当前位置: 仪器信息网 > 行业主题 > >

植物生理生态系统

仪器信息网植物生理生态系统专题为您提供2024年最新植物生理生态系统价格报价、厂家品牌的相关信息, 包括植物生理生态系统参数、型号等,不管是国产,还是进口品牌的植物生理生态系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物生理生态系统相关的耗材配件、试剂标物,还有植物生理生态系统相关的最新资讯、资料,以及植物生理生态系统相关的解决方案。

植物生理生态系统相关的仪器

  • 树木生理生态系统 400-860-5168转1895
    秋高气爽,公园、道旁的树木慢慢吐露秋色,大地秋意渐显。为对林地树木的生理生态状况进行实时有效的监测,“树木生理生态系统”在中秋佳节之际正式上线。树木生理生态系统能够同时对多棵树木进行实时在线监测,采集记录树木生长(树干、枝条以及气生根)、树皮的温度(阴面和阳面)、树干茎流(树干、枝条以及气生根等)等三个生理指标的数据。树木生理生态系统是北京易科泰生态技术有限公司为您量身定制的植物生理生态监测方案之一。应用领域:? 树木病虫害监测;例如松蚜虫吸食树液,降低了树干茎流和蒸腾作用,从而影响树皮温度,最终会抑制树干生长。? 树木水分胁迫和抗旱性调查研究;? 树木低温胁迫和低温耐受性调查研究等; 系统采用:l 数据采集箱:专为户外恶劣环境下使用而设计;l 树木茎杆生长单元:可轻松快速安装,对树木无损伤;l 红外冠层温度单元:高精度、非接触的表面温度测量,适用于恶劣环境条件;l 树木茎流观测单元:采用THB (Tissue Heat Balance) 加热技术或SHB (Stem Heat Balance) 加热技术技术,获取高分辨率高精度的茎流数据。 数据采集器采用的是最新研发的SDI-12接口的GreyBox N2N(Network-to-Network),能够将SDI-12传感器连接组合成网络,最多可连接上百个传感器。内置了多个模块:2 自适应的GPRS模块——实现了数据的远程传输和在线浏览;2 GPS模块——对每棵树木的位置进行精确定位;2 智能供电模块——自动管理供电系统,对系统持续供电;2 灵活的数据存储和传输模块——自身可记录220000条数据,可通过红外线传送接收模组进行通讯传输下载,而且还配备了SD卡用于存储数年数据,确保证数据不丢失,做到了双重备份的目的。 树木茎杆生长单元用于监测树木生长的微变化,包括树干、枝条以及气生根。为满足野外长期监测的需要,传感器采用了不锈钢和抗紫外线塑料材质,坚固耐用。我们提供两种设计的茎杆传感器,用于不同直径的树木和同一棵树不同位置的生长测量。树木茎杆生长也可用于气生根等裸露在地上的根的生长测量。 红外冠层温度单元采用了8μm到14 μm波段红外辐射传感器,从而将水汽和二氧化碳对测量的影响降低到最低,并且提供四种标准的视场以及定制的视场,满足不同测量树木和测量环境的需要。树木茎流观测单元在一次安装后可以连续测定树干茎流,且不会破坏植物正常生理活动。用户可根据测量植物或者部位的不同选择与之匹配的传感器类型:SHB传感器常用来测定直径小于20mm的植物或器官,由两半柱体组成包裹式加热和测量装置,茎杆外部加热,高精确度、高稳定性、高分辨率,能量需求与液流量成比例,能耗低。 THB传感器则用于直径12cm以上的树干茎流监测,利用电极片间流经木质部的电流直接加热树木木质部组织,获取高分辨率高精度的茎流数据的同时不会产生树干组织过热问题。除树木生理生态系统外,我们还提供完整的植物生理生态监测方案——“EMS-ET植物生理生态监测系统”。该系统囊括气象、土壤等环境因子传感器,果实生长、叶片温度等植物生理传感器、叶绿素荧光监测单元以及植物根系监测单元。详情请见网站链接。
    留言咨询
  • 生态系统同化箱主要包括闭合式生态系统同化箱和开路式聚四氟乙烯(PTFE)气室,同时搭配AS-100自动气体采集器和EV-101真空气瓶制备器,可研究整株植物的光合生理以及植物对臭氧及挥发性有机物(VOC)的吸收等。闭合式生态系统同化箱闭合式生态系统同化箱可用于原位和实验室内土壤-植物系统中温室气体和氧气测量由各种大小的透明的聚碳酸酯(高透光性)材料板构成。呼吸室的模块化设计可用于植物生长过程中调整气室的大小。每个衬圈周围的密封,和底板(如果需要使用中型实验生态系)的孔洞都保证了充分的气密性。对于野外的应用,可以在气室底部安装金属框架,来确保对于土壤的气密性。通过一个或者多个可调节的(方向和风速)风扇来实现室内气体流通,保证室内气体的均匀性。通风设备的大小,风速和角度都是可调的,以避免对植物和红外气体分析(IRGA)测量产生不良影响。此外,该呼吸室也可以定制搭配用于一般红外气体分析(IRGA)的连接管线。开路式聚四氟乙烯(PTFE)气室开路式聚四氟乙烯(PTFE)气室可用于研究臭氧,生物挥发性有机化合物排放与树木生理状态相互关系。城市气体污染的重要特征是高浓度的臭氧含量。臭氧是在存在氮氧化物的条件下(NOx),(生物)挥发性有机化合物与羟基自由基(OH)反应而生成的。挥发性有机化合物(VOCs)在大气中是反应物质,对大气化学有着重要影响。生物挥发性有机化合物(BVOC)排放量占到了全球挥发性有机化合物排放量的90%。所有与气室空气接触的支撑和边侧部分都是由聚四氟乙烯制成的,以保证其他杂志污染气体不被带入。另外,用于活性炭过滤器(可更换)的气密式不锈钢外壳用来聚集将要进入到气室的周围环境的空气。AS-100自动气体采集器AS-100自动气体采集器可用于空气中气体组成和同位素特征的测定,以揭示自然和人工生态系统的水分利用,碳平衡和温室气体排放等方面的关键信息。通过AS-100自动气体采集器,可以将周围空气自动采集到真空管或真空瓶中。气体采集器在实验室(220V)和野外(12V)都可以使用,用以在大的试验过程中实现高等级的多功能性。在试验中,可以按照预定的时间激发自动采集器,或者遥控激发采集器——避免诸如人类呼气所带来的影响。通过该系统,采样得到的气体样本将被保存于真空管中,用于气体组成的准确分析(可用气相色谱仪和质谱仪)。气体收集是伴随着针头刺穿隔膜而进行的,每个样品盘可以放置11个采样真空瓶,可实现连续的气体样品采集。EV-101真空气瓶制备器EV-101真空气瓶制备器通过抽真空,填充氦气,然后接着制造一个真空。整个制备过程通过针头刺穿气瓶隔膜来实现。能容纳11个小瓶的转盘可以轻松实现批量制备。产地与厂家:奥地利 VSI
    留言咨询
  • Ecolab 500包括两个主要部分:上部大气单元和下部土壤单元,下部单元用于研究土壤过程以及动植物对土壤的影响,上部单元作为动植物的栖息地用于研究相互作用。根据应用的不同,所有系统组件都可以单独配备适当的传感器,以监控重要的系统参数和过程。 特点l 能够进行复杂的生态系统模拟研究(土壤-植物-空气-水-光照)l 体积小,效率高组成u 土壤单元:包括土壤传感器,根管,采样管/盘,土壤冷却系统,精准称重系统u 大气单元:包括气候传感器(温度、湿度、PAR),换气,喷灌,日照模拟u 控制单元:包括供电,传感器控制,数据存储产地:德国
    留言咨询
  • 实验室空气净化生态系统——为实验室提供全方位的安全防护与空气净化整体解决方案   依拉勃提供专为保护实验员的安全而设计的各种过滤和检测产品,彼此相互作用形成一个涵盖了实验室化学品使用各个方面的生态系统。  实验室确保空气质量是通过在Smart净气型储药柜中储存化学试剂 在绿飞蝴高效能净气型通风柜(GFH)和Smart净气型通风柜中进行实验操作 以Halo空气净化仪作为辅助,消除其他途径中泄露的化学气体 由Halo Sense空气质量传感器进行持续监测,警戒化学品浓度超标 所有产品都能通过获取专利的eGuard软件连接到中央计算机或手机,帮助安全官员实时保障在实验室中工作的化学家们的安全。   这样的生态系统为实验员创造了一个充分安全可以专注于工作的环境,并且具有灵活性,全面节能和环保的优势。所有这些产品以同样的方式传达信息给实验员:LED灯带闪烁发布安全警报引起注意,并通过智能化的报警声准确识别问题来源。而且都可以通过WIFI或网线连接到手机或电脑上,使实验室管理员或安全员能够使用eGuard APP远程及时收到安全警报,杜绝安全隐患。  ▲绿飞蝴 (GFH) 高效能无管道净气型通风柜 作为绝大多数传统外排通风柜的有效替代品,绿飞蝴 (GFH) 是一种无管式过滤通风柜,应用一系列专利创新:独特的过滤模块,专有的Neutrodine过滤技术,过滤循环系统,射频识别访问,高温控制,有机和无机化学品自动监测… … 绿飞蝴 (GFH) 适用于任何化学实验,无需管道和补风系统,以其强大的过滤能力节约大量的空调能耗。▲Captair Smart 无管道净气型通风柜 15款无管道净气型通风柜基本型号可供选择,适用于在工作台上进行的常规化学实验:称量、移液、取样、搅拌、旋转蒸发仪… … 安装便捷只需提供电源插座即可取代无效的万向抽气罩和原子吸收罩。  定制型无管道净气型通风柜则用于大型台式或落地仪器的化学品挥发防护。▲Captair Smart 无管道净气型储药柜  不管是落地式还是桌下型,储药柜可以安装在您实验室的任何位置便于取放,彻底净化柜内挥发出的有害气体。确保挥发的化学气体不向室内排放的同时,还可以24小时持续净化实验室空气,为室内空气洁净作出重大贡献。▲Halo 实验室空气净化仪  嵌在天花板上持续净化实验室内空气,无需外接管道。因此有助于在保证实验室空气质量的前提下替代传统换气模式,进而节约大量空调能耗。▲Halo sense 实验室空气质量传感器  为持续监测您的实验室空气质量而设计,当监测到有害气体时,通过光带闪烁和报警声提醒实验员寻找污染源并采用合适的通风设备。▲eGuard APP  以上所有产品的运行情况都可以通过下载eGuard软件,用手机或者电脑进行远程监控,落实精细化管理。还可以通过电脑调整安全参数设置,接收安全提醒,查看统计分析数据,为您定制分析报告以提升安全管理。  以上所有产品的运行情况都可以通过下载eGuard软件,用手机或者电脑进行远程监控,落实精细化管理。还可以通过电脑调整安全参数设置,接收安全提醒,查看统计分析数据,为您定制分析报告以提升安全管理。依拉勃专注实验室安全防护与空气净化50年!  依拉勃实验室空气净化生态系统,为可持续发展及智能实验室建设提供了强有力的支持,也为高端研发及质控实验室建设提供整体解决方案,助力中国制造2025!
    留言咨询
  • ERLAB依拉勃 实验室空气净化生态系统 实验室空气净化生态系统——为实验室提供安全防护与空气净化整体解决方案   依拉勃提供专为保护实验员的安全而设计的各种过滤和检测产品,彼此相互作用形成一个涵盖了实验室化学品使用各个方面的生态系统。  实验室确保空气质量是通过在Smart净气型储药柜中储存化学试剂 在绿飞蝴高效能净气型通风柜(GFH)和Smart净气型通风柜中进行实验操作 以Halo空气净化仪作为辅助,消除其他途径中泄露的化学气体 由Halo Sense空气质量传感器进行持续监测,警戒化学品浓度超标 所有产品都能通过获取的eGuard软件连接到中央计算机或手机,帮助安全官员实时保障在实验室中工作的化学家们的安全。  这样的生态系统为实验员创造了一个充分安全可以专注于工作的环境,并且具有灵活性,全面节能和环保的优势。所有这些产品以同样的方式传达信息给实验员:LED灯带闪烁发布安全警报引起注意,并通过智能化的报警声准确识别问题来源。而且都可以通过WIFI或网线连接到手机或电脑上,使实验室管理员或安全员能够使用eGuard APP远程及时收到安全警报,杜绝安全隐患。▲绿飞蝴 (GFH) 高效能无管道净气型通风柜 作为绝大多数传统外排通风柜的有效替代品,绿飞蝴 (GFH) 是一种无管式过滤通风柜,应用一系列创新:过滤模块,专有的Neutrodine过滤技术,过滤循环系统,射频识别访问,高温控制,有机和无机化学品自动监测……绿飞蝴 (GFH) 适用于任何化学实验,无需管道和补风系统,以其强大的过滤能力节约大量的空调能耗。▲Captair Smart 无管道净气型通风柜 15款无管道净气型通风柜基本型号可供选择,适用于在工作台上进行的常规化学实验:称量、移液、取样、搅拌、旋转蒸发仪……安装便捷只需提供电源插座即可取代无效的万向抽气罩和原子吸收罩。  定制型无管道净气型通风柜则用于大型台式或落地仪器的化学品挥发防护。▲Captair Smart 无管道净气型储药柜  不管是落地式还是桌下型,储药柜可以安装在您实验室的任何位置便于取放,净化柜内挥发出的有害气体。确保挥发的化学气体不向室内排放的同时,还可以24小时持续净化实验室空气,为室内空气洁净作出重大贡献。▲Halo 实验室空气净化仪  嵌在天花板上持续净化实验室内空气,无需外接管道。因此有助于在保证实验室空气质量的前提下替代传统换气模式,进而节约大量空调能耗。▲Halo sense 实验室空气质量传感器  为持续监测您的实验室空气质量而设计,当监测到有害气体时,通过光带闪烁和报警声提醒实验员寻找污染源并采用合适的通风设备。▲eGuard APP  以上所有产品的运行情况都可以通过下载eGuard软件,用手机或者电脑进行远程监控,落实精细化管理。还可以通过电脑调整安全参数设置,接收安全提醒,查看统计分析数据,为您定制分析报告以提升安全管理。  以上所有产品的运行情况都可以通过下载eGuard软件,用手机或者电脑进行远程监控,落实精细化管理。还可以通过电脑调整安全参数设置,接收安全提醒,查看统计分析数据,为您定制分析报告以提升安全管理。ERLAB依拉勃 实验室空气净化生态系统
    留言咨询
  • 植物生理生态监测系统有三种主要功能: 标准报告功能:在栽培者日常工作中,系统能够产生一套定制的测量及其相关数据。意外报告功能(报警功能):系统可以侦测到植物的意外紊乱。此功能基于多种植物生理紊乱的监测指示。决策系统功能:可以调整环境和灌溉方案。高精度和快速响应的监测通道可排除作物的危险。栽培者在控制方案上做很小的变化,在1~2天内就可以在作物身上发现响应。这就可以在试验中有很高的机会保持单一的变化因素,并且可以防止许多因素对作物状态的影响。PM-11植物生理生态监测系统对植物改良或退化的动态指示造就了决策系统。功能: · 独立工作,测量的传感器不需要连接到电脑上;· 八个11位模拟输入通道;· 专用数字输入用于RTH传感器,RTH传感器内置了4个传感器,分别是空气温度、相对湿度、光合有效辐射和叶面湿度传感器;· 用户可自定义采样速率1秒到1小时;· 防雨接头用于接入各种传感器;· 大容量512KB内存;· 12V DC工作电压;· 可采用电缆或无线通讯连接到电脑中;· PM-11主机尺寸:18W x 14H x 11.5L cm3· 终端软件可用于W98/2000/ME/XP 可选传感器:型号名称规格测量范围说明SD-5M茎杆微变化传感器0-5000µ m用于5-25毫米直径茎杆SD-6M树干微变化传感器0-5000µ m用于2-7厘米直径树干DE-1树木测量传感器0-10mm安装在树木中FI-LM果实变化传感器30-160mm用于测量圆形果实FI-MM果实变化传感器15-90mm用于测量圆形果实FI-SM果实变化传感器7-45mm用于测量圆形果实LT-2M叶面温度传感器5-50℃内置2个传感器SF-4M茎流传感器约3ml/h max用于1-5毫米直径茎杆SF-5M茎流传感器约3ml/h max用于4-10毫米直径茎杆SA-20生长计0-2000mm10位分辨率(~2mm)TIR-4总辐射传感器0-1000W/m2光谱范围300-1100nmPAR-2光合有效辐射传感器0-2500µ mol/m2s光谱范围400-700nmATH-2空气温湿度传感器温度:0-50℃相对湿度:0-100%RH ST-21土壤温度传感器0-50℃探头长度11cmRTH空气温湿度、光合有效辐射、叶面湿度温度:0-50℃相对湿度:0-100%RH光合有效辐射:0-2000µ mol/m2s叶面湿度:Y/N整合数字传感器*每个传感器均自带4米电缆。可选电源供应:· 交流电:90-260V AC,50/60Hz· 电池供电:12V DC可充电电池· 太阳能供电套件:包括可充电电池、充电器、太阳能板、支架 可选通讯:· 短距离:1米长RS232电缆· 长距离:RS485电缆,最远距离可达1.2km· 无线电:无线调制解调器,传输距离从0.3km到64km
    留言咨询
  • 荷兰Sendot公司推出的SenBox植物生理生态监测系统是一套基于云平台的在线监测系统,可长期连续监测植物的光合效率、光合有效辐射、叶绿素荧光、叶绿素含量、土壤pH值、土壤氧气浓度等指标,可在世界任何地方实时跟踪植物的生理生态变化,特别适合于农田及温室栽培种植等领域的研究。 传感器类型l 植物光合效率传感器;l 光合有效辐射传感器;l 叶绿素荧光传感器;l 叶绿素含量传感器;l 叶片温度传感器;l 土壤pH传感器;l 土壤氧气传感器;系统特点1.系统基于云平台设计,用户可方便的安装软件平台进行远程查看和下载数据;如下图,下载SenBoxScanner程序(适用于Windows或Android)。可方便的进行软件平台的安装使用。2.用户可以远程对传感器进行设置,包括采集时间和备注等信息;要查看所连接的传感器,请单击菜单中的[传感器]。3.测量结果可以随时查看和下载,并且提供在线的数据图形分析和比较;便于用户进行对比分析。产地与厂家:荷兰 Sendot
    留言咨询
