强相互作用。SEM图片来源:Bumjoon Jang, Leibniz Institute of Photonic Technology微纳加工技术应用于3D光波导研究科学家们将细条排列成内外两个六边形结构,其中的中空芯用来引导光束。细条直径仅3.6 μm且细条之间的间距为7 μm,长度为5毫米,纵横比超过1000。该复杂的双环体系光笼微观结构需要直接能打印在硅芯片上。这个十分具有挑战性的制作通过使用德国Nanoscribe公司的3D打印系统成功得以实现。这个3D微观结构的设计能够通过细条之间的空间横向进入波导的核心区域。因此,分子可以从侧面进入中空芯并与核心区域的光进行相互作用。独特的侧面通过方式可将气体扩散时间至少缩短了10000倍。性能测试表明,通过3D光笼的波导效率很高,并且研究证明波导长度可达到3cm,纵横比超过8000。集成芯片使得光笼概念在诸如生物分析或量子技术等众多领域都有很好的应用前景。凭借着拥有极其复杂和超高精度的3D打印技术,Nanoscribe公司的3D微纳加工技术推动着光子电路的研究和创新。三维光子晶体,光子互联以及复合透镜系统和自由曲面耦合器的实现都得益于Nanoscribe的3D打印系统。相关文献:Light guidance in photonic band gap guiding dual-ring lightcages implemented by direct laser writing网址:https://pubs.acs.org/doi/10.1021/acsphotonics.8b01428HollowCore Light Cage: Trapping Light Behind Bars网址:https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-16-4016 更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印系统 Quantum X 双光子灰度光刻微纳打印系统
  • 德瑞克塑料中空制品抗压试验机填补国内空白
    近日,德瑞克经过数月的科技攻关,塑料行业专用的SLY塑料中空制品抗压试验机在德瑞克试制成功,*国内在此项目的空白。 塑料中空制品,包括塑料瓶、塑料桶、塑料箱、塑料盒、塑料周转箱、塑料罐、塑料托盘、塑料杯、塑料碗等在国内的使用越来越多,他们的抗压性能测试一直没有专用的检测设备,通常有的企业或者质检部们也是在传统的通用的电子万能试验机上做压力试验,量程不恰当,造成测试不准确,更不能打印专用的塑料行业测试报告。 SLY塑料中空制品抗压试验机充分考虑塑料中空制品试验的特殊要求,配备塑料中空制品专用的控制操作软件。*适用于塑料瓶、塑料桶、塑料箱、塑料盒、塑料周转箱、塑料罐、塑料托盘、塑料杯、塑料碗等的抗压强度试验。主要特点:采用微电脑控制技术,触摸屏操作,自动化程序高;强大的数据显示和分析管理能力,可与电脑连接通讯;液晶屏动态显示试样编号、试样形变、实时压力;自动复位,操作简单,安全可靠,性能稳定;*限行程保护、过载保护、以及故障提示等智能配置,保证用户的操作安全;高速微型打印机,打印高速,使用方便,故障低。技术指标:测量范围: 5000N(10000N可选)示值误差: ±1 % 压板面积: 600×600mm 工作行程: 600mm 上下压板平行度: 2mm 变 形 率: 0.1mm;加压速度: 1~99 mm/min 回程速度: ≥200mm/min 显 示: 中文点阵式菜单 打 印 机: 热敏打印机,寿命长,打印高速静环境条件: 温度10~30℃、相对湿度<85% 电 源: 220V 50HZ。 山东德瑞克仪器有限公司,*致力于行业检测仪器的研发与制造。产品在国内外市场上得到了新老客户的亲睐,为品牌赢得了荣誉。
  • 安东帕固体表面Zeta电位仪提升血液透析膜适应性
    血液透析膜内表面的处理,对于血液透析膜的生物适应性至关重要。Zeta电势的测试在提高血液透析膜的生物适应性上起到一定的协助作用,安东帕固体表面电位分析仪SurPASS已经在此领域取得成功应用,并给出了详实的实验证明。 就有一定病史或急性肾功能衰竭患者来说,体外血液透析是维系生命的唯一方式。血液透析可以替代肾脏,起到将血液中的有害物质排出体外的功能。这个过程中,广泛使用的是人造的、排放成捆的中空纤维聚砜超滤膜(PSU)。为了提高透析膜的生物适应性以及避免该膜与血液接触时发生并发症,需要对透析膜的内层表面进行改良处理。安东帕固体表面分析仪SurPASS的高灵敏度在此时显得尤其重要。 医学发展趋势显示PSU透析膜受到青睐。将具有活性的羧基(COOH)移植到聚砜表面上,这是一条能制备具有固定生物活性物质界面的有效途径。将未处理的和经改良处理的透析膜的zeta电势作对比,结果显示对透析膜进行改良处理是有效的。未处理的PSU膜的零电荷电势点(IEP,ζ = 0 mV 处的pH)为pH 5,而移植了羧基的处理膜为pH 3.5。 IEP的改变以及在高pH情况下流动电势的不同,这都说明了将羧基移植到血液透析膜内层表面是非常成功的一种处理方法。由于安东帕固体表面分析仪SurPASS采用全自动测量,集成式滴定单元可以全自动调整 pH 值和添加剂浓度,测量更方便,其结果也更为准确可靠。 在表面分析中,安东帕固体表面分析仪SurPASS 可测试基于流动电势和流动电流得到的宏观固体表面Zeta 电位。Zeta 电位与固体/液体界面的表面电荷有关,能够反映出表面化学(pH 滴定法)和液相吸附过程。SurPASS 有助于了解和改进表面性质,并开发出新的专业材料。 现代的固体表面分析仪 SurPASS高灵敏度能够检测出表面性质的最微小变化可以轻易获得表面电荷和相关性质的信息从小颗粒到大晶片适用于测试各种样品的测量池圆柱形样品池用于粉末 (最小的颗粒尺寸 25 μm) 、颗粒、纤维和纺织用品夹片样品池适用于平板状样品的无损测试可调间隙样品池适用于规则形状如矩形 和圆形的平面小样品和中空纤维样品停机时间短,可节省时间测量池的快速更换测量参数每秒更新一次具有直观可视化多功能特性的全新软件全自动测量自动测量过程几乎无需手动操作集成式滴定单元可以全自动调整 pH 值和特性物质及蛋白质等添加剂的浓度 更多产品信息,请登录:www.anton-paar.com 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAARGMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 美国康塔仪器公司推出第二代毛细管流动法孔径分析仪—— Porometer 3G 系列
    2013年12月,美国康塔仪器公司(Quantachrome Instruments)发布了第二代毛细管流动法薄膜孔径分析仪器&mdash &mdash Porometer 3G系列。   Porometer 3G系列是一款独特的全自动多功能分析仪系列,利用可浸润液体,如水,测定薄膜孔径及渗透率。与传统的压汞仪类似,Porometer 3G也是利用Washburn方程对孔径及渗透率进行计算。但是由于该仪器的测试原理为液体排驱法(泡压法或气体渗透法),使用的是浸润液,因此没有汞污染,无需实验室改造,更安全更便捷。同时该方法也是ASTM薄膜测定的标准方法 。   该方法同样以表面张力引起毛细孔中液体上升理论为依据.当毛细孔浸在某种液体中时,在表面张力的作用下,毛细孔中的液体将会上升到某一高度,当毛细孔中的表面张力与毛细孔中液柱重力达到力平衡,此时可按此计算薄膜孔径及渗透率( Washburn 方程)。   美国康塔仪器公司推出的第二代产品通过改进的固件提高了低压性能和可重复性,但最引人注目的是新3GWin2 Windows用户软件。第二代3GWin2软件具有全新的外观和感觉,并应用了许多新的Windows技术,给用户全新的先进的功能体验:新的&ldquo 运行模式&rdquo (&ldquo Run Modes&rdquo )提供了更加灵活的测量顺序 质量控制模式(QC)使日常使用的界面简化 用户主管(Supervisor or Advanced use)可以设定QC模式,并保存运行设置的SOP。新软件可以测量具有极高分辨率的数千个数据点,解决复杂的孔径分布问题(图1),也可以根据岩心类样品特性,测定少量数据点,并设置较长的平衡时间。   中空纤维和某些样品比较特殊,具有较宽的孔径分布,既有大孔也有很小的孔:大孔的存在对测小孔是不利的,因为气流都首先选择大孔通道导致压力上不去。以Richard Wenman博士为首的Porometer 3G技术团队采用新的方法和技术,改进了第二代仪器低压性能,不仅实现了中空纤维孔径宽峰分布的测量(图2),而且通过新一代浸润液Porofil plus在形状因子1的情况下,可以做到孔径分布下限到大约14nm。   美国康塔仪器公司 Porometer 3G系列毛细管流动法薄膜孔径分析仪包括四款型号,分别是3G Micro,3G Macro, 3Gz和3Gzh,其孔径分析适用范围如下:   Porometer 3G系列毛细管流动法薄膜孔径分析仪主要应用于以下领域的孔径分布和渗透率分析:   薄膜产品制造商和用户:如   片材和预切薄片材料   中空纤维   中空超滤膜管   电池隔膜   过滤应用,包括水过滤,水净化,汽车机油和燃油过滤和液体和所有类型的空气过滤。   非织造材料的应用:包括   婴儿尿布,湿巾,无水的组织和吸收垫和片材   防护服,包括医疗和化学防护服材料。   织造材料的应用:包括   专门织物,颗粒分离,预过滤器和筛分过程。   多孔塑料:包括   在医疗领域中聚四氟乙烯(PTFE),聚醚醚酮(PEEK)和其它的聚合物   多孔金属网   用于过滤和气体分离的陶瓷管。   如需了解该仪器详细信息及具体参数,欢迎垂询美国康塔仪器公司北京代表处800-810-0515   或访问康塔公司中文网站www.quantachrome.com.cn。   关键词:毛细管流动孔径分析仪,薄膜孔径分析仪,泡压法,液体排驱法,毛细管法,气体渗透法,Porometer,薄膜,膜,滤纸,中空纤维,隔膜,过滤,无纺布(不织布),纺织材料,多孔金属网,多孔陶瓷,烧结金属
  • 高表达抗体蛋白下游工艺技术进展
    p   摘 要:随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 /p p   关键词:抗体 下游工艺 纯化 技术进展 /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center " span style=" font-size: 14px "   表1 单抗特性及纯化策略 /span /p p style=" text-align: center " img title=" 11111.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e2693d21-e711-4b42-bb9c-53b5b7848f82.jpg" / /p p style=" text-align: center " img title=" 2222.png" style=" float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5035b8d3-81f1-4e6b-96d7-3e12b347a344.jpg" / /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0 病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "   img width=" 450" height=" 374" title=" 1.jpg" style=" width: 435px height: 258px " src=" http://img1.17img.cn/17img/images/201808/insimg/401b7d6a-ad5b-4c9a-9eee-2376ebef51fa.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px " 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /span /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center " img width=" 599" height=" 164" title=" 2.jpg" style=" width: 580px height: 159px " src=" http://img1.17img.cn/17img/images/201808/insimg/ce7191a4-3940-4315-8122-856bbbadbc24.