当前位置: 仪器信息网 > 行业主题 > >

质子转移反应质谱

仪器信息网质子转移反应质谱专题为您提供2024年最新质子转移反应质谱价格报价、厂家品牌的相关信息, 包括质子转移反应质谱参数、型号等,不管是国产,还是进口品牌的质子转移反应质谱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质子转移反应质谱相关的耗材配件、试剂标物,还有质子转移反应质谱相关的最新资讯、资料,以及质子转移反应质谱相关的解决方案。

质子转移反应质谱相关的论坛

  • 关于质子转移反应质谱仪

    我们实验室准备购买一台质子转移反应质谱仪,质子转移反应质谱仪[font=宋体][size=12pt]([/font][/size][font=ˎ ̥ ][size=12pt][font=宋体]proton-transfer-reaction mass spectrometry[/font][/font][/size][font=宋体][size=12pt],[/font][/size][font=ˎ ̥ ][size=12pt][font=宋体]PTR-MS[/font][/font][/size][font=宋体][size=12pt])是[/font][/size][font=宋体][size=12pt][color=black]一种用于在线挥发性有机物检测、监测、分析的新型仪器。[/font][/size][/color][font=ˎ ̥ ][size=12pt][color=black][font=宋体]PTR-MS[/font][/font][/size][/color][font=宋体][size=12pt][color=black]使用一种软离子化技术,这种技术是将水合氢离子的质子传递给被研究的样品中所有质子亲合力比水大的化合物。常见的空气成分如[/font][/size][/color][font=ˎ ̥ ][size=12pt][color=black][font=宋体]N[sub]2[/sub][/font][/font][/size][/color][font=宋体][size=12pt][color=black],[/font][/size][/color][font=ˎ ̥ ][size=12pt][color=black][font=宋体]O[sub]2[/sub][/font][/font][/size][/color][font=宋体][size=12pt][color=black],[/font][/size][/color][font=ˎ ̥ ][size=12pt][color=black][font=宋体]Ar[/font][/font][/size][/color][font=宋体][size=12pt][color=black],[/font][/size][/color][font=ˎ ̥ ][size=12pt][color=black][font=宋体]CO[sub]2[/sub] [/font][/font][/size][/color][font=宋体][size=12pt][color=black]等其质子亲和力都比水低,因此完全不干扰反应腔中的测量和检测过程。[/font][/size][/color][font=ˎ ̥ ][size=12pt][font=宋体]PTR-MS [/font][/font][/size][font=宋体][size=12pt]具有高灵敏度、快速响应速度、高瞬时清晰度及低裂解度等优点,同时不需要对样品进行预处理,不会受到空气中常见组分的干扰,因此成为气体痕量物质在线监测的理想手段,得到了越来越广泛的应用。[/font][/size][font=ˎ ̥ ][size=12pt]这里有老师有买过这类仪器吗?好用吗?[/font][/size]

  • 质子转移质谱

    现在的质谱有哪些类型啊?有人听过质子转移质谱吗?有人在用吗?

  • 如何理解反应类型~~电荷/质子/原子转移及化合反应

    如题,谢谢。1.电荷转移:反应气体失去电子,干扰离子得到电子~~反应结果从表面上看,似乎是+号换啦位置?2.质子转移:氢换啦位置?原子转移似乎也是如此?3.结合反应(Combination):目标似乎是待测离子与反应气体发生反应形成“新”的待测离子?不过因所有的反应似乎都无选择性,反应气也可与干扰离子反应。

  • 请教:PTR-MS质子转移反应质谱仪?

    查阅资料的时候,看到有这样的仪器,PTR-MS,可以对植株释放的挥发物进行连续测定?知道的朋友能否详细介绍下呢?哪家单位有这样的仪器?谢谢!

  • 【资料】有机质谱原理及应用已重新上传

    有机质谱原理及应用 陈耀祖,涂亚平主编 有机质谱是有机结构分析和有机成分分析不可缺少的工具,目前发展的三个热点是:软电离技术、联用技术和生物大分子质谱分析。本书是根据作者在实际教学与有机质谱研究工作中的实际经验编写而成的,在介绍有机质谱的常用技术及原理的基础上,结合生物活性分子的分析着重介绍这些热点技术的研究,具有鲜明的实用性。另外,本书还结合作者在分子一离子反应机理方面进行的开拓性研究,介绍反应质谱在立体化学分析中的应用,更富启发性。 本书可供大专院校化学、生物、医药学专业高年级学生及研究生和科研、生产、环保监测单位的分析工作人员参考阅读。   本书目录 目录 前言 第一章 绪论 1.1有机质谱的发展历史 1.2我国有机质谱概况 1.3有机质谱的进展 参考文献 第二章 有机质谱仪器 2.1进样系统 2.1.1储罐进样 2.1.2探头进样 2.1.3色谱进样 2.2电离方式和离子源 2.2.1电子轰击电离 2.2.2化学电离 2.2.3大气压化学电离 2.2.4二次离子质谱 2.2.5等离子体解吸质谱 2.2.6激光解吸/电离 2.2.7电喷雾电离 2.3质量分析器 2.3.1扇形磁场和静电场 2.3.2四极分析器与离子 2.3.3飞行时间质谱 2.3.4傅里叶变换离子回旋共振 参考文献 第三章 电子轰击质谱 3.1电离过程 3.1.1分子的电离与FranckCondon原理 3.1.2电离能和出现能 3.2离子的单分子反应动力学 3.2.1离子的飞行时间及寿命 3.2.2分子离子的能量分布和能量转换 3.2.3离子的热力学能和反应速率 3.3分子离子的单分子碎裂反应 3.3.1离子的碎裂反应中心 3.3.2分子离子的单分子碎裂反应 参考文献 第四章 化学电离质谱 4.1分子和离子的热化学性质 4.1.1质子亲和势与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]碱度 4.1.2氢负离子亲和势 4.1.3电子亲和势 4.1.4[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]酸度 4.1.5结构对热化学性质的影响 4.2化学电离中的离子分子反应 4.2.1质子转移反应 4.2.2电荷交换反应 4.2.3氢负离子转移反应 4.2.4加合与缔合反应 4.2.5特殊反应 4.3化学电离试剂体系 4.3.1质子转移试剂 4.3.2电荷交换试剂 4.4分子的质子化位置 4.4.1脂肪族化合物 4.4.2芳香族化合物 参考文献 第五章 质谱/质谱 5.1质谱/质谱基础 5.1.1质谱/质谱基本概念 5.1.2质谱/质谱仪器 5.1.3碎裂与重排反应热力学 5.2质谱/质谱研究方法 5.2.1亚稳离子与动能释放 5.2.2碰撞诱导解离 5.2.3中性化再电离和碰撞诱导解离电离 5.3质谱/质谱的应用 5.3.1离子结构的确定 5.3.2反应机理的推测 参考文献 第六章 反应质谱 6.1概述 6.2反应质谱在立体化学分析及苯环位置异构体区分中的应用 6.2.1糖的立体化学分析 6.2.2直链邻二羟基物的立体化学分析 6.2.3取代烯的立体化学分析 6.2.4甾体化合物的立体化学分析 6.2.5氨基酸的手性检测 6.2.6有机化合物绝对构型测定 6.2.7二元取代苯异构体的区分 6.2.8双键位置的测定 6.3自碰撞室引入试剂的反应质谱 6.3.1[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子/分子反应机理研究 6.3.2离子结构测定和异构体区分 6.3.3有机物结构测定 6.3.4金属离子反应 6.3.5检测[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中H/D交换反应 参考文献 第七章 质谱法测定分子结构(I)原理 7.1概述 7.1.1分子量的测定 7.1.2元素组成的确定 7.1.3测定官能团和碳骨架 7.2质谱裂解机理 7.2.1游离基中心引发的裂解 7.2.2电荷中心引发的裂解 7.2.3游离基中心引发的重排 7.2.4电荷中心引发的重排 7.2.5其他裂解反应 7.2.6影响离子丰度的因素 7.3各类化合物的裂解特征 7.3.1烃 7.3.2羟基化合物 7.3.3卤化物 7.3.4醚 7.3.5醛、酮 7.3.6羧酸 7.3.7羧酸酯 7.3.8胺 7.3.9酰胺 7.3.10腈 7.3.11硝基物 参考文献 第八章 质谱法测定分子结构(II)示例 例1溴苯 例2戊酮 例3亮氨酸 例4二十九碳醇 例5氨基3氯吩嗪 例6皂苷loganin的苷元 例7Mo(CO)3与异丙苯复合物 例84腈基4羟基二苯甲烷 例9新当归内酯 例10BrefeldinA 例11生物碱 例12木脂素 例13糖苷 例14混合糖苷 例15紫乌定及类似二萜生物碱 例16鬼桕毒素类 参考文献 第九章 生物大分子的质谱分析 9.1概述 9.1.1电喷雾电离质谱(ESIMS) 9.1.2基质辅助激光解吸离子化质谱 9.1.3快原子轰击质谱(FABMS) 9.2多肽和蛋白质的质谱分析 9.2.1多肽和蛋白质的一级结构 9.2.2多肽和蛋白质的分子量测定 9.2.3多肽和蛋白质的序列分析 9.3核酸的质谱分析 9.3.1核酸的一级结构 9.3.2核酸分子量的测定 9.3.3核酸的序列分析 9.4糖类的质谱分析 9.4.1概述 9.4.2寡糖的质谱分析 9.4.3糖复合物的质谱分析 参考文献 附录Ⅰ 分子的质子亲和度(PA)和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]碱度(GB) 附录〖WTHZ〗Ⅱ 离子和中性物种的热化学数据 [em09511]在资料中心的下载地址为:[url=http://www.instrument.com.cn/download/shtml/088332.shtml]http://www.instrument.com.cn/download/shtml/088332.shtml[/url]

