当前位置: 仪器信息网 > 行业主题 > >

在线浓缩富集系统

仪器信息网在线浓缩富集系统专题为您提供2024年最新在线浓缩富集系统价格报价、厂家品牌的相关信息, 包括在线浓缩富集系统参数、型号等,不管是国产,还是进口品牌的在线浓缩富集系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线浓缩富集系统相关的耗材配件、试剂标物,还有在线浓缩富集系统相关的最新资讯、资料,以及在线浓缩富集系统相关的解决方案。

在线浓缩富集系统相关的论坛

  • 如何用SPE法浓缩富集尿液中多环芳烃

    如何用SPE法浓缩富集尿液中多环芳烃?请问各位前辈固相萃取富集多环芳烃时应该使用什么有机溶液来活化和洗脱啊?,应该在前处理的什么阶段进行富集?

  • 大气中挥发性有机物使用富集管预浓缩时,为什么十二烷富集不到?

    如题,进行挥发性有机物富集预浓缩,后端用GCMS检测,GCMS检测结果中C12不能被富集到(10pp和1ppb富集后的峰面积一致,相对其他组分峰面积非常小),请问大家是怎么对C12做富集的?我的吸附管是MK-V3(CarbopackB+CarbopackC+Carboxen1000),后来改成CarbopackB+Tenax TA,但结果都是C12富集不到。请各位大佬指点,O(∩_∩)O谢谢。

  • 【实战宝典】常见的元素在线富集的技术有哪些?

    【实战宝典】常见的元素在线富集的技术有哪些?

    问题描述:常见的元素在线富集的技术有哪些?[font=宋体][font=宋体]解答[/font]:一般采用在线加热、膜过滤等方式去除溶剂,以达到样品浓缩的目的,通过和[/font][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][font=宋体]等检测设备的联用,可以直接检测浓缩的样品,提高检测灵敏度若高倍甚至一个数量级。如[/font]ElementalScientific[font=宋体]公司的[/font]APEX[font=宋体]系列(图[/font]9-5[font=宋体]),通过膜去溶剂系统和多级半导体冷却系统,增大元素信号,同时还能减少氧化物的产生,从而降低氧化物干扰。又如有研究使用石墨基底加热水体样品,再使用激光诱导击穿光谱直接对浓缩后的样品进行检测,整个过程利用中心转盘自动在各个环节中传递样品,实现自动化。[/font][align=center][img=,336,244]https://ng1.17img.cn/bbsfiles/images/2022/07/202207121236164720_5736_3389662_3.jpg!w442x313.jpg[/img][/align][align=center][font=宋体][color=windowtext]图[/color][/font][color=windowtext]9-5ESI Apex Omega High Sensitivity Desolvating Nebulizer[/color][/align]以上内容来自仪器信息网《样品前处理实战宝典》

  • 毛细管电泳在线富集方法(汇总帖)

    在咱们版面看到许多小伙伴儿都涉及到了毛细管电泳在线富集方法的内容,整理一个汇总帖供小伙伴儿们参考。如果有版友有好的想法或者是涉及到了新内容,可以跟帖讨论或者分享哦! 毛细管电泳方法中所采用的毛细管的内径一般为 50 或75μm,小的内径导致进样体积小,烧制的检测窗口光程短,从而使得毛细管电泳方法的检测灵敏度远远低于常规的高效液相色谱(HPLC)。为了改善这一不足,使毛细管电泳技术适合更多的复杂样品中痕量组分的检测,运用在线富集技术于毛细管电泳来提高灵敏度。 目前主要的在线富集方法主要包括堆积、扫集、等速电泳、动态pH 连接等常用的方法。在线富集方法在操作过程中,通过对进样方式、样品基质电导率和浓度、背景缓冲液的酸碱度等条件进行调节就达到了提高灵敏度的效果。操作非常简单、基本没有成本,如果条件优化的充分,方法选择的合适,富集倍数能达到几十倍到百万倍,是一种行之有效地提高灵敏度的方法。 在线富集技术与传统的 CE比较,样品进样体积大,在分离过程中,样品被压缩成较窄的样品区带,从而提高了毛细管电泳的灵敏度。当然单纯地增大进样体积会产生扩散效应,从而导致谱带展宽。一般是通过对在线富集中进样方式、进样电压、背景电解质缓冲液的组成、基质溶液的组成和分析电压的极性的转换等调节来实现富集检测。目前对在线富集的研究对象已从阴、阳离子扩展到中性分子或混合离子的广泛应用,分离模式包括了毛细管区带电泳、胶束和微乳毛细管电动色谱、非水毛细管电泳以及芯片毛细管电泳。在众多不同类型样品的检测和富集中已显示出很大的潜力。 下面的这些帖子(有的在跟帖回答中),可以给版友提供些在线富集方法的信息。1、最新的一种CE在线富集技术(PH栅栏技术)http://bbs.instrument.com.cn/shtml/20061010/583112/ 发帖人:舒衫游鹭2、在线富集知多少 & MEKC与扫集的关系http://bbs.instrument.com.cn/shtml/20120606/4079568/ 发帖人:nini20063、在线富集-场放大进样http://bbs.instrument.com.cn/shtml/20100724/2680001/ 发帖人:gaojing198719874、一些处理区带毛细管电泳柱子的方法!http://bbs.instrument.com.cn/shtml/20091022/2169715/ 发帖人:sunpengwjh5、CE-Online 富集技术之Sweeping第一篇文章,来自http://bbs.instrument.com.cn/shtml/20061010/583045/ 发帖人:舒衫游鹭6、关于毛细管电泳在线富集的方法http://bbs.instrument.com.cn/shtml/20130715/4852356/ 发帖人:孙艳happy7、大家能否谈谈毛细管电泳在线富集技术都有哪些?各自的适用范围又是什么?http://bbs.instrument.com.cn/shtml/20070309/761906/ 发帖人:fhy8028、有人做在线富集的吗?http://bbs.instrument.com.cn/shtml/20100316/2447715/ 发帖人:liranhongde9、我做的是在线富集,在样品溶液中添加了有机溶剂,但不是很多,为什么电流总也上不去?http://bbs.instrument.com.cn/shtml/20101120/2942598/ 发帖人:zhaojieyu2004 如果有毛细管电泳在线富集方法方面的新内容,欢迎版友们来补充分享啊!