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /span /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center "    img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/4aa1c980-c9be-44e9-82b5-899ba9f7eec9.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " 表3 两步层析纯化工艺对污染物的去除效果[15] /span /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/07a79270-4b7d-4fe5-bc9a-125837562297.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图2 传统纯化工艺与STREAMLINE [17] /span /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201808/insimg/333de887-f92b-405d-9094-9ec89635f74d.jpg" / /p p style=" text-align: center " span style=" font-size: 14px "   图3 STREAMLINE的基本工作原理和操作过程[18] /span /p p style=" text-align: center "   span style=" font-size: 14px "  (箭头示液体过柱时的流向) /span /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE 技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p p /p
  • 高表达抗体蛋白下游工艺技术进展
    p   随着抗体药物上游大规模高效培养技术的飞速发展,抗体蛋白的表达浓度有了大幅度的提高,这给下游纯化工艺带来了巨大的压力。为了突破下游技术瓶颈,整个世界生物制药产业都加大了对下游技术的革新力度,近年来也取得了丰硕的成果。本文就抗体药物的纯化策略、最新技术进展以及技术应用等方面做一个调研,以期能对本部门的相关研究工作有所助益。 br/ /p p   自1997年来,全球抗体药物市场经历了一个快速发展的阶段,总销售额从1997年的3.1亿美元增长到2008年的400亿美元,复合增长率高达55%,而且增长势头还在持续 [1]。国际上通常把年销售额超过10 亿美元的品牌药称为“重磅炸弹”药物,很大一部分抗体药物都已迈入“重磅炸弹”行列。在2008年全球15大药品中,抗体药物占据了1/3,且排名仍在上升,这意味着几乎每种单抗药物的成功开发都代表着巨大的市场前景[2]。受益于此,全球主要的生物制药公司都获利颇丰,可见抗体药物具有巨大的经济价值和社会价值。 br/ /p p   抗体药物生产技术门槛高,需要掌握抗体筛选、抗体重组、高表达细胞株构建和大规模悬浮培养等核心技术,其下游关键技术是长期以来的薄弱之处。哺乳动物细胞表达系统具有活性高、稳定性好等优点,已成为抗体等生物制品最重要的系统之一,为抗体药物的产业化提供可能。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为1-10g/L。我国在该技术领域起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破,流加培养规模达500L以上,灌流培养规模达100L以上,蛋白表达浓度为0.2-2g/L[2]。 /p p   随着动物细胞表达抗体产品大规模高效培养技术的快速发展,下游纯化工艺越来越成为抗体药物生产中主要的技术瓶颈[3]。因此,如何提高下游工艺的生产效率就成为了抗体药物研发必须解决的问题。本文就国际上高表达抗体蛋白下游工艺的研究进展做一个调研,使本人及同事们能了解国际上的研究成果和发展趋势,以期能对本部门的相关研究工作有所助益。 /p p   1. 抗体药物纯化策略 /p p   每个单抗的等电点、电荷密度、疏水性、糖基化程度等生化性质各不相同。选择单抗的纯化方法,既要了解它们的共性,又要了解它们的个性,从而制定相应的纯化策略(表1)。 /p p   1.1 抗体药物下游工艺一般策略 /p p   CHO和NSO等哺乳动物细胞表达系统主要用来生产治疗性单抗,临床剂量大(数十至几百毫克/dose),批产量达公斤级,纯度要求极高。层析技术是抗体分离纯化的核心技术,一般采用经典的三步纯化策略:粗纯-中间纯化-精细纯化。粗纯的主要目的是捕获、浓缩和稳定样品,约80%的下游工艺用Protein A亲和层析进行快速捕获,一步即可达到95%以上的纯度。治疗用抗体一般使用动物细胞大规模高密度无血清悬浮培养进行生产,不仅对终产品的单体含量有严格的规定,还必须去除各种潜在的杂质以满足药品安全的要求,因此在粗纯之后还需要进行中间纯化和精细纯化,去除宿主细胞蛋白(HCP)、宿主DNA、抗体聚集体和变体等,常用的层析技术有离子交换、凝胶过滤、疏水层析等[4]。 /p p   2003 年初,中国SFDA下属的中国药品与生物制品检定所(NICPBP)公布了《人用单克隆抗体质量控制技术指导原则》[5]。生产者除须保证最终抗体产品纯度,还需要验证所用的纯化方法能有效对潜在的污染物,如HCP、免疫球蛋白、宿主DNA、用于生产腹水抗体的刺激物、内毒素、培养液成分、层析凝胶析出成分(脱落的Protein A配基)进行去除 并能有效的去除/灭活病毒。也就是说,在设计下游工艺时,需多角度综合考虑抗体本身的性质、抗体的来源、发酵培养技术、发酵液蛋白浓度、宿主杂质、抗体批间的差异、潜在污染及病毒灭活等问题。此外,治疗用抗体在生产和纯化过程中还会由于糖基化程度不同、蛋白酶作用、以及脱氨基和脱酰胺等反应而产生带电性质不同的多种抗体变体 另外,抗体氧化、聚集和片段化也是常见的降解途径[4]。针对这些变体,一方面,在表达和纯化过程中选择参数(如pH、盐浓度等)时要充分考虑到目标抗体的稳定性 另一方面,应控制细胞培养的条件(DO、渗透压等),同时加快下游分离纯化的速度,最大程度上避免抗体在纯化过程中产生变体,从而保证终产品的均一性和高的比活,也有利于控制终产品的内毒素水平。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1eb75a7d-0f0f-4f60-8224-a3984ccff0e3.jpg" title=" 表1.png" alt=" 表1.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201810/uepic/f8ff0f67-6f0b-4295-ab81-05543e5efbd8.jpg" title=" 表2.png" alt=" 表2.png" / br/ strong 表1 单抗特性及纯化策略 /strong /p p   1.2 新型的两步层析技术与纯化工艺整合 /p p   近年来,GE Healthcare公司开发出了新型的亲和捕获介质Mabselect SuRe和混合作用模式的强阴离子交换介质Capto adhere(这两种介质的主要特点将在下文详细介绍)。凭借着MabSelect SuRe的卓越性能以及Capto adhere的复合多除杂功能,使得抗体纯化工艺由经典的三步层析转变为两步层析得以实现。这种新型的两步层析技术的工艺流程是:在细胞培养表达以后,采用0.2-0.45μm的中空纤维膜技术进行澄清,然后用MabSelect SuRe捕获,酸性条件洗脱后直接pH 4.0病毒灭活,澄清过滤后穿透方式上Capto adhere,这一步离子交换之前或之后会有一步20nm纳滤去病毒,最后50K膜超滤浓缩和洗滤进行缓冲液置换。整个工艺如图1,这一工艺平台已经尝试过多个不同的抗体并取得成功(表2),同时很多实验表明这一工艺平台适合多数抗体的生产。有些抗体如果通过优化结果不甚满意, 通过增加一步Capto Q也基本上可以达到要求或是采用Capto S-Capto Q(这两种介质的主要特点将在下文详细介绍)的工艺步骤[4]。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201810/uepic/a804fe1c-9660-4ab2-8cc4-177870630ce5.jpg" title=" 图1.png" alt=" 图1.png" style=" text-align: center " / /p p style=" text-align: center " strong 图1 抗体生产两步层析法主导的抗体纯化最新工艺[6] /strong /p p   Mabselect SuRe可以达到99%以上的抗体纯度,亲和洗脱峰使用Capto adhere的流穿模式进行精纯:使抗体分子流穿而聚合体、HCP、脱落的Protein A配基等杂质结合在柱上加以去除。这样仅用两步层析就可以得到符合药用级质量要求的高纯度抗体产品,大大缩短了工艺时间,提高了生产效率,同时增加了收率,降低了生产成本。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3ef7b3a2-9f79-4e74-8a71-6a6cbcbea5ec.jpg" title=" 图2.png" alt=" 图2.png" / /p p style=" text-align: center " strong 表2 两步法用于多种抗体的纯化结果(括号内数值为纯化前)[4] /strong /p p   2. 抗体药物下游技术最新研究进展 /p p   2.1 样品澄清 /p p   2.1.1 中空纤维膜过滤技术 /p p   中空纤维膜是近年来发展起来的新型切向流膜分离技术,与盒式膜包相比,中空纤维膜可以直接处理高固含量和高黏度的粗料液,具有容尘量高、速度快、剪切力小、成本低等优点。目前,中空纤维微滤膜已经广泛用于生物制药的各个领域[7]。 /p p   对于动物细胞培养液,可以将高密度的培养液直接用中空纤维微滤膜(0.22或0.45μm)进行澄清,而无需事先经过离心和预过滤,步骤少,速度快,收率高,成本低。和离心机比较,具有极高的澄清度,因此中空纤维澄清后的细胞培养液可直接Protein A亲和层析进行纯化。 /p p   中空纤维膜澄清细胞培养液的优势有:(1)步骤少,速度快,收率更高(通过有效的洗滤可使样品收率稳定而且高于离心机),同时最大程度上避免抗体降解而影响产品均一性。(2)成本低:不仅省去了连续流高速离心机昂贵的前期投资和运转的日常维护成本,还节省了离心后死端过滤的成本。中空纤维膜物理化学性质稳定,可以通过清洗而反复使用,成本低廉。(3)有利于内毒素控制:中空纤维膜稳定的化学性质可以耐受1M NaOH 40-50℃和氧化剂NaClO的清洗,从而有效去除内毒素 封闭的系统,也更有利于生产过程中内毒素的控制。此外,大部分中空纤维滤柱还可以进行高压灭菌。(4)低剪切力:中空纤维采用低剪切力的开放式流道,不仅可以处理含有高固含量的料液,还避免了蛋白质活性分子在高剪切力下的聚集变性,有利于抗体的稳定。(5)工艺耐用性强:相比死端过滤,中空纤维澄清具有很好的操作灵活性和耐用性,可以通过调整操作参数(流速、TMP)处理不同性质的细胞培养液。(6)易于线性放大:通过维持切向流速、TMP 等参数恒定,方便地进行线性放大,生产规模的处理量可达几千升料液,目前国内销售最大的中空纤维膜过滤系统已达400m2且生产稳定[8]。 /p p   2.1.2 深层过滤介质 /p p   深层过滤采用两种机制去除颗粒。首先是拦截,颗粒由于自身的物理尺寸在过滤器内被截留。它们可能被困在过滤器表面,因此根本没有进入基质,或在通过深层过滤基质的曲径时被俘获(筛选)。颗粒拦截伴随过滤器压差增高,因为它的基质被不断累积的颗粒堵塞。第二种机制是吸附,比过滤器拦截精度更小的颗粒能够从流体中被吸附去除。这种机制是通过深层过滤基质上的净电荷实现的[26]。 /p p   目前应用比较广泛的双层膜深层过滤介质有Millipore公司的Millistak+HC、Sartorius公司的Sartobran-P、Pall公司的Supradisc HP等。