  • 实验分析仪器--质谱仪大气压化学电离源结构原理及特点

    [b]1.基本原理[/b]大气压化学电离源(atmospheric pressure chemical ionization,APCI)的结构与电喷雾电离源大致相同,不同之处在于APC喷嘴的下游放置一个针状放电电极,通过放电电极的高压放电,使空气中某些中性分子电离,产生H[sub]3[/sub]O[sup]+[/sup]、N[sub]2[/sub][sup]+[/sup]、O[sub]2[/sub][sup]+[/sup]和O[sup]+[/sup]等离子,溶剂分子也会被电离,这些离子与分析物分子进行离子-分子反应,使分析物分子离子化,这些反应过程包括由质子转移和电荷交换产生的正离子,质子脱离和电子捕获产生的负离子等。图1是大气压化学电离源的示意图。[img=image.png,500,299]https://i3.antpedia.com/attachments/att/image/20220126/1643167215913880.png[/img]图1 大气压化学电离源示意图[b]2.技术分类[/b]大气压化学电离源是一种场电离离子源,在常压下采用直流等离子体(DC plasma)作为初级的离子源,使得一般在负压下进行的离子-分子反应或电子-分子反应进行电离。[b]3.技术特点[/b]大气压化学电离源主要用来分析中等极性的化合物。有些分析物由于结构和极性方面的原因,用ESI不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于1000Da。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子

  • 正在播!质谱技术-食品真实性与产地溯源鉴定,欧洲自然科学院院士、农科院、海关研究员等在线答疑中!

    正在播!质谱技术-食品真实性与产地溯源鉴定,欧洲自然科学院院士、农科院、海关研究员等在线答疑中![img]file:///C:/Users/wangxin/AppData/Local/Temp/f18232cc-65aa-4ea3-9fcf-f4bf251ad142.png[/img][img]file:///C:/Users/wangxin/AppData/Local/Temp/ecda51af-aeeb-4573-80e0-2dfa44591d13.png[/img]佘远斌(浙江工业 教授):[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]技术在食品产地溯源鉴别中的应用[img]file:///C:/Users/wangxin/AppData/Local/Temp/ecda51af-aeeb-4573-80e0-2dfa44591d13.png[/img]赵燕(农科院 研究员):农产品溯源实验设计与数据分析(同位素质谱)[img]file:///C:/Users/wangxin/AppData/Local/Temp/ecda51af-aeeb-4573-80e0-2dfa44591d13.png[/img]郭军(内蒙古农业大学 教授):质子转移反应-飞行时间质谱法鉴定6种家畜原乳气味物质及特征分析[img]file:///C:/Users/wangxin/AppData/Local/Temp/ecda51af-aeeb-4573-80e0-2dfa44591d13.png[/img]崔宗岩(秦皇岛海关):基于色谱-质谱分析的蜂蜜真实性鉴别检测技术研究进展[img]file:///C:/Users/wangxin/AppData/Local/Temp/3a7a6af7-2769-4419-8f75-94abe77c55eb.png[/img]速进直播间:https://insevent.instrument.com.cn/t/4ea

  • 【资料】质谱仪结构与工作原理

    质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法。因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同质荷比的离子分开,经检测器检测之后可以得到样品的质谱图,由于有机样品,无机样品和同位素样品等具有不同形态、性质和不同的分析要求,所以,所用的电离装置、质量分析装置和检测装置有所不同。但是,不管是哪种类型的质谱仪,其基本组成是相同的。都包括离子源、质量分析器、检测器和真空系统。本节主要介绍有机质谱仪的基本结构和工作原理。 9.2.1.1 离子源(Ion source)   离子源的作用是将欲分析样品电离,得到带有样品信息的离子。质谱仪的离子源种类很多,现将主要的离子源介绍如下。 电子电离源(Electron Ionization EI) 电子电离源又称EI源,是应用最为广泛的离子源,它主要用于挥发性样品的电离。图9.1是电子电离源的原理图,由GC或直接进样杆进入的样品,以气体形式进入离子源,由灯丝F发出的电子与样品分子发生碰撞使样品分子电离。一般情况下,灯丝F与接收极T之间的电压为70伏,所有的标准质谱图都是在70ev下做出的。在70ev电子碰撞作用下,有机物分子可能被打掉一个电子形成分子离子,也可能会发生化学键的断裂形成碎片离子。由分子离子可以确定化合物分子量,由碎片离子可以得到化合物的结构。对于一些不稳定的化合物,在70ev的电子轰击下很难得到分子离子。为了得到分子量,可以采用1020ev的电子能量,不过此时仪器灵敏度将大大降低,需要加大样品的进样量。而且,得到的质谱图不再是标准质谱图。   离子源中进行的电离过程是很复杂的过程,有专门的理论对这些过程进行解释和描述。在电子轰击下,样品分子可能有四种不同途径形成离子: 样品分子被打掉一个电子形成分子离子。 分子离子进一步发生化学键断裂形成碎片离子。 分子离子发生结构重排形成重排离子。 通过分子离子反应生成加合离子。   此外,还有同位素离子。这样,一个样品分子可以产生很多带有结构信息的离子,对这些离子进行质量分析和检测,可以得到具有样品信息的质谱图。   电子电离源主要适用于易挥发有机样品的电离,GC-MS联用仪中都有这种离子源。其优点是工作稳定可靠,结构信息丰富,有标准质谱图可以检索。缺点是只适用于易汽化的有机物样品分析,并且,对有些化合物得不到分子离子。 化学电离源(Chemical Ionization , EI )。   有些化合物稳定性差,用EI方式不易得到分子离子,因而也就得不到分子量。为了得到分子量可以采用CI电离方式。CI和EI在结构上没有多大差别。或者说主体部件是共用的。其主要差别是CI源工作过程中要引进一种反应气体。反应气体可以是甲烷、异丁烷、氨等。反应气的量比样品气要大得多。灯丝发出的电子首先将反应气电离,然后反应气离子与样品分子进行离子-分子反应,并使样品气电离。现以甲烷作为反应气,说明化学电离的过程。在电子轰击下,甲烷首先被电离: CH4+e CH4+ + CH3+ + CH2+ + CH++ C+ + H+ 甲烷离子与分子进行反应,生成加合离子: CH4+ + CH4 CH5+ + CH3 CH3 + + CH4 C2H5+ + H2 加合离子与样品分子反应: CH5+ + XH XH2+ + CH4 C2H5+ + XH X+ +C2H6   生成的XH2+ 和 X+ 比样品分子XH多一个H或少一个H,可表示为(M1),称为准分子离子。事实上,以甲烷作为反应气,除(M+1)+之外,还可能出现(M+17)+,(M+29)+ 等离子,同时还出现大量的碎片离子。化学电离源是一种软电离方式,有些用EI方式得不到分子离子的样品,改用CI后可以得到准分子离子,因而可以求得分子量。对于含有很强的吸电子基团的化合物,检测负离子的灵敏度远高于正离子的灵敏度,因此,CI源一般都有正CI和负CI,可以根据样品情况进行选择。由于CI得到的质谱不是标准质谱,所以不能进行库检索。   EI和CI源主要用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪,适用于易汽化的有机物样品分析。快原子轰击源(Fast Atomic bombardment, FAB)  是另一种常用的离子源,它主要用于极性强、分子量大的样品分析。其工作原理如图9.2所示:   氩气在电离室依靠放电产生氩离子,高能氩离子经电荷交换得到高能氩原子流,氩原子打在样品上产生样品离子。样品置于涂有底物(如甘油)的靶上。靶材为铜,原子氩打在样品上使其电离后进入真空,并在电场作用下进入分析器。电离过程中不必加热气化,因此适合于分析大分子量、难气化、热稳定性差的样品。例如肽类、低聚糖、天然抗生素、有机金属络合物等。FAB源得到的质谱不仅有较强的准分子离子峰,而且有较丰富的结构信息。但是,它与EI源得到的质谱图很不相同。其一是它的分子量信息不是分子离子峰M,而往往是(M+H)+或(M+Na)+等准分子离子峰;其二是碎片峰比EI谱要少。  FAB源主要用于磁式双聚焦质谱仪。 4.电喷雾源(Electron spray Ionization,ESI)   ESI是近年来出现的一种新的电离方式。它主要应用于液相色谱-质谱联用仪。它既作为液相色谱和质谱仪之间的接口装置,同时又是电离装置。它的主要部件是一个多层套管组成的电喷雾喷咀。最内层是液相色谱流出物,外层是喷射气,喷射气常采用大流量的氮气,其作用是使喷出的液体容易分散成微滴。另外,在喷嘴的斜前方还有一个补助气喷咀,补助气的作用是使微滴的溶剂快速蒸发。在微滴蒸发过程中表面电荷密度逐渐增大,当增大到某个临界值时,离子就可以从表面蒸发出来。离子产生后,借助于喷咀与锥孔之间的电压,穿过取样孔进入分析器(见图9.3)。演示动画(请点击画面)   加到喷嘴上的电压可以是正,也可以是负。通过调节极性,可以得到正或负离子的质谱。其中值得一提的是电喷雾喷嘴的角度,如果喷嘴正对取样孔,则取样孔易堵塞。因此,有的电喷雾喷嘴设计成喷射方向与取样孔不在一条线上,而错开一定角度。这样溶剂雾滴不会直接喷到取样孔上,使取样孔比较干净,不易堵塞。产生的离子靠电场的作用引入取样孔,进入分析器。   电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。图9.4是由电喷雾电离源得到的肌红蛋白的质谱图: 5.大气压化学电离源(Atmospheric pressure chemical Ionization, APCI)   它的结构与电喷雾源大致相同,不同之处在于APCI喷咀的下游放置一个针状放电电极,通过放电电极的高压放电,使空气中某些中性分子电离,产生H3O+,N2+,O2+ 和O+ 等离子,溶剂分子也会被电离,这些离子与分析物分子进行离子-分子反应,使分析物分子离子化,这些反应过程包括由质子转移和电荷交换产生正离子,质子脱离和电子捕获产生负离子等。图9.5是大气压化学电离源的示意图:   大气压化学电离源主要用来分析中等极性的化合物。有些分析物由于结构和极性方面的原因,用ESI不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于1000Da。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子。  以上两种电离源主要用于液相色谱-质谱联用仪。