  • 一、简介:PM-11植物生理生态监测系统是一款轻便式、防雨型的数据采集系统,可应用于植物研究和作物栽培等领域。可选多种植物生长传感器和环境因子传感器。 二、植物生理生态监测系统特点: ◆独立操作――不连接电脑也可以得到传感器的数据。◆可接8个可选传感器。◆特殊的数字接口,用于连接RTH Meter,RTH Meter组合了3个传感器:PAR(光合有效辐射),空气温度,相对湿度。◆采样频率1秒-1小时,用户自定义。◆防水型的传感器接头、接口。◆512K数据内存。◆供电:12V DC◆有线、无线两种方式与电脑通讯。◆尺寸:18W x 14H x 11.5L cm3。◆Windows版软件,适用于Win98/2000/ME/XP。 三、植物生理生态监测系统系统配置: 可选电源◆交流转直流适配器:90-260V,50/60Hz。◆标准12V充电电池。耗电量:一套含PM-11主机、1个叶温传感器、3个茎杆直径或果实生长传感器的系统,采样频率设为30分钟,耗电量为每天0.07 Ah;上述配置再加RTH Meter,耗电量为每天0.4 Ah。 ◆太阳能电源套件,包括一块充电电池,一个充电器,一块太阳能板,室外安装附件。通讯配件◆RS232通讯线,1米。◆RS485通讯线(最长1200米)。RS232/485转换器,用于连接电脑。 ◆无线通讯。无线电调制解调器,传输距离0.1 km到 16 km。安装配件◆不锈钢三脚架。◆墙壁安装套件。◆立柱安装架(用于温室内)。◆结实耐用的机箱,主机,电池,充电器,无线电调制解调器都可以装在机箱内。 植物生理生态监测系统可选传感器 种类量程备注SD-5M 茎杆微变化传感器0- 5000 &mu m适用于直径5-25 mm的茎杆SD-6M茎杆微变化传感器0- 5000 &mu m适用于直径2-7 cm的茎杆DE-1M测树器0-10 mm FI-LM果实生长传感器30-160 mm测球形果实FI-MM果实生长传感器15- 90 mm测球形果实FI-SM果实生长传感器7- 45 mm测球形果实LT-2M叶温传感器5-50 ?C含2个传感器SF-4M茎流传感器最大3 ml/h *适用于直径1-5mm的茎杆SF-5M茎流传感器最大3 ml/h *适用于直径4-10mm的茎杆SA-20M植物生长过程测定器0-2000 mm10位分辨率(~2 mm)TIR-4M日照强度计0-1000 W/m2测太阳辐射PAR光量子传感器0 - 2500 &mu mol/m2s ATH-2空气温湿度传感器0-50 ° C 0-100%RH ST-21M土壤温度传感器0-50 ° C探针长11cmRTH Meter:PAR(光合有效辐射),空气温度,相对湿度0-2000 &mu mol m-1s-1 0-50° C 0-100%RH 3个传感器组合在一起 推荐配置 室内室外实验室内温室内短期安装长期安装§ PTM-11主机§ 交直流两用电源§ 三脚架 § RTH Meter§ 传感器(根据用户需要) § PTM-11主机§ 交直流两用电源§ 立柱安装架§ RTH Meter§ 传感器(根据用户需要)§ RS232/485转换器或无线电调制解调器(一对)§ PTM-11主机§ 标准车用电池*§ 电池充电器*§ 三脚架§ RTH Meter§ 传感器(根据用户需要)§ 无线电调制解调器(一对)*用户自购§ PTM-11主机§ 机箱§ 太阳能电源套件§ 三脚架§ RTH Meter§ 传感器(根据用户需要)§ 无线电调制解调器(一对)
    留言咨询
  • EMS-ET植物生理生态监测系统 植物生理生态监测系统由数据采集器、植物茎流传感器、植物生长传感器、植物叶绿素荧光监测单元、植物根系监测单元、智能土壤水分传感器、气象因子传感器、无线传输模块及在线数据下载浏览分析软件等组成,可长期置于野外自动监测植物生长状态、植物胁迫生理生态、植物水分利用等及与土壤水分和气象因子的相互关系等,适于农作物、园林园艺及林木的生理生态监测研究。 系统特点l 基于专业植物生理生态数据采集系统,包括数据采集器及相应植物生理生态数据采集分析浏览下载软件 l EMS高精度茎流监测模块,高精确度、高稳定性、高分辨率、有效避免对植物的灼伤;l 叶绿素荧光技术监测植物光合生理状态及植物胁迫生理;l 世界知名TRIME-PICO智能传感器,TDR技术,为目前测量精度和稳定性最高的土壤水分传感器,适于各种土壤类型包括高盐度高电导土壤;l 可选配微根窗技术(MiniRhizotron)观测分析植物根系动态;l 可选配植物光合作用监测方案l 可选配空气CO2监测、土壤剖面碳通量监测方案l 可选配4G远程无线数据传输模块、在线浏览下载数据,向下兼容EDGE和GPRS传输模式,确保在没有3G和4G偏远地区也可以正常工作。技术指标技术指标1. 标配32通道模块式数据采集器,可选配16通道或64通道模拟输入,符合DIN导轨安装标准,支持SDI-12传感器,最多可支持107个数字通道a) 16比特分辨率,± 20 mV 至 ± 2.5 V 8范围输入,精确度0.03%b) 4个或8个计数器c) 可存储220,000(可选配450,000)组带时间戳的数据,测量间隔3秒至4小时可调,数据平均间隔3秒至4小时d) 支持4G/3G/2G/Internet远程数据传输e) 电压6.5-15VDC,待机耗电低于1mA,测量耗电30mA,3V锂电备用电池可使用5年以上f) PSM14电源模块可以对整套系统进行过电保护g) 工作温度 -40-60°C;2. 植物生理生态专业数据下载分析软件,可进行数据下载、数据在线观测、柱状图、数据修复、统计分析(如每小时平均、每日平均、总计、最小值、最大值、数据相关分析、回归分析)与图表展示及系统设置等;3. 叶绿素荧光监测单元:a) 内置带时钟数采,可存贮10万组带时间戳的数据,可输出时空信息数据(时间、经纬度)b) 可独立工作(不受距离位置等限制),具备自动开启、自动监测、自动储存功能c) 高时间分辨率,最高达每秒10万次,可自动运行OJIP-test,在1秒时间内测量记录约500组数据并得出PI(perforance index)、Fv/Fm、ABS/RC(单位反应中心吸收光量子通量)等26个快速叶绿素荧光动态参数d) 透明光纤探头,可进行完全无损伤长期监测,可选配叶夹e) 具备3套荧光淬灭分析测量协议、3套光响应曲线分析测量协议,可显示分析荧光淬灭曲线、光响应曲线及OJIP曲线f) 除OJIP快速荧光动力学测量参数外,其它测量参数包括:F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、qP、Rfd等叶绿素荧光参数4. 包裹式植物茎流监测:SHB (Stem heat balance) 加热技术,传感器由两半柱体组成包裹式加热和测量装置,茎杆外部加热,高精确度、高稳定性、高分辨率,能量需求与茎流量成比例,能耗低,平均能耗0.3~0.4W;发热能量(mW)通过软件换算成茎流值,温度传感器为特制T型热电偶0.6mm探针,恒定温差2K或4K,包括用于直径6-12mm茎杆的茎流传感器和用于10-20mm茎杆的茎流传感器;5. 树干茎流监测(林木生理生态监测选配):茎流测量THB (Tissue heat balance) 加热技术,树干内部加热,利用电极间流经木质部的电流直接加热植物组织,高精确度、高稳定性、高分辨率,能量需求与茎流量成比例,能耗低,平均能耗0.3~0.4W;发热能量(mW)通过软件换算成茎流值,温度传感器为特制热电偶探针,恒定温差1K,用于直径12cm以上的树干茎流监测;6. 指示性茎流传感器,读数与茎流变化成正比(但不能给出实际茎流量),适于1-5mm的植物茎秆,另有适于4-10mm茎秆直径的供选配7. 茎杆生长传感器:测量范围0-5mm,分辨率0.002mm,适于茎杆直径5-25mm或20-70mm的植物8. 树木茎杆生长传感器:测量范围0-65mm,分辨率0.001mm,适于8cm以上直径的树木生长监测,可选配独立监测模块(不受测量距离影响);另可选配树干生长监测带,不锈钢质,测量范围0-50mm,分辨率0.1mm;9. 果实生长传感器:监测范围包括0-10mm(分辨率0.005mm)、7-45mm(分辨率0.019mm)、15-90mm(分辨率0.038mm)、30-160mm(分辨率0.065mm)可供选择,适于直径为4-30mm、7-160mm的圆形果实生长监测; 10. 叶面温度传感器:测量范围0-50℃,精确度优于0.15℃;另可选配非接触型(非损伤性)红外叶面温度传感器,测量范围0-100℃,精确度0.2℃;11. 红外冠层温度传感器:测量范围-20°Cto-65°C,精确度0.2°C,灵敏度40μV/°C,波段范围8-14μm,视野18度12. 净辐射传感器(选配):波段范围0.2-100μm,灵敏度10μV/W.m-2,工作温度-40°Cto+80°C,响应时间小于60s;可选配其它类型传感器,如Schenk8110,测量范围0-1500W.m-2,波段范围0.3-100μm,稳定性3%/年,灵敏度15μV/W.m-2;13. 风速风向传感器(选配):风速测量范围0-30m/s,分辨率0.01m/s,精确度±3%;风向分辨率1度,精确度±3度14. 雨量筒:面积200cm2,分辨率0.1mm;可根据客户需求选配不同类型雨量筒15. 空气温湿度传感器:温度测量范围-40-60℃(可选配其它测量范围),精度0.1℃;空气湿度测量范围0-100%,精确度2%16. 光合有效辐射传感器:波段400nm-700nm,灵敏度10.0mV/mmolm-2s-1,工作温度-20-60℃;17. 土壤水分传感器:土壤水分温度:0-100% VWC,精度± 1%(特殊的土壤校准),±3%(厂家默认校准) ;电导率≤3ds/m ;-50 - +70℃, ± 0.1℃18. 茎秆生长传感器PDS40(可选PDS60/PDS80):测量范围5-40mm(20-60mm/40-80mm),分辨率1μm,精度是全量程的0.5%,紧贴植物茎秆最大的力是2N,温度影响率1 um/K 。19. 植物根系观测单元(选配):微根管、微根管镜及分析软件组成,标配微根管直径44mm(内径42mm),高透明度、高韧性、防雨水,微根管镜长度有17英寸、22英寸、28英寸、37英寸可选,微根管成像单元,1/4”彩色 CCD,像素768 x 494,信噪比48DB,可选配手持式高分辨率成像单元,1/3”彩色CCD,分辨率最高可达1600 x 1200像素;通过USB和电脑通讯、图像抓取,操作简单20. 4G全网通无线数据传输模块,在线浏览下载数据,三重数据备份永不丢失(数据采集器内置存储、外置8G MicroSD卡、云端服务存储),向下兼容EDGE和GPRS传输模式。 产地:欧洲,国内集成
    留言咨询
  • 一、简介:PM-11z植物生理生态监测系统是一款植物生理生态数据采集系统,运用无线传感器,可长期监测植物生理状态和环境因子,数据可通过GPRS传输,极其方便。广泛应用于植物研究和作物栽培等领域。系统由主机、中继器、USB传输器、可选的植物生理传感器和环境因子传感器组成。 二、特点:系统使用无线传感器,使得系统在野外的安装、分布极为方便,不必受限于传感器缆线。无线传感器自动按照设置的时间间隔测量、存储数据,并定期和数据采集装置(比如USB传输器)进行通讯,通过数据采集装置把数据传输给用户的电脑。无线传输距离可达4km(空旷无遮挡物)。每个传感器可存储最多7200条数据。若干无线传感器也可通过一个中继器进行数据集中,传输给USB传输器或数据采集器。每个无线传感器由3节AA电池供电,可工作约6个月。PM -11z主机内置SD卡,用于存储数据;带2.4GHz RF无线通讯模块;内置GPRS模块,用户需准备SIM卡。最简单的配置可以简单到:若干(最多15个)无线传感器+1个USB传输器。可选传感器:叶面温度、茎流、植物生长、光合有效辐射、总辐射、土壤水分、温度和电导等。可由太阳能供电装备供电(包括太阳能板、充电电池、充放电控制器及安装配件等)。Windows版软件,可以控制主机进行数据采集与传输;显示传感器列表、数据列表;把数据导出成Excel格式。三、可选传感器指标:LT-1z叶温传感器,测量范围0-50℃,分辨率0.1℃,精度± 0.2℃。探头直径1mm,重1.6g(不含缆线)LT-IRz红外叶温传感器,测量范围0-100℃,分辨率0.1℃,精度± 1.0℃SD-5z茎秆生长传感器,适用于茎秆直径5-25mm,直径变化测量范围0-5mm,分辨率0.002mmSD-6z茎秆生长传感器,适用于茎秆直径20-70mm,直径变化测量范围0-5mm,分辨率0.002mmDE-1z树木生长传感器,适用于树木直径大于60mm,直径变化测量范围0-10mm,分辨率0.005mmFI-Lz小型果实生长传感器,测量范围7-45mm,分辨率0.02mmFI-Mz中型果实生长传感器,测量范围15-90mm,分辨率0.04mmFI-Sz大型果实生长传感器,测量范围30-160mm,分辨率0.07mmLWS-2z叶片湿度传感器,给出叶片干湿状态PIR-1z光合有效辐射传感器,400-700nm,测量范围0-2500&mu mol m-2 s-1,重复性± 1%,精度± 5%TIR-4z总辐射传感器,测量范围0-1200 W m-2,重复性± 1%,精度± 5%ATH-2z空气温湿度传感器,带通风泵;温度测量范围-10-60℃,分辨率0.1℃,精度± 0.5(5-40℃时);湿度测量范围3-100%RH,分辨率0.1%RH,精度± 2%(5-90 %RH),± 3%(90-100% RH)ATH-3z空气温湿度传感器,温度测量范围-40-60℃,分辨率0.1℃,精度± 0.5(5-40℃时);湿度测量范围3-100%RH,分辨率0.1%RH,精度± 2%(5-90 %RH),± 3%(90-100% RH)DWS-11z气象站单元,太阳辐射0-1200 Wm-2,温度-40 to 60℃,湿度3-100 %RH,降雨分辨率1 mm,0.2 mm分辨率的可选,风速1.3-58 m/s,风向传感器分辨率1° ,需要8节AA电池供电SMS-5z土壤水分传感器,测量范围0-100%体积比,出厂已经校准SMTE-z土壤3参数传感器(水分、温度、电导率),水分测量范围0-100%体积比,温度-40-50℃,电导率0-15 dS/m,出厂已经校准 四、部分参考文献:1. Balaur N. S., V. A. Vorontsov, E. I. Kleiman and Yu. D. Ton, 2009. Novel Technique for component Monitoring of CO2 exchange in Plants. Russian Journal of Plant Physiology, Vol. 56 (3): 423-4272. Ben-Asher J. 2005. Net CO2 uptake rates for wheat (Triticum aestivum L.) under Cukurova field conditions: Salinity influence and a novel method for analyzing effect of global warming on agricultural productivity. A report submitted to the ICCAP project. RIHN Kyoto Japan p.201-2043. Ben-Asher J. 2006. Net CO2 Uptake Rates for Wheat Under Saline Field Conditions: a Novel Method for Analyzing Temperature Effects on Irrigation Management., The annual meeting of the Amer. Soc. Agron. Indianapolis November 2006 p. 229-44. Ben &ndash Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2007. Effect of temperature on Photosynthesis and transpiration of corn in a growth chamber. The annual meeting of the Amer. Soc. Agron. New Orleans November 2007. P.321-25. Ben &ndash Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2008, Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46(4): 595-6036. Ben-Asher J., P.S. Nobel, E.Yossov and Y. Mizrahi, 2006. Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44:181-1867. Ben-Ashera J., Y. Mizrahia and P.S. Nobelb 2008. Transpiration, stem conductance, and CO2 exchange of Hylocereus undatus (a pitahaya) Acta Hort, ISHS (in press)8. Evrendilek F., J Ben-Asher, Mehmet Aydin and Ismail Celik, 2004. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems in Turkey Proceeding of the RIHN Kyoto Japan 20049. Fatih Evrendilek, Jiftah Ben-Asher, Mehmet Aydin and Ismail Celik, 2005. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems in Turkey. J. Environ. Monit., 7, 151&ndash 15710. Jiftah Ben-AsheLucas Menzel Pinhas Alpert Fatih Evrendilek and Mehmet Aydin, 2004. Climate change in the eastern Mediterranean and agriculture ICCAP annual meeting Cappadocya presentation. Turkey11. Schmidt U., C. Huber and T. Rocksch, 2007. Evaluation of Combined Application of Fog System and CO2 Enrichment in Greenhouses by Using Phytomonitoring Data. Proc. IS on Greensys: 1301-130812. Tomohisa YANO1, Mehmet AYDIN2, Hiroshi NAKAGAWA3, Mustafa Ü NLÜ 4, Tohru KOBATA5, Celaleddin BARUTÇ ULAR4, Tomokazu HARAGUCHI6, Mü jde KOÇ 4, Masumi KORIYAMA6, Fatih EVRENDİ LEK2, Jiftah BEN-ASHER7, D. Levent KOÇ 4, Kenji TANAKA8, Rı za KANBER4 2007. Implications of Future Climate Change for Crop Productivity in Seyhan River Basin. Joint Reprot ICCAP RIHN Kyoto Japan 五、产地:以色列