Millistak+HC深层过滤介质由纤维素和无机助滤剂(聚丙稀粘合的硅藻土)组成,包裹在聚丙烯外壳内 它由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成,附带一层RW01纤维素膜终过滤。Sartobran-P深层过滤介质由醋酸纤维素滤膜、聚丙烯外壳和支撑层组成,加强型的滤膜有良好的机械强度,有利于在反复的过滤和灭菌过程中保持完好无损 采用了折叠膜,在体积小巧的同时还保证了超大的过滤面积。Supradisc HP深层过滤介质由纤维素、硅藻土、带正电荷树脂和聚丙烯组成 也由两层全厚度深层滤板(上游一层粗过滤和下游一层精细过滤)组成。 /p p   2.2最新抗体捕获技术 /p p   2.2.1 MabSelect介质 /p p   MabSelect是第一个使用高流速琼脂糖凝胶作为骨架的新型Protein A层析介质,专为大规模抗体纯化而设计,适合快速高效的进行抗体生产和放大,已经成为单抗纯化和放大的标准介质。 /p p   MabSelect的特点有:(1)更高的流速和动态载量:Protein A经基因工程改造,C端含一个半胱氨酸,形成一个定向的硫酯键,同时增加了对IgG的有效结合。Protein A和凝胶偶联时采用了全新的单点偶联工艺,降低了空间位阻,因此可以在使用更高流速的条件下增加动态载量:在线形流速为500cm/hr和柱床高度为20cm(停留时间2.4min)的条件下,每毫升MabSelect的动态载量可以达到& gt 30mg IgG。(2)更低的非特异性吸附,抗体纯度更高:Mabselect介质高度亲水性的琼脂糖骨架最大程度上降低了非特异性吸附,使得洗脱峰中杂蛋白和DNA更少,有利于后期抗体的精细纯化。著名的抗体生产商IDEC公司以及R.Hahn的研究显示,Mabselect对CHO细胞HCP的吸附比其它Protein A介质低7倍[9-10]。R.L.Fahrner等的研究显示,Mabselect所得抗体的DNA残留量比其它Protein A介质低30%[11]。(3)更低的Protein A脱落:MabSelect由于通过新型环氧共价交联技术,Protein A的脱落比其它同类介质低,这不仅有利于抗体纯化,还延长了介质的使用寿命,降低了生产成本。(4)更易于工艺的线性放大:通过实验室条件的优化,MabSelect 可以在保持线性流速和上样比例等参数不变的条件下,通过增加柱直径进行线性放大。(5)MabSelect 易于清洗与除菌,寿命更长、更经济:在长期连续的生产中,有效的在位清洗(CIP)有助于延长介质使用寿命,但一般的Protein A介质往往不能耐受NaOH,只能使用高浓度的尿素或盐酸胍进行清洗,效果远不如NaOH且成本非常高。而MabSelect的CIP和除菌程序简单,用很常规、经济的试剂如50mM NaOH+1M NaCl或50mM NaOH+0.5M Na2SO4就可以有效去除沉淀和变性物质 用非离子去污剂或酒精可以去除通过疏水作用结合的物质 用0.1M醋酸和20%酒精可以在位灭菌(SIP)。经测试,Mabselect配合CIP(50mMNaOH+1M NaCl)纯化三百次后,抗体产品纯度与收率不变[12]。 /p p   2.2.2 MabSelect Xtra介质 /p p   Mabselect Xtra介质是在Mabselect介质的基础上优化而来,是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有MabSelect介质的全部特点外,还具有载量最高和非特异性吸附更低的特点。 /p p   Mabselect Xtra介质使用孔径更大的多孔高流速琼脂糖作为骨架,同时减小介质粒径。这样不仅增加了比表面积和配基密度,还降低了传质阻力,从而有效的增加了动态载量。其动态载量超过41mg/ml,在工艺生产过程中可以有效减少层析柱的体积,从而降低生产成本。R.Hahn的研究显示,Mabselect Xtra对CHO细胞HCP的吸附比其它Protein A介质更是低了近10倍[13]。 /p p   2.2.3 MabSelect SuRe介质 /p p   MabSelect SuRe介质也是在Mabselect介质的基础上优化而来,是目前市场上唯一耐强碱的Protein A亲和层析介质,寿命最长,稳定性最好[10]。它除了具有MabSelect介质的全部特点外,还具有以下特点:(1)可以耐受0.1-0.5M NaOH:MabSelectSuRe具有不同于其它Protein A介质的同型四聚体配基-SuRe配基,即使在强碱条件下也不易变性或脱落,可以用高达0.5M NaOH进行CIP和SIP,能有效去除沉淀和变性物质,大大降低了抗体产品被内毒素污染和批间交叉污染的风险,有利于延长介质使用寿命,同时还大大降低了CIP和SIP的成本。(2)更温和的洗脱,避免抗体聚集,提高收率:同型四聚体配基避免了不同配基与抗体Fc段亲和性的差异,也消除了某些域对Fab段的亲和作用,使得洗脱条件更加均一而温和。Mabselect SuRe介质可以用更高的pH进行洗脱,有效避免了抗体在低pH下的聚集,产品纯度和均一性更高,浊度也更低[14]。(3)不同抗体洗脱所需pH差异小:由于消除了对抗体Fab段的亲和作用,使得同一种属亚型的不同抗体分子洗脱所需的条件更接近,有利于平台技术的建立,进一步降低了不同的抗体分离纯化工艺的研发成本。(4)SuRe 配基稳定性更好:SuRe配基对碱和蛋白酶更稳定,纯化过程中脱落更少(& lt 10ppm),有利于后期脱落配基的进一步去除。 /p p   2.2.4 ProSep-vA Ultra介质 /p p   ProSep-vA Ultra介质是将自然界非动物性来源的Protein A交联于700Å 的多孔性玻璃珠骨架上,是刚性和不可压缩的介质。ProSep-vA Ultra介质具有如下特点:低反压性 不收缩、不溶胀 高动态载量 极低的Protein A脱落 高重复使用性,标准化的清洗和除菌操作[27]。 /p p   2.2.5 ProSep Ultra Plus介质 /p p   ProSep Ultra Plus介质是在ProSep-vA Ultra介质基础上优化而来,也是目前市场上所有的商品化Protein A介质中载量最高的亲和层析介质之一。它除了具有ProSep-vA Ultra介质的全部特点外,还具有载量最高、纯化效率更高、工艺更易于放大、成本更低等特点[28]。 /p p   2.2.6 MEP Hypercel介质 /p p   MEP Hypercel复合作用模式介质是一种灵活的层析介质设计,也称之为疏水电荷诱导层析(HCIC),用于捕获和纯化从实验室到生产规模的抗体和各种重组蛋白。MEP Hypercel介质由一个独特的连接4-巯基乙基吡啶(4-MEP)的刚性纤维素骨架组成。纤维素骨架赋予高孔隙率、化学稳定性和低非特异性吸附。平均直径80-100μm,在低反压下有优良的流速特性。MEP Hypercel介质在大规模使用时具有显著优势,基于它的配基结构,可选择性地捕获免疫球蛋白。组合其它传统的方法如离子交换、疏水作用,甚至用在Protein A之后从不同的料液中直接捕获或中度纯化抗体,以增强对宿主DNA、HCP和聚合体的清除。MEP Hypercel介质有助于建立一个简化的工艺流程,节省操作步骤(例如洗滤、超滤等) 预计有更长的使用寿命,因为它可以耐受苛刻的CIP方法(0.5-1M NaOH,30-60分钟接触时间),而所有因素都有利于降低成本[29]。 /p p   2.3最新精细纯化技术 /p p   2.3.1 CaptoFamily系列介质 /p p   新型的Capto S,Q系列介质是以高流速琼脂糖为骨架,同时交联了非常“柔软”的葡聚糖链,这样不仅增加了比表面积,同时降低了传质阻力和空间位阻,使得介质在高流速下的动态载量大大增加,有利于提高生产效率,降低成本。 /p p   Capto S,Q系列介质可以装填在直径60cm的工业层析柱中使用高达500cm/h 的流速进行纯化(柱高30cm)。这样不仅有利于工艺放大后大规模层析柱的填装,还大大提高了生产效率,每步层析更短的操作时间也有效避免了抗体分子在分离纯化过程中产生各种变体和聚合体,使得收率更好,终产品的活性更高、性质更均一。 /p p   2.3.2 Captoadhere介质 /p p   为了进一步减少抗体分离纯化步骤,提高特定杂质的去除效率,以满足日益增长的治疗用抗体的生产需要,2007 年初,GE Healthcare公司推出了新型复合作用模式的强阴离子交换介质:Capto adhere介质。Capto adher介质专为治疗用抗体的分离纯化而设计,其配基综合了阴离子交换、氢键和疏水等多种复杂的作用方式,因此对于抗体的聚合体具有非常独特而高效的去除能力。此外,通过有效的实验设计(DoE),流穿模式的Capto adher介质还可以同时有效去除脱落的Protein A配基、HCP、宿主DNA、内毒素和潜在的病毒,并使得结合MabSelect SuRe的抗体两步层析纯化工艺成为现实(表3)。Capto adhere还具有很强的病毒去除能力,如MVM病毒的去除能力可达5.9个Log。目前,新型的两步法抗体层析纯化工艺已经被国内外诸多知名药企广泛用于多种抗体的分离纯化,各项指标均符合治疗用抗体的要求。Capto adher层析还可以和阴离子交换(Capto Q)和疏水层析等结合使用,以达到更高的质量要求[15]。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/282961ea-e704-47d1-aabd-f044e108f59c.jpg" title=" 图3.png" alt=" 图3.png" / /p p style=" text-align: center " strong 表3 两步层析纯化工艺对污染物的去除效果[15] /strong /p p   2.3.3膜层析技术 /p p   PALL Life Science公司自10余年前颠覆性地开发出独一无二的层析产品-Mustang膜层析系列产品后,经过不断地技术改造,于近年推出全新Mustang Q XT家族,扩展了膜层析工艺放大产品线。膜层析技术,相对于传统的柱层析,无需层析填料和层析柱等复杂构件,直接通过膜式过滤器,经过简单的过滤环节即可达到纯化目的。Mustang Q以16层超级打褶的聚醚砜过滤膜作为基架,上面偶联了季胺基等功能基团,可以使生物分子流经的时候与功能位点迅速结合,具有高流速和高动态载量等优点。 /p p   Sartorius Stedim公司也开发出了一整套膜层析技术,包括Sartobind S,Q,C和D离子交换、Sartobind IDA(亚氨基二乙酸)金属螯合、Sartobind醛、Sartobind环氧基和Sartobind Protein A(重组)等膜层析系列产品。Sartobind在很多蛋白和病毒纯化应用中可以取代传统耗时、繁琐的层析步骤。膜吸附器的快速纯化特点使蛋白分离可以在高流速下获得高收率,较传统柱层析流速最高能提高100倍,达到20-40 CV/min。传统颗粒胶95%以上的结合位点集中在颗粒胶内部。Sartobind膜层析的结合位点是均一地交联到交叉偶联的增强纤维素骨架内0.5-1μm厚的薄层上。大孔结构和快速吸附结合特性使膜吸附器可以忽略扩散时间因素。同时多微孔膜结构不存在传统颗粒胶的孔内扩散问题。在对流情况下,流动相的分子运动只由泵压力决定。因此,膜吸附器具有操作周期极短、流速和处理能力极高的特点[30]。 /p p   与离子交换柱层析相比,离子交换膜层析技术已经被证明利用高动态结合能力吸附大量的生物分子,如病毒、HCP和宿主DNA。最近,阴离子交换膜层析技术已经被作为柱层析技术的替代技术用于Protein A亲和捕获后的mAb中微量污染物的去除[16]。 /p p   2.4终产品的浓缩洗滤 /p p   多维纯化得到的洗脱峰可以用Kvick Lab/Process盒式膜包进行快速浓缩和缓冲液置换。Kvick盒式膜包的优点有:(1)无热原:很多时候,仅用0.5M NaOH 清洗难以彻底去除膜表面的热原。Kvick盒式膜包化学性质非常稳定,可以使用1M NaOH在40-50℃下进行彻底的SIP/CIP,避免最终超滤浓缩时引入热原而影响产品质量。(2)孔径均一、速度快:Kvick盒式膜包孔径更均一,甚至可以使用50-100K的膜包进行抗体浓缩而不漏过,速度更快,大大节省了操作时间。(3)易于线性放大:通过保持流速、TMP等参数恒定,可以直接线性放大到生产规模。 /p p   Amicon Ultra系列超滤离心管可以用来进行抗体的快速浓缩、脱盐及缓冲液置换。