  • 【讨论】电喷雾电离质子化原理探究

    一般而言,碱性化合物在酸性环境中易得正离子,酸性化合物在碱性环境中易得负离子,但事实并不往往如此,碱性化合物在碱性溶液中通过电喷雾也能有明显的正离子响应信号,最近诸多学者发表了一些相关论文,如电喷雾时电解产生氢离子效应,即在电喷雾过程中,电解效应改变了溶液的酸碱性,但电喷雾的电流非常之小,电解致酸影响应该不大,另一种是喷雾过程中产生带电雾滴时,酸碱度在每个雾滴和单个雾滴上的酸性分布不均,导致局部呈酸性,产生正离子。第三种解释是碱性溶液往往是用氨水或三乙氨调制,这两者获取了水中的氢离子,但在喷雾过程中其所带质子可被比其[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]碱度更强的被分析物捕获,从而产生正离子信号。但另有人用氢氧化四甲基胺将流动相调制成碱性(11),这既避免了电解效应,也无[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]质子转移,但同样得到了很强的质子型正离子响应信号。 电解质子效应,在碱性或碱性缓冲系统中,电解产生的质子很快就被中和掉从而很难获得雾滴表面的高质子浓度。对于酸性溶液,由电解产生的氢离子极少,相比本身的酸性几乎可以忽略。而中性溶液中,喷雾时的ph值等于溶液初始氢离子浓度与电解产生的氢离子浓度之和。因此增加喷雾电压将有助于增加碱性化合物的响应,而对于本身就已经离子化的样品无明显增益。以中性溶液中的咖啡因为例,在喷雾电压为2.5千伏时,主峰为加钠峰,加质子峰很小,而当喷雾电压为3kv时,加质子峰明显增高。在PH值为10,电解产生的质子很快被碱中和,对溶液的PH值无影响。用氨水调节Ph值时,雾滴表面的正电荷主要是氨离子,而不是质子,因此从理论上推断应该大量生成与氨离子的加合物,但事实上,以氨水调至ph值为10.5,咖啡因的加质子峰仍有很强信号,在这里,咖啡因的液相碱度远远小于氨离子,因此不可能通过雾滴表面液相酸碱反应获得质子。可能的解释是咖啡因与氨离子发生碰撞,从而发生分子离子反应,获得质子。调节锥孔电压可以观察到当电压调高时,氨加合离子减少,加合质子峰信号增强,进一步证明咖啡因与氨离子碰撞从而获得质子。该反应发生在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中,从而也证明了咖啡因的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]碱度高于氨离子。 如果在液相和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中均没有可供的质子源,而又有带质子的准分子离子峰出现,如用NaOH将溶液调至碱性,仍有较强的质子峰,如果考虑是电解产生质子,但在强碱环境中,该质子很快被碱中和。 在大气压化学电离的过程中,N2,O2,在电场作用下会导致带质子的溶剂簇离子的形成,如H3O+,由于水的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]碱度小雨NH3,而NH3又小于被分析物,因此在看似无质子的环境中也能产生带质子的准分子离子。该产生质子分子离子峰的过程被称为电晕效应。 总之,电喷雾产生质子型准分子离子可分为以下几种途径,溶液本身的质子化,2.电解产生质子3 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]酸碱反应4 放电性的溶剂质子化效应。

  • ESI正离子下羧基是如何脱CO2的?

    ESI正离子下羧基是如何脱CO2的?

    小弟做青霉素和头孢菌素类的ESI质谱,发现正离子下都有很明显的脱CO2碎片离子,即+。如果在负离子下发生脱CO2很好理解,因为分子中只有羧基上的氢容易离去。但是正离子下羧基是-COOH这样的形式,正常应该脱去HCOO啊,请问正离子下脱去CO2的机理是什么?有质子转移发生么?如果有时怎么发生的?附上图。http://ng1.17img.cn/bbsfiles/images/2012/12/201212242116_415162_2089465_3.jpg

  • TOFWERK AG正在寻找售后工程师,Vocus PTR-TOF质谱仪职位,坐标南京市,谈钱不伤感情!

    [b]职位名称:[/b]售后工程师,Vocus PTR-TOF质谱仪[b]职位描述/要求:[/b]Service Engineer, Vocus PTR-TOF – China售后工程师,Vocus PTR-TOFLocation: TOFWERK China, 江苏南京企业介绍TOFWERK成立于2002年,总部位于瑞士图恩市。TOFWERK是一家集飞行时间质谱仪(TOFMS)的研发、生产、销售、服务于一体的分析仪器公司,致力于为实验室检测和场外监测等应用案例提供多选择的仪器分析方案。目前,公司的主要终端用户产品包括Vocus质子转移反应-飞行时间质谱(Vocus PTR-TOF)和电感耦合等离子体-飞行时间质谱(icpTOF)等。职位描述TOFWERK中国分公司现招聘售后工程师两名,主要负责Vocus PTR-TOF仪器的运行维修、技术层面的日常服务工作,包括远程或现场解决客户在产品应用上的疑惑和问题。岗位职责:• 支持客户仪器的日常运维• 远程或现场解决和答疑客户仪器的技术、应用、运维等问题• 协助关键客户编制方法标准、流程,数据分析,报告撰写等工作• 收集客户反馈,协同提升产品软硬件,提高客户满意度• 接洽潜在客户,展示产品性能,测量客户样品,出具分析报告• 参加行业会议,宣传公司产品,做会议报告并分享最新研究成果• 定期撰写应用白皮书等公司宣传材料任职要求• 硕士及以上学历,从事大气科学、应用物理、分析化学、电子工程、环境科学或仪器科学与技术等相关专业• 有三年以上质谱仪等相关仪器的操作、维护或应用等工作经验• 有较强的独立工作能力和团队精神• 有较强的表达能力和沟通能力• 对本职工作和客户案例有较强的责任心• 能适应短期出差• 英语六级,沟通书写能力良好五险一金,薪酬面议!我们期待您的加入,并和TOFWERK中国分公司一起成长!简历请发送至 china@tofwerk.com[b]公司介绍:[/b] TOFWERK AG...[url=https://www.instrument.com.cn/job/user/job/position/59992]查看全部[/url]

  • 实验室分析仪器--质谱仪的分类和各品类介绍

    质谱仪之间分类一般是按质量分析器来分,如通常我们所说的飞行时间质谱或者四级杆质谱等,但同一台质谱仪可以配几种离子源,如通常[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]会配电子轰击电离源(EI)和化学电离源(CI),本文就详细说下质谱主要的几种电力方式及离子源。  样品在离子源中电离成离子,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光电离(APPI),以及基质辅助光解吸离子化(MALDI)等等。  电离方式和离子源  1.电轰击电离(EI)  一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。  2.化学电离(CI)  电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。  3.大气压化学电离(APCI)  在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。  4.二次离子质谱(FAB/LSIMS)  在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。  5.等离子解析质谱(PDMS)  采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。  6.激光解吸/电离(MALDI)  波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。  7.电喷雾电离(ESI)  电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 【原创】计算化学在有机质谱研究中的应用

