当前位置: 仪器信息网 > 行业主题 > >

应变控制式直剪仪

仪器信息网应变控制式直剪仪专题为您提供2024年最新应变控制式直剪仪价格报价、厂家品牌的相关信息, 包括应变控制式直剪仪参数、型号等,不管是国产,还是进口品牌的应变控制式直剪仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合应变控制式直剪仪相关的耗材配件、试剂标物,还有应变控制式直剪仪相关的最新资讯、资料,以及应变控制式直剪仪相关的解决方案。

应变控制式直剪仪相关的资讯

  • 《应变控制式三轴仪》等两项团体标准送审稿审查会议顺 利召开
    2022年10月14日,中国仪器仪表行业协会组织专家以视频会议形式分别对由浙江土工仪器制造有限公司牵头起草的《应变控制式三轴仪》,以及由中国农业机械化科学研究院集团有限公司牵头起草的《钛合金抗熔滴点燃性能试验方法》两项团体标准送审稿进行审查。两项标准均由中国仪器仪表行业协会试验仪器分会提出,由中国仪器仪表行业协会归口管理。来自中国航空发动机研究院、中国船舶科学研究中心、北京飞机强度研究所有限公司、陆军装甲兵学院、西安航天动力技术研究所、西北工业大学、中国北方车辆研究所、内蒙古工业大学、北京金轮坤天特种机械有限公司的九位专家组成评审组,中国航空发动机研究院的吴长波研究员担任组长。中国仪器仪表行业协会马雅娟主持会议。审查专家组听取了送审标准项目起草工作组的汇报,对标准内容逐条进行审查,对送审稿及相关资料提出了宝贵的修改意见和建议。最后,专家组一致同意《应变控制式三轴仪》《钛合金抗熔滴点燃性能试验方法》通过审查,并希望起草工作组尽早修改完成,报批实施。
  • BROOKFIELD推出实用型应力/应变控制流变仪
    R/S 应力/应变控制流变仪主要有RS-CPS(锥板),RS-CC(同心圆筒),RS-SST(软固体测试流变仪) o R/S流变仪既能进行控制应力的测量,也能进行控制应率的测量 o 扭矩范围很宽:0.05 - 50 mNm.剪切速率:0.01-1000RPM o 能够测量从1到900万cPs的粘度范围 o 转子的安装非常简单、快速 R/S-CPS 锥/板流变仪 1.操作模式包括: 1. 控制剪切应率(RPM) 2. 控制剪切应力(扭矩) 3. 单机操作(不需电脑) 4. 全电脑控制 2.测试方法包括: 剪切应率回环测试; 剪切应力斜坡测试; 单点或多点粘度测量; 温度斜坡测试; 直观的QC/QA检验。 3.可以测出以下特性: 假塑性(剪切变稀)行为 触变性(时间相关性) 温度影响 屈服点 4.温度控制方式: 循环水浴(温度范围取决于所选水浴液体,从 -20 oC到 250 oC) Peltier控制器 (0到135 oC) Electronic控制器(50到250 oC) 请联系: BROOKFIELD上海办事处 上海市海宁路350号联合大厦2211室 电话:021-62576046 13381669566
  • 仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!
    【科学背景】随着纳米技术的迅猛发展,纳米材料在各种高性能器件中的应用引起了广泛关注。纳米尺度结构可以产生极端应变,从而实现前所未有的材料特性,例如定制的电子带隙、提高的超导温度和增强的电催化活性。通过应变工程对材料的物理化学性质进行调控已成为一个重要的研究方向。然而,尽管对均匀应变对热流影响的研究已有不少进展,非均匀应变的影响却由于界面和缺陷的共存而未得到充分研究和理解。应变工程是通过机械变形引入应力,从而调节材料的电子、光学和热学等性质的重要方法。在均匀应变条件下,材料的性质变化相对容易预测和控制。然而,实际应用中,材料通常处于非均匀应变状态,这种应变状态下的材料特性却复杂得多,尤其是在热传导方面,非均匀应变的影响尚未被系统地研究和理解。这一知识空白阻碍了高性能纳米器件的设计与优化,因为热管理是提高器件效率和寿命的关键瓶颈。为了探索非均匀应变对热传导的影响,北京大学的杨林&杜进隆&高鹏团队联合提出了一种通过弯曲单个硅纳米带(SiNRs)来引入非均匀应变的新方法,并测量了其热传导性能。硅纳米带是一种重要的半导体材料,在纳米电子学和光电子学中具有广泛的应用前景。通过在定制的微设备上弯曲单个硅纳米带,引入了精确控制的应变梯度,同时使用电子能量损失光谱(EELS)在扫描透射电子显微镜(STEM)中以亚纳米分辨率表征局部振动光谱。结果显示,应变梯度为每纳米0.112%时,硅纳米带的热导率显著降低34&thinsp ±&thinsp 5%,这与均匀应变下几乎恒定的热导率形成鲜明对比。通过直接测量局部声子模式并将其与纳米级应变梯度相关联,研究揭示了弯曲引起的晶格应变梯度显著改变了振动状态并展宽了声子光谱。这种声子光谱展宽效应增强了声子散射,显著阻碍了热传导。【科学图文】为了研究非均匀应变对硅纳米带热传导的影响,研究者在图1a展示了不同应变条件下热导率(κ)的变化。均匀应变下的硅块和硅纳米线在实验测量(实心符号)和理论模型(空心符号)下的κ变化几乎保持不变,而弯曲硅纳米带的测量数据显示随着应变增加,κ急剧下降,这种变化在应变达到6%时尤为明显。这表明非均匀应变对热传导的影响远大于均匀应变。图1b是悬浮微桥设备的示意图,展示了弯曲硅纳米带如何放置在桥的间隙上。放大的视图显示了由于非均匀应变引起的晶格变形情况。通过这种实验设计,研究者能够在不引入界面和缺陷等其他复杂因素的情况下,精确施加非均匀应变并测量其对热传导的影响。图1c是弯曲硅纳米带的高分辨率透射电子显微镜(HRTEM)图像,插图显示了沿[110]轴的选定区域电子衍射图,验证了硅纳米带的单晶结构。这保证了实验结果的可靠性和可重复性。图1d和1e展示了在最大应变0.65%(图1d)和1.23%(图1e)下,无弯曲的两个弯曲硅纳米带的扫描电子显微镜(SEM)图像。计算的应变轮廓叠加在SEM图像上,以可视化应变分布。应变分布图显示,应变主要集中在纳米带的弯曲顶点附近,这进一步证实了实验中应变梯度的存在和影响。通过这些图像和数据,研究者表明非均匀应变能够显著影响热传导特性,并揭示了应变梯度下晶格动力学的新机制。图1:Si中非均匀应变对热输运的显著抑制。在图2中,研究者首先比较了无应力的SiNRs和弯曲SiNRs的热导率(κ),以理解非均匀应变对声子传输的影响。他们观察到弯曲SiNRs的κ明显低于无应力的SiNRs,并且κ的降低随着εmax的增加而增加。具体而言,对于两个弯曲SiNRs,随着最大主应变εmax的增加,其κ的降幅也逐渐增大。在300 K下,εmax为0.65%的弯曲SiNR no. 1的κ降低了4.2%,而εmax为1.23%的弯曲SiNR no. 2的κ降低了13.1%。为了进一步增加应变梯度并增强应变对声子传输的影响,研究者还制备了带有拐点的弯曲SiNRs,并对其进行了测量。相较于无应力的带有拐点的SiNRs,拐点形态导致了更大的εmax,从而进一步降低了κ。在300 K下,εmax为4.77%的带有拐点的SiNR的κ降低了34±5%,随着温度降至50 K,其降幅进一步增加至43±6%。这些结果表明,在中等应变梯度下,非均匀应变可以显著抑制热传输,从而为纳米材料的热管理提供了新的思路和方法。图2. 弯曲Si纳米带的温度依赖性κ。图3进一步研究了应变对声子传输的影响,通过直接测量弯曲SiNRs的局部声子谱和表征应变梯度沿着应变梯度的演变。研究者利用STEM-EELS技术获得了高空间和能量分辨率的声子谱数据,这为研究非均匀应变条件下的声子传输提供了直接证据。图中展示了不同应变状态下横向声学和横向光学模式的局部振动谱,结果显示,横向声学模式在从压缩到拉伸应变时表现出蓝移,而横向光学模式则显示出红移。这一观察结果与理论计算相吻合,并且显示出非均匀应变导致的晶格畸变对声子谱的影响。此外,研究者还对带有拐点的SiNR进行了测量,并观察到类似的结果。这些实验结果揭示了非均匀应变对声子传输的影响机制,为进一步理解纳米尺度材料的热传输提供了重要线索。图3. 空间解析应变调制声子模式。声子谱展宽效应是指静态分布的晶格应变引起声子频率在给定波矢处的展宽,导致声子散射速率增强。图4a是声子色散关系的示意图,表明在均匀应变情况下存在单一的关系线,而在非均匀应变情况下,由于晶格应变梯度的存在,声子色散关系被扰动,呈现出频率分布。图4b左侧展示了Si的声子色散计算结果,不同应变状态下的声子色散关系。而右侧展示了在给定应变梯度下每个声子模式的应变梯度诱导声子散射率。这一模拟结果显示,随着应变梯度的增加,声子频率分布变宽,从而促进了声子的散射。声子谱展宽效应提高了声子频率的多样性,使得更多声子频率参与到声子-声子散射中,导致了更快的声子弛豫速率和更短的声子寿命。通过模拟计算,研究者还验证了实验结果中观察到的κ减小现象与声子谱展宽效应的关联。因此,图4提供了关于非均匀应变对热传输的基本机制的重要见解,进一步加深了对于材料中声子传输的理解。图4. 非均匀应变诱导声子谱展宽的建模。【科学结论】本文揭示了非均匀应变对热传输的重要影响,并提供了对功能器件进行应变工程设计的价值。通过深入探究应变梯度对声子传输的影响,作者拓展了对材料热传输机制的理解,为开发新型高效热管理技术提供了新思路。特别是,在探索了非均匀应变如何影响声子传输方面,作者不仅揭示了新的声子散射机制,还发现了在材料设计中利用应变工程实现功能调控的潜在机会。这项研究为设计和优化热电器件、热管理系统和热控制器件提供了新的思路和方向。通过结合实验和理论模拟,作者不仅扩展了对声子传输的认识,还为未来材料科学和器件工程领域的发展提供了重要的科学基础。原文详情:Yang, L., Yue, S., Tao, Y. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature (2024). https://doi.org/10.1038/s41586-024-07390-4
  • 【定制产品】上海百若——超纯水介质慢应变速率应力腐蚀试验机YYF
    p style=" text-align: center " /p p style=" text-align: center" img style=" width: 345px height: 500px " src=" http://img1.17img.cn/17img/images/201710/insimg/fed9f818-9b0d-4cf1-87d7-33b2037e3c09.jpg" title=" 1.jpg" height=" 500" hspace=" 0" border=" 0" vspace=" 0" width=" 345" / /p p style=" text-align: center " strong 超纯水介质慢应变速率应力腐蚀试验机YYF /strong br/ /p p   strong  1.生产厂商 /strong /p p   上海百若试验仪器有限公司 /p p   strong  2.采购单位 /strong /p p   原子能科学研究院 /p p   strong  3.主要功能 /strong /p p   阻尼器、助力器耐久性能测试 /p p   加载波形正弦运动规律,编程循环嵌套不低于3层 /p p   对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /p p   产品具有轴向疲劳加载、侧向同时加载的功能 /p p   strong  4.产品技术特点 /strong /p p   1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。 /p p   2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。 /p p   3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。 /p p   4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。 /p p   5) 试验过程中实时显示滞回环曲线。 /p p   6) 试验过程中显示负荷、位移峰值谷值变化情况。 /p p   7) 试验过程中显示动态波形加载曲线。 /p p   8) 采用DCPD(直流电位法)在腐蚀介质系统中测量裂纹长度,进一步提供金属材料在腐蚀介质中的裂纹扩展速率指标。 /p p   strong  5.产品技术参数 /strong /p p   最大试验力:50kN /p p   试验力测量范围:1%~100% /p p   加载头移动速度:10mm/s~1x10-6/s /p p   疲劳加载波形:正弦波,三角波 /p p   工作最大压力:20MPa /p p   试验釜内温度:350℃ /p p   加载头位移分辨率:0.05μm /p p   strong  6.产品应用介绍 /strong /p p   采用YYF-50客户进行金属材料在环境诱导下的腐蚀、应力腐蚀、腐蚀疲劳失效的检测及评价。在整个核电材料领域,材料服役性能的评价、表征等贯穿于核电站设计、建设和运行的整个阶段。基于材料服役性能评价,明确材料应力腐蚀、环境疲劳等失效规律,预测材料的服役性能,评价关键部件的服役安全性,制订关键材料的服役、失效的预防与缓解提供了重要的技术测试平台。采用YYF-50慢应变速率应力腐蚀试验机,客户根据服役的条件,在水化学回路系统上调节PH值,溶解氧DO,电导率等参数,并设置应变或应力控制模式,加载波形及加载频率等参数,试验机即可按规定参数进行试验加载,水化学回路循环,高压釜加热等工作,最终检测出材料在腐蚀环境下的裂纹扩展速率等参数。客户在使用这台设备期间,完成了相关材料的应力腐蚀及腐蚀疲劳的评价。 /p