它具有如下特点:(1)效率高:一步法离心达到25到80倍浓缩。(2)节省时间:垂直结构的膜,避免堵膜,减少浓差极化,可以用超快离心速度极短时间完成 最少10分钟即可完成浓缩、脱盐或缓冲液置换。(3)收率高:独特的反转离心设计,有利于取得最大回收率且避免了人为移液误差 低吸附滤膜和聚丙烯内壳,使回收率高达90%以上。(4)不漏液、无损失:100%完整性测试确保不漏液 独特的死体积设计避免过度离心至干,没有样品损失。(5)广泛的化学相容性:与广泛的溶剂兼容,适用于pH1-pH9,热封膜杜绝了粘合剂和下游溶出物污染。 /p p   Vivaspin系列超滤离心管同样是进行蛋白质快速浓缩和缓冲液置换的常用产品。获得专利的垂直膜配合狭长的流道设计,有效地避免滤膜堵塞,提高浓缩速度 同时在浓缩管底部设计有死端结构,确保即使离心时间过长也不会发生样品被甩干的现象。Vivaspin可灵活选用三种不同材质的超滤膜:聚醚砜、三醋酸纤维和Hydrosart。它的另一个特点是有两种回收浓缩液的方法,既可以直接用移液器从浓缩管底部吸取,也可以将浓缩液反转离心到回收管内,加盖密封保存,这两种方法都保证了高回收率。Vivaspin经过一次离心,最高可以将蛋白溶液浓缩300倍。 /p p   2.5终产品的除菌除病毒过滤 /p p   浓缩后的样品,最终经过0.22μm无菌滤器进行除菌过滤。ULTA Pure SG,HC除菌滤器具有过滤速度快、化学稳定性好、载量高和溶出物少等优点,细菌挑战实验表明其除菌能力大于7log。除菌过滤过程的优化主要从三个方面入手:操作过程中过膜压力的控制、过膜流速以及单位膜载量控制,这三个参数优化以后,可以在同种类型、材质的NFF膜上进行线性放大,否则很容易影响收率。 /p p   Durapore除菌级亲水性滤膜由亲水性PVDF材料制造,具有可靠的除菌保证以及低蛋白吸附量、低析出、无纤维脱落、广泛的化学兼容性等优点,是常用的除菌滤膜。Durapore 0.22μm亲水性滤膜用于液体除菌或去除微粒,0.1μm亲水性滤膜用于液体中去除微粒、微生物和支原体。装有Durapore亲水性滤膜的滤器有Millipak、Opticap XL、Opticap XLT、筒式滤器和Optiscale等。Millipak滤器独特的堆叠盘状设计使残留量最小并且无颗粒脱落,因此适合于高附加值产品的终端过滤和灌装。Millipak和Opticap XL滤器都有O型圈垫片和软管倒钩连接的上游排气阀和排空阀设计,使操作简单易控。Opticap XL和XLT滤器的结构设计,特别耐高温、高压条件,在除菌过程中提供更高的稳定性和可靠性,同时更易清洗。Optiscale一次性滤器专为小规模工艺筛选和工艺放大所设计,是工艺评估的理想工具。 /p p   目前被广泛应用的生物制品病毒去除的方法是纳米膜过滤。纳米膜过滤有如下优点:(1)针对性强,实用性广:纳米膜过滤只与病毒和目的蛋白的大小有关,无论病毒是否有脂包膜外壳、是否耐热,纳米膜过滤都能将之去除。(2)毒性小,下游污染少:能有效去除杀灭病毒后可能留下的如抗原和核酸蛋白混合物等病毒标志物,有效降低下游污染,是纳米膜的另一特点。大多数病毒灭活处理都使用有毒或致突变的理化试剂,从而必须在使用后从蛋白质溶液中清除,而纳米膜过滤不存在毒性问题,只是在验证中要考虑到滤器浸出物的风险。(3)蛋白活性高,回收率高:纳米膜过滤是在正常条件下的pH、渗透压和温度下进行的温和的生产步骤,其蛋白回收率和活性都很高,通常在90%—95%。基于体外分析、实验研究和临床经验,纳米膜过滤试验都没有显示出蛋白质改变或是新抗原的产生。纳米膜过滤不改变制品特性,这一特点促进了监管机构认可和产品的注册。 /p p   日本Asahi Kasei公司于1989年推出了第一款专门为清除生物制药产品中病毒颗粒而设计的过滤器Planova,由亲水铜铵再生纤维素制成的中空纤维微孔膜,装入聚碳酸酯壳体中。Millipore公司的Viresolve NFP膜是一种复合PVDF膜,过滤盒被设计来从高纯蛋白溶液中移除小型病毒,如B19,蛋白质溶液中,B19的去除量通常& gt 4 log。PALL Life Science公司的Ultipor VF DV50和DV20膜式过滤器可以从生物流体中去除显著数量级的病毒,同时目标蛋白可以很好地通过。滤芯由三层独特的亲水、低蛋白吸附的PVDF滤膜经新月型打褶方式构成,过滤面积大,具有可靠、安全和高流量等特点。Sartorius Stedim生产的Virosart CPV为聚醚砜过滤器,能去除& gt 4 log的PPV和& gt 6 log的逆转录病毒。 /p p   2.5扩张柱床吸附层析技术 /p p   扩张柱床吸附层析技术(EBA)是上世纪九十年代初期进入下游生产,整合了发酵和下游纯化的技术。新一代STREAMLINE Direct扩张柱床设备及介质是EBA技术中最成熟的产品。通过条件优化,STREAMLINE能直接从浑浊的发酵液中捕获目标生物分子,细胞碎片及不吸附的杂质穿过扩张床内悬浮的介质被冲洗掉,将以往澄清、浓缩、捕获等步骤整合为一步,达到粗纯化的效果(图2)[17]。 /p p   STREAMLINE的操作过程如下[17-18]:(1)起始:将STREAMLINE介质倒入扩张柱中。(2)平衡:从下向上流的缓冲液,将STREAMLINE柱内的吸附介质悬浮起来,形成稳定的、充分平衡好的扩张床。(3)上样:发酵液带菌体从柱底进入,目标生物产品吸附在STREAMLINE介质上 不吸附的宿主杂质及菌体碎片随液流从柱顶排出。(4)淋洗/穿透:进一步用缓冲液将不吸附的杂质洗掉。(5)洗脱:洗脱液洗脱目标生物产品。(6)CIP/再生:用1M NaOH+1M NaCl进行CIP。整个操作过程如图3所示。 /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dba748ae-d64e-479c-8fb1-ea738ef437da.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " strong 图2 传统纯化工艺与STREAMLINE [17] /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0f71d1a8-a218-43f5-8c1f-917bd4f432a5.jpg" title=" 图5.png" alt=" 图5.png" / /p p style=" text-align: center " strong 图3 STREAMLINE的基本工作原理和操作过程[18](箭头示液体过柱时的流向) /strong /p p   STREAMLINE介质是一系列包裹着石英芯,以琼脂糖为骨架的介质。特殊设计的STREAMLINE扩张柱床可以产生稳定的向上拔的扩张液流,每一颗不同比重的STREAMLINE介质,悬浮在自身重力和扩张升力平衡的位置原地扰动。STREAMLINE技术是稳态扩张,样品流均匀分布整个床体,目标产物吸附均匀,穿透小,回收率高,类似于固定床吸附性层析[19]。 /p p   3. 抗体最新下游技术应用实例 /p p   Lonza Biologics公司是全球最大的抗体合同生产商之一,为了开发一个稳定的20000L的抗体生产工艺,其纯化开发部门对多个不同的抗体亲和层析凝胶进行了有效的比较,他们发现Mabselect SuRe的动态载量高、使用寿命最长、Protein A脱落最低,实验数据明确支持放大到1.4m直径的柱子用于20000L培养规模的经济生产[4]。 /p p   德国的Roche公司一种用于肿瘤治疗的单抗已进入临床Ⅲ期。他们将目前几种Protein A介质进行充分的比较之后,选择了高载量、更易于装柱和寿命更长的Mabselect。目的抗体是通过无血清培养的转染的杂交B淋巴细胞表达的IgG1。将过滤后的无细胞上清上样到Mabselect填充的FineLINE柱,直径300cm,柱高20cm,上样的浓度是30mg/ml。洗脱后,洗脱液立即用磷酸钾中和pH值到6.8-7.0,再用凝胶过滤检测,结果表明比活超过90%,纯度在95%以上[20]。 /p p   Cytheris公司是法国一家生物制药公司,目前正在研制一种用CHO细胞表达的免疫调节剂(临床Ⅱ期)。原先的工艺采用传统层析法,但不能稳定去除病毒。改进后,在工艺的第一步使用Mustang Q对污染物进行捕获,取得了25%去除率的良好结果 同时对MVM、MLV和Re03三种病毒也达到超过4个Log的滴度降效果,而整个工艺对病毒的去除效率普遍提高了7-11个Log。说明Mustang Q的使用对下游层析起到了很好的保护作用。 /p p   在第五届生物制药工艺优化大会上,Crucell公司介绍了他们对腺病毒(AAV)纯化工艺的摸索。与传统的层析填料相比,Mustang Q膜层析的开放孔道的设计使对病毒的动态载量大大提高30倍左右,回收率在80%以上。用40L的膜层析柱相当于1000L的传统层析柱的效果,节省了验证工作,提高了工艺经济性,十分有利于放大生产。 /p p   德国的Boehringer Mannheim公司生物制药部,用STREAMLINE技术代替传统工艺生产400L CHO细胞培养的Fc融合蛋白,结果样品回收率提高14%,缓冲液减少25%,时间缩短47%[17]。 /p p   世界最大的制药公司-GlaxoSmithKline公司,使用特别设计的BioProcess全自动层析系统和STREAMLINE扩张柱生产药用脂蛋白疫苗,比原工艺产品体积缩小2倍,纯化系数1.5,内毒素减少100倍[17]。 /p p   日本YOSHITOMI公司正在使用多套STREAMLINE 1000系统生产人重组白蛋白,与原生产工艺产品纯度相同,产率提高30%,时间减少一半,年产量为12.5吨[17]。 /p p   AVECIA公司重新设计临床Ⅲ期药品生产工艺,选用STREAMLINE技术及SOURCE新型凝胶,生产效率提高12倍,回收率提高1倍[17]。 /p p   2001年,ILEX制药公司的CAMPATH获得FDA批准。该单克隆抗体使用Sartobind Q离子交换层析模块以流穿的方式进行精制,这是膜吸附器首次被批准应用于治疗性蛋白的生产,证明了膜层析技术通过了证实和测试[30]。 /p p   4. 展望 /p p   随着抗体产品上游大规模高效培养技术的进一步发展,实验室规模哺乳动物细胞表达水平可以达到25g/L,如果这一水平能够有效放大到生产,将对下游生产纯化带来更大的压力。所以下游纯化工艺的技术发展也是势在必行。 /p p   以下一些发展方向可能成为下游工艺未来发展的重要关注点:(1)刚性更好、载量更高、耐碱性更好的完全亲水琼脂糖凝胶的开发[4]。(2)优化操作次序,降低缓冲液消耗的更大规模生产线的应用[21]。(3)通过单抗的氨基酸序列预测下游工艺关键参数:亲和层析洗脱pH条件、离子交换层析洗脱pH和盐浓度条件、病毒灭活pH等[22]。(4)下游工艺的成本消耗占全部成本的50-80%,亲和捕获是下游工艺的最关键步骤,通过改进亲和配体,提高捕获能力,节省成本[23]。(5)新型层析系统全程实时控制纯化过程,在线检测HCP、宿主DNA、Protein A等的含量[24]。(6)由于在去除杂质方面的优势,膜层析将会得到飞速的发展,未来工艺甚至可能完全基于膜层析而不是柱层析[25]。 /p p   参考文献 /p p   [1] 刘亚明,薛章.生物制药:迎接抗体药物的黄金时代.医药细分子行业研究报告,2009. /p p   [2] 陈志南.基于抗体药物的我国生物制药产业化发展前景.2008中国药学会学术年会暨第八届中国药师周论文集,2008. /p p   [3]Gail Dutton.Trends in Monoclonal AntibodyProduction.Feature Articles,2010, 30(4). /p p   [4]孙文改,苗景赟.抗体生产纯化技术.