  • 【讨论】生物富集作用原理

    【讨论】生物富集作用原理

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012161719_267464_2202755_3.jpg许多污染物在生物体内的浓度远远大于其在环境中的浓度,并且只要环境中这种污染物继续存在,生物体内污染物的浓度就会随着生长发育时间的延长而增加。对于一个受污染的生态系统而言,处于不同营养级上的生物体内的污染物浓度,不仅高于环境中污染物的浓度,而且具有明显的随营养级升高而增加的现象。生物个体或处于同一营养级的许多生物种群,从周围环境中吸收并积累某种元素或难分解的化合物,导致生物体内该物质的平衡浓度超过环境中浓度的现象,叫生物富集,又叫生物浓缩(bio-concentration)。生物富集常用富集系数或浓缩系数(即生物体内污染物的平衡浓度与其生存环境中该污染物浓度的比值)来表示。此外还有人用生物累计、生物放大等术语来描述生物富集现象。前者是指同一生物个体在生长发育的不同阶段生物富集系数不断增加的现象;后者指在同一事物链上,生物富集系数从低位营养级到高位营养级逐级增大的现象。污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。目前最典型的还是DDT在生态系统中的转移和积累。在生态系统中,污染物在沿食物链流动过程中随营养级的升高而增加,其富集系数在各营养级中均可达到极其惊人的含量。生物富集作用生物富集作用又叫生物浓缩,是指生物体通过对环境中某些元素或难以分解的化合物的积累,使这些物质在生物体内的浓度超过环境中浓度的现象。生物体吸收环境中物质的情况有三种:一种是藻类植物、原生动物和多种微生物等,它们主要靠体表直接吸收;另一种是高等植物,它们主要靠根系吸收;再一种是大多数动物,它们主要靠吞食进行吸收。在上述三种情况中,前两种属于直接从环境中摄取,后一种则需要通过食物链进行摄取。环境中的各种物质进入生物体后,立即参加到新陈代谢的各项活动中。其中,一部分生命必需的物质参加到生物体的组成中,多余的以及非生命必需的物质则很快地分解掉并且排出体外,只有少数不容易分解的物质(如DDT)长期残留在生物体内。生物富集作用的研究,在阐明物质在生态系统内的迁移和转化规律、评价和预测污染物进入生物体后可能造成的危害,以及利用生物体对环境进行监测和净化等方面,具有重要的意义。概述  生物富集(bio-concentration),又称生物浓缩,是生物有机体或处于同一营养级上的许多生物种群,从周围环境中蓄积某种元素或难分解化合物,使生物有机体内该物质的浓度超过环境中的浓度的现象。生物富集与食物链相联系,各种生物通过一系列吃与被吃的关系,把生物与生物紧密地联系起来,如自然界中一种有害的化学物质被草吸收,虽然浓度很低,但以吃草为生的兔子吃了这种草,而这种有害物质很难排出体外,便逐渐在它体内积累。而老鹰以吃兔子为生,于是有害的化学物质便会在老鹰体内进一步积累。这样食物链对有害的化学物质有累积和放大的效应,这是生物富集直观表达。污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。富集系数 生物富集常用富集系数或浓缩系数(即生物体内污染物的平衡浓度与其生存环境中该污染物浓度的比值)来表示。此外还有人用生物累计、生物放大等术语来描述生物富集现象。前者是指同一生物个体在生长发育的不同阶段生物富集系数不断增加的现象;后者指在同一事物链上,生物富集系数从低位营养级到高位营养级逐级增大的现象。  污染物是否沿着食物链积累,决定于以下三个条件:即污染物在环境中必须是比较稳定的,污染物必须是生物能够吸收的,污染物是不易被生物代谢过程中所分解的。最典型的还是DDT在生态系统中的转移和积累。  在生态系统中,污染物在沿食物链流动过程中随营养级的升高而增加,其富集系数在各营养级中均可达到极其惊人的含量。作用  生物富集作用又叫生物浓缩,是指生物体通过对环境中某些元素或难以分解的化合物的积累,使这些物质在生物体内的浓度超过环境中浓度的现象。生物体吸收环境中物质的情况有三种:一种是藻类植物、原生动物和多种微生物等,它们主要靠体表直接吸收;另一种是高等植物,它们主要靠根系吸收;再一种是大多数动物,它们主要靠吞食进行吸收。在上述三种情况中,前两种属于直接从环境中摄取,后一种则需要通过食物链进行摄取。环境中的各种物质进入生物体后,立即参加到新陈代谢的各项活动中。其中,一部分生命必需的物质参加到生物体的组成中,多余的以及非生命必需的物质则很快地分解掉并且排出体外,只有少数不容易分解的物质(如DDT)长期残留在生物体内。生物富集作用的研究,在阐明物质在生态系统内的迁移和转化规律、评价和预测污染物进入生物体后可能造成的危害,以及利用生物体对环境进行监测和净化等方面,具有重要的意义。危害  1》铅容易污染蔬菜 ,主要能造成人体造血、神经系统和肾脏的损伤。  2》鱼是汞的天然浓缩器 ,汞(通常以甲基汞的形式存在)在体内代谢缓慢,可引起蓄积中毒,并通过血脑屏障进入大脑,影响脑细胞的功能。  3》水生生物、陆生植物可富集镉 。镉对机体的危害是破坏肾脏的近曲小管,造成钙等营养素的丢失,使病人骨质脱钙,导致“痛痛病”。  4》人是生物富集的最大受害者。有害物质循环 生物富集人类在改造自然的过程中,不可避免地会向生态系统排放有毒有害物质,这些物质会在生态系统中循环,并通过富集作用积累在食物链最顶端的生物上(最顶端的生物往往是人)。生物的富集作用指的是:生物个体或处于同一营养级的许多生物种群,从周围环境中吸收并积累某种元素或难分解的化合物,导致生物体内该物质的平衡浓度超过环境中浓度的现象。有毒有害物质的生物富集曾引起包括水俣病、痛痛病在内的多起生态公害事件。  生物富集对自然界的其他生物也有重要影响,例如美国的国鸟白头海雕就曾受到DDT生物富集的影响,1952年~1957年间,已经有鸟类爱好者观察到白头海雕的出生率在下降,随后的研究则表明,高浓度的DDT会导致白头海雕的卵壳变软以致无法承受自身的重量而碎裂。直到1972年11月31日美国环境保护署(Environmental Protection Agency .EPA)正式全面禁止使用DDT,白头海雕的数量才开始恢复。

  • 【求助】有人做在线富集的吗?

    我是刚开始接触毛细管电泳的,做的水体中的农药残留检测,由于电泳的灵敏度比较差,查了好多文献,决定多在线富集(on-line concentration),用的是最简单的反向电极技术(reversed polarity stacking),但是富集出来的效果很奇怪,按照出峰顺序每个样品峰依次升高变窄峰形越来越好,可最前面的两个峰峰形非常差,我做的是meekc模式的,请问有人遇到过这种情况吗?或者有人在做在线富集的吗?可以跟我讨论一下吗?qq:165691734

  • 【讨论】在线富集-场放大进样

    请问有哪位做过毛细管在线富集,由于本人刚接触这一块,看了一些文献,但是具体怎么操作还是不清楚,有谁能告诉我场放大进样具体怎么操作啊???谢谢!