    留言咨询
  • 前言PTM-50植物生理生态监测系统在原有PTM-48A基础上升级而来,可长期、自动监测植物的光合速率、蒸腾速率,植物生理生长状态,环境因子,从而得到植物的全面的信息。主要功能特点l 系统具备4个自动开合的叶室,可在20秒内获得叶片的CO2、H2O交换速率。l 系统标配1个数字通道连接RTH-50多功能传感器(可测定总辐射、光合有效辐射、空气温度&湿度、露点温度等)。l 分析单元升级为双通道测量,新款的PTM-50由之前的1个分析器分时测量,升级为2个独立分析器,实时测量参比气和样品气的浓度差,增强了对环境CO2、H2O波动的耐受能力,数据更加稳定可靠。l 可选的植物生理指标监测传感器以无线方式传送数据,传感器可与PC独立连接,布设更为灵活。l 可同时配备叶绿素荧光自动监测模块进行叶绿素荧光实时监测。l 系统通过2.4GHz RF和3G实现无线通讯和网络化。 上图为PTM-50系统结构图 应用领域2 应用于植物生理学、生态学、农学、园艺学、作物学、设施农业、节水农业等研究领域2 比较不同物种、不同品种的差异2 比较不同处理、不同栽培条件对植物的影响2 研究植物光合、蒸腾、生长的限制因子2 研究生长环境对植物的影响及植物对环境变化的响应 上图为主机与圆形叶室照片 基本配置组成 1×PTM-50系统控制台 1×电源适配器 1×蓄电池连接线 1×RTH-50多功能传感器 4×LC-10R叶室,测量面积10 cm2 4×4米气体连接管 2×1.5米不锈钢支架 选配无线传感器 英文软件 英文说明书技术指标l 工作方式:自动持续测量l 叶室取样时间:20sl CO2测量原理:双通道非色散红外气体分析器l CO2浓度测量范围:0-1000 ppml CO2交换速率的额定测量范围:-70-70 μmolCO2 m-2 s-1l H2O测量原理:集成型空气温度和湿度传感器l 叶室空气流速:0.25L/minl RTH-50 多功能传感器:温度-10到60℃;相对湿度:3-100%RH;光合有效辐射:0-2500μmolm-2s-1l 测量间隔:5-120分钟用户自定义l 存储容量:1200条数据,采样频率为30分钟时可存储25天l 连接管的标准长度:4m§l 电源:9 到 24 Vdcl 通讯方式:2.4GHz RF和3G网络通讯l 环境防护级别:IP55l 可选配叶室和传感器1. LC-10R 透明叶室:圆形叶室,面积10cm2,空气流速0.23±0.05L/min2. LC-10S 透明叶室:矩形叶室,13×77mm,10cm2,空气流速0.23±0.05L/min3. MP110叶绿素荧光自动监测模块,可自动监测Ft、QY等叶绿素荧光参数4. LT-1 叶面温度传感器:测量范围0-50℃5. LT-4 叶面温度传感器:4个LT-1传感器集成,用以估算叶面平均温度6. LT-IRz 红外温度传感器:范围0-60℃,视野范围5:17. SF-4 植物茎流传感器:最大10ml/h,适用于直径2-5mm茎杆8. SF-5 植物茎流传感器:最大10ml/h,适用于直径4-10mm茎杆9. SD-5 茎杆微变化传感器:行程0到5mm,适用于直径5-25mm茎杆10. SD-6 茎杆微变化传感器:行程0到5mm,适用于直径2-7cm茎杆11. SD-10 茎杆微变化传感器:行程0到10mm,适用于直径2-7cm茎杆12. DE-1 树干生长传感器:行程0到10mm,适用于直径6cm以上树干13. FI-L 大型果实生长传感器:范围30到160mm,适用于圆形果实14. FI-M 中型果实生长传感器:范围15到90mm,适用于圆形果实15. FI-S 小型果实生长传感器:范围7到45mm,适用于圆形果实16. FI-XS 微型果实生长传感器:行程0到10mm,适用于直径4到30mm的圆形果实17. SA-20 株高传感器:范围0到500cm到15 dS/m18. SMTE 土壤水分、温度、电导率三参数传感器:0 到 100 % vol.% WC -40 到 50 °C 19. PIR-1 光合有效辐射传感器:波长400到700nm,光强0到2500μmolm-1s-120. TIR-4 总辐射传感器:波长300到3000nm,辐射0到1200W/m221. ST-21 土壤温度传感器:范围0到50 °C22. LWS-2 叶片湿度传感器:产生与传感器表面湿度成比例的指示信号软件界面与数据 上图右展示的是24小时内CO2(CO2 EXCHANGE)、茎流(SAP FLOW)、蒸腾速率(VPD)、光合有效辐射(PAR)的连续变化,这是便携式光合仪无法做到的 应用案例Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence, Ben –Asher. J. et al. 2006, Photosynthetica, 44(2): 181-186 本研究测量量天尺(Hylocereus undatus,果实为火龙果)和蛇鞭柱(Selenicereus megalanthus)在高温下CO2吸收率的变化,并分析了其生理生化变化。产地欧洲选配技术方案1) 与叶绿素荧光仪组成光合作用与叶绿素荧光测量系统2) 与FluorCam联用组成光合作用与叶绿素荧光成像测量系统3) 可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研究4) 可选配O2测量单元5) 可选配红外热成像单元以分析气孔导度动态6) 可选配PSI智能LED光源7) 可选配FluorPen、SpectraPen、PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生态8) 可选配ECODRONE无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究部分参考文献1. 宋宗河, 郑文寅 & 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价. 中国农业科学 44, 1775–1787 (2011).2. 李婷婷, 江朝晖, 闵文芳, 姜贯杨 & 饶元. 基于基因表达式编程的番茄叶片CO2交换率建模与预测. 浙江农业学报 28, 1616–1623 (2016).3. Ton, Y. ADVANTAGES OF THE CONTINUOUS AROUND-THE-CLOCK MONITORING OF THE LEAF CO2 EXCHANGE IN PLANT RESEARCH AND IN CROP GROWING. 54. Jiang, Z. H., Zhang, J., Yang, C. H., Rao, Y. & Li, S. W. Comparison and Verification of Methods for Multivariate Statistical Analysis and Regression in Crop Modelling. in Proceedings of the 2015 International Conference on Electrical, Automation and Mechanical Engineering (Atlantis Press, 2015). doi:10.2991/eame-15.2015.1635. Ben-Asher, J., Garcia y Garcia, A. & Hoogenboom, G. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46, 595–603 (2008).6. Schmidt, U., Huber, C. & Rocksch, T. EVALUATION OF COMBINED APPLICATION OF FOG SYSTEM AND CO2 ENRICHMENT IN GREENHOUSES BY USING PHYTOMONITORING DATA. Acta Horticulturae 1301–1308 (2008).7. Qian, T. et al. Influence of temperature and light gradient on leaf arrangement and geometry in cucumber canopies: Structural phenotyping analysis and modelling. Information Processing in Agriculture (2018). doi:10.1016/j.inpa.2018.11.0028. Uwe Schmidt, Ingo Schuch, Dennis Dannehl, Thorsten Rocksch & Sonja Javernik. Micro climate control in greenhouses based on phytomonitoring data.pdf.9. Turgeman, T. et al. Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21, 623–630 (2011).10. Ben-Asher, J., Nobel, P. S., Yossov, E. & Mizrahi, Y. Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44, 181–186 (2006).11. Zhaohui, J., Jing, Z., Chunhe, Y., Yuan, R. & Shaowen, L. Performance of classic multiple factor analysis and model fitting in crop modeling. Biol Eng 9, 812. Ojha, T., Misra, S. & Raghuwanshi, N. S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture 118, 66–84 (2015).
    留言咨询
  • 仪器简介:植物生理生态监测系统TP-ZWSL是依靠各种植物生理生态监测传感器来获取植物的生长信息,诊断它们的生长状态,分析其营养信息,研究植物的生理生态规律,这对于进行植物生理研究以及指导农业生产种植具有重要的意义,广泛应用于植物研究和作物栽培等领域。植物生理生态监测系统包含的主要传感器有植物茎流传感器,叶面温度传感器,叶面湿度传感器,果实膨大传感器等植物生理传感器,还有空气温度、空气湿度、光照强度和地温传感器等辅助型传感器。功能特点:1.系统使用无线传感器,可远距离传输,不必受限于传感器缆线。2.无线传感器可按照时间间隔测量、存储数据,并无线传输至系统平台。3.通过GPRS上传,所测量数据可通过一键发送或设置数据发送间隔,即可实时发送至服务器。4.含手机APP,支持安卓系统,无论身在何处,上网即可查看数据。5.植物生理生态监测系统标配为交流电,也可太阳能供电(包括太阳能板、充电电池、充放电控制器及安装配件)。管理云平台功能:1.自带管理云平台和APP移动平台系统,无论身在何处,可随时随地通过手机或电脑网页在线查看历史数据和实时数据。有APP报警功能。2.显示每种参数过程曲线趋势,最大值、最小值、平均值显示查看,放大、缩小功能。3.数据可通过GPRS方式上传至管理云平台。平台内数据可下载,分析,打印。4.用户可为设备配置传感器报警条件,预置若干常用的农作物的报警配置。5.平台支持设备数据存储,提供足够容量可长期保存。6.平台为设备数据提供曲线与表格等报表形式,且数据可导出与导入。7.数据评价:可以设置最低最高超限值,可自动进行数据预警分析。8.植物生理生态监测系统软件和APP可在线升级。必配传感器:果实变化、茎杆微变化、叶片湿度、叶片温度、空气温度、相对湿度、光合有效辐射、土壤温度水分可选传感器:叶面温度、茎流、植物生长、光合有效辐射、总辐射、土壤水分、温度和电导等系统组成:主机、传感器(可选的植物生理传感器和环境因子传感器组成)、WEB端平台、手机APP平台。技术参数:叶温传感器:测量范围:0~50℃;分辨率:0.1℃;精度:±0.2℃;茎秆生长传感器:适用的茎杆直径:4-25mm;测量范围:0–5mm;分辩率:±0.001mm果实生长传感器:测量范围:6-10mm;精度:0.5%F.S;叶片湿度传感器,给出叶片干湿状态:测量范围:0~100%R;精度:3.5%RH;光合有效辐射传感器:测量范围:1-2,700μmolm-2s-1;精度:1μmolm-2s-1;分辨率:1μmolm-2s-1植物生理生态监测系统其他可选传感器指标:总辐射传感器:测量范围:0-2000W/m2; 精度:±1W/m2; 分辨率:1W/m2空气温湿度传感器:温度范围:-40℃-120℃;精度:±0.4℃; 分辨率:0.1℃;湿度范围:0-100%RH; 精度:±3%RH; 分辨率:0.1%RH土壤温度传感器:测量范围:-40℃-100℃;精度:±0.5℃; 分辨率:0.1℃土壤水分传感器:测量范围:0-100%; 精度:绝对误差≤2%;分辨率:0.1%土壤盐分传感器:测量范围:0.00-19.99Ms/cm;精度:±2%;分辨率:0.01mS/cm
    留言咨询