中国生物工程杂志,2008,28(10):141-152. /p p   [5]《人用单克隆抗体质量控制技术指导原则》.NICPBP(中国药品与生物制品检定所),2003. /p p   [6]Capto adhere:用于生产单抗的两步纯化操作.GE Healthcare公司技术资料. /p p   [7]中空纤维滤柱分离纯化应用集锦.GE Healthcare公司技术资料. /p p   [8]中空纤维膜过滤技术在单抗生产中的应用.GE Healthcare公司技术资料. /p p   [9]Amersham Biosciences.Downstream Gab’02 Abstracts,Extended Reports from the 2nd International Symposium on DownstreamProcessing of Genetically Engineered Abtibodies and Related Molecules. PortoPortugal,2002,12-14. /p p   [10] R.Hahn,R.Schlegel,A.Jungbauer.Comparison of Protein A affinity sorbents.JChromatogr B,2003,790:35-51. /p p   [11] R.L.Fahrner,et al. Performancecomparison of Protein A affinity chromatography sorbents for purifyingrecombinant monoclonal antibodies.BiotechnolAppl Biochem,1999,30:121-128. /p p   [12] K.Brorson,J.Brown,et al.Identification of protein A media performanceattributes that can be monitored as surrogates for retrovirus clearance duringextended re-use.Journal ofChromatography A,2003,989:155-163. /p p   [13] R.Hahn,et al.Comparison of Protein A affinity sorbents Ⅲ,Life time study.J Chromatogr A,2006,1102:224-231. /p p   [14] S. Ghose,et al. Antibody Variable RegionInteractions with Protein A: Implications for the Development of GenericPurification Processes. Biotechnol Bioeng,2005,92(6):665-673. /p p   [15]用复合配基阴离子交换柱去除单克隆抗体(Mab)的污染物.BioProcessInternational技术资料. /p p   [16]利用Mustang Q膜层析从Protein A纯化的单克隆抗体中去除污染. PALL LifeScience公司技术资料. /p p   [17]整合发酵和下游纯化的新技术:扩张柱床吸附技术.GE Healthcare公司技术资料. /p p   [18]余晓玲,米力,姚西英,陈志南.扩张柱床吸附层析与固定柱床层析纯化单克隆抗体的比较.中国生物工程杂志,2003,23(1):61-64. /p p   [19]High-throughput monoclonal antibody purification.GE Healthcare公司技术资料. /p p   [20]抗体纯化手册.GE Healthcare公司技术资料. /p p   [21]Purification Strategies to Process 5 g/L Titers ofMonoclonal Antibodies. BioPharm International技术资料. /p p   [22] T.Ishihara,T.Kadoya.Accelerated purification process development ofmonoclonal antibodies for shortening time to clinic:Designand case study of chromatography processes.J Chromatogr A,2007,1176(1-2):149-156. /p p   [23] A.Cecilia,A.Roque,et al.Antibodies and Genetically Engineered RelatedMolecules:Production and Purification.BiotechnolProg,2004,20:639-654. /p p   [24] S.Flatman,I.Alam,et al.Process analytics for purification of monoclonal antibodies.JChromatogr B,2007,848:79-87. /p p   [25]ProcessChromatography:Five Decades of Innovation.BioPharmInternational技术资料. /p p   [26]双层滤板膜堆在单抗工艺上的大规模澄清过滤应用评估.BioProcessInternational技术资料. /p p   [27]Affinity Chromatography Media.Millipore公司技术资料. /p p   [28]ProSep Ultra Plus ChromatographyMedia.Millipore公司技术资料. /p p   [29]MEP Hypercel混合模式层析填料. PALL LifeScience公司技术资料. /p p   [30]Sartobind膜层析技术高效的蛋白纯化工具. SartoriusStedim公司技术资料. /p
  • 2016年广州国际水处理展
    美国PMI为全球知名多孔材料特性量测技术公司,因应过滤在科研及产业发展需求,PMI中国地区服务处推出五大系列检测设备: 1. 多孔性材料孔径分析: 微滤,超滤,薄膜,电纺丝,中空丝,无纺布̷等材料孔径分析检测 2. BET 比表面积与微孔孔径分析: 吸附材料,活性碳̷等材料微孔孔径及吸附能力分析 3. 亲/非亲水材料孔隙分析: 锂电池隔膜,水泥,岩石̷等材料孔隙度分析检测 4. 气、液与水气透过分析: 滤材过滤能力分析检测 5. 真密度与假比重分析: 材料密度及孔隙率分析PMI中国地区服务处并将于展会内展出滤膜孔径检测,滤芯过滤器检测,超滤及纳滤滤材检测̷等检测设备,为广大客户提供水处理及检测技术上的专业服务。 会议时间: 2016年3月 24 日 至 3月 26 日会议地点: 广州琶洲 ? 南丰国际会展中心 NICEC Expo展位位置: B143
  • 突破轴向分辨率极限!我国科学家研制出新型干涉定位显微镜ROSE-Z
    单分子定位超分辨显微成像技术利用特殊荧光分子的光开关特性,突破衍射极限,将荧光显微镜的分辨率提高了一个数量级,可以揭示纳米尺度下的亚细胞结构。因受定位原理的限制,该技术轴向分辨率比侧向分辨率低2-3倍(一般为50nm左右),影响了其三维解析能力和应用。在“蛋白质机器与生命过程调控”重点专项的支持下,中国科学院生物物理研究所研究人员通过研发非对称干涉光路成像方法,突破了轴向分辨率的极限。与传统的柱面镜成像方法相比,非对称干涉光路成像方法将定位精度提高了6倍以上,将单分子定位成像的轴向分辨率提升到了纳米尺度,实现了轴向的单分子干涉定位成像。研究人员据此技术研制出了新型干涉定位显微镜(ROSE-Z),利用ROSE-Z显微镜的高分辨率三维解析能力,研究团队成功实现了对细胞内微管直径中空结构的解析。同时团队在ROSE-Z显微镜的基础上扩展了多色成像以及厚样品成像功能,对细胞样品进行了纳米精度三维双色成像,并验证了细胞厚样品成像能力。这些结果证明该方法在具备优异的轴向分辨率的同时,也具备很高的可扩展性以及操作便捷性,为细胞内三维纳米结构的研究提供了有力的研究工具。研究成果近期发表在Nature Methods杂志上。
  • 【和泰纯水知识集锦】第3期-水的纯化方法
    一、微孔过滤法微孔过滤法包括三种类型:深层过滤(depth)、筛网过滤(screen)及表面过滤(surface)。深层滤膜是以编织纤维或压缩材料制成的基质,利用随机性吸附或是捕捉方式来滞留颗粒。筛网滤膜基本上是具有一致性的结构,就像筛子一般,将大于孔径的颗粒,都滞留在表面上(这种滤膜的孔径大小是非常精确的),而表面过滤则是多层结构,当溶液通过滤膜时,较滤膜内部孔隙大的颗粒将被滞留下来,并主要堆积在滤膜表面上。由于上述三种滤膜的功能不同,因此对滤膜之间的分辨非常重要。由于深层过滤是一种较为经济的方式,可去除98%以上的悬浮固体,同时保护下游的纯化单元不会败坏或堵塞,因此通常被作为预过滤处理。表面过滤可去除99.99%以上的悬浮固体,所以也可作为预过滤处理或澄清用。微孔薄膜(筛网滤膜)一般被置于纯化系统中的最终使用点,以去除最终残留的微量树脂碎片、碳屑、胶质颗粒和微生物。例如:0.22μm微孔滤膜,其可滤过所有的细菌,通常用于将静脉注射用的液体、血清及抗生素进行除菌用。二、活性碳吸附法有机物可能是阳离子、阴离子或非离子性的物质,离子交换树脂可去除原水中一些可溶性的有机酸和有机碱(阴离子和阳离子),但有些非离子性的有机物却会被树脂包覆,这过程称为树脂的“污染阻塞”现象,不但会减少树脂的寿命,而且降低其交换能力。为保护离子交换树脂,可将活性碳过滤器安装在离子交换树脂之前,以去除非离子性的有机物。活性碳的吸附过程是利用活性碳过滤器的孔隙大小及有机物通过孔隙时的渗透率来达到的。吸附率和有机物的分子量及其分子大小有关,某些颗粒状的活性碳较能有效的去除氯胺。活性碳也能去除水中的自由氯,以保护纯水系统内其他对氧化剂敏感的纯化单元。活性碳通常与其他的处理方法组合应用。在设计纯水系统时,活性碳与其他相关纯化单位的相关配置,是一项极为重要的项目。三、反渗透法反渗透(RO)法是可达到90%~99%杂质去除率中最经济的方法。RO膜的滤孔结构较UF膜还要致密,RO膜可去除所有的颗粒、细菌以及分子量大于300的有机物(包括热源)。RO膜的滤孔结构较UF膜还要致密,RO膜可去除所有的颗粒、细菌以及分子量大于300的有机物(包括热源)。当二种不同浓度的溶液,由一个半透膜隔开时,渗透现象会自然发生。渗透压将水压过半透膜,水将浓度较高的溶液稀释,后造成浓度平衡。在水纯化系统中,施加压力于高浓度的溶液中,以抗衡渗透压。如此迫使得纯水由高浓度的液体通过RO膜,并可加以收集。由于RO膜致密度极高,因此,产出的水流很慢,需要经过相当的时间,贮水箱内才会有足够的水量。RO膜可执行离子排除,使得只有水可通过RO膜,其余所有的离子及溶解的分子都被截留,并加以排除(包括盐类和糖)。RO膜以电荷反应将离子排除,带电荷愈大,排除性愈高,所以RO膜几乎可排除所有的(99%)强离子性的高价离子,但是,对于弱离子性的单价离子(如钠离子)的效果只有95%。不同的进水需要不同种类的RO膜,RO膜包括由乙酸纤维酯制成,或是以聚硫胺与聚砜基质的混合薄层聚合物。如果以原水水质及产水水质为基准,经过适当设计后,RO是将自来水纯化的最经济有效方法。RO同时也是试剂级纯水系统很好的前处理方法。四、离子交换法离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是那一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。若将离子交换法与其他纯化水质方法(例如反渗透法、过滤法和活性碳吸附法)组合应用时,则离子交换法在整个纯化系统中,将扮演非常重要的一个部分。离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合其他的纯化方法设计使用。五、EDI纯水技术电渗析(EDI)是一项结合了离子交换树脂和离子选择性通透膜,并结合直流电去除水中离子化杂质的技术。该项技术的发展克服了离子交换树脂的局限性,特别是离子交换柱耗竭时离子杂质的释放及重填或再生离子交换柱的工作。水通过一个或多个在阳离子或阴离子选择膜之间填满离子交换树脂的管腔,在电场的作用下,离子在离子交换树脂间向管腔的两侧移动并进入另外的管腔,这个过程中也会电解产生维持树脂处于再生状态所需的H+和OH- 。流向两侧独立管腔的离子被水冲刷掉。六 、超滤法超滤(UF)是一个过滤术语,指能去除如蛋白质大小的颗粒的过滤器。膜孔径通常在1-50nm之间,中空纤维结构的超滤膜通常有较高的滤过速率。超滤膜根据其降低相关污染物浓度的效率来分级微孔薄膜是依其孔径大小来去除颗粒,而超滤(UF)薄膜则是一个分子筛,它以尺寸为基准,让溶液通过极细微的滤膜,以达到分离溶液中不同大小分子的目的。超滤膜是一种强韧、薄、具有选择性的通透膜,可截留大部分某种特定大小以上的分子,包括:胶质、微生物和热源。较小的分子,例如:水和离子,都可通过滤膜。所以,超滤法可将截留液中的大分子加以浓缩,但是,仍有些大分子会渗漏至滤过液中。