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 气调包装 | 烘焙产品包装过程中的质量控制
    产品安全仍然是食品生产商的首要任务。高质量的原材料,严格的生产工艺以及包装类型和技术是影响产品安全的主要因素,有助于在产品的整个货架期内保持高营养和感官特征。导致烘焙产品变质和货架期缩短的最常见因素是:微生物生长、老化、水分损失/增加。“延长烘焙产品的货架期通过应用MAP包装技术,可以避免上述因素并延长烘焙产品的货架期。烘焙产品通常采用高CO2浓度包装,并最大限度地降低残留O2水平,几项研究证明了高CO2在降低烘焙产品老化率方面的积极作用。这意味着烘焙产品包装需要用N2和CO2等混合气体冲洗包装中的大部分O2。在烘焙行业,乙醇作为防腐剂会在密封前喷入或注射到包装中,或者通过使用卡片、含有粉末状硅胶的小袋添加。但乙醇会干扰用于质量控制和保证的气体分析仪的O2传感器,需要注意使用正确的传感器方案,保证测试数据的准确性和可重复性。烘焙产品的天然孔隙结构,在储存过程中更容易释放O2到包装的顶部空间中,因此O2含量很难降至最低。在线MAP监控让一切处于控制之中,减少对操作人员的依赖,节省气体并提高您的整体质量控制。MAP可以确保正确比例的气体混合物(CO2/N2)存在于包装的顶部空间中,并将残余O2降至最低。在线气体分析仪是一种实时监测每个包装内氧气和二氧化碳浓度的仪器。一旦参数超出预设限值,分析仪会提醒操作员或自动停止包装线,用户可以完全控制流程并实现可追溯性。烘焙产品MAP应用参考“助力可持续包装的研发供应商为了实现可持续包装的目标,通过引入新材料和不同的解决方案来实现。减少、再利用、回收——这三个概念总结了包装专业人员面临的主要挑战。常见的解决方案:- 减小厚度- 单一材料和功能涂层的使用- 引入新的生物基、生物源可堆肥材料- 回收材料的使用- 纸基材料,可能与其他材料和涂层结合在包装过程中,材料会受到机械和热应力的影响,了解整个供应链过程中包装材料如何反应变得极其重要。这些“新”包装材料的引入已被证明在保护食品免受机械应变方面是有效的,但它增加了确保阻隔性能和密封完整性的挑战。即使包装最初是密封的,几天、几周或几个月后,由于环境变化或运输等其他物理因素破坏,它也可能失去密封完整性。破损的包装可能导致食品流失或变质,除了造成食物、材料、资源的不可持续和浪费外,它更损害了品牌声誉或因误食影响到生命安全。因此,包装类型和包装完整性对烘焙产品是否会暴露在高O2环境中、在储存过程中返潮或水分蒸发、添加的气体混合物(CO2+N2)泄漏等有重大影响。除了选择具有适当阻隔性能的包装材料外,确保包装密封无泄漏更是重要保障。“烘焙包装的密封完整性测试通过选择标准化程序,就可以对包装进行密封完整性测试。通过产生的数据帮助用户选择正确的包装解决方案。它还提供时间、温度、压力、不同密封系统的有效性等信息,以帮助设置正确的包装线密封参数。最常见的标准规范用户使用特定的国际测试规范来建立密封完整性和泄漏测试的程序。最常见的标准是:ASTM F-1140、F-2054、F-2095、F-2096、ISO 11607等。MOCON已经开发、销售和服务用于食品包装(MAP)应用的气体分析仪和泄漏检测设备40年了,MOCON了解不同食物的成分以及它们对MAP气体的反应,我们可以帮助您顺利过渡到MAP包装延长产品的货架期,配合我们的包装泄漏检测设备,保证生产线上的每一个产品的密封完整性。
  • 2010年全国材料检测和质量控制学术会议在上海隆重召开
    由中国机械工程学会理化检验分会主办,上海材料研究所承办的 2010年全国材料检测和质量控制学术会议于2010年8月15日-18日在上海锦江白玉兰宾馆隆重召开。 会议现场 主席台左起:陶美娟、陈文哲、陈超志、钟群鹏、蔡安定、鄢国强、田玲   大会开幕式由中国机械工程学会理化检验分会总干事、上海材料研究所检测中心副主任陶美娟高工主持,中国机械工程学会理化检验分会主任委员、上海材料研究所副所长鄢国强教授首先致欢迎词,中国机械工程学会副秘书长陈超志高工到会表示祝贺并做了重要讲话。中国工程院院士钟群鹏教授、上海材料研究所所长蔡安定教授、中国机械工程学会理化检验分会副主任委员、福建工程学院副校长陈文哲教授、中国合格评定国家认可委员会秘书处田玲教授在主席台就座,来自全国各个行业的知名专家学者、材料检测分析工作者、仪器厂商代表及大专院校学生,共计约150人参加了会议。   在经济全球化和区域经济一体化进程加速推进、市场经济体制不断完善的今天,质量和品牌已经成为市场竞争的制胜法宝。立足以质取胜,培育名牌产品,发展品牌经济,是增强企业核心竞争力的必由之路。今年是质量提升年,加强质量工作,提升质量总体水平,是调结构、促转型的必然要求 是增强综合实力、提高竞争力的迫切需要 是发展生态文明、建设资源节约型和环境友好型社会的重要保障 是提高生活质量、保障人民群众安全健康的根本要求。而材料检测不仅是材料技术的重要组成部分和新材料开发创新、应用的基础,更是加工过程中保证质量的依据和向导,它已成为区分良莠产品的试金石。   本次学术会议特别邀请了北京航空航天大学钟群鹏院士做“失效学的理念及其应用”、福建工程学院副校长陈文哲教授做“材料测试技术的进展与趋势”、《检验检疫科学》杂志主编周锦帆教授做“复杂物质的光谱分析技术”、德国Zwick/Roell公司Reinhard Bardenheier博士做“ISO 6892之应变控制测试技术”、中国合格评定国家认可委员会秘书处田玲教授做“检测实验室质量控制新要求--利用能力验证对检测结果的质量控制”、日本环境技术咨询株式会社滕见和彦主任做“关于日本环境行政管理和质量管理的介绍”、上海材料研究所李光福教授做“核电站关键结构材料的腐蚀失效与相关检测评价”等特邀报告,高屋建瓴地论述了材料检测与质量控制的前沿问题,内容十分丰富。代表们还就各种涉及化学、物理、力学、光谱检测等领域的新理论、新技术、新方法、新经验、新的应用性研究成果以及实验室管理等方面内容进行广泛的学术交流,不仅使与会者开阔了视野、拓展了思路,而且还增进了代表间的友谊。 上海材料研究所副所长鄢国强教授致闭幕词   会议期间还召开了中国机械工程学会理化检验分会七届3次委员(理事)会会议及《理化检验-物理分册》编委会会议。各位委员就如何经营学会、发展学会、提高分会的凝聚力等诸多现实和迫切的问题提出了许多设想与建议。   本次大会得到了上海材料研究所、徕卡仪器有限公司、上海兹韦克仪器科技有限公司、美特斯工业系统(中国)有限公司、岛津国际贸易(上海)有限公司、赛默飞世尔科技有限公司、上海德凯仪器有限公司、无锡英之诚高速分析仪器有限责任公司、国家金属材料质量监督检验中心等单位的大力支持。   中国机械工程学会理化检验分会主任委员鄢国强教授表示,中国机械工程学会理化检验分会将每两年举办一次全国材料检测和质量控制学术会议,为业界人士搭建起一个高级别的学术交流平台,这不仅有助于加强我国理化检验工作者的技术交流和合作,推动材料检测和质量控制工作的技术进步,而且对于促进产品质量提升也具有十分重要的现实意义。
  • 食品微生物控制和防腐剂超标溯源—关键控制因素水活度的缺失
    培安公司 食品里微生物的生长是一个长时间的动态发展过程。食品出厂时,即使微生物检测指标完全合格,在运输、储存和零售等过程中,因为食品贮存环境湿度、运输温度和防腐剂等条件的改变,微生物最终有可能超标,因为这是一个因果关系,只要生长条件如水活度、温度、时间等具备,微生物就会开始持续生长。例如,2005年左右,中国某食品公司从广州向日本出口花生,由于到港后海关检测花生中黄菌霉素超标,连续三次被退回。厂家感到费解的是,明明出港检测产品每项微生物指标都是合格的,在海运路上微生物就长出来了,厂家的解决方案就是多加防腐剂,事后究其原因,一是水活度超标,二是广州到日本海运耽搁了时间,三是运输公司为了节省海运耗油,多赚钱,放宽了对花生运输温度的控制。种种因素造成三次花生出厂时微生物没超标,而到了日本后却总是超标。其问题的深刻和蹊跷,令人深思,发人深省。 中国食品安全质量体系现行相关标准只关注于对微生物生长的现象指标控制,即强制性检测肉毒杆菌、黄菌霉素、大肠杆菌等指标生长的结果,而不监测微生物生长的过程控制因素,如果这些微生物超标,就判断不合格。往往国家和社会对现象结果的过分关注,疏忽了本质原因的关注,达不到微生物生长整个动态过程的监控目标,这是现行国标的一大缺陷。比如,2011年11月,思念三鲜水饺被检出含金黄色葡萄球菌,消费者和媒体纷纷控诉产品不合格,而厂家回应宣称&ldquo 被检出的微生物含量符合新国家标准,产品是合格的&rdquo 。消费者和厂家存在争议,谁对谁错,专家也道不明白。实际上是因为微生物的生长是动态的,生长条件没控制好,一旦开始生长就是持续呈指数倍的生长。产品出场检验合格,到消费者手中就可能不合格了,这只是个时间问题。矛盾的根本原因在于国标未对微生物生长的过程和影响因素强制监控。区别于中国国标,欧美日国家对影响微生物生长的因素水活度进行监控,如果发生此类事件,就可溯源是否是厂家没控制好微生物生长条件的责任。不基于水活度控制的微生物含量检测,只能代表当时样品是否有问题,并不能保证食品长时间的安全性。中国国标把食品安全控制仅仅放在结果表征的层面上,意义不大,治标不治本,最后,把企业界引向了普遍存在的通过添加过量防腐剂来延长保质期的控制误区。 1. 微生物生长特点及复杂控制因素 食品里面微生物生长是一个长时间的动态发展过程,在一定的条件下微生物会不断的以指数倍数增长。微生物的生长,如肉毒杆菌、黄菌霉、沙门氏菌等,其生长过程受很多因素影响,如温度、湿度、渗透压、水活度、氧化还原电位、氧气等因素。为了抑制食品中微生物的生长,企业通常采用热杀菌、冷藏、控制酸度、密封等物理方法杀死产品中的微生物,即使这样也不能将微生物赶尽杀绝,同时采用这些方法还会提高生产成本、恶化口感、并不易于监管和执行。 为了解各种微生物生长过程,需要分析各类影响因素,治标必先治本,我们分别来分析抑制和刺激微生物生长的一些因素,以及一些常用的控制微生物生长的措施的合理性。 第一、自然界中存在大量微生物孢子。孢子是植物所产生的一种有繁殖或休眠作用的细胞,能直接发育成新个体。微生物靠孢子生长,是微生物生长的自然规律,无法改变。孢子繁殖迅速,数量庞大,无法采用杀死孢子的方法控制微生物的生长。 第二、高温消毒。采用热杀菌的方式抑制微生物的生长。例如,将食品高温消毒,如果杀菌温度足够高,病原微生物会被杀死了,但食品本身营养成分活性物质也很可能被破坏,同时也将不复存在,严重影响产品的营养性;同时再冷链运输过程中也会遇到温度失控的问题。即采用高温消毒的方式抑制微生物生长会受到其他因素的制约。低温方法常常受到不可控的贮运及零售条件制约,不以人意志为转移。 第三、控制酸度,采用控制酸度的方式抑制微生物的生长的目的。会受到口味等因素的制约例如,改变食品如橙汁的酸度,来达到抑制微生物生长的目的,同时橙汁口感性状也变了,那么在微生物生长得到控制的同时,消费者不一定会认同太强的酸味。酸度控制,影响食品的最终口味,从而影响产品的市场。 第四、采用控制渗透压的方式来控制微生物的生长,必然要添加较多的糖类、以及盐类物质,这样在增加产品储藏性的同时也增加了食品的健康风险,高糖会增加糖尿病风险,高盐会增加心脑血管病的风险,同时部分高渗透压的芽孢杆菌在如此环境中也会长期存在且会分泌大量的内毒素,如不慎食用也会危及生命健康。 第五、控制水活度。水是生命之源,各种微生物生长在生长过程中,唯一无法替代物质就是水,确切的来讲是自由水。因此通过控制微生物赖以生存的自由水这一因子,可以广泛并且方便地控制微生物在食品中的生长。通过对水活度的控制我们可以实现对加工工艺的精确控制,防止过度干燥同时可以实现对微生物生长的控制。我国传统工艺和生产标准中强调的是水分含量,殊不知真正影响微生物生长的是水活度而不是水分含量。水活度监控,早就是欧美日强制标准,最无风险的方案。在本文中我们会对水活度的重要性和应用做细致介绍。 第六、采用添加防腐剂的方式抑制微生物的生长。由于上述控制方式的缺失,于是防腐剂具有廉价方便的特点被广泛使用,但是防腐剂给人类健康带来的损害是非常严重的,中国已出现食品工业界普遍大量添加防腐剂的现象,以目前广泛使用的食品防腐剂苯甲酸为例,国际上对其使用一直存有争议。比如,因为已经有苯甲酸及其钠盐蕴积中毒的报道,欧共体儿童保护集团认为它不宜用于儿童食品中,日本也对它的使用做出了严格限制。但因苯甲酸及其钠盐价格低廉,在我国仍普遍使用。即使是作为国际上公认的安全防腐剂之一山梨酸和山梨酸钾,过量摄入也会影响人体新陈代谢的平衡。并且,防腐剂对于子孙后代的影响尚没有表现出来,如果等危害儿童的大脑发育,降低国民的智力等这种恶劣影响在我们子孙后代身上表现出来时,那将是非常可怕的,因此防腐剂不值得提倡。 各种微生物生长影响因素 杀灭温度 酸度 水活度 渗透压 防腐剂 肉毒杆菌 100℃ 5hour pH&le 4.8 0.97 19.1%食盐 7ppm亚硝酸钠 荧光极毛杆菌 50℃ 10min PH&le 3.0 0.97 5%食盐 2ppm次氯酸钙 大肠杆菌 60℃ 15min pH&le 5.3 0.95 8%食盐 15ppm二氧化氯 5min 产气荚膜梭状芽孢杆菌 100℃瞬时 pH&le 4.5 0.95 5%食盐 200pp乳链球菌素 沙门氏菌 55℃ 30min pH&le 3.7 0.95 8%食盐 丙酸 0.2%--0.4% 霍乱弧菌 56℃ 30min pH&le 4.5 0.95 5%蔗糖 0.5ppm氯15min 李斯特氏菌 70℃ 2min pH&le 4.0 0.92 25%食盐 0.2%双乙酸钠 金黄色葡萄杆菌 70.4℃瞬时 pH&le 4.8 0.90 20%食盐 5%石炭酸 10~15min 2. 