  • PM-11z 植物生理生态监测系统 一、简介: PM-11z植物生理生态监测系统是一款植物生理生态数据采集系统,运用无线传感器,可长期监测植物生理状态和环境因子,数据可通过GPRS传输,极其方便。广泛应用于植物研究和作物栽培等领域。 系统由主机、中继器、USB传输器、可选的植物生理传感器和环境因子传感器组成。 二、特点: 系统使用无线传感器,使得系统在野外的安装、分布极为方便,不必受限于传感器缆线。 无线传感器自动按照设置的时间间隔测量、存储数据,并定期和数据采集装置(比如USB传输器)进行通讯,通过数据采集装置把数据传输给用户的电脑。 无线传输距离可达4km(空旷无遮挡物)。 每个传感器可存储最多7200条数据。 若干无线传感器也可通过一个中继器进行数据集中,传输给USB传输器或数据采集器。 每个无线传感器由3节AA电池供电,可工作约6个月。 PM -11z主机内置SD卡,用于存储数据;带2.4GHz RF无线通讯模块;内置GPRS模块,用户需准备SIM卡。 最简单的配置可以简单到:若干(最多15个)无线传感器+1个USB传输器。 可选传感器:叶面温度、茎流、植物生长、光合有效辐射、总辐射、土壤水分、温度和电导等。 可由太阳能供电装备供电(包括太阳能板、充电电池、充放电控制器及安装配件等)。 Windows版软件,可以控制主机进行数据采集与传输;显示传感器列表、数据列表;把数据导出成Excel格式。 三、可选传感器指标: LT-1z叶温传感器,测量范围0-50℃,分辨率0.1℃,精度±0.2℃。探头直径1mm,重1.6g(不含缆线) LT-IRz红外叶温传感器,测量范围0-100℃,分辨率0.1℃,精度±1.0℃ SD-5z茎秆生长传感器,适用于茎秆直径5-25mm,直径变化测量范围0-5mm,分辨率0.002mm SD-6z茎秆生长传感器,适用于茎秆直径20-70mm,直径变化测量范围0-5mm,分辨率0.002mm DE-1z树木生长传感器,适用于树木直径大于60mm,直径变化测量范围0-10mm,分辨率0.005mm FI-Lz小型果实生长传感器,测量范围7-45mm,分辨率0.02mm FI-Mz中型果实生长传感器,测量范围15-90mm,分辨率0.04mm FI-Sz大型果实生长传感器,测量范围30-160mm,分辨率0.07mm LWS-2z叶片湿度传感器,给出叶片干湿状态 PIR-1z光合有效辐射传感器,400-700nm,测量范围0-2500μmol m-2 s-1,重复性± 1%,精度± 5% TIR-4z总辐射传感器,测量范围0-1200 W m-2,重复性± 1%,精度± 5% ATH-2z空气温湿度传感器,带通风泵;温度测量范围-10-60℃,分辨率0.1℃,精度±0.5(5-40℃时);湿度测量范围3-100%RH,分辨率0.1%RH,精度±2%(5-90 %RH),±3%(90-100% RH) ATH-3z空气温湿度传感器,温度测量范围-40-60℃,分辨率0.1℃,精度±0.5(5-40℃时);湿度测量范围3-100%RH,分辨率0.1%RH,精度±2%(5-90 %RH),±3%(90-100% RH) DWS-11z气象站单元,太阳辐射0-1200 Wm-2,温度-40 to60℃,湿度3-100 %RH,降雨分辨率1 mm,0.2 mm分辨率的可选,风速1.3-58 m/s,风向传感器分辨率1°,需要8节AA电池供电 SMS-5z土壤水分传感器,测量范围0-100%体积比,出厂已经校准 SMTE-z土壤3参数传感器(水分、温度、电导率),水分测量范围0-100%体积比,温度-40-50℃,电导率0-15 dS/m,出厂已经校准 四、部分参考文献: 1. Balaur N. S., V. A. Vorontsov, E. I. Kleiman and Yu. D. Ton, 2009. Novel Technique for component Monitoring of CO2 exchange in Plants. Russian Journal of Plant Physiology, Vol. 56 (3): 423-427 2. Ben-Asher J. 2005. Net CO2 uptake rates for wheat (Triticum aestivum L.) under Cukurova field conditions: Salinity influence and a novel method for analyzing effect of global warming on agricultural productivity. A report submitted to the ICCAP project. RIHN KyotoJapanp.201-204 3. Ben-Asher J. 2006. Net CO2 Uptake Rates for Wheat Under Saline Field Conditions: a Novel Method for Analyzing Temperature Effects on Irrigation Management., The annual meeting of the Amer. Soc. Agron.IndianapolisNovember 2006 p. 229-4 4. Ben –Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2007. Effect of temperature on Photosynthesis and transpiration of corn in a growth chamber. The annual meeting of the Amer. Soc. Agron.New OrleansNovember 2007. P.321-2 5. Ben –Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2008, Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46(4): 595-603 6. Ben-Asher J., P.S. Nobel, E.Yossov and Y. Mizrahi, 2006. Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44:181-186 7. Ben-Ashera J., Y. Mizrahia and P.S. Nobelb 2008. Transpiration, stem conductance, and CO2 exchange of Hylocereus undatus (a pitahaya) Acta Hort, ISHS (in press) 8. Evrendilek F., J Ben-Asher, Mehmet Aydin and Ismail Celik, 2004. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems in Turkey Proceeding of the RIHN Kyoto Japan 2004 9. Fatih Evrendilek, Jiftah Ben-Asher, Mehmet Aydin and Ismail Celik, 2005. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems inTurkey. J. Environ. Monit., 7, 151–157 10. Jiftah Ben-AsheLucas Menzel Pinhas Alpert Fatih Evrendilek and Mehmet Aydin, 2004. Climate change in the easternMediterraneanand agriculture ICCAP annual meeting Cappadocya presentation.Turkey 11. Schmidt U., C. Huber and T. Rocksch, 2007. Evaluation of Combined Application of Fog System and CO2 Enrichment in Greenhouses by Using Phytomonitoring Data. Proc. IS on Greensys: 1301-1308 12. Tomohisa YANO1, Mehmet AYDIN2, Hiroshi NAKAGAWA3, Mustafa üNLü4, Tohru KOBATA5, Celaleddin BARUT?ULAR4, Tomokazu HARAGUCHI6, Müjde KO?4, Masumi KORIYAMA6, Fatih EVREND?LEK2, Jiftah BEN-ASHER7, D. Levent KO?4, Kenji TANAKA8, R?za KANBER4 2007. Implications of Future Climate Change for Crop Productivity in Seyhan River Basin. Joint Reprot ICCAP RIHNKyotoJapan 五、产地: 以色列
    留言咨询
  • 植物光合生理及环境监测系统,植物光合生理连续监测,植物生理及环境监测系统 以色列PhyTechs PTM-48A植物光合生理及环境监测系统是目前正常环境条件下植物状态分析中更复杂的系统。系统可以利用叶片温度、茎流速率、茎杆微变化、茎杆与果实生长传感器等,来连续监测并记录完整的植物光合与蒸腾速率。 PTM-48M植物光合生理及环境监测系统的特点: 12传感器通道设计 1)其中四个输入通道用于自动开合的叶室,测量叶片的光合与蒸腾速率; 2)另外的八个通道用于其他传感器,用于环境(PAR、空气温湿度、土壤湿度)与植物(叶片温度、茎流速率、茎杆微变化、果实生长、茎杆测量仪)监测。植物光合生理及环境监测系统特点: 可长期、自动循环、同时测量四个叶片的CO2交换情况与光合速率 可长期、自动循环、同时测量四个叶片的H2O交换情况与蒸腾速率 可长期同时测量植株不同茎杆的茎流量 可长期同时测量植物所处的环境因子(空气温湿度、土壤湿度、PAR) 可长期同时测量植物或者果实的微变化(茎杆微变化、果实生长、茎杆测量仪)植物光合生理及环境监测系统应用: 4通道植物光合作用与蒸腾作用研究 作物的长期监测:实验室、温室和植物生长室中的植物生理学研究 野外长期生态监测研究,作物环境条件的变化与CO2的气体交换过程的相互关系等 PTM-48A植物光合生理及环境监测系统系统配置: 下面是系统的一些参数、用户可以根据自己的研究需要可选的传感器以及一般的系统构成可选传感器 PIR-1 光合作用辐射传感器 TIR-4 总辐射传感器 ATH-2 空气温湿度传感器 SMS-2 土壤湿度传感器 LT-2M 叶片温度传感器 SF-4M SF-5M 茎流速率传感器 SD-5M 或 SD-6M 茎杆微变化传感器 DE-1M 树木生长计 FI-LM,FI-MM,FI-SM和FI-XSM果实生长传感器 SA-20 茎杆生长计 PTM-48A植物光合生理及环境监测系统性能参数 叶室数: 4个 叶室面积: 20 cm2 连接气体管路的标准长度: 6m 叶室通道的正常空气流速范围: 0.8-1.0L/Min CO2浓度测量范围: 0-1000ppm CO2交换的额定测量范围: -20到20 &mu molCO2m-2s-1 H2O交换的额定测量范围: 0-50mgH20m-2s-1 可选输入传感器数: 11 可选传感器输入范围: 0-10Vdc(12 bit) 电源需求: 可选 220/110/100 VAC 50/60 Hz,150W 连接串口: RS232 和 RS485(可选) 终端软件要求系统为 Windows 98, 2000,ME 和 XP 环境保护指标: IP51
    留言咨询
  • 一、用途:植物生理生态监控系统可监测植物的实时生长状况,还可分析植物的长期生理特性,从而预测植物的生长趋势,同时可以指导灌溉等。该系统允许用户在野外采用GPRS记录器或 卫星通信记录器将采集的数据,以各种时间间隔 (分钟、每小时、每天)发送到网站上。用户只要能上网,既可浏览实时数据。系统允许用户设立各种报警条件,超限的数据可通过邮件或短信发给用户。数据报告可通过邮件发送给用户,或定时发送到其它数据分析或专家系统。二、组成数据采集器,各种植物测量传感器、土壤传感器,通信单元,供电系统等。三、技术指标:1、数据采集器5-15个普通模拟输入通道12脉冲输入通道,12个数字通道;采用18位A/D转换器,精度± 0.025%*16MB内存(1,800,000数据点)(U盘接口可无限扩展)采样间隔:10ms至天,可自定义;输出值种类:平均值, 最大值, 最小值, 取样值 (Sample), 向量值, 累计值 ( Totalize )等。2、软件可实时数据监测和显示;3.土壤水分温度传感器1.测量范围:0-100%2.测量精度: ± 1%(0-40%时), ± 2%(40-70%时)3.温度测量精度:± 0.2℃4.温度漂移:± 0.3%通道1:0~100%体积含水量通道2:-40~+70℃土壤温度4.植物生理传感器1.果实生长传感器2.茎杆直径变化量传感器3.树干直径变化量传感器4.叶温传感器5.茎流传感器 种类量程备注SD-5M 茎杆微变化传感器0- 5000 &mu m适用于直径5-25 mm的茎杆SD-6M茎杆微变化传感器0- 5000 &mu m适用于直径2-7 cm的茎杆DE-1M测树器0-10 mm FI-LM果实生长传感器30-160 mm测球形果实FI-MM果实生长传感器15- 90 mm测球形果实FI-SM果实生长传感器7- 45 mm测球形果实LT-2M叶温传感器5-50 ?C含2个传感器SA-20M植物生长过程测定器0-2000 mm10位分辨率(~2 mm) DE-1 插入式测树器适用于大于7mm直径的树干,测量范围:0-12mmSD-6 树干直径变化量传感器,树干直径范围: 2-7 cm,测量范围:0-5mm叶温传感器 (5-50 ° C) 和茎流传感器 FI-XSM 果实生长状况传感器,0-10 mm 量程,适用于3到 30 mm的水果 FI-S果实生长状况传感器, 7-30mmFI-M F果实生长状况传感器15-70 mm
    留言咨询
  • PEM1000植物生理生态监测系统 PEM1000植物生理生态监测系统是一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:风向、风速、温度、湿度、气压、雨量、总辐射、光合有效、光照度、净辐射、叶面湿度、叶面温度、茎秆生长变化、果实生长变化、茎流、土壤热通量、土壤温度、土壤湿度、土壤二氧化碳、土壤含氧量和摄像系统等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。MetOne MSO一体化气象站是一款将风速、风向传感器、温度、相对湿度传感器、大气压力传感器集成为一体的多功能气象站。通过该站可同时获取风速、风向、温度、湿度、大气压力等气象参数,可应用于农田、草地、森林等小气候研究。  MSO多功能气象站拥有RS-232和SDI-12两种输出方式,并可根据需要定制RS-485和RS-422接口。它能够与计算机直接连接.特点:  ◆集成性强,实地安装简便  ◆精度高、稳定性好、性价比高  ◆短期研究和长期监测,都非常适用  ◆防水性好,无须额外的防护设备  ◆携带方便,安装简单  ◆具有完善的防雷击、抗干扰等性能  ◆除标准配置的传感器外,还可选择其他的传感器  ◆支持有线、无线多种数据传输方式主要技术参数:风速  量程:0~60m/s  分辨率:0.1m/s  精度:2%  启动风速:1m/s风向  量程:0~360°  分辨率:1°  精度:±5°  启动风速:1m/s温度  量程:-40~+60℃  分辨率:0.1℃  精度:±0.5℃相对湿度  量程:0~100%  分辨率:1%  精度:±4%大气压力  量程:500~1100hPa  分辨率:0.1hPa  精度:±2hPa供电及输出 输出:1 Hz的测量速率 信号输出:RS-232,RS-485, 执行:8~36伏直流电源,10mA典型@ 12VDC工作环境 温度:-40~+60℃ 湿度:0~100% BR-SL雨量传感器用来测量降雨量及降雨强度。采用单翻斗式技术原理,其输出的开关信号,通过电缆直接与数据采集系统连接,适用于自动气象站及雨量站使用。雨量传感器,测量分辨力为0.1mm感量,系引进德国先进生产技术,具有测量精度高,测量数据可靠等特点,是当今世界各国广泛采用的雨量测量装置。技术参数测量范围:雨强(0~4)mm/min 分辨力 0.1mm精度:±0.4mm (≤10mm); ±4%(>10mm) 环境温度:0℃~60℃输出方式:开关信号脉冲宽度:≥30ms直径:φ198mm±1mm;重量:传感器:3.2kg ML-01总辐射是一款工业级应用产品,具有良好的余弦响应和极小的温度影响(0.15%/℃),响应波段(400-1100nm)和响应时间和光伏组件相同。该产品的设计适用于光伏电站、气象、农业及环境应用领域。其紧凑小巧的结构可以非常方便的集成到各种应用中。光谱响应:400-1100nm测量范围:0-2000W/m2响应时间95% : 1ms热辐射偏移(200W/m2):0 W/m2温度偏移(5K/hr):0 W/m2非稳定性(年变化): 2%非线形误差(在1000W/m2):0.2%温度响应(-10-50℃): 0.15%/℃倾斜响应(at1000W/m2):0 %灵敏度:20~50μV/W/m2精度:5%阻抗(Ω):20-140视场:180°工作环境:30℃~+70℃线缆长度:5m日本EKO高性价比的ML系列紧凑型传感器,可以用于测量辐照度(W/m2)、照度(勒克斯)或光活化辐射(μmol/m2s)等,在气象/光伏/园艺/农业和工业等领域得到了广泛的使用。所有传感器都配有光学质量等级的玻璃圆顶,***大限度地减少了扩散器的污染并优化了余弦响应。周围的环境温度对传感器的输出信号的影响很小,适合在各种环境下使用,是全天候传感器高品质传感器。传感器主体结构紧凑,很容易集成到任何类型的应用中。 【照度计/Luxmeter: ML-020S】 ML-020S传感器用于测量环境照度情况,传感器具有满足人体光度函数的光谱响应。有两种型号可供选择,其中ML-020S-O适用于高照度的应用(如,户外探测等),ML-020S-I适用于低照度的应用(如,实验室等室内探测)。【光合有效辐射/Photon sensor: ML-020P】 ML-020P光合有效辐射传感器的响应波长范围为400~700nm,此波段范围为植物生长对应波段。该传感器通常用于研究植物的生长活动、模拟灯光控制以及树冠下方光斑分布等。型号ML-020S-OML-020S-IML-020P单位光照度光照度光合有效光谱响应CIE 感光曲线CIE 感光曲线400-700 nm测理范围~ 150,000~ 30,0000~3000μmols-1m-2单位luxluxμmols-1m-2输出0~30mV0~30mV0~10mV内阻280Ω1.3kΩ160Ω温度响应 (-10-50℃)0.40%0.40%1.10%定向反应(在30/60/80°)1 / 1.5 / 17 %1 / 1.5 / 17 %1 / 1.5 / 17 %光谱误差2.30%2.30%7.70%线缆长度5m5m5m净辐射传感器BR-JFS 该表是用来测量太阳辐射与地面辐射的净差值的辐射表,它测量范围是包括紫外、可见、红外在内的全波辐射。