超滤膜有数种不同的范围,在所有的实例中,超滤膜会留在大部分大于其分子筛所定义分子量的分子。七 、紫外线照射法紫外线照射法已广泛的使用在水处理上,低压水银灯所放射出来的254nm的紫外线是一种有效的杀菌方法,因为细菌中的DNA及蛋白质会吸收紫外线而导致死亡。近来在UV灯制造技术方面的进步,已可制造同时产生185nm和254nm波长的紫外灯管,这种光波长组合可利用光氧化有机化合物,接着这种特殊灯泡,将纯水中的总有机碳浓度降低至5ppb以下。八、蒸馏法蒸馏法是通过改变水的形态,从液态到气态再回到液态,将水和污染物分离。蒸馏法的每一个转换过程都为纯水与污染物的分离提供了机会。理论上,除蒸汽压力与水接近的物质和共沸化合物,蒸馏法能去除所有种类的水中污染物。像RO一样,蒸馏法生产纯水的速度较慢,所以蒸馏水必须先储存起来以备日后使用。蒸馏水器非常耗电,每生产1升纯水通常耗费1KW电力。依据蒸馏水器的不同设计,蒸馏水的电阻率大约能达到1 MΩ-cm,因为空气中的CO2会溶入蒸馏水中迅速降低其电导率。新鲜蒸馏水是无菌的,但如果保存不当,一段时间后就不再是无菌的了。九、凯得菲(KDF)凯得菲(KDF)的作用及功效:凯得菲(KDF)是高纯度的铜/锌合金颗粒,它通过微电化学氧化-还原反应(Redox)进行水处理工作,在与水接触时,合金中的两种金属在亚微观尺度上构成无数小的原电池系统,这种材料在水中具有强大的反应能力和极快的反应速度,可以清除水中高达99%的氯和水中溶解的铅、汞、镍、铬等金属离子和化合物。对抑制细菌、真菌、污垢、水藻的滋生效果卓著。被用于预处理、主处理与废水处理设备。凯得菲(KDF)完善或取代现有技术,可大辐度延长了系统寿命,减少重金属、微生物、污垢,降低了总费用,减化系统维护。(1) 去除强氧化剂(余氯)凯得菲(KDF)具有强大的还原能力,能去除水中的各种强氧化剂,对余氯特别有效。(2)去除重金属凯得菲(KDF)处理介质可以去除水中的多种重金属离子,如铅、汞、铜、镍、镉、砷、锑、铝和其他许多可溶性重金属离子,它们的去除是通过置换反应和物理和化学吸附反应来完成的。凯得菲(KDF)去除重金属离子的机理如下:金属离子吸附于凯得菲(KDF)处理介质的表面并与凯得菲(KDF)中的锌发生置换反应,生成的金属或吸附在凯得菲(KDF)表面,或进入凯得菲(KDF)晶格中,从而使有毒重金属污染物结合在凯得菲(KDF)上。例如,水中溶解的铅离子还原成不溶性的铅原子,并吸附于凯得菲(KDF)介质的表面,汞离子与凯得菲(KDF)也发生类似的反应,X射线衍射研究发现汞的去除是形成了铜-汞合金。(3)去除硫化氢在应用膜法进行水处理时,如果选用地下水作水源,水中可能存在硫化氢,硫化氢如被氧化成硫磺就会污染滤膜表面,凯得菲(KDF)过滤介质有去除硫化氢的功能,生成的硫化铜不溶于水,可在凯得菲(KDF)介质反冲洗时去除(4)减少悬浮固体凯得菲(KDF)处理介质的颗粒平均尺寸大约为60目,最小的颗粒约110目,也能起到物理过滤去除悬浮物质的作用,通常凯得菲(KDF)过滤介质能够有效地去除直径小于至50μm的颗粒。(5)减少矿物质结垢(6)抑制微生物繁殖凯得菲(KDF)处理介质不是通过一种机理、而是几种机理控制微生物的生长繁殖,通过每一种的单独作用或协同作用来达到抑制微生物的作用。主要机理包括:氧化还原电位的变化,氢氧根离子和过氧化氢的形成,介质中锌的溶出等。在一般情况下,凯得菲(KDF)处理介质作为反渗透膜的预处理手段时,能够抑制细菌、藻类等微生物的繁殖,从而防止了微生物对膜的破坏。【本文由和泰仪器发布,未经允许,禁止转载、抄袭!部分内容整理摘编自网络,如有侵权,请联系改正!】
  • 盘点纯水器的最新技术进展
    纯水作为实验室用量最多的溶剂被广泛应用于科研、检测、医药、食品等领域。天然水中含有许多污染物质,普通的过滤、蒸馏等方法得到的水并不是真正意义上的纯水,对实验结果会产生很大的影响,不能满足实验要求。现阶段,只有借助纯水器制取的纯水才能满足实验要求,因此,纯水器是非常重要和常见的通用仪器设备之一。天然水中常见的污染物主要有固体溶解释放的离子、溶解的有机物、颗粒物、微生物、热源物质、生物大分子和可溶性气体等。分析检测实验室用水遵循的标准主要有国际标准化组织(ISO 3696-1995)、国家分析实验室纯水标准(GB/T 6682-2008)和美国材料试验协会(ASTM D1191-2006)等。此外USP(美国药典)、EP(欧洲药典)、CLSI(临床实验室标准委员会)、CAP(美国药理学会)等都对实验室用水提出了要求。表1为我国制定的分析实验室用水标准。注1:由于在一级水、二级水的纯度下,难于测定其真实的pH值,因此,对于一级水、二级水的pH值范围不做规定。注2:由于在一级水的纯度下,难于测定可氧化物质和蒸发残渣,对其限量不做规定。可用其他条件和制备方法来保证一级水的质量。目前,没有一种技术能将水中所有的污染物完全除去,但是可以通过多种方法联合使用,使水中的污染物质尽可能的减少。一级纯水的制备过程需要经过吸附、膜过滤、去离子、消毒和超滤五个步骤。二级纯水和三级纯水只需要经过前四步即可制得,与一级纯水的制备过程相比,二级纯水和三级纯水的去离子过程相对简单一些。本网对纯水器市场调查的结果显示,一级纯水器的使用率最高,约占59%以上,因此,本文以一级纯水的制备过程为例,对近期纯水器的技术进展进行简要介绍。吸附过程主要是经过带催化剂的活性炭预处理柱,该过程可有效吸附颗粒物,微生物,部分有机物及氯气等杂质。膜过滤过程目前采用两类膜过滤器,一种是孔径约为5微米的膜过滤器,主要用于预处理,过滤水中泥沙和颗粒物等,用于保护机器。另一种是孔径约为0.2微米的精密过滤器,主要过滤水中的细菌。去离子过程主要有反渗透法(RO)、电化学去离子法(EDI)和离子交换法。如果在去离子过程中只用反渗透法(RO),得到的是三级纯水。目前,市面上大多数的纯水器采用此方法制备三级纯水。而EDI技术的出现,成为水处理技术的一场革命。EDI技术是将电渗析技术和离子交换技术相融合,通过阴、阳离子交换膜对阴、阳离子的选择性透过作用与离子交换树脂对离子的交换作用,在直流电场的作用下实现离子的定向迁移,从而完成水的深度除盐。该技术具有操作简便、环保等优点,是纯水制备技术的绿色革命。在去离子过程中,应用反渗透技术和EDI技术联合制备的纯水是二级纯水。根据近几年发布的纯水器新产品,纯水器技术进展主要体现在以下几个方面:一、纯化过滤技术,纯水器的核心技术 二、实时监测技术,如内置TOC 检测仪、高精度在线电阻率仪和滤芯识别技术 三、开发智能软件,例如紧急备份功能和假期自动维护功能 四、外观设计,触摸功能显示屏,小型化 五、防止二次污染无水箱技术 六、取水方式多样,手动取水、自动定量取水和脚踏取水等。例如ELGA推出的PURELAB Chorus系列纯水产品、和泰推出的Edi-Q去离子纯水机等就是采用了EDI技术制备纯水。PURELAB Chorus 2 是PURELAB Chorus系列纯水产品之一,出水水质为二级纯水。PURELAB Chorus 2采用了Pulse(EDI)技术进行去离子,同时采用滤芯识别CID技术记录和跟踪每个纯化柱的信息。和泰推出的Edi-Q去离子纯水机采用的是lonpure EDI技术,融合预处理纯化柱及反渗透模块,无需添加软化剂、化学再生或更换DI柱即可稳定获得二级纯水,降低了运行成本,减少废水的排放。经过反渗透和EDI等去离子技术以后,出水水质达到二级纯水的标准,如果制备一级纯水,也就是超纯水,则需用离子交换技术将上述流出的二级纯水进行再次纯化。离子交换技术是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种水处理工艺,也是目前非常有效的去除水中痕量离子的方法。例如赛多利斯推出的arium comfort系列纯水产品。arium comfort I 是arium comfort系列纯水产品之一。arium comfort I 的纯化柱中采用的是高效混合床离子交换树脂,该种树脂具有很高的离子交换能力,不必经常更换耗材,可以降低使用成本。同时,采用创新的抛弃型袋式水箱系统,无需消毒,减少维护成本。纯水器或超纯水器需要定期更换纯化柱、超滤装置等耗材,随着技术的不断进步和创新,延长耗材的使用寿命成为今后发展的一种趋势。默克密理博今年1月份推出的AFS E Large 水纯化系统,采用的是先进的Elix连续电流去离子技术,该技术不需更换树脂纯化柱,可以有效降低耗材成本。同时,采用E.R.ATM技术,能够延长耗材寿命。为了移动方便,底部设有自动移动的静音轮,可以任意移动,节省空间。 消毒过程采取紫外氧化的方法,目前普遍采用内置单波长(254nm)紫外灯或双波长(185nm/254nm)紫外灯。单波长紫外灯主要通过两种机制来杀菌,一种机制是利用紫外线破坏细菌的蛋白质,另一种是在紫外线作用下先产生臭氧,再利用臭氧杀死细菌。而双波长紫外灯除了具有杀菌作用以外,更主要的作用是氧化水中的有机物,使水中的总有机碳(TOC)含量在2ppb以下。超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。目前,超纯水器的超滤过程主要采用中空纤维纯化柱去除水中的热源、核酸酶、生物大分子等污染物。随着技术的进步和发展,纯水器在外观、取水方式、防止二次污染等技术上也有所创新。控制面板普遍采用触摸屏设计,操作方便。取水方式有手动取水、自动定量取水等方式,如果不方便手动取水,可采取将脚踏开关与取水器相连进行脚踏取水。例如默克密理博推出的Milli-Q Integral 纯水/ 超纯水一体化系统就可以采用多种方式取水。另外,大部分纯水器或超纯水器都在进水和出水端配有电导率监测装置,实时监控电导率。同时内置TOC 仪在线监测,实时监测产水TOC 含量。例如乐枫推出的Direct-Pure Genie 超纯水系统。总体而言,纯化技术上的创新才是真正意义上的创新,因为纯化技术才是纯水器的核心技术,只有掌握了先进的纯化技术,才能在未来纯水器的市场上占有一席之地。欲了解更多新品信息请访问新品栏目。撰稿:张葳
  • 群英荟萃上海国际污水处理展 膜处理产业将再创高峰
    同期举办   2014 AQUATECH CHINA 上海国际膜与水处理展   2014 FlowEx China 上海国际泵管阀展   第七届AQUATECH CHINA 上海国际污水处理展将于2014年6月25-27日在上海世博展览馆隆重上演。   75,000平米规模 1,400家展商 45,000名专业观众   短短20多年,膜作为一种新兴高效的分离技术广泛应用在电力、纺织、化工、电子、冶金、石油、食品、工业水处理、生物制药、发酵等各个领域。&ldquo 在我国因为水的问题比较严峻,因而膜技术在水处理领域应用发展的比较快,尤其在废水处理,特别是水资源再利用方面有广阔的前景。&rdquo 国家环保总局华南环科所彭晓春主任告诉记者,膜法水处理市场前景光明,在现有的污水深度处理工艺中,膜处理方法是相对成熟的技术。膜技术作为水处理行业的一块&ldquo 肥肉&rdquo ,正处于群雄争霸的时期。   由上海荷瑞会展有限公司与荷兰阿姆斯特丹RAI 国际会展中心主办,中华人民共和国住房和城乡建设部、住建部中国建筑文化中心、荷兰水事业联盟等多家知名单位协办的第七届AQUATECH CHINA 上海国际污水处理展将于2014年6月25-27日在上海世博展览馆隆重上演!   AQUATECH CHINA 上海国际污水处理展诞生7年来,特别开辟膜与工业水处理专区,一直致力于膜技术在工业水处理领域应用发展,打造全球最优质的污水处理产业技术交流学习平台,新产品、新设备展示平台,更好地推进污水处理产业的发展。历经多年的发展及资源的整合,展会现已经成为环保污水处理产业公认的&ldquo 全球最大的顶级污水处理展&rdquo ,专业人士必选盛会!   一年一届的展会已成为污水处理产业专业人士的聚会。届时多个国内外工业膜大品牌都将在现场展示最新"膜"术!部分如:DOW、GE、东丽、熊津化学、凯发、明电舍、时代沃顿、特里高、三菱丽阳、膜天膜、斯纳普、乐普、唯赛勃、中环膜、坎普尔、赛诺膜、沁森、九章膜、易膜、海清源、美能、乐金等,让您现场领略最新"膜"法! GE水处理及工艺过程处理带来的ZeeWeedâ 超滤膜作为一种独特的外压式的浸没式或压力式PVDF中空纤维膜,具有超常的物理化学耐受性,其加强型膜丝具有无比的耐受性和使用寿命 蓝星东丽膜科技(北京)有限公司将展示的海水淡化反渗透膜 TM8系列具有除盐性能好且稳定,运行维护成本低的特点 哈尔滨乐普的膜外壳经过10万次水压循环疲劳试验测试及6倍爆破压力测试,密封可靠,性能卓越, 应用于新加坡大泉海水淡化厂水处理工程等。   展会同期将举行近70场行业高端会议及论坛,如全球工业领袖论坛、第三届加拿大水处理技术研讨会、第三届环保水处理工程师大会、全国二氧化氯与水处理研讨会、水处理&流体技术&mdash &mdash 制药专场论坛、水处理中水回用技术论坛、AquaStage企业技术交流会等。主办方将邀请环保主管部门领导全面解析最新政策走向,集聚全国大污水治理专家进行解决方案的共享,为污水治理企业提供一个专业化的技术交流和政策解析平台。   我们相信第七届AQUATECH CHINA 上海国际污水处理展将会是一届政府要员群集、行业龙头毕至、权威专家济济一堂的污水处理行业盛宴,无论是了解最新污水处理行业最新动态,还是采购环保产业设备,本展都将为您带来最权威最先进的盛宴。我们将以满腔的热情、最优质的服务、最优秀的平台期待您的光临!   AQUATECH CHINA 上海国际水展微信公众平台开通啦!关注官方微信公众号&ldquo 上海国际水展&rdquo 或手机扫描二维码,预登记免费获取精美礼品一份。更可参与Iphone5S手机抽奖活动!   展会咨询热线:   TEL:021-33231355 FAX: 021-33231366 E-Mail:info@aquatechchina.com   新闻联系人:   倪仁伟 Vincent TEL:021-33231357 E-mail: vincentni@chcbiz.com   更多展会信息请登录:www.aquatechwastewater.com