  • 【仪器心得】+Markes 预浓缩系统使用心得

    【仪器心得】+Markes 预浓缩系统使用心得

    [b][/b][align=center][font=华文宋体][/font][/align][align=center]Markes 预浓缩系统使用心得[/align][font=华文宋体][/font][align=center][b]河南省南阳生态环境监测中心 牛其恺[/b][/align]1、 简介玛珂思国际 (Markes International)成立于1997年,是热脱附领域的全球领导者,通过[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(gaschromatography),加强对痕量挥发性及半挥发性有机物的检测和分析。Markes致力于通过一系列创新、高效的仪器,帮助客户解决在分析中遇到的疑难问题,并为客户提供来自专业应用团队的使用建议。其核心产品UNITY-xr? 及 TD100-xr? 系列热脱附仪广泛用于挥发性及半挥发性有机物的检测,应用场景包括环境监测、国土安全、消费品气体释放及食品分析。此外,还应用于深度研究,如化学指纹图谱、疾病诊断中的呼吸采样及化学生态学调查。[b]2、 背景[/b]2018初国家环境保护部办公厅印发了《2018年重点地区环境空气挥发性有机物监测方案》,要求各地开展对挥发性有机物的监测。我单位河南省南阳生态环境监测中心顺应国家政策要求,斥巨资购置了一套Markes公司的预浓缩系统,自此我与Markes的预浓缩系统产品结下了不解之缘。[b]3、 仪器硬件[/b]Unity-Kori-CIA advantage-xr 联用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]主要用于环境空气挥发性有机物的监测(见下图),由两个部分组成。1、赛默飞世尔公司的 Trace 1300 ISQ 7000[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url],用于环境空气挥发性有机物的测定罐采样方法(TO-15),同时预留FID检测器、DeansSwitch可扩展成TO-15+PAMS+OVOC全组分分析。2、Markes CIA-Advantage-xr,热脱附自动进样器,具有样品选通、内标添加等功能。3、Markes Kori-xr,除水装置,具有冷冻除水功能。4、Markes Unity-xr,热脱附装置,采用电子制冷方式,闪蒸脱附(最大升温速率≥100℃/s),确保化合物迅速从冷阱转移至GC色谱柱。[img=,690,278]https://ng1.17img.cn/bbsfiles/images/2022/05/202205301809422989_2554_4177337_3.png!w690x278.jpg[/img][b]4、 设备特点及使用感受[/b]1、[b]无液氮高效富集浓缩[/b]——采用电子制冷低温冷阱,节省液氮开支,减少液氮带来的安全以及冰堵等问题。感受:液氮制冷方式没有用过,不是很清楚。电子制冷如官方宣传确实很方便,仪器长时间不用,仪器会采取自动保护措施,未碰到冰堵等问题,更换冷阱也十分方便。2、[b]质量流量计精确控制流量体[/b]——MFC精确控制采样体积,可对负压和常压罐样品进行采样,采样体积0.5mL~15000mL。感受:通过MFC采样 20~800mL体积,重复性可以。0.5mL是通过定量环方式采样的,可以进行高浓度样品的分析。采样的动力源来源于采样泵的抽力,可以进行负压、常压、微正压采样,非常方便。3、[b]高通量[/b]——在同一序列中可实现最多27个样品的高通量分析,自动化无人值守。感受:设备共有14个进样通道,可以在序列中实现,可以满足实验室的基本分析需求。同时软件可以进行自动化罐线泄露测试、捡漏、测试等。4、[b]Dry-Focus3?: 无忧采集潮湿空气[/b]——除水的同时不损失任何极性分子。感受:采用-30℃冷冻的方式除水,对65种TO-15挥发性有机物标气进行加湿,线性、检出限、重复性等是满足标准要求的。未确认是否会损失极性分子,感觉还是会有点损失的。5、[b]精确的定量分析[/b]——自动添加内标功能符合国际方法要求。感受:内标添加功能非常人性化,可以内标定量环添加(高浓度),也可使用MFC添加(低浓度)。6、[b]重叠模式[/b]——前一个样品分析的同时,对下一个样品进行前处理,缩短样品分析周期。感受:重叠进样,节省分析时间。这个应该是自动化的预浓缩系统都有的功能吧。[align=left]7、[b]软件操作简单、人性化[/b]——罐、气袋、在线以及吸附管可在同一平台甚至同一序列中混合分析。[/align][align=left]感受:软件确实非常简单,人性化。采用Excel格式排版,功能模块排布清晰。同时预置了多种方法模版,给新手省去了不必要的麻烦。[/align][img=,690,506]https://ng1.17img.cn/bbsfiles/images/2022/05/202205301810085778_2996_4177337_3.png!w690x506.jpg[/img][b]5、 总结[/b][align=left]市场上主流的热脱附仪有很多,包括进口的、国产的,各个厂家设计的理念不同导致各品牌设备仪器的特点不同,软件设置也不一样。Markes的热脱附仪是我使用过多种品牌型号(包括进口国产)中使用的最舒服的一款热脱附仪。刚开始工程师安装时,后面管路密密麻麻看不懂很迷茫,到现场培训时结合软件气路讲解时的豁然开朗;从刚开始触时只会调用方法时的小心翼翼,到后来开发方法摸索条件时的游刃有余,感觉仪器及软件在慢慢引导你在熟悉它,使用它,非常人性化。[/align][align=left] [/align][align=left]欢迎各位坛友拍砖指正~~~[/align]

  • 在线富集知多少 & MEKC与扫集的关系

    跟大家分享一篇文献:《毛细管电泳在线富集技术研究新进展》另外想请教大家一个问题:看起来,扫集(sweeping)是一种基于MEKC(胶束电动色谱)的富集技术,但又不单单是MEKC。看了几篇文献似乎要电动进样。难道电动进样的MEKC就是sweeping?问了些人,人家说不是,但具体如何,还是一头雾水。有谁懂的就给指点下迷津呗……什么?……钱?——有钱!只要回帖都有钱发,嘿嘿~http://simg.instrument.com.cn/bbs/images/brow/em09502.gif

  • 【实战宝典】常见的离子在线富集的技术有哪些?

    问题描述:常见的离子在线富集的技术有哪些?解答:[font=宋体]在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中,一般采用大体积进样环,再加上使用捕获柱捕获待测离子以到达富集的目的,再利用阀切换将捕获的待测离子引入分析柱进行分离和后续的检测。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 关于毛细管电泳在线富集的方法

    大家做毛细管电泳的同学有木有用在线富集方法的?都是什么方法呢,我做药物分析,想用场放大,但是放大效果不好,各位有没有什么好的建议?