水活度和微生物生长的关系 1)水活度的概念 人们发现水分含量评价的缺陷,一些具有相同水分含量的食品,相同时间内腐败变质的情况明显不同,水分含量相同但保质期却不同。这是因为食品中水的状态,分为自由水和结合水两种。而微生物或生化反应只能利用其自由水能。因此常规的水分含量测定不足以预报食品质量安全。 水活度,简称aw,指食品水分达到平衡状态下,自由水的含量,即系统中水的能量状态标志,近似地可以认为是自由水所占总水分含量的百分比,表示平衡状态下食品中的水与其他物质结合的自由和紧密程度。虽然水含量和水活度都是用来描述水分存在的状态,只有水活度反映食品的稳定性和微生物繁殖的可能性。水是生命之源,自由水含量的多少可以反映出微生物生长的趋势。水活度与食品中微生物生长、生化反应速率、结晶性、溶解性等安全以及功能因素有着密切的关系。相对于温度、pH等因素,水活度是控制食品腐败和确保质量安全最相关的因素。 2)水活度和微生物生长的关系 水活度检测的目的,是解决微生物生长的问题,通过对水活度的检测可以实现对产品安全性的鉴定,也可实现对产品食用安全性做出预警。美国和日本的法规规定,微生物生长受制于最低水活度,高于该aw微生物便开始大量生长。水活度检测70年代就已纳入美国预防性微生物监控,FDA强制规定,库存食品水活度超过0.85就不能上市销售,在日本规定,库存食品水活度超过0.90就不能上市销售。 水活度-稳定性图示 水活度对微生物生长的限值 水活度对致病菌生长的限制 自由水是微生物生长的基础和必要条件。研究证明,反映自由水含量的水活度与黄曲霉菌和沙门氏菌生长呈重要因果关系。如上图所示,当水活度高于0.65时,霉菌开始生长,高于0.91时大多数微生物便开始繁殖。当水活度超过0.70(25℃)时,食品易受黄菌霉素侵染,水活度越高,黄菌霉素的生长也越快,食品的污染程度也越高。水活度还对控制美拉德反应、延缓酶反应和维生素活度产生影响,并且对食品颜色、口味和香味也起决定性作用。 3. 中美食品安全评估体系的区别 水活度概念已成为食品安全预防性控制的关键控制因素,美、日、欧发达国家均已将水活度检测纳入FDA、USDA 法规和GMP、HACCP 体系。 美国在HACCP关键控制点监测系统中明确定义:&ldquo 可通过限制水活度来控制病原体的生长。&rdquo 美国食品与药品监督管理局(FDA)规定:潜在性危险食品是指达到平衡的食品pH大于4.6,水活度大于0.85,此标准可监测预处理是否完全杀死肉毒杆菌。 我们看到,基于水活度体系微生物控制的法规,在美国和日本都是强制性法规,在中国却没有任何强制法规,而是企业自愿引入控制项目。 中国食品安全管理体系没有找到关键控制因素,没有找到基于控制水活度体系真正实现控制微生物生长的因果方法。在美国和日本食品中水活度控制都是强制性法规,在中国既很少见到相关学术研究和讨论,也没有相关水活度控制法规标准,基本上处于被疏忽的状态,主要是企业自愿检测。政府只关心最终结果的现象指标,中国只是强制性检测黄菌霉素、肉毒杆菌不能超过。但如果水活度超标,什么时候微生物长出来,只是一个时间的问题,这是非常麻烦的。所以我国政府经常通过抽查来监控,造成食品中不是防腐剂超标,就是微生物超标的两难境地。中国政府在食品安全质量体系出现严重缺失,我们的专家需要重新的思考对国家的食品安全的责任。 4. 微生物生长的关键控制因素是水活度 中国的食品安全管理体系问题在于,现行微生物指标控制标准受微生物动态发展过程的制约,中国的食品安全管理体系是建立在以治标为基础上的。我们规定,黄菌霉素不能超过多少、肉毒杆菌不能超过多少,这其实都是长出来以后的数值,关键在于,微生物的生长是持续性的,今天的数值和明天的数值不一样,这样就导致今天检测出来是合格的,明天测出来也许就是不合格的。因为微生物在生长,并且条件不一样生长的速度也不尽相同,很难控制。微生物的生长过程并不能通过检测结果来控制,只要条件存在,微生物的生长就是持续的动态过程。人为可控的关键因素是控制微生物生长的条件。控制微生物的生长条件,才能从根本上保证微生物的含量不超出安全范围。 在一个模糊控制系统内,有很多关键控制因素相互影响,并会影响到最终结果,分析这些控制因素之间的主次关系,一定要找到最关键控制因素,就找到了主要矛盾,以此为基本控制点,纲举则目张,为全面影响和改善系统控制的结果,所以我们怎么在一个动态微生物生长系统里,找到在系统里治本的方法。水活度在食品微生物生长影响因素控制中,是最直接、最基础,最容易的。水活度是微生物生长的关键控制因素,它是问题的关键,是主要矛盾。要从根部把微生物掐死,那就只能是控制水活度。 微生物生长从根本上讲,是由于水活度起基础作用,没有水活度,其他如温度、酸度超标将不产生作用。采用控制水活度的方式抑制微生物的生长。相比控制其他因素的优点是更全面、更节省、更经济,防范于未然。 食品温度、酸度和水分等受很多因素的制约,无法自由控制,既不能改变食品的口味,又不能消毒过分。寻求食品中微生物生长最佳控制方法控制水活度可控制微生物生长,通过加防腐剂的方法来阻断微生物生长的潜在危害非常巨大,要追踪微生物生长的动态,找到微生物生长的源头,即水活度(活性水),进行水的能量控制,通过控制水活度的方法切断微生物生长的源头,才能真正控制微生物的生长。如果中国建立以水活度为强制控制因素,未来就不会出现那么多的防腐剂超标和微生物超标的问题。 5. 防腐剂普遍超标是关键控制因素缺失的必然结果 1)防腐剂和防腐剂过量的危害 防腐剂(preservative),是指天然的或化学合成的物质,加入食品、药品、颜料、生物标本等,可以延迟微生物生长或化学变化引起的腐败。在绝大多数情况下防腐剂会给接触者带来一定的健康风险或健康损害。食品工业中常用的防腐剂有亚硝酸盐、苯甲酸钠、三梨酸钾、二氧化硫等,防腐剂超标准使用会对人体造成损害,防腐性能越强的防腐剂对于健康的损害也就越大。 中国食品行业面临一个巨大的安全隐患,是防腐剂的过量添加。防腐剂严重超标的问题,刻不容缓,状态非常紧急,如果防腐剂持续超标,儿童智商会收到影响,解决防腐剂超标问题,利国利民。但现实情况是,企业找不到微生物生长的原因,不得不在食品中大量添加防腐剂,抑制微生物的生长。企业通过添加大量防腐剂解决微生物生长,本身就说明中国现行管理体系是失败的。 较三聚氰胺来讲,中国食品安全质量体系存在比三聚氰胺还可怕的问题,即大规模防腐剂超标的问题。三聚氰胺已经引起重视,其作为一种非法添加剂已经被取缔,毕竟乳制品只是菜单中很少的部分,相比牛奶我们在日常生活中食用了更多的含防腐剂的各种固体食品。因为防腐剂不会立即让你出现问题,防腐剂对于人体健康的伤害是渐进的,不会在某个时间集中爆发出来。已经有研究证明的是长期食用大量防腐剂,会扰乱人体代谢平衡,而防腐剂的慢性伤害问题,还在研究。可能你长大了,会成为一个低能儿,大脑反应迟钝,身体也不好,发育也不健全,因为防腐剂问题的隐秘性,使得人们对防腐剂的警惕程度大大降低,更使得部分对健康造成潜在危害的防腐剂,作为合法添加剂在食品工业中大量使用。解决防腐剂超标的问题,利国利民,刻不容缓。 2)使用防腐剂的原因 现行食品卫生标准中关于微生物控制指标,是强制性标准并且详细给出了限值,并未就控制微生物生长影响因素等条件作出任何指导性的意见和规定,这是中国食品安全评估体系的根本缺陷。中国食品安全质量体系中,对微生物生长的控制,只测标不测本,即只测肉毒杆菌、黄菌霉素、大肠杆菌等指标,如果微生物超标,就判断不合格,即只把食品安全控制放在显性的表征上来。这种标准建立的基础是不可靠的,也是非常搞笑的。导致的最直接后果是,企业为了产品合格,把具体的品质控制目标就变成了单一的迎合这些标准的要求。食品里面微生物生长是一个长时间的动态发展过程,食品出厂的时候,微生物没有长出来,企业不知道是哪里出了问题,因此为了保险,不得不大量添加防腐剂,目的是抑制微生物生长,延长保质期。于是,防腐剂便作为杀灭细菌微生物的有效制剂而大行其道。 《食品添加剂使用卫生标准》严格规定了防腐剂的种类、质量标准和添加剂量,但令人感到十分遗憾和极为担心的是,许多食品生产企业违规、违法乱用、滥用食品防腐剂的现象却十分严重。主要原因是微生物超标的危害是即时性、致命性的,如可能爆发集体性食物中毒事件。而防腐剂对于人体健康的伤害是渐进的,不会在某个时间集中爆发出来。这样使得防腐剂的问题更加隐秘,使得人们对防腐剂的警惕程度大大降低。更使得部分对健康造成潜在危害的防腐剂作为合法添加剂在食品工业中大量使用。生产者在经过利益权衡后,往往会选择增加防腐剂的用量来达到杀灭微生物的目的,这样便可以将致病微生物超标的风险降到最低。而微生物如果超标那么对于食品生产者来说是致命的。如集体性食物中毒事件往往是由于致病微生物造成。 3)防腐剂普遍超标是必然结果 众所周知,通过控制温度、酸度等传统手段来解决微生物生长的问题都不现实,存在着种种弊端。而水活度作为微生物生长控制的关键因素,在中国食品安全体系里没有得到体现,使得企业缺乏水活度控制微生物生长的指导方法,而防腐剂能很好的平衡生产工艺、流通控制、产品口感等各方面的问题,于是在中国食品界出现了一个有趣的现象,微生物不超标,防腐剂大量超标。 中国食品中微生物不超标而防腐剂超标的原因是,中国没有水活度的强制标准,食品行业不控制水活度,只单纯依赖防腐剂来控制微生物,不但治标不治本,甚至会因食用过量防腐剂带来更大更长久的身体伤害。区别于中国食品安全体系,欧美日等发达国家都对水活度控制食品生产有指导意见,并实行强制标准。美国食品药品监督管理局(FDA)所规定的食品生产过程良好操作规范(GMP)中明确地把水分活度定义为反应食品安全性的重要指标。在危害分析关键控制点(HACCP)监测系统中明确定义:&ldquo 可通过限制水分活度来控制微生物病原体的生长。&rdquo 例如,在美国规定火腿肠水活度不能超过0.85,而我国火腿肠水活度都是一般都在0.9以上,如果套用发达国家的标准的话,水活度全部超标。可是,食品微生物却没有超标,吃起来味道还行,原因是防腐剂早就过量了。 对于一个食品中诸多微生物控制指标来说,如果只有其中一项防腐剂的含量超出规定,相对这不是一个大问题,两害相权取其轻,许多生产控制成本可以降低,对于食品生产者来讲这也许仅仅是从利益最大化,风险最小化的角度来对这个问题做出的决策,造成防腐剂在国内食品工业中大量滥用。表面上看这是一种不合法也不合乎情理的做法,但是从更深层次的角度来看,这其实是制度的缺失。这是由于国家未将控制微生物生长的关键控制因素即水活度,引入到食品安全风险控制体系中,指导食品企业应用到生产过程,而带来的必然结果。 6. 水活度控制是解决微生物和防腐剂超标一系列问题的关键控制因素 食品安全受多种因素影响和制约,其中最重要的就是微生物含量的控制。在微生物宏观控制体系里,涉及一个保质期的问题,牵涉到运输、温度、防腐剂等条件。从动态发展角度来看,微生物的生长是一个不断变化的过程,还没长出来时,测这些指标是意义不大的,因为随着时间的推移,条件一旦形成就会迅速长出来的。中国现行的食品安全的标准建立在测试各项微生物含量上,如黄菌霉素、肉毒杆菌、大肠杆菌等,国家指标规定是这项不能超,那项不得检出,问题这是一个不断增长的动态问题,我们要用长远发展的眼光来看,今天可能是合格的,明天可能就是不合格的。所以,给企业带来了很大的困惑。只把食品安全控制放在某一个时间点的显性的表征上来,就给防腐剂添加创造了客观条件。对于厂家来说,微生物今天测达标,明天又长出来了,他也不知道是什么问题造成的,为了保险起见所以就大量添加防腐剂。 如何在宏观控制体系里面,找到关键控制因素,找到阻断微生物生长的方法,围绕这个中心,指导食品加工企业的产品设计,生产过程控制、运输、保管和零售,必须从链条的源头上即开始置入水活度的理念。国家没有指导性的标准方法,企业为了对微生物进行控制,简单的将添加防腐剂作为主要控制方法,我国现行的食品安全控制体系指导思想缺失是造成企业过量添加防腐剂现象的更深层次原因,而不能简单地只从企业上找问题,体系的失败才造成企业大量通过防腐剂解决微生物超标问题,如果我们建立以水活度为控制微生物生长关键控制方法,厂家就不需要加很多防腐剂。防腐剂最多只会作为一个次要的辅助手段,滥用现象将会大大降低。 微生物生长是一个持续的动态发展的过程,要对它进行全程监控,就要找到提供微生物生存条件的源头,也就是活性水,即控制水活度。也就是说,食品安全性不能仅依靠于产品问题的检测, 而是必须在整个生产过程中被控制。控制食品生产的水活度,就等于切断了微生物生长的源头。追本溯源,才能防范于未然,才是最根本,最可靠,最经济的关键控制因素的思路。 中国安全质量体系需要重新思考,需要从根本上找到微生物关键控制因素,即控制水活度。而不是花多少钱,买多贵多好的仪器,重点是买正确的仪器,这个正确的仪器,即在一个复杂动态宏观系统里,能起到关键控制因素的仪器。要注重和完善危害分析和关键控制点(HACCP)体系,在微生物控制方面,应当建立水活度的强制标准。如果中国建立以水活度为强制控制因素,未来就不会出现那么多的防腐剂超标和微生物超标的问题。提出关键控制因素的理念,通过水活度的合理控制,我们可以实现加工工艺上的突破,并有效补充传统工艺的不足;可以降低防腐剂的使用,有效降低食品安全风险;可以节约成本、便于检测,让得水活度检测成为一种最方便高效的食品安全风险预警手段。这是一个利国利民的意愿,这是我们对国家和民族的责任。 微生物吃坏你的肚子,防腐剂吃坏你的大脑,请爱护我们的儿童! 监控水活度、杜绝防腐剂 降低微生物风险! 培安公司版权所有,如需转载,请注明出处。
  • 仪器新应用!中科大在纳米尺度上实现2D铁电材料中铁电极化的任意控制!