    质谱技术由于具有质量分辨、信息量大、样品用量少、灵敏、快速等优点,多年来在测定有机物精确分子量、解析有机分子结构、研究有机反应机理等方面发挥着十分重要的作用。近年来,由于快原子轰击电离(FAB)、电喷雾电离(ESI)、基质辅助激光解吸/电离(MALDI)等软电离技术以及飞行时间质谱(TOF-MS)、傅里叶变换质谱(FT-MS)等新的质量分析方法的发展,以及各种色/质联用技术,如GC/MS、HPLC/MS、CE/MS,对于复杂体系的分离和分析十分有效,在医药领域如药代动力学研究和药物质量控制中发挥非常重要的作用;反应质谱RMS、串联质谱MS/MS等质谱新技术为研究药物-受体相互作用、药物光学纯度测定、生物超分子体系的弱相互作用和分子识别机理以及实现高通量药物筛选等提供了有力的工具。有机质谱的研究对象是有机[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子,如分子离子、碎片离子等,排除了溶剂对离子的影响,真正反应离子的化学性质。而像Gauss等计算软件正适于物质在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]条件下的计算,而且其[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]条件下的模拟计算相当成熟。因此,使用计算软件模拟[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学性质具有可行性。同时,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子的存在环境非常苛刻,如高真空、电磁场等。这使得现代分析仪器难以直接进行分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子结构。质谱技术主要通过离子的裂解和中性碎片的丢失来进行结构推测。分子离子的碎裂反应是有机质谱解析的基础。虽然用于有机质谱解析方法已经建立起来, 但这些方法并没有十分准确地描述分子离子的碎裂反应机理。到目前为止,质谱研究还只能属于实验科学,还需要计算化学来提高其理论水平。下面列举一些计算化学在质谱研究中的应用:1、离子碎裂反应的活化中性在电子轰击(EI)电离下,分子失去一个电子形成奇电子离子M +.。奇电子离子有两个活泼的反应中心,即电荷中心和自由基中心;偶电子离子只有电荷中心。分子离子的碎裂和产物离子的进一步碎裂主要是由这些中心引发的。对于由活性中心引发的碎裂反应,活性中性在离子中位置的确定是非常重要的。分子丢失一个电子之后,电荷和孤单电子一般在同一个原子上。而Radom等在对自由基的异构化进行理论计算研究时发现,反应可以被1,2-迁移基团X的质子化所促进。后来他们对甲醇的分子离子CH4O+.进行计算时发现CH4O+.不稳定[,最稳定的是.CH2OH2+.这样的结构,并随即被实验所证实。这种电荷于自由基中心分离的离子被称为荷基异位(diatonic)离子,其发现是近年来有机质谱的重要成就之一。在其它软电离源技术电离下,如化学电离(CI)、快原子轰击电离(FAB)、电喷雾电离(ESI)、基质辅助激光解吸/电离(MALDI)等,分子失去或者蒂合一个离子,形成准分子离子,如[M+H]+, [M+Na]+, [M-H]-, [M+Cl]-等。这些离子一般只有一个反应活泼中心,即电荷中心。Wesdemiotis等报道了使用快原子轰击产生一种新型的自由基离子,即低聚乙烯醚(R.)H(OCH2CH2)nO. (n=1,2), H(OCH2CH2)nOCH2. (n=1,2)与碱金属离子的络合物。理论计算表明,该离子也是一种荷基异位的离子,自由基中心在低聚乙烯醚的端基,电荷中心在碱金属上。该离子容易发生裂解产生含CH2=O的中型碎片-离子的复合物,以及氢迁移重排。2、分子离子以及碎片离子的空间结构化合物在电离后,其结构可能会发生变化。通过计算软件对离子空间结构的的模拟,可解析其裂解途径。在许多离子的碎裂反应过程中,键断裂后初生的中性碎片荷离子碎片在分离前,通过静电作用结合在一起而形成,被称为离子-中性复合物(ion-neutral complex)。Mcadoo等的理论计算表明,在丙烷分子离子的碎裂反应中,甲基自由基与乙基自由基形成一个离子-中性复合物[C2H5+...CH3.]。这两个成员简单分离则生成C2H5+和CH3.;若它们之间先发生氢原子(H.)转移再分离则生成C2H4+。和CH4。复合物的能量比分子离子失去CH4的阈值低5.3 kcal/mol,即其生成热比产物的生成热之和要低。在软电离源中形成的离子,经常有金属络合物或分子间氢键的形式存在分子簇离子。Cundari等[17]以FT-MS作为反应质谱来研究吡啶取代trans- Rh(PPh3)2CO(4-picoline) 配合物上的甲基吡啶时发生丢失CO。使用泛密函数计算表明,Rh-4-picoline, Rh-pyridine和Rh-CO的配位键能非常类似,而Rh的五配位的结构处在能量高位,因此丢失甲基吡啶和丢失CO是两条竞争反应。Marynick等使用泛密函数方法考察了MALDI基质与三肽VPL的簇状相互作用模型,研究其电离过程中质子从基质到分析物迁移的机理,发现质子有时在中性簇中迁移,而在阳离子簇中的迁移是自发的。3、质子迁移和重排反应:离子的自由基中心很容易引发附近质子的迁移反应,形成更稳定的重排结构。对于含有γ-氢的羰基化合物,如醛、酮、羧酸及其衍生物,McLafferty重排是其分离离子裂解过程中一个非常重要的反应。然而,自McLafferty首次报道这个反应以来,有关其机理是协同过程还是分步进行的问题长期争论不休。分子轨道理论计算结果表明,3-庚酮的McLafferty重排反应先经过1,5-氢迁移使分子离子异构化成荷基异位离子,后者的能量比前者约低8kcal/mol。苯丁酮红外多光子活化解离实验也证实上述机理。电荷中心也能引发附近质子的迁移反应,茶儿酮类化合物的加氢离子质谱裂解时,发现分子结构中的羰基最容易接受质子,而质子在各个质子化点上可以“流动”,其迁移的能垒直接影响离子的裂解,苯基上取代基的电子效应通过影响质子迁移的能垒来改变碎片离子的强度。除质子迁移重排之外,离子还可以发生其它形式的骨架重排,如2-(4, 6-Dimethoxypyrimidin-2-Ylsulfanyl)-N-Phenylbenzamide 及其衍生物,其负离子存在Smiles重排。总之,由于离子不稳定性,我们难以像常规化合物那样比较直接地对其进行结构分析。因此,使用计算化学模拟离子的结构以及其裂解途径,结合质谱技术探索[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子化学具有非常广阔的前景。

  • 简述化学电离的原理

    其原理是:首先使反应气电离,由被电离的反应气离子与被分析物分子发生分子-离子反应,从而使被分析物离子化 。从化学电离的条件分,有低压(0.1Pa)化学电离、中压(1-2000Pa)化学电离和大气压化学电离。从化学反应的类型分,有正化学电离和负化学电离。正化学电离发生的分子-离子反应主要有质子转移反应、电荷交换反应、亲电加成反应;负化学电离发生的分子-离子反应主要有电子捕获反应、负离子加成反应等。