  • 【原创大赛】在线富集-高效液相色谱与电感耦合等离子体质谱联用测定玩具中超痕量可迁移六价铬

    【原创大赛】在线富集-高效液相色谱与电感耦合等离子体质谱联用测定玩具中超痕量可迁移六价铬

    [align=center][b]在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用测定玩具中超痕量可迁移六价铬[/b][/align][align=center]欧阳雨,曹国樟,刘崇华[sup]*[/sup],田勇,刘欣欣[/align][align=center](广州海关技术中心,广东广州 510623)[/align][align=left][b]摘要:[/b]采用在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用技术,建立了玩具材料超痕量六价铬测定方法。以10 mmol/L硝酸铵作为流动相,样品在AgilentBIO WAX NP5阴离子交换柱中富集,再通过阀切换,用75 mmol/L硝酸铵洗脱六价铬至DionexAG7阴离子柱中分离,最后经[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]进行分析。在线富集时间为4 min,进样量为900 μL,富集路流速为0.4 ml/min,洗脱路流速为0.6ml/min。实验结果显示六价铬在2~20 ng/L范围内线性良好,检出限为1.93 ng/L,精密度RSD为3.87%。与常规进样相比,浓缩因子约为8.1倍,富集效率约为90%。对2009/48/EC玩具安全指令涉及材料的样品在5ng/L和10ng/L的浓度水平下进行加标回收,回收率在93%~111%之间。[b]关键词:[/b] 在线富集;[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url];高效液相色谱;可迁移六价铬;超痕量[b]前言[/b]铬元素在自然界中以三价铬和六价铬为主要的存在形态,六价铬化合物属于有毒致癌物质[sup][/sup],欧盟玩具标准对六价铬进行限制。2014年8月,欧委会和健康及环境风险评估科学委员会(SCHER)提议将六价铬限量在欧盟玩具安全指令2009 /48 / EC基础上降低21-25倍,对Ⅰ,Ⅱ,Ⅲ类玩具材料可迁移六价铬的限值类玩具分别定为 0.0008,0.0002,0.0094 mg / kg。目前欧盟在研究能够检测出该限值的新方法,并确定在检测方法可行的情况下将会对限量进行修订。2017年公布了修订指令(EU)2018/725[sup][/sup],考虑到当前的检测技术手段,将Ⅲ类玩具材料六价铬迁移限量降低至0.053mg/kg。2018年欧盟发布的婴幼儿安抚奶嘴标准EN 1400: 2013 + A2: 2018[sup][/sup]六价铬的限量降低至0.002mg/kg。2019年发布的EN 71-3:2019[sup][/sup]给出的方法检出限仅为0.0025mg/kg,不能满足SCHER对六价铬的建议限量的检测。未来随着对六价铬的研究加深,对玩具等儿童产品中六价铬迁移量的限制将更加严格,急需新的实用检测方法支撑标准的演进。考虑到样品迁移过程需要稀释,对限量为0.0002mg/kg样品,迁移液六价铬浓度仅为0.004μg/L。目前六价铬的主要检测方法紫外可见光分光光度法[sup][/sup]、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法[sup][/sup]、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法[sup][/sup]、高效液相色谱-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法[sup][/sup]无法对该浓度水平进行检测。目前报道检出限最低的是用生物惰性Bio-HPLC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联用技术,检出限为0.005μg/L[sup][/sup],且Bio-HPLC部件造价较贵,多数实验室大多配置的是不锈钢管路材质的HPLC。本文采用在线富集-高效液相色谱与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]联用法测定玩具材料超痕量六价铬,通过控制在线富集装置,实现对样品溶液中六价铬预先8.1倍富集再进样分析,从而达到检出限降低至2 ng/L(0.0001 mg/kg)的目的,在使用普通不锈钢管路的条件下,可实现SCHER对六价铬的建议限量的检测,能够很好地支撑玩具产品六价铬相关标准的演进和推广。[b]1 实验部分1.1 仪器、试剂与材料[/b][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url](7500cx,配有八级杆碰撞反应池,美国Agilent公司);高效液相色谱(1260,配置2个四元泵G1311A和G1311B,美国Agilent公司);阴离子柱(AG7,4×50mm,美国Dionex公司);阴离子交换柱(BIO WAX NP5,4.6×50 mm,美国Agilent公司);在线富集(SPE)系统(1290 Infinity II,美国Agilent公司);pH计(Thermo Orion);纯水机(Milli-Q Elemen,美国Millipore公司)。超纯水(电阻率18.2 MΩ• cm);Cr(Ⅲ)单元素标准储备溶液(GBW08614,1000 μg/ml,中国计量科学研究院);Cr(Ⅵ)单元素标准储备溶液(GBW(E)080257,100 μg/ml,中国计量科学研究院);浓硝酸(Fisher Scientific,质量分数≥68%,痕量金属级);氨水(Fisher Optima,质量分数20%~22%,痕量金属级);流动相为硝酸铵溶液:由硝酸和氨水混合配制,调节pH=7.0~7.1,浓度分别为10mmol/L和75mmol/L。[b]1.2 样品前处理[/b]称取约0.2g样品,加入50倍质量体积的0.07 mol/L盐酸,调节pH在1.1~1.3,放入遮光的(37±2)℃的恒温振荡水浴锅中以180 r/min的频率振荡1h,再静置1h,后取出用0.45 μm滤头过滤溶液。抽取5 ml滤液,逐滴加入氨水调节pH至7.0~7.1,混匀,待测。[b]1.3 分析条件1.3.1 [/b]在线富集与HPLC条件流动相A(G1311A):10 mmol/L硝酸铵水溶液(pH=7.1);流动相B(G1311B):75 mmol/L硝酸铵水溶液(pH=7.1);富集流速(G1311A):0.4 ml/min;洗脱流速(G1311B):0.6 ml/min;进样体积:900μL;富集时间:4 min;运行时间:12 min。[b]1.3.2 [/b][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]条件 分析模式:氦气碰撞反应池模式;射频功率:1550 W;采集深度:7.0 mm;载气流速:1.05 L/min;等离子气流速:15.0 L/min;辅助气流速:1.00 L/min;碰撞气(氦气)流速:4.0 ml/min;同位素:[sup]52[/sup]Cr;积分时间:0.3s。[b]2 结果与讨论2.1 色谱柱的选择[/b]富集柱的选择时本方法的关键技术。在pH=7.0-7.1时,六价铬主要以CrO[sub]4[/sub][sup]2-[/sup]、Cr[sub]2[/sub]O[sub]7[/sub][sup]2- [/sup]存在,Cr[sup]3+[/sup]主要以[Cr(H[sub]2[/sub]O)[sub]6[/sub]][sup]3+[/sup]形式存在。