该表的感应原件是快速响应的线绕、多圈电镀式热电堆,该热电堆具有反应快、光谱响应宽、线性好、工作稳定等特点,当上下两个涂有光学黑漆的感应面受到不同的光辐射时加热了其各自的热电堆,形成冷热结点,产生温差电势,当太阳辐射大于地面辐射时输出为正,反之为负。为了能透过长波辐射,该表采用新型P.V塑料半球膜作保护罩,标题内采用全密封形式,经防止水汽凝结物生成。光谱范围:0.28μm-50μm测量范围:-200~1400W/m2灵敏度:3~14μV/W/m分辨率:1W/m2时间响应(99%):< 60 S双面灵敏度的允差:<10%内 阻:约150Ω重 量:1.0Kg Decagon Devices Inc.制造的叶面湿度传感器(LWS)能够对叶面湿度进行精准的测量,它能够监测到叶面的微量水分或冰晶残留。传感器外形采用仿叶片设计,真实模拟页面特性,因而能够更准确地反应出叶面环境的情况。它通过仿叶片介质的上表面介电常数的变化,来测量水或冰的存在量。与基于电阻测量的传感器不同的是,它不要求着色或使用校准,同时还能提供冰的有效监测。LWS耗电量低,可进行长期不间断监测。其安装简便,既可以悬挂在温室的大棚上,也可以气象站的桅杆上。主要技术参数测量时间:10ms工作温度:-20℃~60℃电源:2.5VDC(2mA)~5VDC(7mA)输出:250~1500mV工作温度:-20℃~60℃尺寸:11.2cm×5.8cm×0.075cm重量:140g(含4.5m电缆)SI-111红外叶面温度传感器SI-111由一个热电堆和一个热敏电阻组成,热电堆测量表面温度,热敏电阻测量传感器体温。两个温度探头被封装在一个耐用的铝制壳体内,顶部有一个锗制光学窗口。与硅制光学窗口相比,锗制窗口更加便于修正目标黑度,减少大气湿度所产生的影响,使传感器和目标物体之间可以有更远的距离。热电堆和热敏电阻输出均为毫伏信号,我们的数据采集器可以册来那个毫伏电压信号,并应用Stefan-Boltzman方程,修正传感器体温对目标温度产生的影响。技术指标:输出:60 μV/℃ 0~2500mV角度:22度测量精度(在-10~+65℃):±0.2℃绝对精度 ±0.1℃平均精度 ±0.05℃重复性测量精度(在-40~+70℃):±0.5℃绝对精度 ±0.3℃平均精度 ±0.1℃重复性波长范围:8~14μm响应时间:小于1秒输入电压:2.5V激励操作环境:-55~+80℃ 0~100% RH电缆长度:4.5米需要通道1个差分+1个单端尺寸:6cm×2.3cm重量:190克DF果实生长变化记录仪是专门用来测量圆形植物体的特殊版本。探头通过一种特殊方法固定在果实,蔬菜上,对测量对象没有压力, 不影响其生长。.适用于直径为0~11厘米的果实,蔬菜(可扩大);测量对象不承担探头自重;测量直径变化;对植物无损伤 ;对测点压力极小;可抗拒风,雪,下跌小树枝和小果实的影响,保证稳定测量;可按植物的大小订购。缺点:不适合非常柔软的水果和蔬菜,如成熟西红柿。技术规格:适用于果实直径:0~11厘米传感器的测量范围:15毫米复调测量范围:0~11厘米精度:±2微米±0.12%(视数据采集器)分辨率:0.001微米线性系数:2%温度系数:0.1微米/度工作环境:空气温度:-30~+40℃,空气湿度:0~100%电缆长度:标准2米,最大可延长100米 HFP01使用简便。欲读出结果仅需一个在MV范围精确工作的电压计。电压需除以其标定常数则可把测得的电压转变为热通量;每个板都有带有专用仪器提供各自的标定常数。HFP01 是防水型探头,符合CE标准。HFP01技术指标响应时间(95%):180S反应时间:±4分钟 类似于土壤)传感器面积:8cm2测量范围:-2000~2000W/㎡灵敏度范围:50~70μV/W/㎡灵敏度(名义):60μV/W/㎡温度依赖性:<0.1%/℃导热系数依赖性:7% W/(mK)非稳定性:<1%/year电阻(额定): 2W工作环境:-30~+70℃BR-STH土壤水分温度传感器 土壤水分温度传感器采用晶体振荡器产生高频信号,并传输到平行金属探针上,产生的信号与返回的信号叠加,通过测量信号的振幅来测量土壤水分含量。由于水的介电常数比一般物料的介电常数要大得多,所以当土壤中的水分增加时,其介电常数相应增大,根据土壤介电常数与土壤水分之间的对应关系可测出土壤的水分。★性能参数测量参数:土壤体积含水量水分量程:0~100%RH分 辨 率:0.1%RH水分精度:±2%RH(0~50%); ±3%RH(其它)温度量程:-50~+100℃分 辨 率:0.1℃温度精度:±0.5℃响应时间:≤1秒工作电压:6~24VDC(建议12VDC)工作电流:不带温度<50 mA 带温度<80 mA输出信号:0-1VDC、0-2.5VDC、4-20mA、标准MODBUS通信协议密封材料:ABS工程塑料探针材料:不锈钢遥测距离:小于200m土壤氧气传感器 MIJ土壤含氧量传感器基于原电池原理进行测量。 因此MIJ土壤含氧量传感器是一款无源传感器,不需要任何电压输入。传感器自身带有热电偶补偿电路,可自动进行温度补偿。传感器涂有Teflon保护涂层,并由长效塑料材质加工而成,其野外工作寿命长达五年 技术指标:测量原理:原电池原理 + 半透膜原理外形参数:直径 40 mm, 长度 78mm( 接线连接部分长50mm)输出信号:45~65 mV 对应 20.9 % O2 (用户在安装传感器之前必须在空气中进行输出测试)精确度:± 0.5 %重量:220 g (包括 5m 长的线缆)线缆长度:5m (+ 白线, - 黑线, 屏蔽线)温度影响:相对湿度 100%时,O2在20.9%时, 传感器在5℃测值为 20.8 % ,40℃测值为19.4 % ; 当相对湿度0%时,O2在20.9%时,传感器测值不会受到温度变化的影响。工作温度:0~40 ℃环境下使用维萨拉公司生产的 GMM221二氧化碳测量模件是专门用于如下场合的:温室控制、孵化器(室)、发酵罐、安全报警以及相关系统。由于GMM220具有很多优点,所以在许多特殊场合里实现了 CO2无故障控制。CARBOCAP是采用专利性质并领先的硅技术制造的固态传感器,结构简单。它吸收红外光波,并使用参比测量技术,从而具有极好的时间和温度稳定性。由于传感器不受灰尘、水汽和大多数化学气体的影响,GMM220模件可广泛用于环境恶劣、潮湿的地方。GMM221的探头可以更换,这不但极大地方便了校验和现场服务,而且很容易地改变量程。此外 GMM220可以有不同的安装方式、供电方式和输出方式。特点※ 增强型 CARBOCAP 传感器技术※ 良好的时间和温度稳定性※ 可更换的探头※ 专门用于恶劣场合技术性能参数二氧化碳测量范围:GMM221: 0-2%,0-3%,0-5%,0-10%,0-20%精度(+25℃时工厂标定值):±(1%的全量程+1.5%的读数)重复性:±1%的全量程输出温度系数(典型值):0.1%的全量程/℃压力系数(典型值):0.1%的全量程/hPa长期稳定性:±5%的全量程/2年响应时间(0-63%):15s输出信号:0-20mA、4-20mA或0-1V、0-2V、0-2.5V、0-5V模拟输出信号的分辨率:全量程的0.03%建议外接负载:电流输出,最大200Ohm;电压输出,最小1000欧姆供电电源:11-20VDC或18-30VDC串口输出:@5V电平功耗:2.5W预热时间:5分钟工作温度:-20-+60℃工作环境湿度:探头,0-100%RH,无冷凝;电路板,0-85%RH,无冷凝壳体材料:ABS塑料壳体防护等级 (探头部分 ):IP65重量: GMM221探头,最大 175克 尺寸: GMP221探头,φ18.5x100mm 电路板:78x48mm,72x74x19mm选配件GMP221 25245:探头固定卡件,2个GM45156:探头安装法兰,0.6米电缆,90 0或180 0连接器,2.0米电缆,90°或 180°连接器19040GM:串行COM口适配器 FR系列网络摄像机型号FR(2.8mm)FR(4mm)FR(6mm)像素100万快门1/25秒至1/100,000秒镜头2.8mm@ F2.04mm@ F2.06mm@ F2.0角度水平角:92°对角:114°水平角:72°对角:94°水平角:47°对角:60°接口类型M12夜晚补光模式红外夜视日夜转换模式ICR红外滤片式照射距离30米视频压缩码率高清、均衡和流畅三档,码率自适应图像尺寸1280*720帧率最大25fps 网传帧率:自适应调整图像设置亮度,对比度,饱和度等(通过萤石工作室客户端调节设置)存储功能支持Micro SD 卡(≤128G)镜像支持数字降噪3D数字降噪宽动态数字宽动态背光补偿支持双码流支持支持协议萤石云私有协议接口协议萤石云私有协议附加功能防闪烁,心跳,密码保护,水印接口Wifi、1个RJ45 10M/100M 自适应以太网口工作环境-25℃~60℃,湿度小于95%(无凝结)电源DC 12V±10% 5W MAX(ICR切换瞬间7W)防护等级IP66(防水防尘)尺寸(mm)173×83.5×69.8重量322gCR1000数据采集器 CR1000数据采集器是Campbell数据采集器里面性价比最高的一款。它提供传感器的测量、时间设置、数据压缩、数据和程序的储存以及控制功能,由一个测量控制模块和一个配线盘组成,具有强大的网络通讯能力。 主要参数● 采集器程序模拟输入通道数量: 16个● 最大扫描速率:100Hz● 最大输入电压:±5000mV● 模拟电压分辨率:0.67μV● A/D位数:13● 突发模式:1.5KHz● 脉冲通道:2个● 模拟输出通道:3个● 激发电压:±5000mV可调● 数字端口:8个I/O口 ● 供电:9.6—16v直流● 数据内存:4M● 工作温度:-25—50℃;-55—85℃(扩展)● 尺寸:21.6×9.9×2.2cm● 重量:1Kg● 同步测量:可接SDM信号
    留言咨询
  • 通过无线方式对植物生长状况和环境因子进行全方位的监测PM-11z 无线植物生理生态监测系统,可自动通过无线网络中的传感器采集数据,并通过无线方式将数据轻松下载至 PC。一台 PM-11z 主机可直接连接 15 个无线传感器。通过无线中继器,可扩展传感器数量和网络覆盖范围。 每个无线中继器可另外扩展 15 个传感器。传感器可根据用户设定的时间间隔进行自动测量,并将存储的数据定期传送至 PM-11z 主机中。特点 可满足大多数植物研究的实验要求 无需布线,测量灵活,覆盖范围大 传感器由电池供电(3 节 AA 电池),持续工作时间长(6 个月甚至更久) 主机和中继器需外接交流电或由太阳能电池板供电系统组成 提供多种可选传感器,探头通过一根较短的线缆与无线信号发射器连接。传感器可存储 4096 组数据,并定期发送给 PM-11z 主机。采样间隔时间可设置为 1,5,10,15,20,30,60,120,180,360,720 和 1440 min(1 d)。10 min 采样频率下可采集 4 周的数据。 Router 无线中继器,在传感器与 PM-11z 主机之间进行信号中继。通过多个中继器,可大幅扩展传感器数量和网络覆盖范围。每个中继器可扩展 15 个传感器。 PM-11z 主机,与整个网络进行通讯,储存采集的数据,并将数据通过无线方式下载到 PC。PM-11z 主机可直接连接 15 个传感器,数据存储于内置 SD 卡中。 PC 端接收器,通过 USB 与 PC 连接,可在 PM-11z 主机和 PC 间建立无线连接。 PC 专用程序,可设置采样频率、数据上传间隔和数据下载等。可选传感器及配件序号名称基本参数图片1LT-1z 叶片温度传感器范围:0 - 50 ℃分辨率:0.1 ℃精度:± 0.2 ℃2LT-LRz 红外叶温传感器范围:0 - 50 ℃视野:3:1分辨率:0.1 ℃精度:± 0.1 ℃3SD-5z 茎杆微变化传感器适用茎杆直径:5 到 25 mm测量范围:0 到 5 mm分辨率:0.002 mm4SD-6z 茎杆微变化传感器适用茎杆直径:20 到 70 mm测量范围:0 到 5 mm分辨率:0.002 mm5DE-1z 树干直径生长传感器树干直径范围:大于 60 mm测量范围:1 到 10 mm分辨率:0.005 mm6FI-Lz 果实生长传感器范围:30 到 160 mm分辨率:0.1 mm7FI-Mz 果实生长传感器范围:15 到 90 mm分辨率:0.05 mm8FI-Sz 果实生长传感器范围:7 到 45 mm分辨率:0.02 mm9SA-20z 植物生长传感器范围:0 到 500 mm分辨率:0. 2 mm10LWS-02z 叶片湿度传感器模拟信号,与叶片11PRI-1z 光量子传感器(400 到 700 nm)范围:0 到 2500 μmol m-2 s-1重复性:± 1%精度:± 5%12TIR-4z 总辐射传感器范围:0 到 1200 Wt m-2重复性:± 1%精度:± 5%13ATH-2z 空气温湿度传感器(风扇吸入式)温度:-40 到 60 ℃;分辨率:0.1 ℃;精度:± 0.5 ℃湿度:3 到 100 % RH;分辨率:0.1 % RH;精度:± 2%(需外接交流电)14ATH-3z 空气温湿度传感器(百叶箱式)温度:-40到60 ℃;分辨率:0.1 ℃;精度:± 0.5 ℃湿度:3 到 100 % RH;分辨率:0.1 % RH;精度:± 2%15DWS-Z 气象站光照:0 到 1200 Wm-2温度:-40 到 60 ℃湿度:3 到 100 % RH降雨量分辨率:1 mm 或 0.2 mm风速:1.3 到 58 m/s风向分辨率:1o16SMS-5z 土壤水分传感器0 到 100 % 体积含水量17SMTE-z 土壤湿度、温度、电导率传感器土壤水分:0 到 100 % vol.% WC温度:-40 到 50 ℃电导率:0 to 15 dS/m18Router 无线中继器可额外扩展 15 个传感器,并延长通讯距离。需接交流电或太阳能19支架高 3 m,可安装太阳能板和/或 DWS-Z 气象站20太阳能电池组15 W 太阳能板7 Ah 蓄电池12 VDC21PC 端接收器通过 USB 连接 PC22软件可设置传感器的采样时间,下载数据等产地:以色列 OLAN公司
    留言咨询
  • 植物茎流仪 400-860-0639
    申贝科学仪器成立至今,公司构建了农业领域面向土壤、农业气象、植物生理、畜牧等农业生态和食品领域精准农业仪器装备及农业全程信息化体系建设,成为涵盖农业、林业、气象、农产品检测的“大农业”全领域信息化仪器解决方案提供商。植物茎流仪SEN-319采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。工作原理植物茎流测量仪SEN-319采用法国学者Granier在20世纪80年代后发明的一种测定SapFlow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。特点双探针,配有相应的钻孔工具,容易插拔,可以反复使用采用热消散法,可恒温加热可以长期连续监测不锈钢探针,采用Teflon涂层,持久耐用采用高精度T型热电偶直接与数据分析仪连接采用大容量SD卡存储技术指标测量指标:瞬时液流密度测量通道:单通道存储容量:2GB采样时间间隔:1-99分钟可调显示:320×160液晶显示屏电源:8.4V可充电锂电池(也可选用太阳能电池供电)工作温度:10℃-60℃工作湿度:0-100%RH
    留言咨询