  • 实验分析仪器--质谱仪的基本结构及功能介绍

    质谱仪一般由进样系统、电离源、质量分析器、真空系统和检测系统构成[b]一、进样系统[/b]在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]中一般有两种进样方式。第一种是输注,即用注射器泵(syringe pump)将样品溶液直接缓慢输入到离子源。这种方法虽然简便、快速,但是需要相对多的样品,且难以实现自动进样分析。第二种是流动注射,即将样品溶液注入HPLC进样系统,由LC泵缓慢推动溶剂将样品溶液直接注入离子源。这种方法既简便、快速,样品溶液的用量较小,易于实现自动进样分析。[b]二、电离源[/b][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]中最常用的电离源有大气压电喷雾电离源(ESI)和大气压化学电离源(APCI),两者同属于大气压电离(API)技术,其离子化过程发生在大气压下。[b]1、电喷雾(ESI)[/b]工作原理:电喷雾电离(ESI)是在液滴变成蒸汽,产生离子发射的过程中形成的,溶剂由[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵输送到ESI Probe,经其内的不锈钢毛细管流出,这时给毛细管加2-4kv的高压,由于高压和雾化气的作用,流动相从毛细管顶端流出时,会形成扇状喷雾,使液滴生成含样品和溶剂离子的气溶胶。电喷雾离子化可分为三个过程:[b]1)形成带电小液滴[/b]:由于毛细管被加高压,造成氧化还原反应,形成带电液滴。[b]2)溶剂蒸发和小液滴碎裂:[/b]溶剂蒸发,离子向液滴表面移动,液滴表面的离子密度越来越大,当达到Rayleigh (瑞利)极限时,即液滴表面电荷产生的库仑排斥力于液滴表面的张力大致相等时,液滴会非均匀破裂,分裂成更小的液滴,在质量和电荷重新分配后,更小的液滴进入稳定态,然后再重复蒸发、电荷过剩和液滴分裂这一系列过程。[b]3)形成[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子[/b]:对于半径10nm的液滴, 液滴表面形成的电场足够强,电荷的排斥作用最终导致部分离子从液滴表面蒸发出来,而不是液滴的分裂,最终样品以单电荷或多电荷离子的形式从溶液中转移至[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],形成了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子。[b]2、大气压化学电离 (APCI)[/b]工作原理:APCI电离是在大气压条件下利用尖端高压(电晕)放电促使溶剂和其他反应物电离、碰撞,及电荷转移等方式,形成一个反应气等离子区,样品分子通过等离子区时,发生质子转移,形成了(M+H) 或(M-H)离子或加和离子。[b]三、质量分析器[/b]任何质谱仪的基本功能都是分析气态离子。样品的电离过程和蒸发都在离子源中进行。质量分析器分析那些离子,当它们进入检测器时,控制它们的移动,并将它们转化为实际信号。[b]1、单四极杆质谱仪[/b]四极杆工作原理:四极杆质量分析器由四个平行的杆组成,DC和 RF电压被加载在四极杆上,用于过滤除了某个特定的质荷比数值离子以外的所有离子。四根杆都施加 RF电压,但是负“–”极杆与正“+”极杆相差了 180度。杆根据施加的DC电压标记了 +和 –。当施加某个电压时,只有某个特定数值的质荷比的离子能通过四极杆到检测器中,就算所有的样品都在源中产生离子。当电压变化成其它数值,其他质荷比的离子也能通过。因此,一个完整的质谱扫描就是应用到四根杆上的 DC和 RF电压不断的变动。一个精确设定的RF和 DC电压被加载到杆上,该电压允许某个质荷比通过。如果对于DC和 RF电压对来说质量过大的离子将会漂到负极杆,因为 RF力不足以克服离子动力。当正极杆有一个负电压的时候,质荷比低于所选择的质荷比的离子将会加速而漂到正极杆。这个过程将过滤超过带宽的质量。这个带宽是通过在调谐文件中设定的 DC和RF的比值确定的。施加于杆的DC和 RF电压会改变,这样下一个质量数就可以通过进入检测器。[b]2、多级串联质谱仪——三重四极杆[/b]为了使用四极杆进行多级质量分析,需要按顺序摆放三个四极杆。每个四极杆独立的功能:第一个四极杆 (Q1) 用于扫描目前的质荷比范围,选择需要的离子。第二个四极杆 (Q2), 也被称为碰撞池,它集中和传输离子,并在所选择的离子的飞行路径引入碰撞气体(氩气或氦气)。离子进入碰撞池和碰撞气体进行碰撞,如果碰撞能量足够高的话,离子就会分解。碎裂的方式取决于能量、气体和化合物性质。小离子只需要很少的能量,更重的离子需要更多的能量来碎裂。第三个四极杆 (Q3)用于分析在碰撞池(Q2)产生的碎片离子。三重四极杆的扫描模式:[b]1)子离子扫描[/b]:MS1选择了某一特定质量的母离子,碰撞池产生碎片离子,然后在MS2中分析。即第一个四极杆在选择性离子监测模式,第二个在全扫描监测模式。[b]2)母离子扫描[/b]:MS1进行全扫描,碰撞池产生碎片离子,MS2进行选择特定的碎片离子扫描。[b]3)中性丢失扫描[/b]:MS1和MS2同时扫描,监测母离子特定的中性丢失。[b]4)单个反应监测[/b]:MS1选择某一质量的母离子,碰撞池产生碎片离子,MS2只分析一个碎片离子。此过程产生一个简单的单个离子碎片谱图。[b]5)多重反应监测[/b]:MS1选择某一质量的母离子,碰撞池产生碎片离子,MS2用于搜寻多个选择反应监测。[b]四、真空系统[/b]真空系统包含以下元件:前级泵(机械真空泵)、高真空泵(分子涡轮泵或扩散泵)、真空腔、真空规。[b]1、真空腔[/b]真空腔是由铝制成,有出口连接其它的元件或和质量分析器。真空腔由密封圈分成四个阶段,每个阶段的压力逐渐降低。第一阶段压力是1torr(初级压力大约是2torr),第四阶段压力是 10-5torr(高真空)。真空腔表面是一个平的铝板,覆盖了真空腔顶部大的出口。真空腔的O形环可提供必要的密封。表面有螺母将其上紧。[b]2、前级泵[/b]前级泵降低真空腔的压力,以便高真空泵可以运作。它也泵走从高真空泵来的气体。前级泵与真空腔和大涡轮泵的出口连接。前级泵有一个内在的反倒吸阀,帮助防止在断电时倒流。 前级泵装有一个油肼和一个油返流管,这个返流管可以将捕集的油排回泵。一个软管将前级泵的废气放空到外面或者烟囱。机械泵在系统中降低真空至10-1到10-2 torr。它也作为高真空的”后备泵”。前级泵通常是灌满油的机械泵。这个泵一段时间就需要维护,需要更换泵油、过滤器。在维护时,总是确保出口正确放空。[b]3、真空泵[/b]高真空泵制造低压(高真空),要求正确的分析器操作。他们通常被称为“涡轮”泵。一个控制器调整供应到泵中的电流,监测泵马达的速度。高真空泵将系统真空降至10-5torr。分子涡轮泵可以提供高真空(“涡轮”泵),分子涡轮泵在进口安装了马达,可以以 60,000转速/分钟旋转。这种旋转可使在泵中的气体向下压缩偏转到另一个扇叶最终排到泵的出口,被机械泵带走。[b]4、真空规[/b]真空规被用于测量压力。不同的真空规测量不同范围的压力。[b]五、检测系统——电子倍增器[/b]在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS中的检测器是一个高能打拿极(HED)电子倍增器。检测器接受在四级杆质量过滤器中的离子。产生与它接收到的离子的数量成正比的电流信号。信号被传递到电极进行放大和处理。在调谐过程中,为透镜优化电压时(这是电子倍增器的一个要素),持续变化电压。透镜的功能是直接将离子引导入高能量打拿极。被释放的电子将被引导入 CDEM喇叭口。在调谐的过程中,产生的信号数量与其它的功能有关。 增益根据需要得到的一个离子的目标丰度所需的电压设置

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 实验室常用的VOCs前处理与检测技术 你都知道吗?

    样品预处理VOCs的样品预处理方式:溶剂解析法、低温预浓缩-热解吸法、固相微萃取法等。1.1溶剂解吸法传统的溶剂解吸法常用的解吸液为二硫化碳。这种方法虽然分析误差较大,但简单便捷。1.2低温预浓缩-热解吸法热解吸法具有较高的灵敏度、抗干扰,可以避免采用吸附剂时的穿漏、分解及解吸。可直接进样分析样品。灵敏度高,环保,样品保存时间长。1.3固相微萃取法SPME具有选择性高、操作简便的特点,VOCs的监测中应用逐渐增加。缺点是SPME是一个动态平衡过程,需要校正,适合于收集已知结构的化合物,缺点是重现性较差。1.4低温冷阱样品富集分为超低温制冷、电子制冷和液氮制冷法。超低温制冷法(≤-150℃)将样品快速通过连接头进入自动进样系统,随后进入多级冷阱预浓缩系统进行浓缩,可浓缩几十倍以上。通常使用的是多级串联冷阱:在将目标化合物由前一级冷阱转移至下一极冷阱,缓慢升温一级冷阱,阻止水蒸气转移。目前常见的多级冷阱有二极冷阱和三级冷阱。目前常见的多级冷阱有二极冷阱和三级冷阱。检测手段2.1气相色谱技术 GC和GC-MS主要的VOCs检测技术还是色谱技术。气相色谱法是最常用的一种仪器,它具有高效能、高选择性、高灵敏度、分析速度快和应用范围广等优点,尤其对异构体和多组分混合物的定性、定量分析更具有优势。通常与气相色谱联用进行VOCs分析的检测器有:氢火焰离子检测器(FID)(一种通用型检测器,也是气相色谱中最常用的检测器之一)、电子捕获检测器(ECD)(卤代烃和烷基硝酸盐的检测)、质谱检测器(MS)和光离子化检测器(PID)。参考美国环保局大气中VOCs的标准分析方法TO-14A和TO-15,采用预浓缩器与气相色谱联用,以FID检测器检测分析C2-C4烷烃,烯烃和炔烃,适用于环境空气中C2-C4挥发性组分非甲烷碳氢化合物。GC-MS是目前检测VOCs的常用方法。能进行未知化合物的定性和定量分析。但注意在样品流转中成分损失以及成分间的交叉污染会引起检测结果的偏差。 EI电离有时会形成多种离子碎片,质谱复杂、分析难度大。由于目前主要的VOCs检测技术还是色谱技术。但是该技术要求有复杂的采样和前处理过程。GC-MS与自动顶空进样器、吹扫捕集系统、热解析系统联合是现在常用的技术。大大的降低的对样品预处理技术的要求,更快速、高效。目前,有不少检测在使用GC×GC-qMS(全二维气相色谱-四级杆质谱法)和GC×GC-TOF-MS(全二维气相色谱-飞行时间质谱法)来分析VOCs。2.2在线监测质子转移反应质谱PTR-MSPTR-MS是一种痕量挥发性有机物在线检测技术,灵敏度高、分析时间快等优点,且在线采样,无需浓缩。它将待测大气直接进样,因而测量速度快。质子转移将各种VOCs软电离为单一离子,没有碎片离子,易于质谱识别,灵敏度可以达到几十ng。局限性主要在于区分同分异构体较难。2.3飞行时间质谱TOF-MSTOF-MS是利用动能相同而质荷比不同的离子在恒定电场中运动,经过恒定距离所需时间不同的原理对物质成分或结构进行测定的一种分析方法。质量范围宽、响应速度极快、分辨率高、灵敏度较高等。其仪器易加工和小型化,具有在线监测有机污染物的潜力。其他的还有选择性离子流管质谱(SIFT-MS)技术,对挥发性有机物质(VOCs)可进行即时识别和定量分析等。(来源:PONY谱尼测试)

  • 9月15-16日,食品真实性与产地溯源鉴定-质谱专场,有哪些大咖莅临,速来围观!

    9月15-16日,食品真实性与产地溯源鉴定-质谱专场,有哪些大咖莅临,速来围观!