本文选用由弱阴离子交换填料填充的Agilent BIO WAX NP5作为富集柱,六价铬能在柱内的富集,由于三价铬在该pH下为阳离子,无法富集直接被洗脱,在富集步骤实现了三价铬和六价铬的分离,避免后续分析过程中三价铬对六价铬的影响。避免标准方法中采用的反相色谱柱(C8,C18等)的需要用EDTA络合样品被进一步稀释、使用离子对试剂四丁基氢氧化铵、高含量三价铬的干扰等问题。分离干扰离子并富集后的六价铬洗脱后采用Dionex AG7 做为分析柱可获得满意的效果。[b]2.2 在线富集步骤[/b]六价铬富集步骤如图1所示。富集状态:流动相A和自动进样器将样品压入富集柱,六价铬在富集柱上保留,同时分析柱则用流动B冲洗,此时流路为:样品→4→5→10→1→富集柱→8→9→废液。待样品溶液全部压入富集柱后,切换装置至进样状态:用流动相B洗脱富集柱上的六价铬,并引入分析柱进行分离,再进入[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]进行分析,同时用流动A冲洗富集柱,此时流路为:流动相B→7→8→富集柱→1 →2→分析柱→[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]。[/align][align=center][img=,690,332]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271352364531_8352_1337947_3.png!w690x332.jpg[/img][/align][align=center][b]图1 在线富集装置进样示意图[/b][/align][align=center][b]Fig.1 Injection schematic of on-line enrichment device[/b][/align][b]2.3 富集条件选择[/b]富集时间和富集路流速是影响分析物富集的重要因素,富集时间太短或流速太慢,分析物未完全富集,富集时间太长或流速太快,分析物容易被冲出。配制了10 ng/L六价铬和2 ng/L六价铬的溶液,考查了流速从0.3 ml/min至0.7 ml/min变化时,和富集时间从1 min到6 min变化时,六价铬的富集效果,最终选择选择富集路流速为0.4 ml/min,富集时间为4 min,在该条件下测量低浓度六价铬时有更高的强度,且六价铬峰形良好。[b] 2.4 进样体积的选择和最大进样浓度的确定[/b]因实验室的定量环体积所限,本文进样体积900μL,配制10 ng/L六价铬溶液,改变进样体积范围在500 μL~ 900 μL之间,观察测得六价铬溶液强度的变化。结果如图2a,随着进样体积的增大,六价铬的强度逐渐增大,基本呈线性关系,可以看出900 μL进样量时,加大进样量有望进一步提升富集效果,降低检出限。考虑富集柱的容量所限,为确定方法测试的最大浓度,配制浓度范围为0-100 μg/L的六价铬溶液,进样900 μL,观察测得六价铬溶液强度的变化,发现在0-50 μg/L浓度范围内,六价铬峰面积呈线性。浓度为100μg/L时,六价铬的峰形已发生明显变化,说明此时色谱柱已饱和。即在本文方法下,最大分析浓度为50 μg/L,超过该浓度的溶液需要稀释后再测试。[align=center][img=,684,363]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271354250549_5376_1337947_3.png!w684x363.jpg[/img][/align][align=left][b]2.5 洗脱路流速的选择[/b]改变流速对六价铬的保留时间、峰型、信噪比有明显影响,使用10 ng/L六价铬混合溶液,在富集路流速为0.4 ml/min下,改变洗脱路流速在0.3 ml/min ~ 0.7 ml/min。随着洗脱路流速增大,分离度逐渐下降,六价铬的信噪比先上升后下降,可能是流速过低时,色谱峰宽过大,分析时间延长导致信噪比降低,而流速过高时会加大色谱柱内部扩散,同时增加等离子体负载导致信噪比下降。经过对比,为获得最好的信噪比,选择洗脱路流速为0.6 ml/min。[b]2.6 浓缩因子[/b]常规HPLC与[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]联用技术检测六价铬,检出限可达0.02μg/L[sup][/sup]。若用在线富集技术降低仪器检出限至0.004 μg/L以下,浓缩因子需为5倍以上。本文配制100 ng/L六价铬的标液溶液,分别通过两种方式分析,(1)直接进样100 μl;(2)采用在线富集进样900 μl,结果如图3所示。在相同浓度下,六价铬的强度有显著差异,计算两者的峰面积的比例,得浓缩因子约为8.1倍,大于目标浓缩因子,可满足测试要求。通过浓缩因子8.1倍和实际增大进样量9倍,可算出富集效率为90%,富集效果良好。[/align][align=center][img=,596,313]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271358134818_7713_1337947_3.png!w596x313.jpg[/img][/align][align=left][b]2.7 线性范围、检出限和精密度[/b]按照所选条件,测量六价铬标准工作溶液,浓度为0、2、5、10、20 ng/L。在给定浓度范围内,六价铬呈线性,线性回归方程六价铬y = 1293.3 x + 55.0,相关系数大于0.999,线性良好。重复测量5 ng/L六价铬混合标准溶液八次,对应的RSD 3.87%,精密度满足分析要求。根据液相色谱检出限定义,取信噪比S/N=3时的浓度,计算得到六价铬的检出限为1.93 ng/L,取2 ng/L的六价铬溶液进样分析,回收率为115%。[b]2.8 准确度[/b]分别选取EN71-3三类材料进行加标回收实验,其中Ⅰ类选取某铅笔芯,Ⅱ类选取某款墨水,Ⅲ类选取某塑胶颗粒,结果如表1所示。结果显示回收率在93%~111%,证明该方法的准确度能满足测试要求。[/align][align=center][img=,672,368]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271359248793_4119_1337947_3.png!w672x368.jpg[/img][/align][align=left][b]2.9 阳性样品的检测[/b]应用本方法对白色粉末、透明液体、黄色液体以及蓝色塑胶粒4种阳性样品进行测试,并采用EN 71-3:2019方法进行比对(表2),其中透明液体用本文方法有检出,用EN 71-3:2019方法小于检出限。以EN 71-3:2019方法的测试值为真值,计算测试偏差,偏差均小于15%,说明两种方法无显著差异。[/align][align=center][img=,676,420]https://ng1.17img.cn/bbsfiles/images/2019/08/201908271400352670_6017_1337947_3.png!w676x420.jpg[/img][/align][align=left][b]3 结论[/b]本实验采用在线富集系统和HPLC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]技术,探索并建立了一种玩具材料超痕量六价铬分析的方法。