  • 系统介绍:植物生理生态研究在宏观上对植物群体、群落进行研究。通常选定有代表意义的一株或多株植物进行实时监测,常用监测指标包括茎杆生长、果实生长、冠层温度,叶面湿度等;同时植物体生长与外界环境,土壤水分供应等情况密切相关,因此有必要同时监测环境土壤参数。对植物的生理指标进行连续监测是灌溉决策、农业自动化控制、长期定位生态学等领域的科研人员非常希望解决的问题。 系统特点:适合长期定点监测传感器稳定性好,响应速度快大容量存储空间,RS232串口连接电脑,数据传输软件配置灵活,可根据需要自由搭配不同传感器坚固的防护外壳:适合于户外安装支持太阳能供电方式,做到无人值守运行支持GPRS无线输出数据 技术参数:CR1000数据采集器图片最大采样频率100Hz 模拟通道8个差分通道(16个单端通道)脉冲通道2个控制输出8个激发通道3个电压通道其他端口4个SDI-12或4个RS232(与8个控制输出接口共用)数据通信端口1个CS I/O;1个RS-232;1个平行外围设备信号输入范围±5000mVA/D转换精度13位模拟/数字转换测量分辨率0.33 µ V测量精度±(读数*0.06%+偏移量),0~40℃内置存储空间4M 供电电压9.6~16VDC功耗睡眠模式:0.6mA,1Hz采集频率:4.2mA尺寸23.9×10.2×6.1cm工作温度-25~50℃;-55~85℃(扩展) AM16/32B 模拟通道扩展版图片激发时间20ms 开关电流500mA系统供电11.3~16 Vdc (-25~50℃);11.8~16 Vdc(-55~85℃)系统功耗210µ A(静止状态);6mA(激活状态)尺寸0.2cm x 23.9cmx 4.6 cm工作温度-25~50℃;-55~85℃(扩展) 200-03002风速风向传感器图片风速测量范围0-50米/秒 风向测量范围360度机械,355度电子。风速测量精度±0.49米/秒风向测量精度±5度启动风速1.1米/秒阻尼比0.2风速信号输出电磁诱导AC正弦电压,1脉冲一环。风向信号输出10K电位计,线性度:0.5%电位计激励5-15VDC线性适配器12-30VDC安装杆直径34mm传感器净重0.7Kg SKH 2060空气温湿度传感器图片温度测量范围-40~60℃ 温度测量精度数字:小于0.2℃湿度测量范围0~100%湿度测量精度小于2%传感器类型湿度:电容式;温度:10kohm电热调节器温度输出信号0~1V或RS232湿度输出信号0~1V(可选0-4V)RS232响应时间典型小于10秒电源5~15VDC,7mA,电缆3米带屏蔽电缆 SKS1110总辐射传感器图片测量范围0~5000Wm² 绝对校准误差典型:3%,最大:5%灵敏度(电压)1mV/100Wm² 灵敏度(电流)5μA/100Wm² 检测器硅光电池稳定性±2%响应时间(电压)10ns余弦误差3%方位角误差1%温度系数+0.2%/°C电源消耗无工作环境-35~+70°C ,0~100%材料聚甲醛树酯,密封等级可达:IP68电缆3米带屏蔽电缆尺寸直径:34mm,高度:38mm重量130克(包含3米电缆) SKP215光量子辐射传感器图片测量范围0~50000μmol/m² /sec 绝对校准误差典型:3%,最大:5%灵敏度(电压)1mV/100μmol/m² /sec灵敏度(电流)2μA/100μmol/m² /sec检测器蓝色增强扩散硅稳定性±2%响应时间(电压)10ns余弦误差3%方位角误差1%温度系数+0.2%/°C电源消耗无工作环境-35~+70°C ,0~100%材料聚甲醛树酯,密封等级可达:IP68电缆3米带屏蔽电缆尺寸直径:34mm,高度:38mm重量130克(包含3米电缆) SKU 421 UVA紫外辐射传感器图片检测器GaAsP光敏二极管; 滤波器光学滤镜;光谱范围315-380nm;测量范围0-100W/m² ;输出信号0-1V;灵敏度10 mV//W/m² ;零点漂移+ 0.2 mV;重量200克(包含3米电缆)电缆长度3m SKU 430 UVB紫外辐射传感器图片检测器SiC光敏二极管; 滤波器N/A;光谱范围280-315nm;测量范围0-10W/m² ;输出信号0-1V;灵敏度150mV//W/m² ;零点漂移+1 mV;零点漂移温度响应0.03mV/°C;重量200克(包含3米电缆)电缆长度3m TE525MM翻斗式雨量桶图片传感器类型翻斗/磁簧开关 材质阳极电镀铝工作温度0~+50℃分辨率0.1毫米(4.73毫升/翻斗)测量精度降雨量10毫米/小时以上时为±1%,降雨量10~20毫米/小时时为±0~3%,降雨量20~30毫米/小时时为±0~5%收集口径24.5厘米高度29.21厘米重量约1.1公斤电缆类型2芯屏蔽电缆 SI-111红外冠层温度传感器图片输出关系60μV /°C 输出范围0~2500mV开口角度22度测量精度-10 ~ 65 °C范围:绝对精度 ±0.2 °C ;平均精度 ±0.1 °C; 重复性 ±0.05 °C;-40 ~ 70 °C范围:绝对精度 ±0.5 °C;平均精度 ±0.3 °C;重复性 ±0.1 °C;波长范围8~14μm响应时间小于1秒激励电压2.5V工作环境-55 ~ 80 °C 0 ~ 100% RH电缆长度4.5米所占通道1个差分+1个单端尺寸6cm×2.3cm重量190克 DC2茎干周长生长传感器图片适用于树杆直径 5厘米 传感器测量范围15 毫米准确度± 2微米(12位数采)分辨率0.001微米线性系数2%温度系数0.1微米/度钢丝膨胀系数1,4 ×10-6/K工作条件温度范围 -30~40 °C, 湿度范围 0~100%适用于树杆直径 5厘米 DD-L直径生长传感器图片适用树杆直径3~30厘米 测量范围11 毫米复调测量范围3~30厘米准确度±2微米(12位数采)分辨率0.001微米线性系数1%传感器温度系数0.1微米/度工作条件温度范围 -30 – 40 °C, 湿度范围 0-100% DD-S直径生长传感器图片适用树杆直径5厘米 传感器测量范围11 毫米复调测量范围0-5厘米 (可扩大)准确度± 2微米(12位数采)分辨率0.001微米线性系数1%传感器的温度系数0.1微米/度工作条件温度范围 -30 – 40 °C, 湿度范围 0-100% DR茎干半径变化传感器图片适用范围测半径变化,适于直径8 cm 以上的植物,茎杆上要钻两个4 mm 的小孔。 测量范围11 mm,测量对象变化超过11mm后需要重新调节标准配置传感器,固定框架,2 m电缆。尺寸及重量14×15×1.5 cm,60 g读取数据需要读数表或数据采集器测量精度<5mm (植物半径日变化0~300mm)温度系数<0.1 mm/℃ (温度变化1℃, 变化小于0.1mm)适用环境温度-30~40°C, 湿度0~100%输出方式模拟输出 0~50 kΩ,不耗电。外壳材料表面强化铝,不锈钢电缆长度2 m,电缆可以延长到200 m DV型茎干垂直变化传感器图片测量范围测树干纵向变化,适于直径8 cm 以上的植物,茎干上要钻两个4 mm 的小孔。 扩张范围11 mm,测量对象变化超过11mm后需要重新调节标准配置传感器,固定框架,2 m电缆。尺寸及重量<16 g安装工具万用表,两个小扳手,电缆固定带(绳子),钳子,手摇钻或电钻,钻头直径5mm,树体伤保护胶。读取数据需要读数表或数据采集器测量精度<5mm (植物半径日变化0~300mm)温度系数<0.1 mm/℃ (温度变化1℃, 变化小于0.1mm)适用环境温度-30~40°C, 湿度0~100%输出方式模拟输出 0~50 kΩ,不耗电。外壳材料表面强化铝,不锈钢电缆长度2 m,电缆可以延长 DF果实变化传感器图片测量范围测量果实直径变化,适于直径在3~11cm 的果实,大于11 cm需特制;不伤害果实。 扩张范围11 mm,测量对象变化超过11mm后需要重新调节标准配置传感器,固定框架,2 m电缆。安装工具万用表,两个小扳手,电缆固定带。尺寸及重量18×15×1.5 cm,65 g读取数据需要读数表或数据采集器测量精度<5mm (植物半径日变化0~300mm)温度系数<0.1 mm/℃ (温度变化1℃, 变化小于0.1mm)适用环境温度-30~40°C, 湿度0~100%输出方式模拟输出 0~50 kΩ,不耗电。外壳材料表面强化铝,不锈钢电缆长度2 m,电缆可以延长到20m SF-G两针茎流传感器图片针长33mm,1.5mm直径(针长可定做) 加热区域针顶部20mm区域适用树干直径大于5厘米加热功率0.2W,恒流源加热。输出信号100μV to 800 μV DC占用通道1个差分温度系数<0.1 mm/℃ (温度变化1℃, 变化小于0.1mm)电缆长度5m,电缆可以延长到20m 四针茎流传感器图片针长33mm,1.5mm直径(针长可定做) 加热区域针顶部20mm区域适用树干直径大于5厘米加热功率0.2W,恒流源加热。输出信号100μV to 800 μV DC占用通道3个差分优点4针型式探针,其两根辅助针可以抵消树干温度差异造成的误差电缆长度5m,电缆可以延长到20m SGA9-WS包裹式茎流传感器图片茎杆直径8~12毫米(可选其他范围,详情见报价单) 高度70mm输入电压4V典型能耗0.1WTC对数量2TC间距dX(mm)4 根直径生长变化传感器图片适用于根直径范围0~20毫米 测量范围11毫米分辨率0.1~2.6微米(视配套数据采集器)精度±0.12%~±1%(视配套数据采集器)温度系数0.2微米线性系数1%使用环境土壤中、水下或雪中工作温度-30~+40℃工作湿度0~100% RH供电无需额外的电源适配器材质不锈钢和铝 ML3土壤水分传感器图片测量范围0~100% vol 测量精度±1% vol(0~50% vol和0~40℃)盐分误差≤3.5%(50~500 ms/m和0~40% vol)输出信号0~1V差分≈标称0~60% vol感应区域高度55毫米×直径70毫米电缆长度标准5米,最大可延长到25米供电5~14V,1秒约18mA工作温度-20~+60℃防护等级IP68整体尺寸高度143毫米×直径40毫米 109土壤温度传感器图片测量范围-50~70℃ 传感器类型BetaTherm 10K3A11B型热敏电阻互换性误差±0.2℃(0~70℃,±0.5℃ @-50℃)线性误差0.03 ℃(-50℃时)可互换性误差±0.2℃(0~70℃时),±0.5℃(-50℃时)响应时间30~60ms(风速5m/s时)最大电缆长度305m尺寸长10.4cm,直径0.762cm重量136g
    留言咨询
  • 大容量人工气候箱PRX-2000A植物培养箱人工气候箱是具有光照、加湿功能的高精度冷热恒温设备,为用户提供一个理想的人工气候实验环境。它可用作植物的发芽、育苗、组织、微生物的培养;昆虫及小动物的饲养;水体分析的BOD的测定以及其它用途的人工气候试验,是生物遗传工程、医学、农业、林业、环境科学、畜牧、水产等生产和科研部门理想的试验设备。 主要特征:1、人工气候箱采用原装进口制冷压缩机。2、微电脑全自动控制、触摸开关,操作简便。3、可编程控制方式,白天、黑夜均可单独设量温度、湿度和光照度等(五级可调)。4、人工气候箱具有掉电记忆功能,保证在上电后,仪器能从断点继续运行。5、恒温控制系统,反应快,控温精度高。6、采用超微波加湿,加湿可靠,湿度均匀。7、风道式通风,工作室风速柔和,温度均匀。8、铝合金框架,轻巧美观,不生锈。9、人工气候箱具有超温和传感器异常保护功能,并且设有独立的风道超温保护装置,双重保护,为仪器和样品的安全多了一份保障。 大容量人工气候箱PRX-2000A植物培养箱技术参数型号容积(L)内(外)尺寸长*宽*高(mm)控温范围精度(℃)控湿精度(%RH)光照度(LX)PRX-600A600L1202*532*905 (1340*595*1640)0-50±150-95±53000PRX-600B12000PRX-600C22000PRX-600D30000PRX-1000A1000L1205*605*1105 (1340*665*1940)0-50±150-95±53000PRX-1000B12000PRX-1000C22000PRX-1000D30000PRX-1200A1200L1605*605*1155 (1745*665*1890)0-50±150-95±53000PRX-1200B12000PRX-1200C22000PRX-1200D30000PRX-1500A1500L1802*605*1205 (1942*665*1940)0-50±150-95±53000PRX-1500B12000PRX-1500C22000PRX-1500D30000PRX-2000A2000L2305*705*1145 (2445*765*1890)0-50±150-95±53000PRX-2000B12000PRX-2000C22000PRX-2000D30000 人工气候箱是一种可以模拟特定气候条件的装置,其应用广泛。以下是一些常见的人工气候箱的应用: 1. 植物生理研究:人工气候箱可以模拟不同的气候条件,如温度、湿度、光照等,用于研究植物对气候变化的适应机制,以及植物生长发育、光合作用、呼吸作用等生理过程的影响。 2. 农业科研:人工气候箱可以模拟不同的季节和气候条件,帮助农业科研人员研究作物的抗逆性、生长发育规律、品质形成等问题。同时,人工气候箱还可以用于育种研究,加速优良品种的选育过程,提高作物产量和品质。 3. 生物学研究:人工气候箱用于研究动物和微生物等生物体对不同气候条件的生理和行为反应,如动物的种群分布、活动节律、呼吸作用等。 4. 环境影响评估:人工气候箱可以模拟特定气候条件下的环境变化,用于评估不同环境因素对生态系统和生物多样性的影响,以及对环境污染的响应和适应能力。 5. 产品质量控制:人工气候箱可以提供稳定的气候条件,用于产品质量的控制和检测,如药品、食品等的储存条件和安全性评估。 总的来说,人工气候箱在农业、生态学、环境科学等领域起着重要的作用,能够帮助科研人员模拟和控制特定的气候条件,深入研究生物对气候的响应机制和适应能力,以及评估环境变化对生态系统的影响。
    留言咨询
  • EMS62多通道植物茎流测量系统 EMS62多通道植物茎流测量系统采用茎热平衡原理(SHB,stem heat balance)连续准确测量植物茎流量,是《中华人民共和国林业行业标准---森林生态系统长期定位观测方法》(LY/T1952-2011,2011年7月1日实施)中指定的茎流测量方法。树木茎流测量系统包括传感器、数据采集器、软件及安装工具。电池供电,且具备防水功能,另可选配多种传感器与之组成测量监测系统,使研究更全面深入。应用领域与EMS81系统基本相同,但EMS62系统更适于树木细茎枝条或作物的茎流测量。因此EMS62系统还可以用于作物栽培生理研究以及树木水力结构和水分运营分配的生理研究。 工作原理:EMS62茎流计传感器包括一个防护壳,由防辐射外壳及绝缘材料组成,确保热平衡在室内外使用时不受太多干扰。EMS62通常用于测定直径小于20mm的植物或器官,如小枝、苗木和作物等,安装时要保证探测器与茎表面接触良好。树木茎流测量系统根据热平衡原理(HB):输入能量等于散失的传导热与茎流温度的升高,具体公式如下:公式中P为输入能量(W),Q为茎流速度(Kg/s),dT为测量点温度差(K),cw为水的比热(J.kg-1.K-1),z为测量点传导热损失系数(W.K-1)。EMS62测量系统固定了dT,使得热损失为恒定值,可利用基线消除。计算茎流不是根据温度的改变,而是加热功率的变化。功能特点:? 林业行业标准(LY/T 1952-2011)指定测量方法? 采用反馈控制,自动控制上下探针温差为恒定? 软件可进行基线校准,直接输出茎流数据? 长期连续监测,监测无中断,无需值守? 自带防护装置,高度集成,方便野外安装维护? 可选配温湿度、太阳辐射、土壤含水量等传感器 技术参数:1. EMS62/64传感器适用直径:6-12mm和12-20mm加热技术:外置软质弹性加热器测量模块输出:热功率信号(mW/K)软件输出:茎流量(Kg/hcm)温度传感器:特制热电偶温度差异:恒定为4K或者2K加热器电阻:100±0.5欧姆加热电流:每通道最大0.15A(取决于茎流量大小)加热功率:可变,最大2W(取决于茎流量大小)工作温度:-10~40℃测量枝条:需要20cm长度重 量:传感器0.1Kg 2. 数据采集器8通道;精确度:量程的0.03%;存储量:512KB, 约220,000个数值(可供使用3个月以上);数据采集间隔:10s-2min;存储间隔:10s-1hr 另有12通道、16通道数采可供选择。 3. 软件可在各种版本的Windows系统下运行,可从官方网站下载升级。用于系统设置、数据存贮、数据分析处理及输出等。4. 电源:12V直流铅酸电池或电源适配器 产地:欧洲参考文献:1) 裴志永, 郝少荣, 乔敬伟, 段广东 & 王国忠. 毛乌素沙地沙柳枝条茎流特征. 生态环境学报 28, 48–56 (2019).2) Klime?ová, J. & St?eda, T. Agrometeorological and biological aspects of maize transpiration. (2014).3) Ku?era, J., Brito, P., Jiménez, M. S. & Urban, J. Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow. Trees 31, 873–885 (2017).4) Kullaj, E. Modeling Water Requirements of Young Apple Rootstocks under Various Climates. ARTOAJ 2, (2016).5) J. ?ermák, J. Ku?era & N. Nadezhdina. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees - Structure and Function 529–546 (2004).6) Josef Urban, Miloň Dvo?ák. Sap flow-based quantitative indication of progression of Dutch elm disease after inoculation with Ophiostoma novo-ulmi. Trees Volume 28, Issue 6, pp 1599–1605. (2014).7) LI Ming-dan, WANG A-qing, TANG Zu-xiang, WU Run-sheng, ZHOU Jing-han, WANG Wei, LIU Hua. Features and Influence Fectors of the Sugar Maple Sap Flow in the Non-growing Seasons. Journal of Sichuan Forestry Science and Technology. (2018).8) Zhiyong Pei, Shaorong Hao, Guohui Pang, Kai Wang, Tiejun Liu. Sap flow of Salix psammophila and its principal influencing factors at different slope positions in the Mu Us desert. PLoS One (2019).