    【科学背景】随着室温超薄铁电材料的出现,包括氧化铪、钙钛矿氧化物和范德瓦尔斯(vdW)材料,科学界开始关注这些材料带来的新颖性和潜在应用。这些超薄铁电材料的出现挑战了长期以来对铁电性的关键尺寸效应的认识,为开发微型铁电器件并将其集成到现代半导体技术中提供了新的机遇。电容效应通过应变梯度和电极化的耦合来操纵铁电性质,而无需外部电压。这一效应的引入使得铁电材料的控制变得更加灵活,并有望在低维系统中发挥更大的作用。然而,尽管已经取得了一些进展,但到目前为止,在铁电材料中广泛实施柔电控制仍然比预期中少见。其中一个主要问题是机械开关路径通常被限制为单一或固定方向,导致了柔电控制的缺陷。为了克服这些挑战,中国科大合肥微尺度物质科学国家研究中心曾华凌教授课题组和云南师范大学付召明教授合作通过使用范德瓦尔斯材料的固有柔性,利用纳米尖印压技术在超薄铁电材料CuInP2S6(CIPS)中实现了任意极化反转和人工域工程。相关研究在“Nature Communications”期刊上发表了题为“Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics”的最新论文。他们观察到,在纳米尺度下施加压力后,CIPS的形态经历了一种延展变形,这种软变形导致了双向柔电场的产生,从而使CIPS的极化可以双向反转。通过控制施加的尖端力,他们还能够实现不同形状的纳米域的选择性生成,并且可以观察到铁电域的转变。【科学亮点】(1) 本研究首次通过尖端印压技术在超薄铁电材料CuInP2S6(CIPS)中实现了任意极化反转和人工域工程。与传统体材料中的硬接触情况不同,本研究利用原子力显微镜(AFM)尖端在纳米尺度下施加压力,观察到CIPS的形态经历了延展变形。(2) 实验结果显示,CIPS的软变形归因于其vdW材料的固有柔性,并产生了一个双向柔电场,使得CIPS的极化可以以双向方式反转。通过该技术,研究人员成功在预极化样品中选择性地生成了不同形状的纳米域,如点和环。(3) 进一步的研究表明,通过施加不同的尖端力以反转向下的铁电域,可以观察到三叶域向环域的转变,表明CIPS中存在面内各向异性的柔性。【科学图文】图1:二维材料中铁电极化力学双向调控策略演示。图2. 二维CuInP2S6中可逆无损挠曲电调控的演示。图3. 载荷力对极化和域的影响。图4:超薄CuInP2S6中的瞬态柔电控制。图5:任意柔电域工程。【科学结论】本研究提出了一种机械方法,可在纳米尺度上实现二维铁电材料中铁电极化的任意控制。通过利用超薄铁电材料中的面内各向异性柔性,并通过巨大的柔电场实现了独特的高极化铁电态。这一发现为利用机械手段在二维极限下可靠地切换铁电极化提供了新途径。作者的结果揭示了柔电控制在切换超薄铁电材料中复杂铁电性方面的高效性,同时为探索铁电性相关的新功能提供了有力支持。此外,实现的大应变梯度还为研究机械控制二维材料的电子、光学和磁学性质提供了重要机会。这些发现有望推动铁电材料在新型电子器件、光学器件以及磁学器件方面的应用,并促进了对超薄铁电材料的深入理解和开发。原文详情:Liu, H., Lai, Q., Fu, J. et al. Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics. Nat Commun 15, 4556 (2024). https://doi.org/10.1038/s41467-024-48892-z
  • 北京博赛德参加"第六届全国恶臭污染测试与控制技术研讨会"
    为推动我国恶臭污染防治事业发展,促进科研创新能力和产业技术整体水平提高,深化国内外恶臭防治成果和经验的广泛交流,创造产学研合作机遇,国家环境保护恶臭污染控制重点实验室联合恶臭污染控制产业技术创新战略联盟于2016年11月17日-18日在上海召开“第六届全国恶臭污染测试与控制技术研讨会” 作为重要的恶臭技术支持单位,北京博赛德科技有限公司携带先进仪器参加了此次会议。并在会上与专家学者BCT《恶臭污染物的相关采样分析技术》作了报告和交流。 报告分别从实验室分析方案、现场分析方案和连续自动监测分析方案着手,讲述了几种既可以独立使用,又可以相互结合的恶臭采样及分析技术。 实验室分析方案:对于空气中硫化物的常规监测多采用罐现场采样,实验室低温冷阱浓缩—气相色谱/质谱法分析,美国ENTECH公司独特的Silonite硅烷化技术,罐采样技术,以及三级冷阱大气预浓缩技术为该方法提供了坚实的后盾。Silonite硅烷化技术和罐采样技术避免了样品和采样及储存设备发生吸附及化学反应,保证了硫化物样品的稳定。大气预浓缩三级冷阱技术消除了空气中的干扰物质,保证了超低的检测限。报告中还介绍了ENTECHBCT新的1900多罐采样系统,Sorbent Pen被动及主动采样吸附笔等,新的设备实现了罐采样的自动化及不同情况下的不同采样,扩大了采样及分析的应用范围。 现场分析方案:现场分析监测注重的是便携、皮实、可靠、数据实时准确。HAPSITE ER便携式气质联用仪BCT是这么一款轻巧便携,可在移动中连续监测,快速分析出污染物、污染浓度,并给出污染范围和安全区带的精密设备。目前国内许多环境监测部门、卫生疾控系统、安检系统以及一些科研院校等都陆续配备了这套设备,并在很多重大事故中发挥着重要作用。 连续自动监测分析方案:在线连续监测具有重要的意义,一方面可以获取平时的质量数据,为以后决策做出依据,另一方面出现污染事件时,能够及时发现并作出响应。针对大气中的恶臭监测,报告中介绍了一款实时直读的在线大气硫分析仪AE2430,该仪器使用独特的FPD(火焰光度检测器),对空气中低含量的硫化物有着极高的响应值。通过不同配置,可以分别实现对总硫、硫化氢、二氧化硫等的在线分析与监测。 本次会议期间,北京博赛德采用了现场演示产品,现场测样验证的方式,使大家对恶臭相关技术和设备有了更深刻的认识和了解。 美国ENTECH公司是一家专业从事VOCs采样系统的生产商,拥有全球BCT先进、BCT丰富的气体采样设备和气体进样设备的生产经验,尤其是在苏码罐方面,其BCT的Silonite技术是被公认为BCT为先进的硅烷化技术之一。ENTECH的苏码罐采样及大气与浓缩技术得到了用户的一致好评,被美国EPA TO14、TO15方法引做标准。关于博赛德: 北京博赛德科技有限公司成立以来,一直致力于帮助用户寻找先进的有机样品检测的解决方案,从POPs类样品的采集,到各种种类繁多的有机物的前处理以及在线及现场应急监测手段,竭力将全球前沿的科技研究成果带到中国。作为全球众多知名前处理分析仪器生产厂商在华的BCT代理及合作伙伴,其产品主要包括美国CDS、ENTECH、FMS、INFICON、瑞士CTC、意大利DANI、TCR等公司。1900多罐采样系统1900多通道罐采样系统是 Entech全新一代的采集空气样品BCTsilonite® 真空采样罐,并拿到实验室用GC/MS或者GC/MS/FID进行详细分析的解决方案。相对于其他品牌市售采样器,1900在样品流路上做了显著改善,使潜在污染的可能性几乎为零。流路中彻底摈弃了质量流量计与电磁阀,因为在这些器件中都含有弹性的密封材料,而这些密封材料都会释放出VOCs,使得仪器空白很难达到亚PPB水平以下。1900采用了独特的控制方式来启动、终止和控制整个采样过程,维持系统洁净性的同时也注重操作使用的简便性,确保整个系统做到精确的、长时间的积分罐采样。前面板上内置完整版Win10控制器,允许1900进行远程操作,减少现场编程的需要。 ? 内置计算机 Win10触摸平板电脑控制器,自带WIFI功能,和6小时的备用电池。 ? 方便的流量调节1900内置CS1200E时间积分采样器,只需更换限流器即可调节采样的流量范围。对于0.6-6L的罐子可设定流速为0.2-5cc/min,实现24小时采样;也可设定流速为10-400cc/min,进行快速、短期的采样。1900轻松应对各种采样流量的优化调节,可调流速范围为0.1-500cc/min,BCT长可实现6周采样。 ? 系统校正简单 1900每个罐子的入口都有压力传感器,用于压力测量及自动检漏。通过罐子的压力变化速率来测定采样的流速。只要输入已知校正体积填充所需的时间即可自动完成流速校正。此校正简单且长期稳定可靠,可大大减少系统维护的时间和费用。 ? 采样设置灵活:从临时采样到长期监控采样 1900可用几种不同的方法来配置通道1,以提高系统灵活性。 -可设定在不同的日期与时间进行定时采样,也可通过其它传感器或远程采样请求事件触发单个罐子进行采样;-8路扩展通道用于8个采样罐的编程采样,或者扩展为8路事件触发采样;-24个600cc采样罐的外部采样组,用于连续监测C2-C12化合物、空气有毒有害物质、醛酮类物质以及一些恶臭气体。 ? 无加压采样1900采样期间不会对样品进行加压,可避免水气的冷凝,从而提高极性化合物的回收,以及避免因液体冷凝带来的化学反应。吸附笔采样系统?新的EPA325方法2015年秋天刚刚完成?分析苯系物,通过1-2周的被动采样?在欧洲对苯和苯系物有很多非常严格的例行监测 ?使用解析笔和5800检测从苯到二甲苯有很好的结果,有很好的稳定性。吸附笔+ 罐采样?化合物的检出范围BCT大化 ?SVOC被吸附笔吸附,VOC被苏玛罐采集。 ?检测2,3,4环物质BCT好的方法,沸点在250-500℃之间?比其他任何空气监测技术更普遍?气味物质只用苏玛罐无法检测到。 o重的胺类化合物 o脂肪酸 o重的硫化物 便携式气质联用仪仪器简介: 美国INFICON公司是个具有很强的专业背景及200 多年悠久生产历史的上市公司,而HAPSITE正是基于其长期的四极杆及真空技术的积累才推出来的针对环保现场使用的一台仪器,自其推出BCT今,仍然是世界上BCT的一台便携式、完全车载式气质联用仪。它完全保留了经典的四极杆气质联用仪的谱图的BCT匹配性及定量的稳定性;同时又克服了传统的实验室GC / MS 中真空泵对环境的苛刻要求的局限性。 HAPSITE主要用于现场检测、鉴别和定量有毒的工业化合物(TICs )和生化武器制剂(CWAs ) ,随时随地提供需要的结果。GC 的高效分离与MS 的准确定性相结合,被认为是分析精度BCT高,正确鉴别有机化合物BCT有效的手段之一。使用HAPSITE化学物鉴别系统,可在数分钟内取得结果,作出与生命、健康、安全和环境有关的关键性决定。 全套装备齐全的HAPSITE化学物鉴别系统是坚固牢靠和容易使用的。野外使用配备有可充电电池,24伏转换器用于有外电源的情况下。特别设计的结构可经受恶劣的气候条件,整个仪器全天候的,易于去污染。经环保局、军事部门、HAZMAT应变组、烟道测试公司和环境与工业职业保健等大公司多年使用,认为HAPSITE可靠耐用,适宜于野外分析。 主要特点: ▲采用NEG 泵真空技术,始终保持真空,可以移动中工作,轻松应对任何紧急情况 ▲BCT的GC 与MS 的接口设计,使其可实现MS 连续直接进样,且与GC 进样模式切换简单 ▲操作简单,三键式即可完成全部操作;内置标样,便于现场未知物的快速定量分析 ▲防水、防震等设计,能适应各种恶劣环境,全密闭设计大大减少了气体的消耗 ▲HAPSITE顶空进样系统提供了水和土壤中VOCs 的高精度现场分析 ▲革新的具备温度编程功能的低热容量GC 烘箱结构,扩展了单次进程可以测分析物的范围和缩短分析时间 ▲微阱注入模式使HAPSITE化学物鉴别系统可检测PPt 范围的化学物,而标准闭环注入提供从PPbBCTPPm范围的直接分析 ▲内置的全球定位系统(GPS )使HAPSITE可自动精确记录取样位置的经度与纬度,以及野外数据、时间和日期用于犯罪和/或民事的审定中可作为合法的、有辩护力的依据 ▲仪器内置操作系统和基本的AMDIS 挥发性毒物谱库,可独立使用,也可通过笔记本电脑操作 ▲野外使用配备有可充电电池,24伏转换器用于有外电源的情况下,特别设计的结构可经受恶劣的气候条件,整个仪器全天候的,易于去污染,携带方便,适宜于野外分析。AE2430在线硫分析仪
  • 百若仪器:慢应变速率应力腐蚀试验机的研发成绩斐然
    2014年,上海百若持续创新,研发再上新台阶。YYF-50系列慢应变速率应力腐蚀试验机产品的研发,填补了国内在材料应力腐蚀敏感性研究领域的空白,产品处于国内领先,可完全替代同类的进口产品。该产品已在高温高压的超临界水介质环境、高温铅铋液态介质环境、高温盐溶液介质环境、高温高压H2S介质环境、海水环境等腐蚀介质应用领域成功使用,可进行慢应变速率腐蚀拉伸、应力腐蚀、腐蚀疲劳、腐蚀裂纹扩展测量、精确裂纹预置、低周疲劳等试验。在腐蚀介质环境下进行材料的腐蚀裂纹扩展测量存在较大技术困难,传统的COD法已不能实现测量应用,DCPD方法是腐蚀介质环境下测量裂纹扩展普遍推崇的方案,上海百若耗时多年进行研发和测试,完成了腐蚀介质环境下通过DCPD法精确测量材料裂纹扩展及扩展速率计算。该技术已成功在设备上安装使用,获得了用户的高度评价和认可。不断地研发投入和全面的科学测试,上海百若在应力腐蚀试验设备的销售推广取得了骄人的成绩,在诸多领域提供了试验设备:1. 高温高压超临界水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。2. 高温铅铋溶液,慢应变速率拉伸,腐蚀疲劳。3. 高温盐溶液,慢应变速率拉伸,腐蚀疲劳。4. 高温高压H2S,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。5. 常温常压海水,慢应变速率拉伸。6. 微高温海水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。7. 硫氰酸溶液,慢应变速率拉伸,氢脆敏感试验。2014年,加氧测量与控制水化学系统完成了设计和组建,并成功运行,系统得到了用户肯定和赞许。用于测试金属在高温高压水环境下腐蚀速率的静态高压釜,在运行期间水化学一直变化,水中的溶解氧逐渐降低,溶解氢浓度逐渐升高,溶解进入的金属离子使水的电导率逐渐升高。这样,静态高压釜一次实验的时间越长,测得的实验结果偏差越大。给高压釜系统添加一套水化学回路对于保证高压釜内的水质稳定非常重要。该系统能够在线监测溶解氧、电导率、pH值,并实现控制调节。上海百若是慢应变速率应力腐蚀试验机的国内唯一专业性研发公司,在诸多技术难点方面取得了成功突破,并在设备安全和长期稳定性方面做了大量的研究和测试,此类设备运行时间从1周到1、2年不等,运行时间长,设备的安全、可靠是首要考虑因素,我们在设备的各个方面设计了安全监测与保护,保障操作者、设备和试验的安全。在设备的研发过程中,我们与高校和研究院合作,得到了上海交通大学、中国科学院、中国原子能科学研究院、上海应用物理研究所、厦门大学等单位的大力支持和帮助,使得设备的研发取得突破性进展。慢应变速率应力腐蚀试验机应用范围广泛,主要研究材料在腐蚀介质环境下的腐蚀敏感特性,这些应用领域有:核电的一回路、二回路材料,热电材料,石化行业,海洋行业,汽轮机,及其它腐蚀性介质应用领域。