在优化的条件下,该方法的进样量为900 μL,和常规方式进样相比,六价铬浓缩因子约为8.1倍,富集效率约为90%,检出限为1.93 ng/L,可满足SCHER提出的六价铬建议限量的要求,为欧盟进一步修改玩具材料六价铬限值做好准备。本方法仅需在实验室常规检测六价铬的HPLC-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]上加入一个在线富集装置,无需将仪器的不锈钢管路换成无金属背景的生物惰性管路,成本低,在技术上具有可行性,具有巨大的开发和应用潜力。并且在实际工作中可通过进一步加大样品进样量,以进一步降低检出限。[b]参考文献:[/b]1.Mo M S, Zhong C G, Xie J Y, Zhang H X.[i]Practical Preventive Medicine[/i].(莫民帅,钟才高,谢锦尧,张洪霞. 实用预防医学), 2005, 12(1): 41-432.IARC. [i]Genva: World Health Organization[/i],1997: 17-333. Directive 2009 /48 /EC of theEuropean Parliament and of the Council of 18 June 2009 on the Safety of Toys.Official Journal of the European Union,L170.2009.4. Commission Directive (EU) 2018/725of 16 May 2018 amending, for the purpose of adaptation to technical andscientific developments, point 13 of part III of Annex II to Directive2009/48/EC of the European Parliament and of the Council on the safety of toys,as regards chromium VI. Official Journal of the European Union. L122. 2018.5.EN 1400: 2013 + A2: 2018 .Child use and care articles - Soothers for babies andyoung children - Safety requirements and test methods. European Standard.6.EN 71-3:2019. Safety of toys - Part 3: Migration of certain elements. EuropeanStandard.7.GB 7467 - 87. Water Quality - Determination of Chromium(Ⅵ) -1,5-Diphenylcarbahydrazide Spectrophotometric Method. National Standard of thePeople's Republic of China(水质六价铬的测定二苯碳酰二肼分光光度法. 中华人民共和国国家标准).8.HJ 908 - 2017. Water Quality -Determination of Chromium(Ⅵ) - Flow injection analysis(FIA) anddiphenylcarbazide spectrometric method. Environmental Protection Standard ofthe People’s Republic of China(水质六价铬的测定流动注射-二苯碳酰二肼光度法. 中华人民共和国环境保护标准)9.HJ 687 - 2014. Solid waste - Determination of Hexavalent Chromium - by Alkalinedigestion/flame atomic absorption spectrophotometric. Environmental ProtectionStandard of the People’s Republic of China(固体废物六价铬的测定碱消解/火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法. 中华人民共和国环境保护标准)10.Tian Y, Liu C H, Fang H, Li H K. [i]Journalof Instrumental Analysis.[/i](田勇,刘崇华,方晗,邹振基,李函珂. 分析测试学报),2015, 34(6): 706-710.11.LuC Q,[i] Journal of Instrumental Analysis.[/i](禄春强)分析测试学报,2016,35(12):1639-1642.12.Hu Y J, Qin Y L, Lai Y D.[i] Modern FoodScience and Technology[/i].(胡玉军,覃毅磊,赖毅东. 现代食品科技),2014, 30(4): 301-305.13.Ni Z L, Tang F B, Qu M H, Mo R H.[i]Practical Preventive Medicine.[/i](倪张林,汤富彬,屈明华,莫润宏. 色谱),2014, 32(2): 174-178.14.Guo S F, Ling Y T, Wang H, Hu D C, Wang F. [i]Cerealand Food Industry[/i].(郭少飞,凌约涛,王惠,胡德聪,王帆. 粮食与食品工业),2014, 21(5): 95-9815.Yan D, Zou Z J, Song J E, Zeng X C, Zhang Z X . [i]Environment Chemistry.[/i](严冬,邹振基,宋娟娥,曾祥程,张之旭. 环境化学), 2014, 33(6): 1048-105116.Chen L Q, Wang X, Huo J Y, Xing Y N, Chen Z Y. [i]Chinese Journal of Analysis Laborator.[/i] (陈丽琼,王欣,霍巨垣,幸苑娜,陈泽勇.分析实验室),2014, 33(8): 945-94917.Wang X, Xing Y N, Chen Z Y, Huo J Y, Chen L Q.[i]Chinese Journal of Analytical Chemistry[/i]. (王欣,幸苑娜,陈泽勇,霍巨垣,陈丽琼.分析化学研究简报),2013, 41(1): 123-12718.WuS L, Wang X M, Pan C, Yu J, Zhang K, Wang K, Zheng R,[i] Journal of Instrumental Analysis.[/i](吴思霖,王欣美,潘晨,于建,张凯,王柯.分析测试学报,2019,(6):724-727.19.Song J E, Yan D, Zeng X C,Zhang Z X[i].Environmental Chemistry[/i]. (宋娟娥,严冬,曾祥程,张之旭. 环境化学),2013, 32(8): 1590-159220.Wang X, Xing Y N, Chen Z Y, Huo J Y, Chen L Q.[i]Chinese Journal of Analytical Chemistry[/i]. (王欣,幸苑娜,陈泽勇,霍巨垣,陈丽琼.分析化学研究简报),2013, 41(1): 123-127[/align]