  • 西安光机所计算光学显微成像研究获进展
    使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影、重影、失败问题等也降低了成像质量。2013年,科研人员发明傅里叶叠层显微术(Fourier ptychographic microscopy,FPM)。该技术使用低倍物镜获得天然的大视场,通过多角度扫描方式采集一组低分辨率图像,在频域中迭代重构高分辨率的结果,无需机械扫描就能获得高分辨率、大视场图像,有效地解决了传统扫描成像的质量问题,突破了传统显微成像中分辨率与视场之间的矛盾关系,使得在数字病理学中实现高通量成像成为可能。   全彩色FPM成像对于分析标记的组织切片至关重要。传统扫描拼接依托彩色相机速度很快,尽管FPM技术在单通道下有高通量优势,但彩色化下使用传统的RGB序列照明合成则会缩小3倍通量,因此如何在保持精度的同时提高彩色化效率、保持高通量的优势、突破精度与效率的矛盾关系是主要的科学问题。2021年,中国科学院西安光学精密机械研究所潘安、马彩文、姚保利团队提出了颜色迁移傅里叶叠层显微术(CFPM)的方法,以几乎无精度损失的情况下将效率提高了3倍(Science China Physics, Mechanics & Astronomy,封面文章)。由于缺乏对颜色传递过程中空域信息约束,该方法无法恢复多色染料染色的复杂样品,且依赖GPU的并行计算。鉴于此,科研团队提出了改进的FPM全彩色成像算法,称为颜色迁移滤波傅里叶叠层显微术(CFFPM)。该方法将交叠分块、三边滤波与全彩色FPM迁移学习模型相结合。前者降低了解空间的搜寻范围,后者引入了空域的先验信息,有效地匹配了最合适的颜色传递像素和滤除了杂色,进一步通过迭代在两个色彩空间的颜色精炼,从而克服了CFPM的重要缺陷。实验对比26个样本统计结果显示:在精度方面,CFPM、CFFPM与RGB序列照明方法相比均方误差分别高4.76%和1.26%;在视觉效果方面,CFFPM可有效分辨多色染料染色的复杂样本,与RGB序列照明方法难以分出差别;在时间效率方面,与RGB序列照明方法相比,CFPM和CFFPM均具有更高的效率/与在CPU上运行的CFPM相比,CFFPM方法的运行时间从几小时减少到几分钟;在临床应用方面,颜色精度对于病理判断至关重要,而简单地加快成像速度导致彩色成像的精度损失。CFFPM在两者之间做到了较好的取舍,在快速成像的同时保持了高精度彩色成像的优势,使得结果能够被病理学家可用可接受,特别是对时间敏感的术中病理颇具应用前景。此外,CFFPM无需GPU加速,由于其低成本硬件要求,可广泛推广到实际应用中,为计算光学成像在数字病理学中的临床应用提供了新思路。   该工作将先验的空域信息和颜色空间迭代精炼思想引入到快速全彩色FPM研究中,对于促进FPM在数字病理学中的发展具有重要意义。9月30日,相关研究成果以Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer为题,在线发表在Photonics Research上。研究工作得到国家自然科学基金等的支持。
  • 中国“超级显微镜”设备国产化率超过90%
    p   我国迄今单项投资规模最大的国家重大科技基础设施——中国散裂中子源终于建成。3月25日,该装置通过了中国科学院组织的工艺鉴定和验收,成为我国第一台、世界第四台脉冲型散裂中子源,填补了国内脉冲中子应用领域的空白。 /p p   “散裂中子源”通俗来说就是一个用中子散射来了解微观世界的工具,因此被形象地称作“超级显微镜”,是研究物质微观结构的“国之重器”。 /p p   中国散裂中子源工程总指挥、中国科学院院士陈和生说,很多人使用光学显微镜去观察肉眼无法直接看到的细胞和细菌,而中子探测的世界更为微观,用中子照相的方法,能够观测一滴水是如何从一株植物的根部运输到枝叶上的。借此可以用于治疗癌症、检测飞机高铁安全性等。 /p p   不过,要产生中子这个比原子还小的粒子并不容易。按照陈和生的说法,需要将质子加速到16亿电子伏特——相当于0.9倍光速,把质子束当成“子弹”,去轰击原子系数很高的重金属靶,金属靶的原子核被撞击出质子和中子后,科学家才能通过特殊的装置来“收集”中子。 /p p   在这个过程中,质子加速是一大核心技术,而将质子加速到16亿电子伏特的关键就在于一个名为射频功率源的系统,后者因此被称作“超级显微镜”的“动力心脏”。中国散裂中子源通过验收时,由中国航天科工二院23所提供的近50台套功率源设备同样全部达到验收指标。 /p p   事实上,因为射频功率源系统中很多关键设备尚无国产先例,加上可靠性要求极高,这些年,不少厂家望而却步或铩羽而归。中国散裂中子源加速器部经理傅世年说,航天科工二院23所是散裂中子源项目从开始坚持到最后的唯一一家关键设备配套商,啃下了加速器里80%的硬骨头。 /p p   时任射频功率源系统工程技术负责人、航天科工二院资产运营部部长肖海潮表示,23所下属航天广通的科研人员,用了整整10年才拿下整个射频功率源系统。他们研制出国内首套200MHz以上大功率四极管功率源、国内首套应用于加速器系统的数字低电平系统——这些都是“填补空白”。 /p p   其中,低电平系统负责人王志宇带领的研制团队,几乎从一张白纸开始,完成了国内第一套用于加速器装置的数字化高频低电平控制系统,在此基础上,又衍生成了全数字型、全模拟型、数模混合型等系列化低电平产品线,在国内独占鳌头。 /p p   不仅如此,整个“动力心脏”团队还是在和国际“赛跑”。 /p p   以其中的325MHz电子管高频功率源项目为例,该项目负责人姜勇说,这一项目所要求的核心指标全部高于国外同类型功率源,即便是国外实验室和外方厂家也没有类似经验,“可以说越过这道坎就是世界领先”。整个产品在研究所内研发就用了3年,成品配合加速器又调试了4年。 /p p   在中国散裂中子源验收的当天,陈和生提到,整个设备国产化率超过90%,显著提升了我国在磁铁、电源、探测器及电子学等领域相关产业技术水平和自主创新能力,使我国在强流质子加速器和中子散射领域实现了重大跨越,技术和综合性能进入国际同类装置先进行列。 /p
  • 工信部发布《国家鼓励的工业节水工艺、技术和装备目录(2021年)》
    《国家鼓励的工业节水工艺、技术和装备目录(2021年)》公示根据《关于征集国家工业节水工艺、技术和装备的通知》(工信厅联节〔2021〕65号)要求,经企业申报、省级工业和信息化主管部门及有关行业协会和中央企业推荐、专家评审等,工业和信息化部、水利部共同组织编制了《国家鼓励的工业节水工艺、技术和装备目录(2021年)》,现予公示。公示时间为2021年11月2日至11月15日(共10个工作日)。如有异议,请在公示期内与我们联系,并提交相关证明材料。公示时间:2021年11月2日至2021年11月15日联系电话:010-68205367/5337(传真)邮箱:jsc@miit.gov.cn 附件:国家鼓励的工业节水工艺、技术和装备目录(2021年).docx工业和信息化部节能与综合利用司2021年11月2日附件:国家鼓励的工业节水工艺、技术和装备目录(2021年)(部分内容展示)一、共性通用技术;二、钢铁行业;三、石化化工行业;四、纺织印染行业;五、造纸行业;六、食品行业;七、有色金属行业;八、皮革行业;九、制药行业;十、电子行业;十一、建材行业;十二、蓄电池行业;十三、机械行业;十四、煤炭行业;十五、电力行业。一、共性通用技术序号名称1循环水综合处理技术2循环排污水提标处理技术3循环水臭氧高级氧化技术4循环水复合管膜高效过滤净化技术5循环水电化学处理技术6循环水无磷/低磷处理技术7水驱动喷雾节能节水冷却塔8板式换热器清洗节水装置9表面蒸发空冷器10冷却塔水蒸汽凝水回收装置11高通量自支撑柔性MBR膜及膜堆12纳米陶瓷膜高效水质净化器(组件)13工业水处理MVR系统用离心式蒸汽压缩机组14一种有机管式超滤膜设备 15基于大尺寸薄壁中空平板陶瓷膜一体化水处理装置16高盐废水资源利用集成技术17高盐废水深度处理减排技术18反渗透膜浓水臭氧-光电耦合处理技术19废热烟气蒸发处理含盐废水技术20高硬高碱循环水处理技术21基于物联网的分布式管网漏损监测与智能诊断系统22供水系统智能控制技术23智慧节水多喷孔对撞消能调流调压技术24循环冷却排污水回用节水智能化装置25智慧用水管理系统26工业水处理大数据运营管理云平台27智能化供水管网检查机器人装备28智能全闭式电动蒸汽冷凝水回收设备29雨水收集回用技术30基于双膜工艺的城镇污水资源化高品质工业回用技术31海水循环冷却技术32非并网风电海水淡化一体化成套装备33余能低温多效海水淡化技术34反渗透海水淡化技术35太阳能光热低温多效海水淡化技术36节水减排智能旋塞阀37斜窄流分离设备38变螺距螺杆节水真空泵39全自动高精度型石灰乳配制投加系统40节水型微滤罐成套装备41节水型无溶剂超浓缩液体洗涤剂二、钢铁行业序号名称42高品质钢管多功能高效淬火技术43“燃-热-电-水-盐”五效一体高效循环利用技术44钢铁冶金行业废水零排放处理技术45钢铁综合污水再生回用集成技术三、石化化工行业序号名称46化工废水循环利用工艺47钛白粉酸性废水处理及循环利用设备48一种间苯二甲腈干法捕集装置 49大直径、耐污染、高通量陶瓷膜油田回注水处理技术50炼化企业水平衡测试及优化分析系统软件51炼油催化剂综合废水处理回用技术52离子膜螯合树脂塔再生废水回用技术53钛白粉废水多级吸附及脱盐再生回用技术54煤化工废水处理回用技术55固碱蒸发碱性冷凝水处理技术56石化污水气浮生化过滤再生回用成套技术57石化节水减排成套集成工艺58炼油废水COBR 深度处理及电渗析脱盐组合工艺59全高钛渣钛白粉生产水洗工艺技术60石油开采污水分子筛处理技术61高温高盐高硬稠油采出水处理回用技术62凝结水活性分子膜超微过滤组合多官能团纤维吸附技术63炼油污水深度处理回用技术64浓海水综合利用技术65聚合物驱含油污水处理及回用技术66煤化工废水处理及回用集成技术67化工废水制水煤浆工艺集成技术68干法加灰技术69氯碱企业浓水回收利用技术70水合肼废盐水回收利用技术71聚氯乙烯母液废水零排放集成技术72高盐化工废水资源化膜集成技术73双膜法聚氯乙烯离心母液回用技术74乙二醇冷凝液回收利用技术75炼油污水集成再生回用技术76水平带式滤碱机节水工艺77高含水油田就地分水技术78火电脱硫废水与氯碱化工工艺联动耦合处理零排放技术79海上平台生活污水电催化氧化法处理技术四、纺织印染行业序号名称80筒子纱智能染色工艺81基于双级特种膜粘胶纤维酸性废水回收再利用技术82纱线循环水染色短流程超低排放技术83MBR+反渗透印染废水回用技术84喷水织造废水处理回用技术85化学纤维原液染色技术86印染废水膜处理回用技术87绿色制溶解浆工程化技术88分散染料无水连续染色装置89高温高压气流染色技术90超低浴比高温高压纱线染色机91针织物高效绳状连续染色/ 印花后水洗技术92涤棉针织物前处理染色高效短流程新工艺93新型生物酶织物前处理技术94活性染料染色残液三相旋流连续脱色与再生盐水循环技术95印染生产精确耗水在线测控装置96毛团及散纤维小浴比染色技术97针织物平幅开幅连续湿处理生产线98苎麻生物脱胶技术99智能高速环保退煮漂联合机100空调喷水室用高效靶式雾化喷嘴技术101智能型疏水系统102高效振荡水洗箱装置103羊绒纤维原位矿化、深度节水减排染色新技术五、造纸行业序号名称104制浆废水中水回用及零排放成套工艺105网、毯喷淋水净化回用技术106纸机白水多圆盘分级与回用技术107造纸梯级利用节水技术108纸机湿布化学品混合添加技术109透平机真空系统节水技术110纸机干燥冷凝水综合利用技术111置换压榨双辊挤浆机节水技术112干法剥皮技术六、食品行业序号名称113 