  • TOC检测的质量控制
    作为分析仪器制造商,客户往往希望我们针对其TOC分析仪的质量控制和验证问题予以指导。本文提供与校准、确效、系统适用性以及实验室对照样品相关的多个兴趣领域的知识。内容源自我们低含量的TOC检测经验,以及诸如Greenberg等人的《水和废水检验的标准方法》,第18版(美国公共卫生协会,Washington D.C,1992)和Taylor编著的《化学测量质量保证》(Lewis Publishers,Chelsea,MI,1987)等行业标准参考资料。校准基础Sievers M9/900系列TOC分析仪提供众多的校准和确效选项,因此对某些客户来说,可能难于选择适合应用的正确方式。以下是一些简单的提示:01单点校准时,务必选择高于水样TOC范围的校准标准。务必确保您的最高校准标准大于您水样中的TOC含量。这样您可确保您的样品处于该仪器所示的线性范围内。对于未知样品范围宽的用户,Sievers M9/900还可使用1 mg C/L和50 mg C/L之间设置的五点校准组合进行校准。02定期使用线性范围内的一个或多个标准样确效校准。优良实验室规范(GLP)建议在感兴趣的范围内确效。此篇应用文献中将会有更多这方面的详细信息。03不要使用实验室对照标准样,使用单独配制的校准标准样。此独立确效概念是用于显示您的仪器中任何重大偏差的重要相互校验。例如,许多客户使用KHP标样进行校准,而使用单独的蔗糖标准确效性能。Sievers分析仪提供多种用于校准、确效和实验室控制的标准溶液,以满足此需求。校准准确度与校准偏差校准是所有仪器系统的基础步骤。其目的是使测量过程中的偏差最小化。优良实验室规范(GLP)要求确效步骤以确认在校准过程中没有引入偏差。校准确效具有两个明显的功能:1)测量校准步骤的准确度;或2)指示校准偏差。在有效校准之后即刻进行准确度确效,以提供校准曲线准确度的简单度量。用于确效准确度的标样,不应使用校准用标样,应单独配制,或使用不同的化合物。这种情况下,确效标样起到完全独立的校准对照标样的作用。与之不同,如果在迟些时候(例如校准后六个月)进行确效,其主要目的是提供校准偏差的指示。用于确效校准偏差的标样应该与校准时使用的标样浓度相同。使用Sievers M9/900系列的客户具有实行确效方案的选项,以匹配上述任意一种或两种情况。Sievers M9/900系列TOC校准标样使用范围从1至50 mg C/L的NIST可追踪KHP进行制备。对应的确效标样使用范围从0.5 mg C/L至50 mg C/L的NIST蔗糖进行制备。我们的许多分析纯化水(PW)或注射用水(WFI)的客户选择以1 mg C/L进行校准,而以0.5 mg C/L确效准确度。这种方案使得客户在感兴趣的范围以上进行校准,并在兴趣点确效准确度。如果校准偏差的指示超出容许差,这种情况我们建议在1 mg C/L进行确效。测试系统适用性的周期是多久?要生成有效的分析数据,所要求的不仅仅是一台高质量仪器。实际上,它需要一个控制良好的测量系统,其包括以下所有四个因素:称职并受过很好培训的人员遵循标准操作步骤(SOP)有效并维护良好的仪器可追踪的参考材料最新的USP 章和EP 方法中的TOC法规要求各TOC分析仪按照制造厂商的建议校准,并且定期证明各分析仪的适用性。但USP和EP法规没有解释系统适用性测试(SST)的进行周期。答案涉及两个基本又对立的考虑:系统超出容许差的相关风险证明系统在容许差之内的成本应该对这两方面考虑的多个构成因素进行评估,因为它们适用于您自己的设备。1SST不合格相关的风险是什么?不合格对设备有什么影响?2进行测量人员的经验水平如何?操作人员是否有足够的技术并受过充分的培训,以延长SST之间的周期?3测量系统是否始终如一地通过测试?测量系统在延长的时间周期内是否稳定可靠?4是否有可遵循的行业趋势或公司指南?审计员是否接受与规范不同的计划?5进行SST的成本是多少?如何测试系统适用性?通过测试三种溶液确定TOC分析仪的适用性:空白溶液(Rw)、0.5 mg C/L蔗糖(Rs)以及0.5 mg C/L的1,4-苯醌。响应效率(RE)按以下计算:RE = 100[(Rss-Rw)/(Rs-Rw)]如果85%115% ,则确定该分析仪适用。当TOC分析仪第一次安装时,我们建议经常进行SST,以记录整个测量系统的性能(即人员、工艺、仪器和标样)。许多客户选择在半年或更长的时间内每日或每周进行SST。经常根据实际数据,使用控制图表,以确立平均性能、警告限值和控制限值。在初始评估期之后的某些时候,管理人员可对采集的数据进行评测,然后对以后的SST选择适当的频度。这种方法可以有信心,即所做出的决定,在进行周期性SST的成本和出现容许差之外的风险之间保持良好的平衡。实验室对照标样的重要性实验室对照标样(LCS)是显示测量系统处于控制的常用方法,对于诸如医药和民用饮用水等高度控制的行业尤其如此。LCS通常使用每批样品进行分析。对照标样的浓度范围应与实际样品一致或位于感兴趣的特定范围内(如WFI测试为0.5 mg C/L)。最好使用外部供应商提供的经认证的NIST可追溯标样,因为他们会提供最严格的手段来评测测量系统。如果内部制备的标样用于日常的质量控制,我们建议周期性使用外供的经认证的参考材料用于确效。例如,某些客户选择制备自己的溶液作为日常检查标样,但依靠Sievers提供认证的参考材料进行每周的系统适用性测试。当预算有限时,类似这种双级方法是很好的平衡。◆ ◆ ◆联系我们,了解更多!
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p   近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。 /p p   作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。 /p p   在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。 /p p   中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title=" LKsd-fyqtwzv2273554.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p style=" text-align: center " 与会专家合影 /p
  • 实验室质量控制中的关键环节
    科研生产项目室内实验质量的好坏直接关系到现场施工质量和有效成功率,实验室的首要任务就是把好进入现场材料的质量关,因此,实验室质量控制工作的重要性是不言而喻的。根据目前我县区实验室管理现状,笔者就如何抓好实验室质量控制中的关键环节,确保实验质量,提出以下观点和看法。   实验标准规程的控制   标准规程是检测、判定的依据,要采取多种渠道,及时收集新标准,确保检测工作所依据的标准版本现行有效,同时对新、旧标准应加以分析比较,并按标准规程的新要求,做好仪器设备改造、配置以及新标准的贯标等基础工作。   为此有必要对所管辖区的实验室制定出基础的技术标准配备规范,明确所辖业务的各类试验应该配备的基本技术标准,确保主要业务标准配备覆盖面达到100%,实现以标科研、以标实验,最大限度地避免因实验设计缺陷而造成的质量事故。   在实验室标准宣贯方面要做好落实工作,一是抓标准配备、宣贯,二是抓标准的检查、更新,确保试验工作有标可依,规范有序。   样品的控制   试验用样品的状态应符合标准要求。   1.样品要有代表性,抽样采取随机抽取的方法进行。比如:钻井泥浆、水泥类试验检测规定,袋装水泥要从该批不少于20袋水泥中任取等量样品,总量至少12kg,那种一次性提取半袋或整袋水泥作为试验样品,不符合标准要求,也是不可取的。   2.试样的数量关系到试验结果的准确性,数量过少,试验带来误差增大,故标准对材料试样的数量都有要求。在实际试验工作中,要加强试验数量的控制。标准要求做平行试验的,应等分样品分别试验,如只做一次试验,就拼凑数据出报告,是应严格禁止的。   3.试样的尺寸关系到试验结果的准确性,试样的尺寸要满足标准要求。在井下工具拉压扭试验采用的《金属材料室温拉伸试验方法》(GB/T228-2002)中明确了金属材料样品的尺寸(长度),如果样品的长度不符合标准要求,仅仅靠调节万能材料试验机上下钳口位置来完成试验,显然是不符合规范要求的。   仪器设备与计量器具的控制   仪器设备及各种计量器具是检测工作中最基本的工具,它的完好程度和准确度将直接影响检测数据的准确性,同样影响到对工程质量的评判。   1.对计量标准器具的控制,实验室计量标准器具或校准装置的建立、更换、封存与撤销,应建立内容完整的技术档案,并符合JJF1033《计量标准考核规范》的有关程序规定。计量标准器具周检率为100%,符合JJF1033的要求。   2.对国家明确规定的强制性计量检定的试验仪器设备,必须全部送检并及时送检,检完后对校准的器具进行复核,检查校准数据是否符合使用要求。   3.对部分不属强检范围,国家又尚未制定校准规范的试验仪器设备,应依据仪器说明书、相关技术规范、相关计量检定规程等自行制定校准规范,作为定期自行校准的依据,控制好计量数据的精度。如:水泥抗压夹具、水泥试验筛通常也必须自行进行校验,否则对检测结果同样有着很大的影响。   4.除了检定(校准)之外,还应注意仪器设备及各种计量器具平时的定期保养与检查,如每月检查水泥搅拌机叶片与锅之间的间隙,发现问题,立即停用,经计量部门重新检定(校准)并符合要求后才能使用。   标准物质与标准材料的控制   实验室应建立相关制度,从标准物质与标准材料的选购、验收、存放、发放、使用以及废弃标准物质处理等全过程进行有效控制,保证标准物质在有效期内使用,确保其定值准确度、均匀性、稳定性等计量性能满足检测要求。目前假冒伪劣产品较多,为了购买到优质的标准物质和标准材料,应选择有资质和能力的服务方,并获得相应的资质和能力的证明性文件。对一些长期、重要供应商建立合格供方名录,以这些供应商作为固定用户,从而保证试验用材料的相对稳定性。如建筑试验用的标准砂,一般一个地区只有一家是指定销售商,在购买标准砂时,一定要向销售商索取销售授权书和合格证书,不要为便宜去买一些假的标准砂,进而影响试验的工作质量。   试验室的温、湿度控制   温度和湿度对一些材料的性能有一定的影响,故在标准中对材料测试时的环境条件有明确规定,必须遵守。如热采水泥堵窜室内试验《水泥胶砂强度检验方法(ISO)法》(GB/T17671-1999)规定,试体成型时试验室温度应稳定保持在20℃±2℃,相对湿度不低于50% 试体带模养护箱温度保持在20℃±1℃,相对湿度不低于90% 试体养护池水温度应在20℃±1℃范围内。为加强试验室的温、湿度控制,试验室可根据自身条件建立一套温湿度控制系统和控制措施,有条件的单位尽可能采用自动温、湿度控制系统。   试验速度的控制   在材料力学性能检测试验中,加荷速度的快慢对检测结果有一定的影响。一般加荷速度较快,试件的变形滞后于加在其上的荷载,测出的强度值高于材料固有的强度。如井下工具缸体检测中加荷速度较快,屈服强度和极限强度会有所提高。但在实际试验工作中,有的检测人员忽视了加荷速度,在不了解加荷速度大小时随意加荷检测,或者不严格按照标准规定的加荷速度进行检测,致使检测结果失去可比性、真实性。   检测工作中,检测人员掌握加荷速度是通过每秒荷载增加多少牛顿(N/S)来控制的,而有的标准给出的是每秒应力的增加(MPa/S),这就需要根据试件的实际尺寸加以换算,以便控制试验加荷速度。在实际工作中,检测人员应熟练操作万能试验机,确保试验的速度符合标准的要求,同时加荷应保持连续均匀,直至测出所需荷载值。   实验室试验误差的控制   试验工作中应通过重复试验、比对试验、能力验证等方法来抵消试验误差对试验结果的影响,提高试验室工作质量。   1.重复性是由同一个试验室在基本相同的情况下,用同一样品试验所得试验结果的误差。如水泥抗压强度试验方法的重复性是由同一个试验室,在相同的操作人员,相同的标准砂,较短时间间隔内,用同一样品所得试验结果的误差来定量表达。对于28天抗压强度的测定,一个合格的试验室在上述条件下的重复性以变异系数表示,要求在1%~3%之间。   2.试验室内的比对试验是试验室的不同人员,使用相同的仪器设备,用同一样品试验所得试验结果的比较。试验室内的比对试验具有易操作,且利于提高试验人员的检测能力。   3.通过试验室间的比对试验可以消除试验室的系统误差,这一误差是重复试验、同一试验室由不同人员操作的比对无法消除的。通过此比对,找出发生偏差的原因,及时纠正与改进因操作、温湿度环境条件及设备因素等引起的各种偏差。   4.要真正使试验室内部质量得到有效控制,检测能力上一个台阶,在通过比对改进之后,最好参加国家实验室认证认可机构的能力验证试验,只有通过能力验证,才能了解自己在该检测项目中的真实水平,发现问题,采取措施,及早纠正和整改。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 人用重组DNA制品质量控制技术指导原则