  • 【资料】大体积进样&柱端浓缩

    【资料】大体积进样&柱端浓缩

    [img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703102154_44261_1625938_3.jpg[/img]大体积进样&柱端浓缩 Optic [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]进样系统 提高痕量分析—检测灵敏度 简化繁琐的样品前处理过程 可避免样品吸附、分解 OPTIC [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]—MS进样系统为您提供最优解决方案 关键点:Optic大体积进样 突破现有[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分析系统的检测限(FID:0.1ppm-100ppt) 大大降低了[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分析对样品体积和浓度的要求,简化[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]和样品前处理工作,减少有毒溶剂使用量,节省大量时间,提高工作效率。 是实现各种联用技术,如LC-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],SPME-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]—MS的 核心接口技术。 OPTIC程序升温进样器: ● 采用大体积进样技术可以提高检测限,从而减少样品预处理工作。 ● 独特的柱端浓缩(at-column)大体积进样专门针对活泼、热不稳定和易吸附物质,可以获得和冷柱头进样同样的分析结果。 ● 可直接进样分析固体样品中的挥发性成分,无需样品前处理工作。 ● 可直接进样分析“脏”液体样品,实现在线微型顶空进样。 ● 顶空进样和气体样品分析时,有独特优势。 Optic at-column ● 经独特设计的衬管,无需填料 ● 样品在低温下转移到色谱柱 ● 无需优化 ● 分析结果与冷柱头进样相同 食品、药物、生物样品的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分析,样品预处理工作繁琐耗时,而且往往需要进一步溶剂挥发来浓缩痕量样品,以达到检测限的要求。采用先进的进样技术,如大体积进样,固体样品或复杂液体样品直接进样,可以大大提高分析质量,减少样品预处理工作,并且实现全自动化操作。 Hole for removingm solvent Split&purge Valve Target compounds Concentrating point Pre-column 选择Optic的理由1: 通过大体积进样突破现有[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]分析系统的检测限痕量分析(如环境样品,食品溶剂残留,食品中农残分析等)一般是在不分流的模式下进行,通常只能通过更换检测器来提高检测限 Optic进样系统为您提供提高检测限的另外一种更简单直接的方法 河水中痕量合成除虫菊酯的分析 难点1:痕量的合成除虫菊酯就会对脊椎动物产生毒害作用,因此对检测仪器的灵敏度要求很高 难点2:样品中同时含有易分解和高分子量化合 物残留,峰型差,没有适合的大体积进样方法 采用Opitc大体积进样,使最低检测限达到4mg/L, 并且确保衬管内无残留。 最低检测限:4mg/L RSD(以Cyfluthrin为标准): a-Cypermethrin=2.95% Flumenthrin=5.35%选择Optic的理由2: 快速简单的优化步骤 Optic进样器利用溶剂挥发机理实现大体积进样。因此溶剂挥发时间是最重要的参数。分流管内的溶剂传感器可以自动监测溶 剂挥发压力,从而确定其挥发程度,您只需在溶剂挥发曲线上选择分流阀关闭时间。整个操作简单直接,无需繁琐的优化过 程。 ● 分流管内置溶剂传感器,自动确定溶剂挥发程度 ● 内置多种常用溶剂挥发曲线 ● 只需选择溶剂类型和最终压力选择Optic的理由3:最佳大体积进样系统 →一次进样体积达150uL 大部分程序升温进样器一次进样10--20μL,更大体积进样需要通过控制进样速度或者多次进样来实现。Optic进样器使用3.4mmID 衬管,一次进样体积达到150uL。 选择Optic的理由4:特有的柱端浓缩技术(at-column concentration) 采用常规大体积进样技术分析问题化合物,如农残等热不稳定,易分解样品,聚合物添加剂,石化产品等高分子量样品,衬管内填料对组分有吸附和/或催化作用。 Optic)l~特的柱端浓缩技术专门针对这些”问题化合物”,可获得与冷柱头进样相同的分析结果。 DDT,异狄氏剂,杀虫威等热不稳定农残的痕量分析,在热不分流模式下降解严重,因此一般采用冷柱头进样模式, 采用Optic 柱端浓缩富集模式可以获得和冷柱头进样一样的分析结果,而进样体积可达 50-150uL,因此最低检测限也可降低50—150倍。热不分流进样—luL 热分解严重冷柱头进样—1uL浓缩样品无热分解柱端浓缩进样一50uL稀释样品无热分解

  • 【原创大赛】检测成功关键,固相萃取富集高效液相检测法

    【原创大赛】检测成功关键,固相萃取富集高效液相检测法

    检测成功关键,固相萃取富集高效液相检测法 莠去津是一种广谱除草剂,可预防和除杀一年生禾本科杂草和阔叶杂草,对某些多年生杂草也有一定的抑制作用,在我国很多地区都有较多使用,尤其是在玉米、甘蔗产地用量更大。但该物却是一种潜在致癌和内分泌干扰物,目前已被列为国际环境优先控制污染物。 由于莠去津的大量使用,导致我国及国标某些地区的粮食中含有微量的该物质残留,该地区的土壤和水质也有不同程度的污染,严重的危害这我们的幸福生活和身体健康。 为了预防和控制这种污染,检测是很重要的一个环节。下面我们就着重介绍下高效液相色谱法检测饮用水中莠去津含量。实验部分原理 取适量饮用水水样萃取、浓缩,再固相萃取富集浓缩、定容、滤过,由进样系统进样,色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量计算。仪器 液相色谱仪(等度+紫外检测器+柱温箱),氮吹装置,溶剂过滤器,超声波振动仪,KD浓缩器,固相浓缩装置及SPE柱(硅酸镁净化柱)试剂 石油醚、乙醚、甲醇(色谱纯)、二氯甲烷、无水硫酸钠、氯化钠、高纯氮气、正己烷样品制备 标准品制备:准确称取0.01g莠去津标准样品,用少量二氯甲烷溶解后,再用甲醇准确定容至100ml,该溶液为100μg/ml储备溶液,备用。 样品前处理:分两步走。 第一步样品预处理:准确量取100ml水样于250ml分液漏斗中,加入5g氯化钠,待氯化钠完全溶解后加入10ml二氯甲烷萃取1min,注意及时放气,静置分层后,转移出上层有机相,再加入10ml二氯甲烷萃取,分层,合并有机相,有机相经过无水硫酸钠脱水后转入浓缩瓶中。用KD浓缩器将萃取液浓缩至近干,取下浓缩瓶,备用。 第二步固相萃取富集(采用SPE柱净化):将浓缩至干的样品用10mL正己烷溶解;用适量石油醚预淋洗净化柱,弃去淋洗液。当硫酸钠刚好露出,将样品萃取液加入净化柱中,随即用20mL石油醚冲洗。将洗脱流量调至5mL/min,再用20mL的乙醚-石油醚(1+1)洗脱液洗脱;将洗脱液用KD浓缩器浓缩至近干后,用氮气刚好吹干,最后用甲醇定容至1mL,过0.45μm滤膜过滤,待测。色谱条件检测器:紫外检测器色谱柱:C18,(5μm,4.6×250mm)色谱柱波长:254nm流动相:甲醇:水=:80:20(V:V)流量:1.0mL/min柱温:40℃进样量:10μL标准品色谱图: http://ng1.17img.cn/bbsfiles/images/2014/10/201410202218_519227_2498430_3.png某水样样品色谱图: http://ng1.17img.cn/bbsfiles/images/2014/10/201410202218_519228_2498430_3.png 通过以上色谱图我们不难看出,该方法检测饮用水中莠去津准确、可靠、效果好。 该方法成功的关键在于样品前处理固相萃取富集过程,固相萃取有效的去除了目标物的干扰物,保证了检测结果的准确、可靠性;富集使样品浓缩程度更高,这样就大大的提高了方法检出限,是检测成功的另一关键因素。