    [img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]【行业标准及发展趋势】专场陈颖(检科院 研究员):食品真实性与产地溯源鉴别技术发展[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]王道兵(中轻技术创新中心 副主任):食品真实性及产地溯源相关的标准及行业发展趋势【质谱】专场[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]佘远斌(浙江工业 教授):[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]技术在食品产地溯源鉴别中的应用[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]赵燕(农科院 研究员):同位素质谱技术在食品真实性鉴别中的应用[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]郭军(内蒙古农业大学 教授):质子转移反应-飞行时间质谱法鉴定6种家畜原乳气味物质及特征分析[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]崔宗岩(秦皇岛海关):基于色谱-质谱分析的蜂蜜真实性鉴别检测技术研究进展【光谱】专场[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]吴海龙(湖南大学 教授):荧光光谱结合化学计量学和机器学习法用于山茶油的真实性检测[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]孙宗保(江苏大学 副教授):高光谱技术在食品真实性鉴别中的应用[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]刘萤(中国海关 高工):产地溯源方法在进口地理标志酒鉴定中的应用[img]file:///C:/Users/wangxin/AppData/Local/Temp/221f9695-1302-4a17-8810-05337570a603.png[/img]李占明(江苏科技 讲师):基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术结合化学计量学用于谷物掺假及产地溯源[img]file:///C:/Users/wangxin/AppData/Local/Temp/71e3df4b-6d81-462f-9b4a-191a9967cdbf.png[/img]点击下方链接或扫描二维码,立即免费报名:[url=https://www.instrument.com.cn/webinar/meetings/Foodauthenticity/]点击打开链接[/url][img=,200,200]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010938386117_4018_5621152_3.png!w400x400.jpg[/img][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010938540031_9213_5621152_3.jpg!w690x151.jpg[/img]

  • 【资料】基于质谱的DNA序列测定进展

    基于质谱的DNA序列测定进展 许崇峰 杨芃原 岳贵花 卞利萍   摘 要 对质谱DNA序列测定的各种技术的原理、进展、面临的困难以及发展的前景作了评述。   关键词 质谱 DNA序列测定 评述  Abstract This article gives a review on DNA sequencing by mass spectrometry,including the principles of MS techniques,and their progress,difficulties and perspective.   Key words Mass spectrometry;DNA sequencing;Review 1 引言   DNA序列分析在生物基因学以及遗传病和病毒性疾病的诊断和治疗上具有重要的作用。用质谱化学方法进行DNA序列分析是一种新兴的技术。Sanger双脱氧链终止序列测定方法是常规的DNA序列分析方法,Sanger产物需要通过凝胶分离和显色来得到DNA的序列信息。而当采用质谱(MS)时,Sanger产物可不需分离而直接测定,因而质谱方法具有快速性的优点。80年代中后期相继出现的质谱离子化新技术电喷雾(ESI)和基体辅助激光解析电离(MALDI)使得用质谱进行DNA序列测定成为可能。但是由于技术尚不成熟,目前使用质谱方法仅能测定含几十个碱基的寡聚核苷酸。要使质谱在人类基因工程(HGP)和临床分析中得到广泛的应用,质谱技术和质谱方法必须得到显著改善。2 生物质谱方法   生物质谱,有别于传统质谱,测定的对象是分子量可高达几万至几十万的生物分子,这使得传统的电子轰击(EI)、化学电离(CI)等电离技术的应用受到了极大的限制。随着快原子轰击(FAB)、MALDI、ESI、离喷雾(IS)、大气压下碰撞电离(APCI)等电离技术的出现,大大提高了质谱的测定范围。特别是ESI-MS和MALDI-MS显示了在生物大分子分析(如蛋白质和核酸)上的巨大潜力。 2.1 ESI-MS  电喷雾是一种软电离方法。通常认为电喷雾可以用两种机制来解释:1)离子蒸发机制,在喷针针头与施加电压的电极之间形成了强电场,该电场使液体带电,带电的溶液在电场的作用下向带相反电荷的电极运动,并形成带电的液珠(液滴)。由于小雾滴的分散,比表面增大,在电场中迅速蒸发,结果使带电雾滴表面单位面积的场强高达108V/cm2,从而产生液滴的“爆裂”。重复此过程,最终产生分子离子;2)带电残基(分子)机制,首先也是电场使溶液形成带电雾滴,带电雾滴在电场作用下运动并迅速溶去,溶液中分子所带电荷在去溶时被保留在分子上,结果形成离子化的分子。一般来讲,电喷雾方法适合使溶液中的分子带电而离子化。离子蒸发机制是主要的电喷雾过程,但对质量数大的分子化合物,带电残基的机制也会起相当重要的作用。   电喷雾所形成的离子是多电荷离子,由于质谱测定的是质荷比,这就拓宽了它所能测定的质量范围,使得它适合于生物大分子的测定。 2.2 MALDI-MS  MALDI也是一种软电离方法,它利用激光束照射分散于基体(又称基质、底物)中的样品,由于样品被包裹在基体中,因而大部分激光能量被基体所吸收,从而保护了样品分子。MALDI中的基体起到了多种重要的作用:从脉冲激光中吸收足够的能量;隔离样品分子;提供光激发的酸或碱基团,以及在离子-分子碰撞中电离样品分子。目前MALDI比较公认的机理是:激光光束的能量首先被发色团的基本吸收,接着这些基体迅速蒸发为气相,被包含的分析物的分子从而被带入气相。而离子化的产生是由于受激的基体分子将质子转移给分析物分子。   MALDI可以由不同类型的质谱来实现,特别是飞行时间质谱(TOF)。理论上,飞行时间质谱的质量上限是无限的,这决定了它特别适合于生物大分子分子量的测定。

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 反应质谱(RMS)

    是指在质谱仪的离子源或碰撞室中引入反应试剂使发声分子-离子或离子-离子反应产生特征离子。由这些离子的质量数、元素组成、结构和相对丰度可获得样品分子的结构信息。这样的信息是一般常规质谱所不能提供的。RMS扩展了质谱的应用范围。