    p   一、引言 br/ /p p   由于分子遗传学、核酸化学及重组DNA(rDNA)技术的迅速发展,现已能够确定和获得许多天然活性蛋白的编码基因,将其插入表达载体或引入某种宿主细胞后,能有效地表达该基因产物,再经分离、纯化和检定,可得到用于预防和治疗某些人类疾病的制品,诸如现有的乙型肝炎疫苗、胰岛素、生长激素、干扰素等。 /p p   用不同于常规方法的rDNA技术生产的制品,是近年来出现的新产品,评价其安全性和有效性亦不同于常规方法。这一领域中的知识和技术还在不断发展,为了有利于这类制品在我国的研究和发展,并为这类制品的审评提供依据,有必要制定一个原则性指导文件,以保证在人群中试验或应用时安全有效。 /p p   本“人用重组DNA制品质量控制技术指导原则”(以下简称《指导原则》)不可能面面俱到,可能有许多专门技术问题会出现,对于这类问题或某一特定制品,则应视具体问题具体研究决定。本《指导原则》亦将随科学技术发展和经验积累而逐步完善。 /p p   二、总则 /p p   (一)本《指导原则》适用于rDNA技术生产并在人体内应用的蛋白质、肽类制品。 /p p   (二)凡属与一般生物制品有关的质量控制,均按现行版《中国药典》有关规定执行。有关生产设施的要求应参照国家药品监督管理局《药品生产质量管理规范》执行。 /p p   三、质量控制要求 /p p   (一)原材料的控制 /p p   1.表达载体和宿主细胞 /p p   应提供有关表达载体详细资料,包括基因的来源、克隆和鉴定,表达载体的构建、结构和遗传特性。应说明载体组成各部分的来源和功能,如复制子和启动子来源,或抗生素抗性标志物。提供至少包括构建中所用位点的酶切图谱。应提供宿主细胞的资料,包括细胞株(系)名称、来源、传代历史、检定结果及基本生物学特性等。 /p p   应详细说明载体引入宿主细胞的方法及载体在宿主细胞内的状态(是否整合到染色体内)及拷贝数。应提供宿主和载体结合后的遗传稳定性资料。 /p p   2.克隆基因的序列 /p p   应提供插入基因和表达载体两侧端控制区的核苷酸序列。所有与表达有关的序列均应详细叙述。 /p p   3.表达 /p p   应详细叙述在生产过程中,启动和控制克隆基因在宿主细胞中的表达所采用的方法及表达水平。 /p p   4.原辅料 /p p   原辅料应按照国家药品监督管理局有关规定执行。动物源性原料的使用应提供来源及质控检测资料 发酵用培养基不能添加β内酰胺类抗生素。 /p p   (二)生产的控制 /p p   1.主细胞库(MASTERCELLBANK) /p p   rDNA制品的生产应采用种子批(SEEDLOT)系统。从已建立的主细胞库中,再进一步建立生产细胞库(WCB)。 /p p   含表达载体的宿主细胞应经过克隆而建立主细胞库。在此过程中,在同一实验室工作区内,不得同时操作两种不同细胞(菌种) 一个工作人员亦不得同时操作两种不同细胞或菌种。 /p p   应详细记述种子材料的来源、方式、保存及预计使用寿命。应提供在保存和复苏条件下宿主载体表达系统的稳定性证据。采用新的种子批时,应重新作全面检定。 /p p   真核细胞用于生产时,细胞的鉴别标志,如特异性同功酶或免疫学或遗传学特征,对鉴别所建立的种子是有用的。有关所用传代细胞的致癌性应有详细报告。如采用微生物培养物为种子,则应叙述其特异表型特征。 /p p   一般情况下,在原始种子阶段应确证克隆基因的DNA序列。但在某些情况下,例如传代细胞基因组中插入多拷贝基因。在此阶段不适合对克隆基因作DNA序列分析。在此情况下,可采用总细胞DNA的杂交印染分析,或作mRNA的序列分析。对最终产品的特征鉴定应特别注意。 /p p   种子批不应含有外源致癌因子,不应含有感染性外源因子,如细菌、支原体、真菌及病毒。 /p p   有些细胞株含有某些内源病毒,例如逆转录病毒,且不易除去。但当已确知在原始细胞库或载体部分中污染此类特定内源因子时,则应能证明在生产纯化过程可使之灭活或清除。 /p p   2.有限代次生产 /p p   用于培养和诱导基因产物的材料和方法应有详细资料。对培养过程及收获时,应有敏感的检测措施控制微生物污染。 /p p   应提供培养生长浓度和产量恒定性方面的数据,并应确立废弃一批培养物的指标。根据宿主细胞/载体系统的稳定性资料,确定在生产过程中允许的最高细胞倍增数或传代代次,并应提供最适培养条件的详细资料。 /p p   在生产周期结束时,应监测宿主细胞/载体系统的特性,例如质粒拷贝数、宿主细胞中表达载体存留程度、含插入基因的载体的酶切图谱。一般情况下,用来自一个原始细胞库的全量培养物进行监测,必要时应做一次目的基因的核苷酸序列分析。 /p p   3.连续培养生产 /p p   基本要求同2项。 /p p   应提供经长期培养后所表达基因的分子完整性资料,以及宿主细胞的表型和基因型特征。每批培养的产量变化应在规定范围内。对可以进行后处理及应废弃的培养物,应确定指标。从培养开始至收获,应有敏感的检查微生物污染的措施。 /p p   根据宿主/载体稳定性及表达产物的恒定性资料,应规定连续培养的时间。如属长时间连续培养,应根据宿主/载体稳定性及产物特性的资料,在不同间隔时间作全面检定。 /p p   4.纯化 /p p   对于收获、分离和纯化的方法应详细记述,应特别注意污染病毒、核酸以及有害抗原性物质的去除。 /p p   如采用亲和层析技术,例如用单克隆抗体,应有检测可能污染此类外源性物质的方法,不应含有可测出的异种免疫球蛋白。 /p p   对整个纯化工艺应进行全面研究,包括能够去除宿主细胞蛋白、核酸、糖、病毒或其它杂质以及在纯化过程中加入的有害的化学物质等。 /p p   关于纯度的要求可视制品的用途和用法而确定,例如,仅使用一次或需反复多次使用 用于健康人群或用于重症患者 对纯度可有不同程度要求。 /p p   (三)最终产品的控制 /p p   应建立有关产品的鉴别、纯度、稳定性和活性等方面的试验方法。检测的必要性和纯度要求取决于多种因素:产品性质和用途、生产和纯化工艺及生产工艺的经验。一般说来下列试验对控制产品质量是可以采用的。新的分析技术及对现有技术的改进正在不断进行,适当时应使用这些新的技术。 /p p   1.物理化学鉴定 /p p   (1)氨基酸组成 /p p   使用各种水解法和分析手段测定氨基酸的组成,并与目的蛋白基因序列推导的氨基酸组成或天然异构体比较。如需要时应考虑分子量的大小。多数情况下,氨基酸组成分析对肽段和小蛋白可提供有价值的结构资料,但对大蛋白一般意义较小。在多数情况下,氨基酸定量分析数据可用于确定蛋白含量。 /p p   (2)氨基酸末端序列 /p p   氨基酸末端分析用于鉴别N-端和C-端氨基酸的性质和同质性。若发现目的产品的末端氨基酸发生改变时,应使用适当的分析手段判定变异体的相应变异数量。应将这些氨基酸末端序列与来自目的产品基因序列推导的氨基酸末端序列进行比较。 /p p   (3)肽谱 /p p   应用合适的酶或化学试剂使所选的产品片段产生不连续多肽,应用HPLC或其他适当的方法分析该多肽片段。应尽量应用氨基酸组成分析技术,N-末端测序或质谱法鉴别多肽片段。对批签发来说,经验证的肽谱分析经常是确证目的产品结构/鉴别的适当方法。 /p p   (4)巯基和二硫键 /p p   如果依据目的产品基因序列存在半胱氨酸残基时,应尽可能确定巯基和/或二硫键的数量和位置。使用方法包括肽谱分析(还原和非还原条件下)、质谱测定法或其他适当的方法。 /p p   (5)碳水化合物结构 /p p   应测定糖蛋白中碳水化合物含量(中性糖、氨基糖、唾液酸)。此外尽可能分析碳水化合物的结构、寡糖形态(长链状)和多肽的糖基化位点。 /p p   (6)分子量 /p p   应用分子筛层析法、SDS-PAGE(还原和/或非还原条件下)、质谱测定法、和/或其他适当技术测定分子量。 /p p   (7)等电点 /p p   通过等电聚焦电泳或其他适当的方法测定。 /p p   (8)消光系数(或克分子吸光度) /p p   多数情况下,可取目的产品于UV/可见光波长处测定消光系数(或克分子吸光度)。消光系数的测定为使用UV/可见光或分光光度计检测已知蛋白含量的溶液,蛋白含量应用氨基酸组成分析技术或定氮法等方法测定。 /p p   (9)电泳图型 /p p   应用PAGE电泳、等电聚焦、SDS-PAGE电泳、免疫印迹、毛细管电泳法或其他适当的方法,获得目的产品/药物的一致性,同一性和纯度的电泳图谱和数据。 /p p   (10)液相层析图谱 /p p   应用分子筛层析、反相液相层析、离子交换液相层析、亲和层析或其他适当方法,获得目的产品/药物的一致性、同一性和纯度的层析图谱和数据。 /p p   (11)光谱分析 /p p   适当时,应用紫外或可见光吸收光谱法测定,使用圆二色谱、核磁共振(NMR)、或其他适当的方法检测制品的高级结构。 /p p   2.杂质检测 /p p   (1)工艺相关杂质 /p p   工艺相关杂质来源于生产工艺,可分三大类:来源于细胞基质、培养基和下游工艺。 /p p   ①来源于细胞基质的杂质包括源于宿主生物体的蛋白/多肽 核酸(宿主细胞/载体/总DNA) 多糖及病毒。对于宿主细胞蛋白,一般应用能检测出较宽范围蛋白杂质的灵敏的免疫检测方法。应用不含目的基因的生物体粗提物,即不含产品编码基因的生产用细胞,制备上述试验使用的多克隆抗体。可通过对产品的直接分析方法(如杂交技术法)检测宿主细胞的DNA水平,和/或通过标记实验(实验室规模)检测证实通过纯化工艺能去除核酸。对于有意导入的病毒,应验证生产工艺中去除/灭活病毒的能力。 /p p   ②来源于培养基的杂质包括诱导剂(多核苷酸,病毒)、抗生素、血清及其他培养基组分。 /p p   ③来源于下游工艺产生的杂质包括酶、化学/生化处理试剂(如溴化氰、胍、氧化剂和还原剂)、无机盐(如重金属、砷、非有色金属离子)、溶剂、载体/配体(如单克隆抗体),及其他可滤过的物质。 /p p   (2)产品相关杂质 /p p   以下为最常见的目的产品的分子变异体,并列出了相应的检测方法: /p p   ①化学修饰类型:应考虑脱酰胺、异构化、错配S-S连接和氧化形式的分离和鉴别。对这些变异体的分离和鉴别,可应用层析法和/或电泳法(如HPLC、毛细管电泳、质谱法、圆二色谱)。 /p p   ②降解物和聚合体:聚合体包括二聚体和多聚体:可用分子筛层析法(如SE-HPLC)进行定量 降解物:应建立降解物的判定标准,并对稳定性试验产生的降解产物进行监测。 /p p   3.生物学测定 /p p   (1)鉴别试验 /p p   应用免疫印迹法,或者在可能情况下,应用参考品将rDNA制品与天然产品通过生物学比较试验,确定其与天然产品是一致的。 /p p   (2)效价测定 /p p   采用国际或国家参考品,或经过国家检定机构认可的参考品,以体内或体外法测定制品的生物学活性,并标明其活性单位。 /p p   (3)特异比活性测定 /p p   在测定生物学活性的基础上,对有些制品还应用适当方法测定主药蛋白含量,测定其特异比活性,以活性单位/重量表示。 /p p   (4)热原质试验 /p p   应采用家兔法或鲎试验法(LAL)作热原质检测,控制标准可参照天然制品的要求。 /p p   (5)无菌试验 /p p   参照现行版《中国药典》有关规定进行,应证实最终制品无细菌污染。 /p p   (6)抗原性物质检查 /p p   必要时,如制品属大剂量反复使用者,应测定最终制品中可能存在的抗原性物质,如宿主细胞、亚细胞组分及培养基成份等。患者反复接受大剂量的这类制品时,应密切监测由这些抗原可能产生的抗体或变态反应。 /p p   (7)异常毒性试验 /p p   可参照现行版《中国药典》有关规定进行。 /p p   4.其他 /p p   根据产品剂型,应有外观(如固体、液体、色泽、澄明度等方面的描述)、水分、PH值、装量等方面的规定,可参照现行版《中国药典》相关规定执行。 /p p   四、临床前安全性评价 /p p   临床前安全性试验的目的主要是确定新制品是否会在人体引起未能预料的不良反应。但是,用于一般化学药物的传统安全性或毒性试验对rDNA产品不一定适用,用传统毒性试验来评价rDNA产品往往有困难,并受多种因素的影响。例如,某些蛋白质,如干扰素,具有高度种属特异性,这种人的蛋白质对人的药理学活性远高于对动物的活性,而且人的蛋白质氨基酸序列,常常与来自其它种系的蛋白质不同,例如糖基就不一样。因而由基因工程技术所制备的蛋白质或肽类往往会在人体以外的其它宿主中产生免疫应答,其生物学效应有所改变,并可能因形成免疫复合物而导致有毒性反应,而这样产生的毒性反应与人体安全性显然无关。 /p p   另外,由于产品效价、生产工艺或者产品稳定性等要求,对产品进行修饰或者改构,应提供与未修饰或者改构产品比较的研究资料。以简化生产工艺为目的在产品中引入的额外多肽片段如His-tag,在最终产品中应尽可能去除。 /p p   综上所述,对rDNA产品的临床前安全性试验要求,难以一概而论,应采取较为灵活的处置方法。除了一般生物制品的毒性试验要求之外,其它如长期毒性试验、药代动力学试验、药理学试验、毒理学试验,以及致畸和致突变等试验,应根据制品性质,与国家检定机构及药品审评中心商定所需进行的试验项目和方法,以及判定标准。 /p
  • 分布式光纤应变监测仪取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。& nbsp /p
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 慈溪查处尾气虚假检测 有人临时安装污染控制装置
    p   核心提示:一些不法分子通过临时安装机动车污染控制装置的办法蒙混过关通过检测,一组进入市凯博机动车检测有限公司排气检测站蹲点暗访,环保执法人员对其询问时。 /p p style=" text-align: center" img style=" width: 450px height: 324px " src=" http://img1.17img.cn/17img/images/201611/insimg/a19bae9f-a891-4417-988e-aefc88f55f24.jpg" title=" 1.jpg" width=" 450" vspace=" 0" border=" 0" hspace=" 0" height=" 324" / /p p   因为排气检测不合格,一些不法分子通过临时安装机动车污染控制装置的办法蒙混过关通过检测,然后再把装置拆卸。 /p p   昨天,慈溪环保、运管、公安三部门联合展开突击行动,打击机动车排气检测中以虚假手段蒙混过关的违法行为。 /p p    strong 兵分两路,明查暗访 /strong /p p   当天上午,执法组分两组分别展开行动,一组进入市凯博机动车检测有限公司排气检测站蹲点暗访,另一组来到汽车修理店展开明查。为了不打草惊蛇,两组执法人员均便装出行。 /p p   根据此前摸底了解,一些尾气检测不合格的车主通过“黄牛”引路把车开到附近汽修店,安装污染控制装置。 /p p   上午9时,在“小聂汽修”店内,一辆黑色轿车悬在半空,维修工正钻在车底安装排气管,旁边放着刚换下来的排气管。环保执法人员对其询问时,对方称只是在安装测试。然而,当运管部门要店主聂某出示经营许可证时,对方却无法出示。 /p p   原来,半年前这家店因超范围经营已被扣证,前事未了,聂某又在无证经营了。执法人员把聂某和维修工带上运管执法车,对其进一步询问笔录。 /p p   strong  行动拉网,双线收获 /strong /p p   “有人在半路上拆卸机动车污染控制装置被我们抓到了。”9时50分,从暗访组传来消息,记者立即跟随检查组前往现场。在离检测站不远的展腾路上,一辆厢式柴油小货车正停在一家企业门口。 /p p   据现场环保执法人员介绍,9时20分左右,暗访组在检测线蹲点时,发现这辆货车“颗粒物烟度”两次检测数据均为零,虽然按规定通过了检测,但这个“异常数据”引起了执法人员的警惕。暗访组立即派车辆跟踪。 /p p   果然,车子开出没多久就停在了半路,很快来了名男子,动作麻利地拆起了净化装置,被随后紧随的环保执法人员抓个正着。 /p p   “这辆车子昨天没通过尾气检测,车主让人临时安装了柴油颗粒物捕捉器,通过检测后今天又让他拆下来。”环保工作人员说,不法分子通过临时装卸净化装置牟利。 /p p   慈溪市环保局相关负责人表示,此次联合执法行动旨在严厉打击用弄虚作假方式通过机动车排放检测的违法行为,有效遏制机动车维修单位的违法经营行为,把不法分子的气焰打压下去。 /p p   接下来,环保部门还将联合相关部门加大执法力度,同时要求慈溪市凯博机动车检测有限公司加强管理,严防排气检测中的弄虚作假行为,确保慈溪市大气环境质量日益得到改善。 /p