  • 样品浓缩热脱附

    请问各位老师,GCMS样品浓缩热脱附装置,除了TDU、ATD等一套一套的系统化装置,还有没有什么其他部件可以称样品浓缩热脱附装置的(价格7000元以下)。

  • 英蓝技术之七:英蓝预浓缩

    英蓝技术之七:英蓝预浓缩

    英蓝技术之七:英蓝预浓缩离子色谱的直接检测下限通常为低ppb级(0.1ppb~10ppb),英蓝预浓缩技术使得检测更低的离子浓度成为可能!从机器人样品处理器进入色谱柱前,待测离子通过预浓缩柱被富集。通过控制样品体积或富集时间,可精确控制浓缩的程度,从而大大扩展了离子色谱的应用范围。和大体积进样相比,英蓝预浓缩可有效避免巨大的进样峰干扰,并获得优异的峰形和分析结果。相比大体积进样技术,使用英蓝预浓缩技术还能有效减少进样的体积,可有效保护色谱柱,延长色谱柱的使用寿命。目前,英蓝预浓缩技术已经广泛应用于超纯水的质量监控,阴阳离子的检测下限可达ppt级。英蓝预浓缩模块的很多组件可与英蓝基体消除模块共用,因此配合英蓝基体消除技术,还可分析多种复杂基体中的痕量离子,例如乙醇胺、吗啡啉、氨水等基体中的阴离子检测也均可达到ppt级。英蓝预浓缩实例:核反应堆压力供水中阴离子的检测35ml样品, 0.4 ppm氨水/ 6.0 ppm ETA处理后放置在机器人样品处理器上,过英蓝预浓缩单元进样分析,淋洗液采用3.6mM Na2CO3。英蓝预浓缩实例(单位:ppb)1 F 0.332 乙醇酸 2.233 乙酸 1.644 甲酸 6.475 Cl 0.666 NO3 0.027 PO4 0.088 SO4 0.51http://ng1.17img.cn/bbsfiles/images/2014/12/201412111126_526688_312_3.jpg

  • 浓缩萃取的小疑问

    有个小疑问,就是如果文献里面是1L水样进行浓缩富集到1ml,然后上机检测。文献里面给的结果一般都是水样中浓度XX ng/L,那实际上机测定的浓度应该是这个XXng/L乘以1000?主要是涉及到做标线时的一个样品浓度范围,如果按上面说的,那么标线范围就应该按上机测定的浓度来调整?

  • 【求助】水中铅的富集与处理

    我用二甲酚橙与铅显色分光光度法测水中的铅,最后处理河水测铅,处理方法如下:取已酸化澄清的水样100ml于250ml烧杯中,补加硝酸3ml,高氯酸0.5m1.于电热板上加热消解.蒸发分解高氯酸并浓缩溶液体积为2.Oml左右,取下冷却,加入少量水溶解盐类.转入25ml比色管中.调pH 至中性.视情况加入适量掩蔽剂,接试验方法显色后,测量溶液的吸光度.分析结果见表。我按上面文献处理遇到几个问题:1、水样处理后酸度太大,用什么中和2、我在显色定容后用氢氧化钠固体调节PH=6,出现了大显固体沉淀,且再加HNO3不溶。3、河水样加二甲酚橙显橙色,25ML含铅12.5UG标样加二甲酚橙显黄色(其中都加了柠檬酸三铵,邻二氮菲作掩蔽剂),不知河水中是什么没有被掩蔽和二甲酚橙显了橙色请问有没有更好的铅的富集与处理方法,减少分光光度法测的干扰??

  • 【原创】正大青春宝黄芪提取与浓缩在线测试

    【原创】正大青春宝黄芪提取与浓缩在线测试

    正大青春宝黄芪提取与浓缩在线测试一. 实验目的:利用美国Brimrose公司的Luminar 3060多通路AOTF技术[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对黄芪提取及浓缩过程中主成分的含量及浓缩过程中溶液的密度进行在线测试,以考察仪器在线测试的可行性。二. 实验时间和地点:2006年7月17日~7月28日,正大青春宝药业有限公司中草药提取及浓缩车间。三. 实验方法:[img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701191325_39464_1638147_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701191325_39465_1638147_3.jpg[/img]本方案采用旁路在线检测的方式,从主管道引出一旁路,在旁路上接上十字型流体测样器,在测样器的下游安装一个支管,管上安装阀门通过开关阀门3使流体从管中流出。在实验的过程中,正常状态时阀门3关闭,流体在旁路中流通并返回到主管道中去;当光谱扫描完毕,马上关闭阀门1和阀门2,将阀门3打开,使流体从短管中流出,用塑料样品瓶盛接,接满后盖上瓶盖,取样完毕。然后,关闭阀门3,打开阀门1和阀门2,使流体在旁路中正常流动。因短时间内,溶液的状态不会发生变化,因此可以认为扫描的光谱即为样品瓶中的溶液样品的光谱。将样品瓶用薄膜封口并进行编号,一天的样品收集完成后,统一放到冰箱中保存。然后去分析室用高效液相色谱仪分析各指标的含量数据(分析的数据尽可能准确),将指标的含量数据与对应的光谱数据相关联,当样品达到一定的数量时,用挪威CAMO公司的Unscrambler化学计量学软件计算,得到模型。本次实验分为黄芪提取与浓缩两个过程,提取时溶液的温度为95℃左右,浓缩时溶液的温度为80℃左右。提取分两步:一煎和二煎,每个步骤约90分钟的时间。每个步骤的取样方式为:开始每隔5分钟取一个样品,取约6个样品后,剩余时间每隔10分钟取一个样品。每个步骤约取12个样品。浓缩分两次,每次约4个小时。取样方式为:每次开始的时候每隔20分钟取一个样品,2小时后每隔10分钟取一个样品,并液后连续取样。整个浓缩过程能够取到35个样品。将光纤接到1号通路,利用光纤通过透射的方式采集样品的光谱数据。提取过程每一张光谱都是100次扫描的平均结果,浓缩过程每一张光谱都是200次扫描的平均结果。波长范围1100nm至2300nm,1nm的波长间隔。光谱数据以透过方式采集并处理为吸收光谱的一阶微分。然后利用每个样品主成分含量数据(或密度数据)和该样品的光谱数据一一对应,创建校正模型。利用建好的校正模型对样品进行预测,并计算出各组分的预测偏差。四. 技术介绍[img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701191326_39467_1638147_3.jpg[/img]声光可调谐滤光器(AOTF)工作原理图 [img]http://ng1.17img.cn/bbsfiles/images/2007/01/200701191326_39468_1638147_3.jpg[/img] AOTF实物照片声光可调谐滤光器(Acousto-optic tunable filter,简称AOTF)是一种电光调制器件。其工作原理主要是利用了声波在各向异性介质中传播时对入射到传播介质中的光的布拉格衍射作用。声光可调谐滤光器由单轴双折射晶体(通常采用的材料为TeO2),粘合在单轴晶体一侧的压电换能器,以及作用于压电换能器的高频信号源组成。当输入一定频率的射频信号时,AOTF会对入射多色光进行衍射,从中选出波长为λ的单色光。单色光的波长λ与射频频率f有一一对应的关系,只要通过电信号的调谐即可快速、随机改变输出光的波长。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制