大米洗米水集成处理技术114数字化集群烘房及冷凝水回收系统115高效、可循环沙棘果预处理装置116番茄加工废水回用技术117洗瓶水循环净化灭菌装置118啤酒刷洗水优化回收工艺119啤酒再生水综合利用技术120糖厂水循环及废水再生回用技术121发酵有机废水膜生物处理回用技术122含乳饮料工艺节水及循环利用技术123发酵行业生产连续离子交换技术124氨基酸全闭路水循环及深度处理回用技术125高浓度含糖废水综合利用技术七、有色金属行业序号名称126钨冶炼废水零排放技术127铝工业含氟废水深度处理与再生利用技术128铜冶炼废水零排放技术129密闭式旋流电解装置130有色金属冶炼废水资源回收利用技术八、皮革行业序号名称131制革加工主要工序废水循环利用集成技术132细杂皮染整清洁生产集成技术九、制药行业序号名称133节水型医用纯水设备134制药废水处理回用技术十、电子行业序号名称135研磨切割废水回收利用技术十一、建材行业序号名称136污水处理及中水回收系统137压机含油废水中浮油回收及乳化油悬浮物去除技术138废水废渣零排放混凝土搅拌装置139玻璃纤维中水回用技术140陶瓷砖新型干法制粉短流程节水工艺141反置式釉面砖抛光节水技术十二、蓄电池行业序号名称142铅酸蓄电池负极板无氧干燥机干燥前浸渍液及浸渍节水工艺十三、机械行业序号名称143糠醛生产节水装备十四、煤炭行业序号名称144皮带式光电智能干选机145脱稳耦合平板膜法矿井水零排放集成装备146煤矿疏干水再利用技术147矿山生产、生活废水处理及利用工艺148矿井水资源化综合利用技术149矿物高效分离装备十五、电力行业序号名称150褐煤发电机组节水技术151燃煤火力发电厂全厂零排放智慧水网152火电脱硫废水旁路烟气蒸发零排放技术
  • ReadyToProcess一次性产品亚太区技术实验室日前在上海落成
    通用电气医疗集团生命科学部日前在GE中国科技园FastTrak亚太研发中心 (上海) 建成了ReadyToProcess一次性产品技术实验室! 随着生物技术的日新月异,一次性产品已经逐渐成为生物制药行业发展的重要趋势。一次性的快速灵活生产方式可以对突发疾病流行进行快速响应,适应生物药物快速临床生产的需要,同时也有利于保证产品质量,降低生产过程的失败率,显著减少厂房的硬件投资,增强市场竞争力。 作为生物制药和生命科学研究的行业领先者,通用电气生命科学部不断研发新的技术和产品平台,提供全方位的技术合作服务。在常规一次性产品的基础上,通用电气生命科学部推出ReadyToProcess一次性产品技术平台的全新理念! 全新的ReadyToProcess (简称RTP) 技术平台不仅具有常规一次性产品快速灵活等优点,更着重于生物制药生产工艺各单元操作间简单快速安全的技术整合。RTP产品的全新理念真正实现从上游细胞培养到下游层析纯化和终产品制剂的无缝整合,简化生产操作的同时,使生产灵活性最大化,严格保证工艺过程的产品安全。 RTP产品事先均经过辐照灭菌,无菌物热原,即开即用,通过方便的无菌连接可快速进行药物生产的全过程,避免清洗灭菌等准备周期和繁琐的清洁验证。完善的RTP产品技术平台涵盖生物工艺的上下游过程,包括:新型WAVE波浪生物反应器、WAVE Mixer混合器、RTP囊式死端滤器、 RTP无菌中空纤维切向流滤膜、 可更换流路的AKTAready工业层析系统、RTP预装工业层析柱、ReadyCircuit无菌储液袋、各种无菌管路和传感器、ReadyMate无菌接头、ReayKart移动工作站等。可以快速进行细胞培养、细胞收获澄清、无菌超滤浓缩、无菌快速层析纯化以及高附加值生物样品的储存和转移等。用户还可以在此平台上根据自身需要,选择并灵活配置符合特定工艺要求的一次性无菌管道化生产线,降低厂房初期投资、提高厂房利用率和产能,缩短产品上市时间。 建成的RTP实验室作为上海FastTrak亚太研发中心的一部分,目前具有完善的产品技术平台和行业资深技术专家,在未来将主要用于生物制药上下游工艺的技术合作开发、新技术推广和技术培训等,为亚太和国内的生物制药和生命科学用户提供全方位的技术服务! 更多RTP相关产品信息见如下链接: http://www.ebiotrade.com/custom/GE/101229/index.htm 关于通用电气(中国)医疗集团生命科学部 GE Healthcare Life Science隶属于通用电气医疗集团,我们的产品和技术主要应用于基因科学、蛋白质科学、药物开发研究、以及生物制药、诊断、法医和环保等行业。 我们为制药公司提供完整解决方案,以减少新药筛选和开发的时间和费用,迅速、简单地将研究成果转为规模化生产,并更好地从药物开发候选方案中选择开发出有效、安全药物的方案,更快地研制新药,为医药研发领域的重大突破铺平道路。我们的Biacore和Microcal非标记分子相互作用分析系统是生物分子间相互作用、动力学和热力学研究的标准方法。我们的AKTA系统是专为生物分子纯化而设计的平台,集成了液相层析系统、软件和预装柱;市场上90% 以上FDA批准的生物药正是使用基于相同设计理念的可放大平台AKTAProcess系统和填料进行生物药物分子的提纯。我们的Whatman品牌提供在全球享有盛誉的过滤产品和技术,为分析领域、医疗保健和生物科学市场提供全新的解决方案。 100多年来,学术界和工业届以及各领域的科学家和研究人员一直与GE保持长期良好的合作,着力于技术研发和提高产率。无论在医疗系统和基础生命研究中面临怎样的挑战,您都可以通过GE来获得高品质的产品和杰出并系统化的服务和支持。 欲了解更多有关GE医疗集团生命科学部的信息,请访问公司网站www.gelifesciences.com.cn,或垂询800-810-9118。
  • 西安光机所研发出颜色迁移傅里叶叠层显微术方法
    论文首页。CFFPM方法的恢复流程及结果对比。 论文作者供图使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。然而传统的数字病理学常常使用高倍物镜和扫描拼接的方法来获得大视场、高分辨率图像,高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影、重影、失败问题等也降低了成像的质量。2013年发明的傅里叶叠层显微术(Fourier ptychographic microscopy, FPM)使用低倍物镜获得天然的大视场,可通过多角度扫描方式采集一组低分辨率图像,在频域中迭代重构获得高分辨率的结果。这一成果无需机械扫描就能获得高分辨率、大视场图像,而有效地解决了传统扫描成像的质量问题,突破了传统显微成像中分辨率与视场之间的矛盾关系,使得在数字病理学中实现高通量成像成为可能。全彩色FPM成像对于分析标记的组织切片至关重要。传统扫描拼接依托彩色相机速度很快,尽管FPM技术在单通道下有高通量优势,但是彩色化下使用传统的RGB序列照明合成则会缩小3倍通量,因此如何在保持精度的同时提高彩色化效率,保持高通量的优势,突破精度与效率的矛盾关系成为了主要的科学问题。2021年,中国科学院西安光学精密机械研究所潘安、马彩文、姚保利团队提出了一种称为颜色迁移傅里叶叠层显微术(CFPM)的方法,在几乎无精度损失的情况下将效率提高了3倍,相关工作以封面文章形式发表于《中国物理、力学与天文学》 (Science China Physics, Mechanics & Astronomy )。但是,由于缺乏对颜色传递过程中空域信息约束,该方法无法恢复多色染料染色的复杂样品,且极大依赖GPU的并行计算。为此,该团队又进一步提出了一种改进的FPM全彩色成像算法,称为颜色迁移滤波傅里叶叠层显微术(CFFPM)。该方法将交叠分块、三边滤波与全彩色FPM迁移学习模型相结合,前者降低了解空间的搜寻范围,后者引入了空域的先验信息,有效地匹配了最合适的颜色传递像素和滤除了杂色,也进一步通过迭代在两个色彩空间的颜色精炼,从而彻底克服了CFPM的重要缺陷。据了解,他们通过实验对比了26个样本的统计结果,精度方面,CFPM和CFFPM与RGB序列照明方法相比均方误差分别高4.76%和1.26%;视觉效果方面,CFFPM能够有效分辨多色染料染色的复杂样本,结果与RGB序列照明方法难以分出差别;时间效率方面,与RGB序列照明方法相比,CFPM和CFFPM都具有更高的效率,与在CPU上运行的CFPM相比,CFFPM方法的运行时间从几小时减少到几分钟;临床应用方面,因颜色精度对于病理判断至关重要,同时,简单地加快成像速度会导致彩色成像的精度损失。而CFFPM在两者之间做到了较好的取舍,在快速成像的同时保持了高精度彩色成像的优势,使得结果能够被病理学家可用可接受,特别是对时间敏感的术中病理,具有重要的应用前景。此外,CFFPM无需GPU加速,由于其低成本硬件要求,可广泛推广到实际应用中,为计算光学成像在数字病理学中的临床应用提供了新思路。其相关成果于2022年9月30日在线发表于 《光子学研究》(Photonics Research) 。该领域的相关专家认为,此项工作将先验的空域信息和颜色空间迭代精炼思想引入到了快速全彩色FPM研究中,对于促进FPM在数字病理学中的发展具有重要意义。据悉,潘安、马彩文、姚保利团队在计算光学显微成像方面开展了长期系列创新型研究工作,积累了大量研究成果。该项目前期所开展的基础性研究得到了国家自然科学基金重大科研仪器研制项目、面上项目、青年项目等项目的支持,为该论文实现关键技术攻关及预期研究目标奠定了良好的基础。
  • 850万!高分辨率场发射透射电子显微镜设备采购安装
    1、项目编号:JNSMX公标【2022】01号2、项目名称:高分辨率场发射透射电子显微镜设备采购安装3、预算金额:850万元4、最高限价:850万元5、采购需求:高分辨率场发射透射电子显微的采购、安装、调试及售后服务等,主要用途:精确测量碳纳米材料的厚度与层数;获得碳纳米材料的结晶度信息;获得碳纳米材料催化剂的相关信息,包括催化剂的纳米形貌、元素组成、元素分布、晶体分布等。本项目共一个标段(详见采购需求)。6、合同履行期限:合同签订后8个月内将所有仪器、设备送至采购人指定地点,并安装调试到位至验收合格。7、本项目不接受联合体投标。8、本项目接受进口产品。
  • GE FFHP再生纤维素滤膜全球首发回顾
    GE&BioDot下一代快速体外诊断技术与整体解决方案研讨会暨FFHP滤膜全球首发回顾 近日,GE医疗集团生命科学部在北京向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 9月13日,GE医疗生命科学部在现代尤伦斯艺术中心同BioDot中国联合举办了第二次&ldquo 下一代快速体外诊断技术与整体解决方案研讨会&rdquo 。会议期间,正式向全球发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。 此次会议是继今年6月14日上海成功举办第一届后,再一次在北京地区召开,吸引了大量的消费者和用户的兴趣。 &ldquo 我们在美国以及欧洲同BioDot共同举办了一些类似的活动&rdquo ,GE医疗生命科学部商业发展总监Nicola Raw表示,&ldquo 但相比较而言,中国无疑取得了最好的效果,共有237位新老用户和顾客参与了在中国的两次研讨会。&rdquo GE医疗生命科学部消耗品销售总监汪景长说:&ldquo 本次研讨会时一个将我们的用户集合在一起的极佳机会,我们邀请的国内外嘉宾在一起做了出色翔实的报告和有价值的讨论。可以明确的是,我们将会坚定地开发更多诊断方面的应用。&rdquo 北京研讨会中的实际操作演示 超过150名国内外专家参与了本次研讨会,讨论了包括快速体外诊断测试技术、设备、应用程序和POC发展战略在内的相关问题。会议期间,GE医疗生命科学部发布了新一代高性能硝酸纤维素诊断膜&mdash &mdash FFHP。FFHP 膜的毛细爬升变异系数(CV) 小于10%,具有很低的批内和批间差,可为客户提供更高的检测一致性、更一致的检测限值和更低的检测优化成本。除了发布FFHP之外,会议的亮点还包括一系列以客户为主导的讨论,实际操作演示以及由GE医疗生命科学部Klaus Hochleitner和 Mike Salter所做的报告等活动。
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制