    留言咨询
  • 1 引言根际是植物、土壤和微生物相互作用的重要界面,也是物质和能量交换的结点,根系生产和周转直接影响陆地生态系统碳和氮的生物地球化学循环。自1904年德国科学家Lorenz Hiltner提出根际这一概念后,相关研究方兴未艾。但由于受土壤不可观测性的限制,传统的研究方法如挖掘法、剖面法、盆栽法及土柱法仍在大量使用,陆地生态系统根际微生态学的研究进展缓慢,因此寻找并建立新的根际微生态研究方法就显得至关重要。近年来随着光学和电子学技术的提升,特别是微根窗法(Minirhizo tron)的应用,使根际微生态研究得到了较快的发展。当前,这是唯一可多个时间段内原位重复观测根系的方法,其最大优点是在不干扰细根生长过程的前提下,原位长期连续观测并记录细根从出生到死亡的消长变化动态。这种测量方法是非破坏性的,是传统的研究方法不可替代的。因此,在国外,微根窗技术目前被广泛应用于森林、果园、草地、沙漠和农业生态系统等植物根系动态及其功能的研究中。2 观测系统设计2.1 目标AZ-B0201根际微生态观测系统通过可视化微根窗技术对根系生长和形态因子进行非破坏性的长期连续定位观测,结合专业的根系分析软件,能够将根系相关数据定量化,包括根的长度、面积、根尖数量、直径分布格局、死亡根及存活根数量等等,实现探索植物细根生长和消亡动态及其周转规律、研究植物根系拓扑结构的目标。同时测量根区土壤理化指标和监测土壤水温等环境因子,揭示植物根系消长动态与环境因子间的关系。2.2 观测点布设在待研究地区选择群落结构明显、优势种典型、地势平坦、土壤层足够深厚的区域,设置观测样地。选择标准木,在根部按照45°角安装微根管。通常一个观测样地安装12~24根1.8m/0.9m(L)×5cm/3cm(D)微根管。在每标准木安装的微根管周围安装1~3根1m或者1.5m观测管,同时检测土壤水分和温度参数。2.3 数据采集频率微根管安装好,应在其与土壤间达到平衡后再开始采集数据,平衡时间从几周到几个月或一年乃至更长的时间不等。众多研究表明,通常情况下7个月后开始采集图像比较合适。数据采集根据环境条件、植物生长周期不同,使用不同的采集间隔期,范围从每1周、每2周到每4周或每6~16周。一般生长季节至少每2周取1次图像,冬天可以降低采样频率或取消。每根观测管可由下到上或由上到下依次采集图像,每管每次取图像数量不少于30个。2.4 观测内容根系形态因子:根的长度、单位面积根长密度、根尖数量、直径分布格局、死亡根及存活根数量、平均直径、投影面积、表面积、根体积、分类数量、每个直径类的根尖数量、细根生长量、细根死亡量和细根周转。根际水盐指标:土壤水分、土壤温度。土壤理化指标:根际土壤全氮、土壤全磷、土壤有效磷、土壤全硼、土壤钙离子、土壤氯离子、土壤硝酸盐和亚硝酸盐、土壤碳酸盐。2.5 观测系统组成和技术指标AZ-B0201根际微生态观测系统由手动土壤取样套件、土壤水分温度测量单元和根系形态因子观测单元共同组成。3 数据处理3.1 根系根长密度和根系面积密度在微根管图像中测量根的长度,通过总根长除以观察的整个管面积获得根系单位面积根长密度RLD(mmcm-2或cmcm-2)。根系表面积的计算可用观察到的根长乘以根直径。同样,以单位面积图片中观察到的根系表面积可得到单位面积根面积密度(mm2cm-2或 cm2cm-2)。3.2 细根生长与死亡RLDP和RLDM分别表示细根生长量和细根死亡量。假设根系在两次相邻采样间隔期内的生长与死亡速率一致的前提下,以单位管面积上根系根长的增加与减少来表示相邻两次采样间隔期内根系的生长与死亡,然后除以间隔时间,得到细根生长RLDP和死亡RLDM。式中:RLDP ——间隔期内根系生长量,mmcm-2d-1;RLDM ——间隔期内根系死亡量,mmcm-2d-1;RLDn ——第n次观测到的根系根长密度值,mmcm-2;RLDn+1 ——第(n+1)次观测到的根系根长密度值,mmcm-2;T ——相邻两次采样间隔时间,d。3.3 根系生长死亡量、现存量和周转计算1)根系年生长量为一年内所有次采样得到的根系根长净增加值(包括所有出现的新根长与以前存在的根系长度净增加值);根系年死亡量为一年内所有次采样中根系长度的消失(包括存在根的死亡以及由于根系的脱落或昆虫的取食引起根长的减少值);根系年生长量与年死亡量的单位也以每年单位管面积内的单位根长来表示(mmcm-2a-1)。2)根系现存量以每次观测到的单位面积活根系长度来表示。3)根系周转估计采用以下3种方法进行估计。① 年根系生长量与年根系平均现存量之比。② 年根系死亡量与年根系平均现存量之比。③ 年根系生长量与年根系最大现存量之比。4 应用案例4.1 植物对营养元素的竞争性利用(Science,2010)James F.、Cahill Jr.等利用AZ-B0201根际微生态观测系统对关键营养元素不同利用策略下的植物根系生长状况进行了为期8周的观测。研究结果显示,在没有竞争植物的条件下,无论关键营养物质在植物周围分布态势如何,植物的根系分布及平均直径不受影响(A、B、C)。当有竞争植物存在时,那么植物根系的分布状况、平均直径则取决于关键营养元素与植物之间的相对距离(D、E、F)。图中红条是植物甲的平均根系直径,蓝条是植物乙的平均根系直径,阴影是关键营养元素所处位置示意(如果存在的话)。4.2 氮肥对水曲柳和落叶松细根寿命的影响(植物生态学报,2009)采用微根管技术研究氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系。结果表明,林地施氮肥后,两树种细根数量都呈减少趋势, 细根总体直径增加, 分枝程度降低; 氮肥使水曲柳细根存活率提高,细根中位值寿命延长,而落叶松细根存活率对氮肥反应不敏感; 施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层,根系和春夏季新生的细根,表明氮肥对高生理活性的细根影响较强。
    留言咨询
  • 我国各地区积极响应国家号召,纷纷出台一系列政策助推智慧气象行业持续发展。如2021年3月重庆市发布《关于加快推进气象事业高质量发展的意见》提出到2035年,建成全国智慧气象发展区、区域气象灾害防御示范区、长江上游重要生态屏障气象服务样板区、气候经济发展典范区。  一、系统概述多参数气象监测系统是一个功能强大的环境数据采集处理系统,它包含了温度、湿度、露点、光照强度、光合有效辐射、气体监测、水质监测、风速、风向、雨量、土壤温度、土壤水分、土壤盐分、水分蒸发、大气压、粉尘颗粒物、雨量等环境数据的采集与处理功能,广泛应用于农田、林场、养殖场等农林生产、科研部门。根据用户具体需求,本系统监测参数可以容易自由组合。该系统可通过 GPRS 方式将数据上传值监控软件平台,也可以通过网口接入局域网,同时该系统还带有 1 路 ModBus-RTU 从站接口也可将数据通过 485 通信的方式上传至客户的监控软件或 PLC 组态屏等;该系统还能外接LED 屏显示。(湖南圣凯安环保科技赵133...9...75..32...997)图Ⅰ 系统简要图二、功能特点Ø 继电器输出,可关联到任何一路信号采集上做报警或自动控制使用。Ø GPRS 通信接口,只需插入一张物联网卡便可将数据上传至远端监控软件平台。Ø 可选配RJ45 网口,可将监测数据上传至远端监控软件平台。Ø 具有 1 路 ModBus-RTU 从站接口,可外接用户自己的监控主机、PLC、组态屏或组态软件。Ø 可外接 1 路室外 LED 单色显示屏。Ø 多种测量要素可自由搭配。Ø 可搭配太阳能电池板和蓄电池,用于野外测量,解决供电问题。Ø 可以支持市电与太阳能双供电,保证设备在恶劣的情况下也可以正常不间断工作。三、技术参数监测参数技术参数气象温度量程:-40℃~+120℃;精度:±0.5℃(25℃)湿度量程:0%RH~99%RH;精度:±3%RH(5%RH~95%RH,25℃)大气压量程:0-120Kpa;精度:±0.15Kpa@25℃ 75Kpa风速量程:0-60m/s;分辨率:0.1m/s;精度:±(0.3+0.03v)m/s风向测量范围:8个指示方向雨量直径:Φ200mm;分辨率:0.2mm/0.5mm可选;准确度 ≤±2%,雨强范围:0mm~4mm/min,允许通过雨强:8mm/min。粉尘参数:PM2.5/PM10;检测量程:0-1000ug/m3。紫外线量程:0~15 mW/ cm2;精度:±10%FS;分辨率:0.01 mW/ cm2;紫外线指数量程:0-15;测量波长范围:波长290-390 nm紫外线强度/指数反应时间:0.2s;气体二氧化碳供电:12-24V 输出:TTL/4--20mA/RS485 准确度:±2.0%FS二氧化硫二氧化氮挥发性有机物一氧化碳甲烷臭氧乙炔水质pH量程:0~14.00pH;分辨率:0.01pH;精度:±0.1pH,±0.3℃溶解氧量程:0~20.00mg/L;分辨率:0.01mg/L,0.1℃;精度:±2%F.S.,±0.3℃电导率量程:0~200.0mS/cm;分辨率:0.1 mS/cm;精度:±1.5%F.S.,±0.3℃浊度量程:0~1000.0NTU;分辨率:0.1NTU/0.1℃;精度:±5%或±3NTUCOD量程:0~500mg/L equiv. KHP;分辨率:0.1mg/L;精度:±5%F.S.氨氮量程:0~1000.0mg/L;分辨率:0.1mg/L;精度:±10%或±1mg/L,±0.5℃氟离子量程:0~100.00mg/L;分辨率:0.01mg/L;精度:±10%或±1mg/L,±0.5℃氯离子量程:0~35000mg/L;分辨率:1mg/L;精度:±5%,±0.5℃供电方式一太阳能供电:100W太阳能电池板;铅酸电池12V 30AH方式二锂电池:锂电池:12V60Ah四、布局
    留言咨询
  • 设备简介 水生态模拟系统-4H-Benthocosms是一套用来模拟海水或者淡水生态环境的密闭系统,它一般是由多个独立的密闭容器组成。该系统可以在小尺度空间模拟海洋或淡水生态环境,具有独特的潮汐和海流模拟功能,同时长期稳定的监测每一个容器中的水质参数和环境参数。一旦容器中的参数发生细微变化,系统独有的自动补偿机制会迅速启动。所有的模拟及监测功能都可以通过系统软件实现远程控制。此系统尤其适用于生态建模、生态风险评估、水产科学研究等科研领域。 第一套水生态模拟系统被成功安装在德国亥姆霍兹研究中心阿富雷德-魏根纳极地和海洋研究所(Alfred-Wegener-Institute)位于利斯特岛的研究基地中。应用领域l 海洋生态系统研究l 淡水生态系统研究l 海岸生态系统研究l 水生植物研究l 水生动物研究l 水产科学研究主要特点及控制软件 l 水生态系统模拟功能 l 实时监测模拟系统的温度、盐度、溶氧、pH、二氧化碳等多种理化参数 (根据需要配置) l 常压密闭容器,保证每个容器内水生态环境的独立性 l 独特的潮汐和海流模拟功能l 数据管理和存储功能l 开放式系统,具有极强的延伸性应用l 水质参数和组分可以被调控(pH、温度、营养盐等)l 自动清洗、自动换水功能l 系统警报l 远程控制 l 高度定制型系统,根据客户研究需求提供个性化解决方案
    留言咨询
  • 湿地公园生态环境监测系统【TH-SDXT】实时掌握张家湖国家湿地公园的水质、气象、水文等方面情况,能实时监测张家湖国家湿地公园生态环境现状及动态变化。一、背景概述古往今来,人类逐水而居,文明伴水而生。被喻为“地球之肾”的湿地,有水域和陆地交错存在的生态环境,是多种生物的栖息地。湿地能净化水质,提供清洁的淡水资源,具有蓄洪防旱、调节气候等多种功能,与人类生产生活、经济发展密切相关。“生态兴则文明兴,生态衰则文明衰”这是历史的回响,也是未来的召唤。“为避免全球湿地持续退化和丧失而引发的系统性风险,我们必须以强烈意愿和实际行动,促进各类湿地的保护、修复、管理以及合理和可持续利用。”但由于早期,人们对环境的漠视、认识水平的局限以及对经济利益的单纯追求,长期以来在围垦、基建占用、环境污染、过度捕猎、泥沙淤积、不合理水利工程建设等诸多因素的不断叠加作用下,湿地资源遭受了严重的、不可逆转的破坏。因此对湿地生态环境等进行长期连续监测是政府在进行自然资源管理与保护和实现可持续发展等宏观决策中获取相关信息数据的必要手段。而且从保护生态系统功能及其稳定性方面考虑,也迫切需要在一些关键区域建立生态环境自动观测站,针对生态系统内的大气、植被、水体、土壤等环境进行观测,支持气象条件变化对湿地、森林、湖泊、河流、海滩、戈壁、草原等生态影响的评估预警工作。湿地公园生态环境监测系统结合多年气象环境监测行业经验,充分考虑林业草原环保国土资源等部门对于生态环境监控和集中管理的应用需求,利用物联网技术、数据通讯技术、地理信息技术等,针对湿地生态环境监测设计搭建了一套或多套在湿地生态区域环境观测大气、植被生物、水体、土壤等方面数据的观测系统方案,实现对湿地生态区域生态环境要素的自动连续观测,为及时掌握气象条件对生态环境的影响、实现地区可持续发展提供科学依据。二、监测依据《全国生态状况调查评估技术规范—湿地生态系统野外观测》《湿地生态系统定位研究站建设技术要求(LY/T 1708)》《湿地生态系统定位观测指标体系(LY/T 1707)》《湿地生态系统服务评估规范(LY/T 2899)》《国家湿地公园建设规范(LY/T 1755)》《区域生物多样性评价标准(HJ 623)》《园林绿化十三五规划纲要》《国家陆地生态系统定位观测研究网络中长期发展规划(2008—2020年)》《环境空气质量指数(AQI)技术规定(试行)》 HJ633-2012《空气离子测量仪通用规范》 GB/T18809-2002《水质采样方案设计规定》 GB/T12997-91《水质采样技术指导》 GB/T12998-91《地表水环境质量标准》 GB38382002《水污染源与在线监测系统安装技术规范》 HJ/T353-2007《水污染源在线监测系统验收技术规范》 HJ/T354-2007《水污染源在线监测系统运行与考核技术规范》 HJ/T355-2007《水污染源在线监测数据有效性判别技术规范》 HJ/T356-2007《污染源与在线自动监控(监测)系统数据传输标准》 HJ/T104-2003《仪表供电设计规定》 HG/T20509-2000《污染源在线自动监控(监测)系统数据传输标准》 HJ/T212-2005《环境污染源自动监控信息传输、交换技术规范》 HJ-T352-2007《土壤环境监测技术规范》 HJ/T166-2004环境空气质量标准 GB3095-1996地表水环境质量标准 GB3838-2002土壤环境质量标准 GB15618 1995国家林业局关于印发《国家湿地公园管理办法》的通知 林湿发〔2017〕150号三、系统建设内容气象监测:空气温度、相对湿度、风速、风向、大气压力、总辐射、日照时数、光照强度、紫外辐射、光合有效辐射、净辐射、天气现象、降水量、降雪深度、蒸发量、露点温度等;水文监测:水位、流量、流速;水质监测:水温、电导率、PH、浊度、悬浮物、余氯、溶解氧、COD、氨氮、亚硝酸盐、叶绿素、蓝绿藻、污泥浊度等;土壤监测:土壤温度、土壤湿度、土壤PH、土壤盐分、土壤氮磷钾等;环境质量:PM2.5、PM10、噪音、负氧离子、CO2、 SO2、 NO2、O3、CO等;植被生物:湿地植物动物及其群落监测可以采用包含多个视频监控传感器节点的网络作为其长期监测的手段。 四、系统概述此湿地生态环境监测系统是一套集数据采集、存储、传输和管理于一体的无人值守生态监测系统,整个系统由前端感知数据采集系统、数据传输系统、云平台应用软件分析系统、终端应用系统及供电系统等组成。前端感知数据采集系统由小气候气象观测站、空气质量监测站、水文监测站、水质监测站、负氧离子监测站、土壤监测站、视频监控等前端监测设备组成。数据传输系统由遥测终端机、DTU、GPRS等传输设备组成。云平台应用软件分析系统接收到来自数据采集系统的实时数据进行分析,利用云平台软件分析计算进行数据处理和归集整理。可以直观、形象的实时显示各监测点位和整个区域的空气质量状况,以及污染物浓度水平,并提供异常报警、区域空气质量变化趋势等多种服务。终端应用系统可通过会议室大屏、户外LED显示屏、PC端等方式实时或长期进行监测数据展示。供电系统可根据用户需求搭配市电供电、太阳能供电、风光互补供电等多种供电方案,保证设备长期稳定运行。五、系统特点1、监测指标全面、方案配置灵活,可根据实际需求监测湿地生态区域各方面环境要素, 如气象环境、水文、水质、土壤环境、空气环境质量和动植物极其群落监测等,模块化设计极大方便了后期调试和升级2、低功耗采集器:静态功耗小于50uA3、系统稳定:方案成熟多家实装案例,后台运行稳定,免维护,故障率低4、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上5、全自动,适合野外工作,可靠运行于各种恶劣的野外环境,可无人值守6、监测参数超限预警,辅助保护区应急管理7、云服务平台,可随时在线查看、下载和数据分析,具有数据质量控制功能8、通讯方式可根据现场按需选配,为方案提供最高性价比9、完善的防雷击。抗干扰等保护措施10、支持扩展:支持传感器扩展,485接口、modbus协议传感器都可以直接使用