  • 水体污染控制与治理科技重大专项实施
    北京2月19日, 在今天召开的“水体污染控制与治理”科技重大专项实施启动会上,科技部副部长刘燕华代表科技部参加会议。他强调,水专项是我国首次推出以科技创新为先导,旨在为国家水体污染控制与治理提供全面技术支撑的重大专项。“我们将把加快组织重大专项作为应对国际金融危机、促进我国经济长远发展的重要举措”。   刘燕华说,国务院要求将我国16个重大专项与当前扩内需、保增长结合起来,突破制约经济社会发展的关键技术,培育新型产业和拥有自主知识产权的产品,推动经济结构转型和产业结构升级。因此,通过组织实施16个重大专项,集全国之力,加快攻克事关全局和长远的科技难关,在关系国民经济和国家安全的关键领域掌握真正的核心和关键技术,拥有一批自主知识产权技术和产品,带动相关领域技术水平的整体提升,这对提升我国的综合国力、提高自主创新能力、建设创新型国家具有重要意义。而水专项将集中攻克一批节能减排迫切需要解决的水污染防治关键技术,有助于提高我国水环境综合治理的科技支撑和管理能力。   当前我国环保工作仍面临着自然环境脆弱、产业发展粗放与结构不合理、污染物排放居高不下等基本问题,其中,水环境问题尤为突出。由于我国水资源先天性短缺,人均水资源占有量不足世界平均水平的四分之一,全国仍有3亿多农村人口饮用水不达标。与此同时,我国也面临着严重水污染。全国流经城市的河段64%为四类或劣五类水,50%的城市地下水已不同程度地遭到污染,城市湖泊受到中度污染,有些淡水湖泊水体富营养化严重。   刘燕华指出,今年重大专项的主要工作是筛选一批重大、对当前经济发展具有影响的技术和产品,加大攻关力度,为应对国际金融危机提供有力的支撑。而水专项在应对国际金融危机中,将重点加强太湖、巢湖、辽河、淮河、海河、三峡库区等重点流域治理示范工程,加强污水和污泥处理处置设备、环境监测设备的研发和产业化。通过技术与设备开发和示范工程建设,加速环保装备产业和服务业的发展,为拉动内需提供技术和设备支撑,明显改善示范区水质环境。   刘燕华说,今年水专项还将引进海外高层次人才参与实施。在为引进人才创新创业提供支持和服务的同时,将建立灵活有效的人才聘用和流动机制,通过专项实施,凝聚和培养高层次创新人才;建立监督评估机制,加强目标考核和绩效评估。今年,科技部将会同发改委、财政部,成立国家科技重大专项监督评估委员会,对各专项总体执行情况进行监督评估。   “水专项在组织实施中,应促进产学研用相结合,推进企业参与重大专项研究的新机制,强化企业在技术创新中的主体地位。”刘燕华表示,将创新科技投入机制,建立多种金融资本参与专项投入的新机制,探索通过财政后补助、贷款贴息、风险投资等进行支持的新形式;协调落实政府采购、税收激励、资源共享等政策,不断优化激励创新的环境。   刘燕华说,水专项作为重大专项,在实施过程中,应着重发挥各单位的优势,特别是发挥地方在水污染防治方面已有的科技工作基础和科技攻关成果,集成中央和地方资源,突出国家目标,实施好水专项;应扩展企业参与实施的比重与渠道,强化企业在水污染治理的主体地位,加强产学研用相结合,促进环保企业做大做强;做好国家水专项与水重大工程的衔接和互动,发挥科技在水重大工程的支撑和引领作用,避免两者间相互脱节;注重发挥创新管理机制在水污染控制与治理中的作用,确保研发技术能集成,为流域水污染控制与治理的总体目标服务等。   我国组织实施16个重大专项,是为了通过信息、生物、装备制造、农业等战略产业领域的重大专项突破,提升国家产业结构升级能力,改变我国在国际分工体系中处于低端的局面。
  • 关于举办“环境领域实验室质量控制与标准物质培训”的通知 (第一轮 )
    各有关单位:  为帮助理化检验检测机构和实验室相关技术人员了解质量控制管理和技术知识,掌握标准物质的正确使用方法,通过质量控制提高检验结果的准确性、可靠性和有效性,中国计量科学研究院于 2021年6月8日-11日在昆明举办“环境领域实验室理化检验质量控制”培训班,聘请国内实验室质量管理和理化检验技术资深专家授课,系统介绍实验室质量管理相关法规要求、标准物质的选择和使用、检测方法确认与质量控制、不确定度评定实例等内容。此次培训由中国计量科学研究院化学计量与分析科学研究所-国家标准物质资源库主办,战略发展研究所知识传播中心承办,相关事宜通知如下:  一、培训主要内容  实验室质量控制管理和能力验证等相关知识 标准物质的实验室管理规范 检测结果不确定度评定基础知识 地下水水质调查与监测中的质量控制 环境中有机污染物检测的标准物质与使用 环境中无机重金属检测的标准物质与使用 大气污染物检测的标准物质与使用 环境检测标准中的质量控制样品与考核样制备等。  二、课程安排日期时间题目授课老师 第一天 9:00-10:00实验室质量控制管理与能力验证(暂定)李红梅研究员10:00-11:00环境监测中标准物质的需求分析(暂定)吕怡兵研究员11:00-12:00环境监测领域标准物质量值比对(暂定)吴晓凤/杨婧高工14:00-15:30标准物质的实验室管理规范李云巧研究员16:00-17:00质量控制与考核样品的定制吴冰高工17:00-18:00交流讨论 第二天9:00-10:30地下水水质调查与监测中的质量控制刘菲教授 10:30-12:00化学测量不确定评定阚莹副研究员14:00-15:30环境中重金属检测标准物质巢静波 副研究员15:30-17:00有机环境污染物标准物质宋善军副研究员17:00-18:00交流讨论第三天9:00-10:30大气中污染物检测用标准物质毕哲副研究员10:30-11:30交流讨论  三、培训对象  从事环境领域实验室分析检测及质量管理人员 各级市场监督管理局(质量技术监督局)相关人员 计量技术机构管理及技术人员 各标准物质研制(生产)机构有关人员 计量、检验检测 /校准实验室工作的技术人员及其他感兴趣的人员。  四、资料及证书  资料:培训手册、课程讲义  证书:《环境领域实验室理化检验质量控制》毕业证书  五、 培训安排  培训日期:2021年6月8日-11日,8日报到  培训地点:昆明  报名方式:填写报名回执表,电邮至会务组  收费标准:2800元/人,含讲课、证书、资料、场地等 食宿统一安排,费用自理。如需汇款,请将培训费不迟于2021年6月4日电汇到中国计量科学研究院账户,汇款信息如下:  汇款名称:中国计量科学研究院  开户行:交通银行北京分行和平里支行  账号:110060224018010008693  行号:301100000074  六、组织单位  主办单位:中国计量科学研究院化学计量与分析科学研究所  国家标准物质资源库  承办单位:中国计量科学研究院战略中心知识传播室  七、联系方式  承办单位:中国计量科学研究院战略中心知识传播室  课程咨询电话: 010-64525586  报名联系人:宋丽 13701026477 (微信同号)  邮箱:songli@nim.ac.cn  主办方:中国计量科学研究院化学所-国家标准物质资源库  联系人:王建东  电话:010-64524708,13601139687  邮箱:wangjd@nim.ac.cn  邮箱:wangjd@nim.ac.cn  媒体宣传:官网:https://www.nim.ac.cn/  微信公众号:中国计量科学研究院  “环境领域实验室质量控制与标准物质培训”报名回执表单位名称(发票抬头请正确填写):地址:联系人:手机:邮箱:办公电话:参会者姓名性别部门/职务手机邮箱单间或合住开票信息栏(专票囗;普票囗)(培训费囗)。单位名称: 开户行: 开户行账号: 税号: 地址: 电话: 注:①以上信息请全部正确填写清楚; ②请需要增值税专用发票的单位提前办理汇款; ③请需要开具两张以上发票的单位在下方进行备注。您单位最关注的问题及对我们的建议:   注:报名回执发送到 songli@nim.ac.cn或wangjd@nim.ac.cn 请务必注明报名培训班名称:化学昆明班
  • MTS线上发布新型SANSFLEX控制器 9大亮点彰显中欧合作成果
    p    strong 仪器信息网讯 /strong MTS(中国)公司近期线上发布为SANS产品线开发的SANSFLEX控制器新品,新型控制器能够获取更多数据点并收集更准确的测试数据。SANSFLEX 控制器是由美国、欧洲和中国的工程开发团队按照最新的质量标准设计的。制造和组装由欧洲和中国的行业领先团队完成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 370px " src=" https://img1.17img.cn/17img/images/201910/uepic/d9af5bfa-faaa-4f11-9be8-675a630072d7.jpg" title=" 产品展示.png" alt=" 产品展示.png" width=" 400" height=" 370" border=" 0" vspace=" 0" / /p p   控制器使用的以太网连接支持更高的速度,并提供比DCS-300控制器和绝大部分有竞争力的控制器更安全的连接。与市场上的DCS-300及其他旧控制器相比,具有结果更准确、更易控制、能够捕获详细的测试过程、可灵活定制控制板配置等特点。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 264px " src=" https://img1.17img.cn/17img/images/201910/uepic/5049abd2-57a8-4695-b7a8-1be0bbd541bd.jpg" title=" 对比.png" alt=" 对比.png" width=" 500" height=" 264" border=" 0" vspace=" 0" / /p p   与DCS-300相比,具有如下特点: /p p    strong 更高的闭环控制速率 /strong /p p   闭环控制速率是控制器向伺服驱动器发送命令信号并从传感器读取的时间间隔。新型SANSFLEX控制器的闭环控制速率为2000 Hz,而DCS-300仅为30Hz。更高的闭环控制速率意味着更好的控制,特别是在应变和力控模式下,增加的闭环控制速率意味着更好的测试体验。 /p p    strong 数据采集速率 /strong strong 提高 /strong /p p   数据采集速率是指可以测量真实世界信息和物理条件并将其转换为计算机可以使用的数值的速度。该速率也称为采样率,实际上采样速率有多快,下载数据并将其用于进一步分析也可以达到同样快的速率,或以较慢的速率用于满足测试需求。提高数据采集速率可确保在测试期间不会错过重要事件。 /p p    strong 分辨率 /strong strong 提高 /strong /p p   分辨率是控制器可以从传感器的信号调节器读取的最小增量或步长。SANSFLEX 控制器具有出色的分辨率,可为载荷和应变数据提供更高的精度。 /p p    strong 附加的数字和模拟I/O. /strong /p p   SANSFLEX 控制器拥有比DCS-300更多的附件连接端口,以及集成多个外部设备的能力,提供增强和改进的通信,减少了对外部数据采集(DAQ)系统的需求。 /p p    strong TEDS 功能 /strong /p p   内置的 TEDS 功能允许控制器在连接设备时自动识别力传感器或引伸计以及相应的校准信息,从而消除了出错的风险。传感器电子数据表(TEDS)是存储传感器识别和校准数据的标准化方法。这种能力是材料测试行业领导者的期望。 /p p    strong 分流校准 /strong /p p   SANSFLEX 控制器中拥有通常用于世界上最先进的伺服液压系统上的分流校准功能。通过验证力传感器是否受损,有助于防止收集不良数据。通过分流校准,可以快速验证力传感器的状况,而无需进行全面校准,从而可以完全放心地对结果的完整性进行测试。 /p p    strong 安全电缆连接器 /strong /p p   在测试操作过程中信号通道丢失时,会 strong /strong 损坏负载的机架、夹具或试样。与其他控制器上常见的USB连接器不同,控制器使用 RJ50 和以太网连接器RJ45 提供安全的电缆连接,安全连接可防止此类事件的发生。RJ50 和以太网RJ45连接器具有锁定机制,有助于确保安全的电气连接。 /p p    strong 以太网通信 /strong /p p   以太网支持更快的数据速率,更可靠的通讯协议,并且允许比USB更长的电缆长度。 /p p    strong 灵活性 /strong /p p   SANSFLEX 控制器可以通过选择其他控制板来定制基础模型之外的内容。可以选择现在和将来需要的功能,提供最高的灵活性和最大的整体价值。凭借极快的数据采集速率和更高的分辨率,可以比以往更准确地运行测试。 /p p br/ /p
  • 关键控制因素的缺失—讨论现行中国质量安全体系