  • 【原创大赛】从质谱技术的革新谈方法创新与分析仪器发展——清华大学化学系张新荣教授讲座后感

    【原创大赛】从质谱技术的革新谈方法创新与分析仪器发展——清华大学化学系张新荣教授讲座后感

    前阵子参加了一个巨空洞的创新方法的会议,但听到了清华大学化学系张新荣教授的报告,感觉还挺有收获,也算不虚此行。张教授的报告题目是“谈方法创新与分析仪器发展”,听上去似乎很空,但是,张教授讲得非常生动,举了很多富有启发性的例子,非常适合搞仪器研发的人看看。  一、方法创新是分析仪器发展的源泉  以质谱仪器研究为例,阐述了方法创新与分析仪器发展的关系。  张教授说,质谱仪器的发展与分析方法的进步密切相关。质谱仪器诞生以后,经历了多次技术革新与革命,这些革新与革命相当程度上是由于分析方法的发展而产生的。  质谱仪器本身并不复杂,主要由离子源、质量分析器和检测器组成,现在大家做工作最多的是离子源和质量分析器。EI→CI:引入反应气体  最早的气质,用的是电子电离源(EI),EI源结构简单具有很大的优点,能量很高,能够把分子打碎,从而分析分子结构。但是成也萧何败萧何,EI源的能量太高了,如果许多分子进入质谱,都被打碎了,那么就会造成混淆。为了避免这个问题,只能再给质谱配一个色谱,先实现分析,让分子一个一个进入质谱。加了色谱以后,仪器在小型化方面就实现起来比较麻烦。 这样人们就做了改进,于是单程了化学电离源(CI)。CI源其实也很简单,就是在EI源的基础上,引进反应气如甲烷,灯丝发出的电子先将反应气电离,然后反应气离子与样品分子M进行离子-分子反应,并使样品分子M电离。这样CI源的能量就不会太高。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291620_342440_1622715_3.jpg就是引入一个反应气体,这么简单的一个方法,就改进了质谱的性能,现在CI源广泛的应用在质谱仪器上。CI→PTR:用水蒸气替代甲烷 CI源还不够好,因为要用到甲烷,甲烷是一种高危险的气体。所以后来奥地利的科学家用水蒸气替代甲烷,辉光放电,水蒸气变成了H3O+,反应物再跟H3O+反应,生产MH+在进行检测。这就产生了质子转移反应电离源(PTR)。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291620_342441_1622715_3.jpgPTR只与空气中有机物分子反应,生成(M+1)+,不与空气中氮,氧,氢等无机分子反应,特别适合于空气中VOC等污染物的测定,灵敏度高,相比于EI源提高了100-1000倍。Ionicon Analytik 的PTR-MS仪器使用一种软离子化技术,这种技术是将H3O+ 中的质子传递给被研究的样品中所有质子亲合力大于水的化合物。常见的空气成分如N2 ,O 2 ,Ar,CO 2 等,其质子亲和力都小于水,不能和H3O+ 发生质子传递反应,因此完全不会干扰反应腔中痕量化合物的检测和定量。 该技术对痕量化合物检测的最低检测限达到几个pptv。软离子化技术在离子化过程中将分子裂解降到最低,大大地提高了质谱图的判断和解析。同时具有飞行时间质谱的很高的质量分辨能力(8000)。清华大学建筑系卖了一台,17万美金,相比于气质的7-8万美金,提到了约10万美金。ICP-MS:DRC技术是如何发展起来的?最高的ICP-MS是PE做的,为什么他们做得好呢?因为采用了动态反应池(DRC)技术。四极杆的ICP-MS有一个问题,就是多原子离子的干扰,比如说砷的原子量是74.9216,而ArCl+的分子量是74.9312,两者质量数差得很小,如果要将二者分开,那么质谱的分辨率要达到7800。而PE采用DRC技术,即在ICP上开一个小口,注入一定的反应气体,比如使用DRC测定水样中不同形态的铬和砷,由于氧气易与As+反应形成AsO+(m/z 91),从而不受ArCl+和CaCl+ 对质荷比为75时的干扰;氧气同时也能够减少ArC+对质荷比为52 的Cr+的干扰。有了DRC技术以后,PE的ICP-MS就迅速的卖开了。现在其他的厂商都有了类似的专利技术。仔细思考一下就是这么简单,只是注入了一种气体而已,就能达到这么好的效果。那么现在,我们中国也在做ICP ,我们怎么解决这个问题?现在那些公司都有专利,而且最近几年都不会过期,如果在这个方面没有专利,那么ICP就很难有突破了。DESI、DART、MALDI、ESI的技术发展缘起类似的还有DESI ,这是2004年普渡大学的库克斯教授发明的,DESI只是在电喷雾的基础上做了一些改进,将电喷雾的喷头往下转,将电喷雾的气溶胶先打在样品上,然后再对样品进行测量,这样一下子就把固体表面的样品分析的质谱问题给解决了,就这么简单了,然后库克斯教授在《科学》杂志上发了一篇论文,并在他在普渡大学的小工厂里进行生产,现在再给各个厂商的质谱配套。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291622_342443_1622715_3.jpgDESI还是有些技术缺陷,就是有些样品不太容易拿溶剂来做,如果喷上溶剂,样品就损坏了。日本电子公司,就采用等离子体替换了溶剂,这就有了DART源。原理非常简单,成本也很低,但是现在卖得很贵,也很受欢迎。田中耕一发明基质辅助激光解析附离子源(MALDI),其原理也非常简单。MALDI技术没有做出来之前,daojin的激光TOF早就出来了,但是只卖了2台,还基本上是送给别人用的,别人还不想要。但田中耕一的这项技术出来后,全世界的蛋白质组学都得用岛津的仪器了,daojin一下子就起来了。电喷雾离子源(ESI)技术就是John B Fenn将光谱学的技术运用到质谱上,从而解决了质谱测量蛋白质组学测量的问题,现在技术所有的LC-MS都采用ESI源,相关仪器的发展全部都起来了。从下图可以看出各种例子源的市场情况,ESI源已经占绝对优势了。http://ng1.17img.cn/bbsfiles/images/2011/12/201112291622_342444_1622715_3.jpg(横轴是市场份额大小,纵轴是年份,从上到下是指从1970年至2009年)小结1:上述创新概念不是仪器设计与制造专业的专家或工程师提出的,相反都是由具有分析化学背景的学者提出来的,且他们最初的研究都属于分析化学方法学研究。因此,分析方法创新是分析仪器创新的重要源泉,这是分析仪器制造这门专业的独特性质决定的;小结2:上述新技术大都成就了一种新的分析仪器的产业化,特别是MALDI和ESI-MS,已经成为质谱分析仪器最具市场覆盖度的商品。但是,上述技术没有一项对精密加工提出太高的要求,虽然电喷雾取决于高压电源,MALDI取决于激光技术,而这些技术都是很成熟的。因此,我国分析仪器落后的原因并不是精密加工技术落后制约的,缺少创新思想是我国分析仪器真正落后的原因。小结3:上述成果有的是大学教授完成的,如ESI、DESI、PTR,有的是在公司内部的研究所完成的,如MALDI与DART,因此,分析仪器的创新没有以谁为主体的问题,任何人、任何单位、包括大学、研究所、公司都能够成为创新的主体。但是,有一点是共同的,即分析仪器创新都是由需求产生、由方法创新起步,产学研共同协作完成的。因此,调动所有与分析仪器应用部门、研究部门、产业化部门等各行各业的积极性,在一个政府搭建的平台上进行有效地合作,才能形成一个国家分析仪器不断创新的基础。二、方法创新到仪器产业化的中间环节 美国小型创业公司常常承载将新仪器技术产业化这一功能,我们呢? ICP-MS的DRC技术最初是由加拿大多伦多大学的Scott Tanner教授发明的,他当时刚博士毕业,在他老板开的Sciex公司中工作,并发明了这项技术。PE公司首先看到了DRC技术的市场前景,并购买了Sciex公司,并开始批量生产,并引发了ICP-MS技术的革新浪潮。最近Tanner后来又成立了DVS Sciences ,从事ICP-MS的免疫分析相关技术的研究,取得了一定进展,并将相关技术做成了仪器。他相信,还会有公司将他的发明与他的小公司仪器买走。毫无以为,科学家们像老母鸡一样,不断的“下蛋”,不断将这些小公司推出去,不断的研发仪器,并在市场上进行试探。即便失败了,也会因为有国家的扶持而不会处境非常艰难。这样购买该技术的大公司风险不大。但在中国,国家支持的都是一些基础研究的实验室,没有成果转化的动力。美国——运行以国家与企业经费共同资助的小公司。 中国——政府资助的重点实验室或工程中心?我们缺少一个把分析方法转化为样机的研发平台。三、中国分析仪器创新与发展的几点思考◆ 分析方法创新非常重要,应大力提倡(创新方法研究很有意义);◆ 大的创新都是由小分析方法的进步引发的,因此,在支持大项目研究的同时,应注意支持小项目的研究;分析仪器的诺贝尔奖某种意义上当初都被看做是小项目;◆ 要加强仪器研究条件平台的建设。◆ 由于中国的仪器公司目前不具备建立大而强的研发队伍的实力,政府应该承担起组织和支撑这类研发团队的义务。•改变单纯依靠项目资助的现状,在全国设立若干产学研结合的仪器研发中心,政府给与持续的财政支持,企业牵头但考核的并行标准是技术创新与

  • 【原创大赛】【开学季】氟马替尼和伊马替尼质谱裂解机理研究

    【原创大赛】【开学季】氟马替尼和伊马替尼质谱裂解机理研究

    氟马替尼和伊马替尼皆为靶向治疗药物,伊马替尼(原称STI571)是一种治疗普通种类癌症的药物。其甲磺酸盐目前由诺华公司在市面上销售,在中国商品名称“格列卫”。它被用于治疗慢性粒细胞性白血病(CML),胃肠道间质瘤(胃肠道间质瘤)和其他一些疾病。到2011年,该药已被FDA批准用于治疗10个不同的癌症。对于慢性粒细胞白血病,酪氨酸激酶ABL被锁定在其活化形式。它导致慢性粒细胞白血病的异常表型为:过度增殖和白细胞计数高。伊马替尼可与酪氨酸激酶活性位置结合,并阻止其活动。甲磺酸氟马替尼是江苏豪森药业股份有限公司组织多家单位研究开发的氨基嘧啶类化合物甲磺酸氟马替尼是针对Bcr-abl设计的格列卫的结构修饰药物。药理实验显示疗效明显优于imatinib(格列卫),目前的数据支持甲磺酸氟马替尼进入临床进一步试验。本临床研究已得到中国食品药品监督管理局的批准并已被伦理委员会审阅通过。伦理委员会将保证所有参与者的权利得到保护。质谱图是某质谱解析爱好朋友提供的,觉得这个稍微难一点,所以很提人胃口,所以解析起来可能更有点意思!!!氟马替尼质谱图(ESI+):http://ng1.17img.cn/bbsfiles/images/2014/09/201409261650_515869_2359621_3.jpg氟马替尼可能的质谱裂解途径:http://ng1.17img.cn/bbsfiles/images/2014/09/201409261649_515868_2359621_3.png 氟马替尼分子量为562,质子化产物为563,585为其加钠峰,545碎片离子为脱水峰,结构中的酮式会与烯醇式互变,经过氢重排脱水,523与准分子离子相差40为脱去两分子的HF而生成,503为在523的基础上再失去一分子HF生成,基峰为463是与脂肪胺相连的苯环上苄基断裂,同时电荷转移,七元环的卓鎓离子更具有稳定性个人认为脂肪环上的N原子的碱性强一点所以其具有较强的质子亲和力,所以质子化发生位置可能就是在脂肪环的N原子上,除了苄基的断裂还有一种断裂方式就是与苯环相连的C-C键的断裂,从而得到449的碎片离子,423碎片离子是463碎片离子失去两分子的HF而生成的,285为酰胺键断裂电荷转移,由此推断可能质子化位置在酰胺N原子上,277亦为酰胺键断裂只不过正电荷定域在左侧,C-N键断裂会得到263的离子,由于游离基中心的诱导 该离子再失去氢自由基得到262的碎片离子,嘧啶与吡啶相连的氨基经过H重排发生1.3-键断裂,后得到173的碎片离子,58,99,100的离子均来自N脂肪环,C-N键断裂,失去氢自由基,以及开环所生成。依马替尼质谱图(ESI+):http://ng1.17img.cn/bbsfiles/images/2014/09/201409261651_515870_2359621_3.jpg依马替尼可能的质谱裂解途径:http://ng1.17img.cn/bbsfiles/images/2014/09/201409261659_515871_2359621_3.png伊马替尼在结构上与氟马替尼的差异不大,毕竟氟马替尼是伊马替尼的结构修饰药,所以结构上比伊马替尼在苯环上多了三氟甲基取代基,另外则是甲基吡啶环变成甲基苯环,伊马替尼分子量为493,准分子离子加氢峰为494,准分子离子加钠峰为516,离子都具有很高的丰度,476为烯醇互变引起脱水得到的,这个过程与氟马替尼一致,394为苄基断裂,380为与苯环相连的C-C键的断裂得到的 ,262为与苯环相连酰胺键的CN键断裂生成的离子,217为酰胺键断裂电荷转移得到的,后失去CO中性分子得到189碎片离子,222为酰胺键断裂,以及苄基断裂生成卓鎓的离子,235为262失去HCN得到,低质量端为含氮脂肪环产生的离子。注:参加原创不是目的,目的是和各位质谱解析爱好者,更深入、广泛的交流学习,分享自己的心得,同时认识到自己的不足!