    留言咨询
  • 植物茎流计 400-860-5168转4275
    仪器介绍植物茎流测量仪采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。工作原理植物茎流测量仪采用法国学者Granier在20世纪80年代后发明的一种测定Sap Flow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测 定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不 加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。仪器特点双探针,配有相应的钻孔工具,容易插拔,可以反复使用采用热消散法,可恒温加热可以长期连续监测不锈钢探针,采用Teflon涂层,持久耐用采用高精度T型热电偶直接与数据分析仪连接采用大容量SD卡存储技术指标测量指标:瞬时液流密度测量通道:单通道存储容量:2GB采样时间间隔:1-99分钟可调显示:320×160液晶显示屏电源:8.4V可充电锂电池(也可选用太阳能电池供电)工作温度:10℃-60℃工作湿度:0-100%RH
    留言咨询
  • 低温人工气候箱PRXD-300植物培养箱低温人工气候箱是具有光照、加湿功能的高精度冷热恒温设备,为用户提供一个理想的人工气候实验环境。它可用作植物的发芽、育苗、组织、微生物的培养;昆虫及小动物的饲养;水体分析的BOD的测定以及其它用途的人工气候试验。是生物遗传工程、医学、农业、林业、环境科学、畜牧、水产等生产和科研部门理想的试验设备。 主要特征:1、原装进口制冷压缩机。2、低温人工气候箱由微电脑全自动控制、触摸开关,操作简便。3、可编程控制方式,白天、黑夜均可单独设量温度、湿度和光照度等(五级可调)。4、低温人工气候箱具有掉电记忆功能,保证在上电后,仪器能从断点继续运行。5、恒温控制系统,反应快,控温精度高。6、低温人工气候箱采用超微波加湿,加湿可靠,湿度均匀。7、风道式通风,工作室风速柔和,温度均匀。8、铝合金框架,轻巧美观,不生锈。9、具有超温和传感器异常保护功能,并且设有独立的风道超温保护装置,双重保护。 低温人工气候箱PRXD-300植物培养箱技术参数型号容积 (L)内(外)尺寸(mm)(长*宽*高)控温范围(℃)控湿范围%RH光照度(LX)备注PRXD-300300482*482*1105 (545*545*1840)-15-65±150-95±55000单门、四面保温,内胆不锈钢,可配植物光,带锁。可定做30段温、湿、时设置。多段程控+1000元,湿度控制在10度以上有效PRXD-400400605*605*1205 (664*664*1940)5000 人工气候箱的应用:1. 植物生理研究:人工气候箱可以模拟不同的气候条件,如温度、湿度、光照等,用于研究植物对气候变化的适应机制,以及植物生长发育、光合作用、呼吸作用等生理过程的影响。 2. 农业科研:人工气候箱可以模拟不同的季节和气候条件,帮助农业科研人员研究作物的抗逆性、生长发育规律、品质形成等问题。同时,人工气候箱还可以用于育种研究,加速优良品种的选育过程,提高作物产量和品质。 3. 生物学研究:人工气候箱用于研究动物和微生物等生物体对不同气候条件的生理和行为反应,如动物的种群分布、活动节律、呼吸作用等。 4. 环境影响评估:人工气候箱可以模拟特定气候条件下的环境变化,用于评估不同环境因素对生态系统和生物多样性的影响,以及对环境污染的响应和适应能力。 5. 产品质量控制:人工气候箱可以提供稳定的气候条件,用于产品质量的控制和检测,如药品、食品等的储存条件和安全性评估。
    留言咨询
  • 植物茎流测量仪 植物茎流测定仪采用热消散探针法测量树干瞬时茎流密度,可以长期连续观测树木的液流,有利于研究树木和大气之间的水分交换规律,并以此为观测手段,长期监测森林生态系统对环境变化的影响。对于造林绿化、森林管理和林业管理等具有重要的理论指导意义和应用价值。植物茎流测量仪 植物茎流测定仪工作原理 植物茎流测量仪采用法国学者Granier在20世纪80年代后发明的一种测定Sap Flow的新方法,即热消散探针法(恒定热流传感器法)。该方法的数据采集具有准确稳定的特点,而且可以连续不间断的读取数据,因而数据具有系统性。该测 定系统由一对长33mm的热消散探针组成,安装时将探针上下相隔10cm-15cm插入树木的边材中,上方的探针缠绕电阻丝,供以直流电加热,下方探针不 加热,保持与周围边材组织的温度相同,两探针的温差变化反应树木的液流密度。植物茎流测量仪 植物茎流测定仪器特点 双探针,配有相应的钻孔工具,容易插拔,可以反复使用采用热消散法,可恒温加热可以长期连续监测不锈钢探针,采用Teflon涂层,持久耐用植物茎流测量仪采用高精度T型热电偶直接与数据分析仪连接采用大容量SD卡存储技术指标测量指标:瞬时液流密度测量通道:单通道存储容量:2GB植物茎流测量仪 植物茎流测定仪采样时间间隔:1-99分钟可调显示:320×160液晶显示屏电源:8.4V可充电锂电池(也可选用太阳能电池供电)工作温度:10℃-60℃
    留言咨询
  • 湿地生态环境监测系统【TH-SDXT】是一种集数据采集、存储、传输等于一体的生态环境监测系统。针对生态系统内的大气、植被、水体、土壤等环境进行观测,支持气象条件变化对湿地、森林、湖泊、河流、海滩、戈壁、草原等生态影响的评估预警工作。一、背景概述山东天合环境科技有限公司结合多年气象环境监测行业经验,充分考虑林业草原环保国土资源等部门对于生态环境监控和集中管理的应用需求,利用物联网技术、数据通讯技术、地理信息技术等,针对湿地生态环境监测设计搭建了一套或多套在湿地生态区域环境观测大气、植被生物、水体、土壤等方面数据的观测系统方案,实现对湿地生态区域生态环境要素的自动连续观测,为及时掌握气象条件对生态环境的影响、实现地区可持续发展提供科学依据。二、监测依据《全国生态状况调查评估技术规范—湿地生态系统野外观测》《湿地生态系统定位研究站建设技术要求(LY/T 1708)》《湿地生态系统定位观测指标体系(LY/T 1707)》《湿地生态系统服务评估规范(LY/T 2899)》《国家湿地公园建设规范(LY/T 1755)》《区域生物多样性评价标准(HJ 623)》《园林绿化十三五规划纲要》《国家陆地生态系统定位观测研究网络中长期发展规划(2008—2020年)》《环境空气质量指数(AQI)技术规定(试行)》 HJ633-2012《空气离子测量仪通用规范》 GB/T18809-2002《水质采样方案设计规定》 GB/T12997-91《水质采样技术指导》 GB/T12998-91《地表水环境质量标准》 GB38382002《水污染源与在线监测系统安装技术规范》 HJ/T353-2007《水污染源在线监测系统验收技术规范》 HJ/T354-2007《水污染源在线监测系统运行与考核技术规范》 HJ/T355-2007《水污染源在线监测数据有效性判别技术规范》 HJ/T356-2007《污染源与在线自动监控(监测)系统数据传输标准》 HJ/T104-2003《仪表供电设计规定》 HG/T20509-2000《污染源在线自动监控(监测)系统数据传输标准》 HJ/T212-2005《环境污染源自动监控信息传输、交换技术规范》 HJ-T352-2007《土壤环境监测技术规范》 HJ/T166-2004环境空气质量标准 GB3095-1996地表水环境质量标准 GB3838-2002土壤环境质量标准 GB15618 1995国家林业局关于印发《国家湿地公园管理办法》的通知 林湿发〔2017〕150号三、系统建设内容气象监测:空气温度、相对湿度、风速、风向、大气压力、总辐射、日照时数、光照强度、紫外辐射、光合有效辐射、净辐射、天气现象、降水量、降雪深度、蒸发量、露点温度等;水文监测:水位、流量、流速;水质监测:水温、电导率、PH、浊度、悬浮物、余氯、溶解氧、COD、氨氮、亚硝酸盐、叶绿素、蓝绿藻、污泥浊度等;土壤监测:土壤温度、土壤湿度、土壤PH、土壤盐分、土壤氮磷钾等;环境质量:PM2.5、PM10、噪音、负氧离子、CO2、 SO2、 NO2、O3、CO等;植被生物:湿地植物动物及其群落监测可以采用包含多个视频监控传感器节点的网络作为其长期监测的手段。 四、系统概述此湿地生态环境监测系统是一套集数据采集、存储、传输和管理于一体的无人值守生态监测系统,整个系统由前端感知数据采集系统、数据传输系统、云平台应用软件分析系统、终端应用系统及供电系统等组成。前端感知数据采集系统由小气候气象观测站、空气质量监测站、水文监测站、水质监测站、负氧离子监测站、土壤监测站、视频监控等前端监测设备组成。数据传输系统由遥测终端机、DTU、GPRS等传输设备组成。云平台应用软件分析系统接收到来自数据采集系统的实时数据进行分析,利用云平台软件分析计算进行数据处理和归集整理。可以直观、形象的实时显示各监测点位和整个区域的空气质量状况,以及污染物浓度水平,并提供异常报警、区域空气质量变化趋势等多种服务。终端应用系统可通过会议室大屏、户外LED显示屏、PC端等方式实时或长期进行监测数据展示。供电系统可根据用户需求搭配市电供电、太阳能供电、风光互补供电等多种供电方案,保证设备长期稳定运行。五、系统特点1、监测指标全面、方案配置灵活,可根据实际需求监测湿地生态区域各方面环境要素, 如气象环境、水文、水质、土壤环境、空气环境质量和动植物极其群落监测等,模块化设计极大方便了后期调试和升级2、低功耗采集器:静态功耗小于50uA3、系统稳定:方案成熟多家实装案例,后台运行稳定,免维护,故障率低4、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上5、全自动,适合野外工作,可靠运行于各种恶劣的野外环境,可无人值守6、监测参数超限预警,辅助保护区应急管理7、云服务平台,可随时在线查看、下载和数据分析,具有数据质量控制功能8、通讯方式可根据现场按需选配,为方案提供最高性价比9、完善的防雷击。抗干扰等保护措施10、支持扩展:支持传感器扩展,485接口、modbus协议传感器都可以直接使用六、系统云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本七、售后服务山东天合环境科技有限公司是一家专业研发、生产、销售物联网监测检测仪器设备的企业。产品已广泛应用于气象、环保、水文水利、交通、海洋、化工、农业、林业、草原、景区、电力、市政、高校科研单位、部队、智慧路灯等行业领域单位。今天的天合人仍不忘初心,牢记使命,将继续致力于气象环境监测和智慧云互联网行业的发展,关注相关行业先进技术和仪器的发展动向,继续为广大顾客提供行业动态、方案咨询、产品选型和优质的一体化解决方案。作为专业生产物联网设备的厂家,欢迎采购人使用我们的产品.在此,我们郑重承诺:1、我公司提供的产品皆为符合相关国家标准和使用技术要求的合格产品。2、我公司愿意为采购人提供符合或高于国家标准和使用要求的服务,免费提供培训服务,开通科技服务热线。3、我公司严格遵守国家法律法规,保证依法经营,严格按标准要求组织生产,严把产品厂检验关,保证出厂产品质量合格。4 、我公司现对我们生产的所有产品,提供一年内因质量问题以旧换新、一年质保、终身保修。软件终身享受免费升级待遇。5 、我公司如有最新实验成果,将免费提供给用户,让用户也能共享我们的科技实验成果。
    留言咨询
  • ENVILog-Kc 植物系数在线测量系统 植物耗水规律是水资源不足条件下合理配置种植业与其它产业、作物精量灌溉、产量预测和灌溉工程设计的基础。植物系数的确定是植物耗水量预测预报的关键。在线、实时测量植物系数将大大提高区域水资源管理的精度和生态系统水量平衡研究的准确性。 系统设计: ENVILog-Kc植物系数在线测量系统,按照如下公式实时获取植物系数Kc。ETc = ET0 * Kc采用SoilScope控制型土柱实现不同土壤、不同栽培模式、不同灌溉施肥、不同降水条件下,与大田一致的土壤温度和土壤水力学梯度,高时间分辨率测量ETc、ET0,可达分钟级,得到Kc的10分钟值。 SoilScope控制型土柱适合长期生态学观测研究,有2种控制模式确保土柱内的水势或水位与大田一致,长期运行无需换土。 根据植物的主根域深度选择土柱的高度,0.3m-4米可选;直径50cm-1米可选,也可定制。 系统功能:1、 Kc 及ETc测量数据实时传送到ENVIdata服务器,经过数据处理后直接用于计算ETc。可以得到分钟、小时和日ETc和Kc值。ETc测量范围0.01mm/H~10.00mm/H,精度±0.05mm。2、实时测量、计算ET0 澳作自主研发的数据记录仪ENVILog 直接计算、存储ET0分钟值。澳作自主研发的数据记录仪,简单,稳定,可靠,在测量和控制方面能满足广泛的需求, ENVILog同时具备低功耗的优势,体现在传感器测量、直接/远程通讯连接、数据分析、外部设备控制、数据和程序存储等方面。ENVILog采用金属外壳屏蔽射频干扰,具备精密时钟、C语言编程、数据处理和分析等功能。3、ENVIdata数据传输和管理该系统直接将数据传送到ENVIdata数据服务器上,通过对监测的生态环境因子的时序变化和相关性分析,确定监测对象的状态发展。服务器软件既可以作为独立的应用软件,运行在用户的服务器上;也可以运行在澳作公司安全的服务器上,为多个用户提供数据接收服务,同时帮助用户监控野外测点硬件系统的运行状态。ENVIdata系列生态环境监测系统于2010年获得 ISO9001 质量认证书,至今全部通过专家的年度复核,确保系统集成的品质,用户采用用户名和密码登陆,只要能上网,就能浏览实时和历史数据。ENVIdata 数据服务平台已为国内的客户服务多年,系统稳定、可靠。 特点:u 生态环境信息以各种时间间隔 (分钟、每小时、每天)发送到网站上。u 用户只要能上网,既可浏览实时数据。u 中心服务器中文界面,便于操作和管理u 提供多参数、实时或历史数据曲线图u 系统提供多站点地图显示 历史数据浏览和下载 用户选择时间段绘制数据变化曲线技术指标:1、 ETc范围:0.01mm/H~10.00mm/H2、 ETc精度:±0.05mm3、数据记录仪:24位A/D转换,8通道高精度模拟测量4、实时接入ENVIData云平台5、水分测量范围:体积含水量:0~60%(VWC)温度范围:-40℃~+80℃精确度:体积含水量:含盐分矿物质且体积含水量为0~50%的土壤,工厂校准偏差为±3%(VWC),一般性质的土壤校准偏差为±1%(VWC)温度:一般为±0.2℃,最大±0.4℃(满量程)更多详情请关注北京澳作生态仪器有限公司网站:查询相关仪器资料。联系方式: 索要相关资料。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制