  • 【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    基于密度泛函理论研究四环素的电喷雾质谱裂解机理摘要: 基于密度泛函理论(Densityfunctional theory,DFT)方法,考察四环素的优势构像极其在电喷雾正离子模式下准分子离子峰处于基态的最优构型,结合构形参数及质谱测定对准分子离子的最优构型进行了确认,并通过全几何结构优化,对四环素的优势构像及其在电喷雾质谱(LC-ESI-Q-Orbitrap-MS)正离子模式下准分子离子的二级谱中碎片离子的最优构型进行研究。结合高分辨率质谱数据对其质谱裂解机理进行解释。该研究可以为进一步探索四环素类化合物及其衍生物ESI-MS正离子模式下的质谱裂解规律提供参考和理论指导依据。关键词:密度泛函理论(DFT);静电轨道离子阱(Orbitrap);四环素(Tetracycline)1 实验部分1.1 仪器与试剂Thermo Scientific:Q Exactive Orbitrap ,Merck:CH3OH,Standard: Tetracycline(上海士锋生物科技有限公司)1.2 分析条件质谱(Mass Spectrometry):Ion Source:ESI, MS Type:MS2,Ion Mode:Positive(+),Fragmentation Mode:HCD,Collsion Energy:30ev色谱(Chromatography):Column Name:WatersXBridge TM(Waters,C18)3.5um,2.1*50mmFlow Gradient:90A(0min)-50A(5min)-5A(25min)-90A(30min),FlowRate:200ul/minSolvent A:H2O+0.1%Acid,Solvent B:CH3OH+0.1%Acid1.3 量子化学计算 使用密度泛函的B3LYP方法,以6-311+G*为基组,对反应势能面上的各驻点的构型进行了全几何参数优化,并由频率分析确认了稳定点的正确性,为了得到更精确的能量信息,又在B3LYP//6-311++G(3df,3pd)水平上计算了各驻点的单点能,所有计算采用Gaussian 03程序包完成。前言 四环素类(Tetracyclines,TCs)是由链霉菌产生的一类广谱抗生素(1),在化学结构上都属于多环并四苯羧基酰胺母核的衍生物。四环素类可分为天然品和半合成品两大类。天然品为从放线菌金色链丛菌的培养液等分离出来的抗菌物质,四环素类药物为广谱抗生素,广泛用于临床治疗,并常被用做动物促生长剂,但耐药性的出现限制了该类药物的使用。目前关于四环素类抗生素的分析大多采用液相色谱质谱联用技术分析(2-9),并多数是采用电喷雾离子源。随着串联质谱技术的不断发展,采用量子化学方法及理论计算从分子水平研究化合物的质谱裂解规律及机理受到广泛而长期的关注。采用量子化学理论在质谱的裂解机理计算中,准分子离子几何构型的可靠性直接影响后续更加深层次的分析,而确定准分子离子最可能的最优构型是解析谱裂解机理的首要解决问题,本研究采用量子化学计算方法,依据密度泛函理论,并借助高斯软件Gaussian 03计算分析,计算了四环素正离子模式下准分子离子的最优构型,并且结合高分辨率质谱静电轨道离子阱质谱(Q-Orbitrap-MS)给出的可靠数据,对特征离子的裂解做以归属,为此类化合的鉴定解析提供理论依据。四环素的结构及其空间三维立体模型见图1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221738_567179_2359621_3.bmp图1 Tetracycline结构及其空间立体构型2 结果分析2.1 量子化学计算各质子化位点的质子亲和势能 由于化合物结构有多个质子化位点,所以需通过计算确定其最稳定构型及最大可能质子化位点,质子化反应方程为:RX+H+→RH+分子的气相碱性由其质子化方程的焓变ΔrH来确定,即质子亲和能EPA=-ΔrH,质子亲和能较大的化合物,其气相碱性较强,按照分子轨道理论,质子化方程的气相质子亲和能WPA与分子RX的最高占据道HOMO和质子H+的最低未占据轨道LUMO的差值有关,由于H+的LUMO是一个定值,所以可以认定WPA只与RX的HOMO相关并呈线性关系,原则上RX分子的HOMO能级值可以由量子计算得到。在B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p),B3LYP/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p)和B3P86/6-311++G(3df,2p)//B3P86/6-311++G(3df,2p)基础下,计算了各质子化位点的平衡几何构型,优化得到的分子平衡几何构型都经频率计算证明是势能面上的极小点(无虚频),获得各质子化位点的质子亲和能(E),各质子结合位点的质子亲和能计算结果见表1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221752_567196_2359621_3.bmp表1 四环素各质子结合位点的质子亲和能EPATabel 1 Protonaffinity for proton binding sites of Tetracycline(EPA)通过表1可以看出质子结合位点位于氨基上具有较高的质子亲和能,表明N上孤对电子可能占据HOMO轨道,所以质子化位点极可能位于氨基上。2.2 四环素在LC-ESI-Q-Orbitrap-MS下的质谱裂解途分析通过以上计算,以质子化位点位于氨基上为起点,并结合高分辨率质谱数据对其质谱裂解途径和机理进行分析,使用(LC-Q-Orbitrap-MS)获得准分子离子峰m/z 445.1594的二级谱,质谱碎片离子及相对丰度见表2http://ng1.17img.cn/bbsfiles/images/2015/09/201509221750_567191_2359621_3.bmp表2 四环素电喷雾离子源下准分子离子(MS2)的碎片离子及其相对丰度Tabel 2 Relative abundancesof characteristic ions in the ESI(MS2) mass spectra of Tetracycline依据表1计算结果,对比质子亲和能,质子最可能的结合位点为氨基上氮原子,氮原子的一对未成键电子最可能占据HOMO轨道,所以以质子结合到氨基上所形成的准分子离子峰为起始点(备注:只是最可能概率最大的,但是不排除其他小概率的质子结合位点所引发的裂解),对其可能的质谱裂解途径做以下分析。准分子离子峰失去H2O中性分子后得到碎片离子m/z427.1500,与理论误差为-2.61ppm。而失去H2O中性分子可能有多个不同位点,1.2-消除脱水和-2.4消除脱水,从空间立体构型中可以看到氢和羟基均位于一侧,所以有利于发生1.2-消除和2.4-消除,如此就有了三种可能的脱水方式,所以通过计算得到不同三种方式下脱水后生成离子的稳定构型及其能量,见表3。由表3可以看出第一种模式下生成的离子能量最低,表明此方式为主要途径,更容易进行。准分子离子通过正电荷转移失去NH3可以生成离子m/z 428.1340,与理论误差为0.02ppm,β为的氢重排到侧链氮原子上可以脱去侧链CH3NHCH3得到碎片离子m/z 383.0761,与理论值误差为1.01ppm。该离子进一步通过1.2-消除脱H2O后生成离子m/z 365.0656,与理论值误差为0.19ppm。后通过2.4-消除脱水生成离子m/z 347.0550,与理论值误差为-1.91ppm。,由于2.4-消除相比1.2-消除难所以生成的离子丰度相对较低,离子m/z

  • 你知道几种质谱离子源?

    [font=Optima-Regular, PingFangTC-light]质谱[/font][font=Optima-Regular, PingFangTC-light]仪之间分类一般是按质量分析器来分,如通常我们所说的飞行时间质谱或者四级杆质谱等,但同一台质谱仪可以配几种离子源,每种离子源有哪些特点,该如何选择?[/font][font=Optima-Regular, PingFangTC-light]今天咱们就详细说下质谱主要的几种电离方式及离子源[/font][font=Optima-Regular, PingFangTC-light]。[/font][font=Optima-Regular, PingFangTC-light][size=14px]样品在离子源中电离成离子,比较常用的离子源有与[/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光电离(APPI),以及基质辅助光解吸离子化(MALDI)[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]等等。[/size][/font][font=Optima-Regular, PingFangTC-light][size=16px][color=#0052ff][b]电离方式和离子源[/b][/color][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]1、电轰击电离(EI)[/b]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。[b]2、化学电离(CI)[/b]电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]3、大气压化学电离(APCI)[/b]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。[b]4、二次离子质谱(FAB/LSIMS)[/b][/size][/font][b][font=Optima-Regular, PingFangTC-light][size=14px][color=#ff4c00]在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。[/color][/size][/font][/b][font=Optima-Regular, PingFangTC-light][size=14px]主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。[b]5、等离子解析质谱(PDMS)[/b]采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。[/size][/font][font=Optima-Regular, PingFangTC-light][size=14px][b]6、激光解吸/电离(MALDI)[/b][/size][/font][font=Optima-Regular, PingFangTC-light][size=14px]波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。[b]7、电喷雾电离(ESI)[/b]电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。[/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制