    培安公司 1. 现行质量安全评估体系面对信用危机 去年冬季,浓雾锁城,空气质量数据与群众感受的严重差异引起了公众对空气质量的关注,PM2.5因此成为全民关注的热词。民意的热潮推动了政府的举措,PM2.5被纳入空气质量监测标准。长期以来,我们的体系缺乏宏观系统风险管理和关键控制因素管理的意识,不仅管理成本高,而且事故频繁,受到了社会民意的质疑,影响国家和中央政府的声誉,加深了社会对立情绪。我们各个行业的专家系统难辞其咎,应深刻反省,如何为国家为人民服务,以冲破目前的困境。培安公司希望通过对中国现行食品安全评估体系提出善意批评,提出关键控制因素理念,以引起国家食品安全相关部门和领导们的注意。关键控制因素理念的中心思想是治标先治本,找到事物的根本,即找到关键控制因素,从理论方法论的本源和过程链条的源头上找到解决问题的最佳方法,让我们子孙万代受益,创造一个更美好的社会。 培安公司在仪器界有悠久的历史,包括CEM公司有40多年的历史,是一个有责任感的公司。培安公司是唯一不断对国家食品安全评估体系提出建议的仪器公司。培安公司早在2008年的10月,就正式提出了关注三聚氰胺的问题,当时未引起重视,一年以后,三聚氰胺事件全面爆发,全社会受到震动。所以我们用这个机会再次提出这个关键控制因素问题。我们有很多专为中国很新的想法,希望得到政府的领导、所有读者和网友的重视,我们将不再忌讳和回避我们的社会责任,很愿意也准备开始与大家公开交流。培安公司和CEM在研发新产品的时候,都是为了解决一个市场上的难题,希望产品既有经济效益,又对社会有帮助。 2. 增加风险管理意识的重要性 中国现行食品安全评估体系的中心指导思想是围绕结果项目检测而不是全产业链的控制,原材料、生产加工、贸易流通、消费等环节之间缺乏有效地沟通机制、没有形成统一高效的监管体系、同时也没有找到合理的监管预警方法。因此,国内食品安全问题频频爆发,出了类似&ldquo 三聚氰胺&rdquo 、&ldquo 皮革奶&rdquo 等重大食品安全事件,食品安全的问题,被推到历史上前所未有的高度。培安公司认为,整个食品行业全产业链是一个非常复杂的系统,行之有效地方法应该是抓住最关键、最核心的问题,找到一套有效的建立在关键控制因素基础上的检测、预警以及风险控制体系,方能纲举目张,这也就是我们要倡导的关键控制因素的理念初衷。 作为仪器厂家,我们非常清楚的看到,如今中国面临诸多食品安全问题,并不是国家和中央政府不重视,并不是国家不想做好,国家财政为此花了很多的钱,很多的冤枉钱,买了很多仪器装备实验室,但是,计划赶不上变化,依然问题百出。究其原因,核心就在于治标不治本,中国现行的专家决策系统是有问题的,中国缺乏食品安全风险评估体系,没有真正建立风险管理和可靠性管理的思路,没有找到在原材料采收、生产加工、贸易流通、消费、以及质量监督检测上的关键控制因素,走了非常大的弯路。 讲到对国家对人民负责任,我想讲一个大房子的故事,这是我们公司内部培训必讲的一个故事,每次都哄堂大笑,但我们希望笑后大家能够深思,我们对国家和社会的责任是什么?就是国家投资建一个检测中心,必须先起一个多层的大楼,人员建制除了分析业务部门之外,还要包括其中什么食堂、采购,行政、人事、财务室等等,各种部门都缺一不可,雇很多人,国家还要设备预算投资,再买一大堆的仪器,做什么呢,做分析化学,从采样、收样、管理、分析及做报告,然后AA、ICP、ICP-MS等等这仪器那仪器的,从大楼和人源的基础启动投资,请问国家得花多少钱,除了平时的开支,国家一投资都是上亿,上亿的投资都是很平常,加上后面分析仪器的投资。我们国家公务员每天都穿着制服上班啊,国家给予很高的待遇,亲戚朋友为你自豪,家人为你骄傲,因为你们身上肩负着国家的使命和责任。比如,某一行业或某一地区的质量安全,和食品安全,我们可能从没想到,也不希望想到,我们目前做的分析数据是否可能存在错误,理论上,每一次分析都存在错误的风险,只是概率多少的问题,没有风险管理意识,可能你的分析数据都是错的,不仅现在错,从10年前开始就一直错了。因为为了几千块钱的便宜,当时买微波消解样品前处理的时候,买了有元素泄漏的仪器,造成痕量元素一直在损失,而且没有被发现,不为你所知觉,结果是,国家财政上亿的投资都泡汤,这不是一个笑话,可能是一个正在你身边发生的事实。意味着每天监测发布的报告都是错的,意味着大楼里边大的分析设备投资成了摆设,意味着我们赖以生活的这10年的工作,都是虚幻的,想象我们的责任是什么?对国家负责,为人民服务,结果对国家对人民都没什么利益,我们生命的意义是什么?这个故事大家听了都笑,但我笑不起来,因为这太残酷了,对于自己对国家社会和人民都不能接受的。这不是一个花钱没办事的问题,而是花钱办坏事,早知道还不如不花的问题。希望这仅仅是一个笑话,关于一个大楼或一个大房子的笑话。但如果我们分析部门继续缺乏风险管理意识,缺乏关键控制因素管理意识,这就不是一个笑话,而是一个挥之不去的噩梦般的事实。 美国EPA为了保证分析化学的正确结果,非常重视对微波样品前处理设备的评估和投资,长期与CEM合作,开发样品前处理的方法标准和技术,只买最可靠的一家世界名牌产品,是一个具备风险管理意识的成熟实验室的标志。而在中国分析化学界,是一个鱼龙混杂,五花八门,一个巨大的可以投机的市场,没有道德制约和行业管理,已经成了伪科学的天堂,普通人真是很难去分辨,事实上,无论实验室装备了多么昂贵的AA、ICP、ICP-MS,如果在不起眼的微波消解上出现了问题,不能保证分析元素的完整性,所有几千万上亿的设备投资的结果都会白费。而相比较而言,微波消解和样品前处理的投资,只占了分析化学实验室全部投资的0.1%不到。因此,从风险控制的投入产出比分析,许多用户过分计较厂家之间微小的价格区别,非常不明智。 我们现行的政府采购招标系统经常是三家围标,文字指标说话,最低价中标,最终用户说不上话,经常买到的可能不是价格最便宜,但质量是最差的。仪器界同质化、平庸化,捏造和篡改文字指标横行,许多厂家的指标随时改,国家没有人去管,也没有人去深究,最好别告,告了也是白告。这造成名牌产品即使参与低价竞争,也不见得卖得过假冒伪劣产品。往往名牌产品的技术规格,反而因为不愿也不习惯作假,普遍比伪劣产品指标还要低的笑话。只能期待有正义感,有良心的用户或专家自己去发现,已经到了逼良为娼的境地,否则都难以生存。而很多用户缺乏风险管理的意识,很少去花精力去研究,有时为了几千美金,增加了百分之七八十的分析失败风险,更不用说高价买伪劣产品了。长此以往,行业缺乏正气,造成更多的分析监测设备成为摆设,造成政府财政投资巨大浪费。 3. 复杂系统中寻找关键控制因素的方法 1) 宏观复杂系统中关键控制因素分析的模糊数学方法 美国控制专家查德于1965年发表《模糊集合论》,模糊数学在自然和社会科学的各个领城里得到了广泛的应用。从模糊数学的观点出发,针对复杂宏观系统中大量的影响因素,了解各种不同因素对复杂宏观系统的影响以及如何找到关键控制因素的问题,因素分析是分析宏观复杂系统的一个重要方法。 宏观复杂系统是由多种多样、形形色色、相互独立又相互联系的因素构成的,许多大的因素又由许多小的因素组成。分析关键控制因素,有利于针对原因解决复杂宏观系统问题。如何在众多的影响因素中找到对复杂宏观系统影响最大、最主要的因素,从而采取针对性措施解决宏观复杂系统出现的问题,是因素分析所要解决的问题。 目前,学者大多采用主次因素分析法,也有采用主次因素排列图法、因果分析法、相关分析法等进行分析的。举例说明,产品的质量是宏观复杂系统,由强度、硬度、性能,寿命等理化成份、外观形状、色彩、手感、光泽、气味、音响等各种因素共同组成的。这些因素对产品质量都有影响,有的因素对产品质量特性的影响大,有的因素对产品质量特性的影响小。因此,存在某个因素对整个质量特性的影响较其他因素更本质、更原始、更具备预先性。在全面综合系统评价方面,模糊数学为我们提供了一个新的工具。从模糊集合的观点出发,利用模糊相关分析,对复杂宏观系统中诸因素进行分析,以及各因素对各个质量特征影响的综合评判,在宏观复杂系统中,从各个方面充分分析不同因素对复杂宏观系统的影响,对不同因素做出整体性评价,从而找出质量影响最大的一两个因素,作为关键控制因素,以此为中心点进行控制。对复杂宏观系统中影响最大的关键控制因素特点是成本低,影响大,风险小。 2)关键控制因素(Critical Control Factor)的理念 宏观复杂系统,由多种多样、形形色色、相互独立又相互联系的因素构成,许多大的因素又由许多小的因素组成。分析宏观复杂系统时,如何在众多影响因素中找到对于宏观复杂系统影响最大、最主要的关键控制因素,找到对其他因素起到制约作用的关键控制因素,即去粗存精,找出问题的本质和真相,是解决问题的关键所在。 宏观复杂系统的各种因素 食品行业里要建立一个可靠的安全评估体系,体系的建立不仅需要购置大量的设备和人才的培养,最重要的是,找到复杂体系里的关键控制因素,从工艺加工过程控制中追溯源头,从各种方法中找到最根本的基础核心方法,抓住最重要的问题,纲举目张,四两拨千斤,抓住主要矛盾和次要矛盾的关系。基于关键控制因素建立宏观控制系统,指导生产和工作,这样,将事半功倍,大大降低风险。从原理和统计上降低犯错误机会和概率,让行业里的人即使万一犯错,将会付出非常大的代价,那么社会就安全了。这是国家的当务之急,现在中国已经是世界第二大经济强国,如果这些问题得不到解决,那么最终社会会面临更大的问题。 在一些食品安全监管部门以及食品企业实验室以及第三方实验室的简介中,首当其冲的要介绍实验室的仪器设备有多少、有多先进、人才队伍有多专业,但殊不知安全控制理念已缺失。成功的食品安全控制体系,应该建立在科学的理念之上。不管分析化学实验室里有多少设备,有多少人才,关键在于安全理念是否正确,是否具有风险管理意识,如何在宏观复杂控制体系里面,找到关键控制因素,关键控制因素的理念要清晰,必要性也在里面。以实现对整个过程纲领性的指导,包括标准的制定、实施与监督,宏观上形成上下一致的控制体系是培安公司最新倡导的理念。 4. 安全评估体系的关键控制因素理念的缺失 目前,国家和中央政府对食品安全评估体系非常重视,有强烈的美好意愿,投入了很多精力和资金,但国家现行食品安全评估体系的中心指导思想是围绕检测而不是控制,即没有从找到关键控制因素,以此为中心入手,进行宏观系统控制。国家普遍没有建立关键控制因素的理念,大家都喜欢在治标检测的表面层上工作,导致国家层面上治标不治本,实验室成了事故应急检测中心,而且很多检测方法成本高、效率低、可操作性不高。这样做就造成资金、资源、时间等各方面的浪费,劳民伤财。所有的教训都说明,如果没有正确的安全控制评估理念和思路,即使买再多仪器设备,也不能减少中国在食品安全方面出现的事故。 例如,中国一直没有形成成熟的食品微生物安全控制体系,长期以来,把目标定在各种微生物治标要求上。微生物生长是一个复杂因素构成的动态体系,如卫生条件、温度、酸度等,国家忽视了具有关键控制影响因素&mdash 水活度。通过控制水活度指标,可以从根本上阻断微生物的生长。正是因为这个缺失,造成目前国内防腐剂滥用的现象,普遍用防腐剂阻断微生物的生长,一直无法根治,防腐剂可引起儿童智商的发育障碍,其潜在危害极大;又例如,中国引用国际通行的凯式定氮法测试蛋白质,是根据氮元素来得出蛋白含量,而国内牛奶蛋白含量本来就略低于国际水平,分析方法的缺失和先天蛋白不足是引起三聚氰胺食品安全事故的直接原因。如果中国能够另辟蹊径,把蛋白质的测试标准溯源到基本氨基酸组成上,也就是如果检测标准是以氨基酸标识为关键控制因素得出真蛋白的含量,就不会造成三聚氰胺丑闻,但是,由于中国的现行标准在事故后,依然采用传统的凯式定氮法,而国家依然需要花大价钱买一些设备,用于测试牛奶中的三聚氰胺含量或其他添加剂,是一种头痛医头,脚痛医脚的办法,没有解决根本问题,完全是本末倒置,真不知我们的技术专家官僚们是如何给中央政府建议的。 5. 对国家食品安全评估的期待 在各方面呼吁下,不久前,北京新成立了食品安全评估中心。这表明,国家对食品安全评估这个概念已经出现了,标志着我国在加强食品安全方面迈出重要一步。国家已经认识到,这么多年投入很大,问题不是买了多少仪器,关键在于明确使用仪器的思路。希望国家安全评估中心能够建立集思广益的开放性咨询系统,听取各方面专家的意见,而非仅仅是政府部门的专家关门决策,回顾目前所造成的问题,既有体系的问题,也有专家的问题,把科学问题当成权利利益,科技官僚体系本位思想太严重。 在食品安全评估复杂体系过程中,我们国家的食品安全评估体系没有建立关键控制因素的思想,我们根本没有找到引发问题的关键控制因素,更没有在强制标准层面上进行指导性的控制,没有找到治标先治本的方法。在检测领域没有从众多检测项目中,找到相关产品最合理的检测指标,例如水分活度这一反应食品中微生物生长状况和趋势的指标,明明在许多国家多年前就是强制性标准,但至今并未被列入中国国家标准强制要求。同时某些国家或者行业检测标准,也并未找到精确、高效、便捷检测方法,许多国标检测方法成本高、效率低、可操作性不高,这样做就造成资金、资源、时间等各方面的浪费,劳民伤财。 必须指出的一个事实是,分析结果的失败,往往需要很长的时间才能发现,如果没有马上出现重大事故,如食品安全事故,方法或思路的错误往往并不能马上被察觉和发现,甚至可能永远都不会被发现。例如,一台不起眼的微波消解仪,竟然造成一家实验室10年的痕量元素的错误分析结果,而且一直没有被发现,其原因是痕量元素的丢失引起的。不当的样品前处理,可能造成巨大的伤害和悲剧。例如,三聚氰胺的添加从使用到事故的最后发现,其中至少有5到10年的时间,中国台湾地区,连续30年使用塑化剂作为食品均化剂,一个错误需要花30年的时间才能发现,其所引起的隐性危害,其后果不仅触目惊心,令人不堪也不敢回首,如男性发育缺陷,身体整体素质下降等,影响整整一代人,而且一切都将无法弥补。所以,我们不得不深思这其中的因果关系,以及分析化学风险控制的社会责任和意义,因为它关切到人类的福祉。 国家工作人员的使命是完成国家和人民交给我们的责任,保护老百姓的利益,这是社会的职能的意义所在,如果我们的人民因为我们的失职,身心遭到残害,难到我们会于心可忍吗、无动于衷吗?由于指导思想的错误,无意之中容易造成很多隐患,往往需要很长的时间才能发现关键控制因素缺失所引起的后果的严重性。 中国应建立食品安全风险监测制度,对食源性疾病、食品污染以及食品中的有害因素进行监测,落实源头监管,调整农业产业结构和食品工业产业结构,使关键控制因素理念贯通整个产业链条中的各个环节,提高方法论的基础研究,走中国自己的食品安全道路,达到规模化、规范化、现代化,确保产品质量安全。希望国家回到以关键控制因素为控制方向,指导生产和社会安全,将会事半功倍、省钱、省力。 培安公司在仪器界有悠久的历史,是一个有责任感的公司。培安公司在研发新产品的时候,都是为了解决市场上棘手的难题,本文通过讨论国家现行食品安全评估体系,呼吁建立关键控制因素因素的理念,以引起国家的重视。 培安公司版权所有,如需转载,请注明出处。
  • 三氯氰胺问题溯源—关键控制因素真蛋白检测的缺失
    培安公司 1. 三聚氰胺-中国食品安全评估体系综合缺陷的爆发点 中国食品安全最近几年出现的一个最大的事故,全世界范围内都引起轰动,就是三鹿公司的三聚氰胺事件。回溯起因,三聚氰胺问题在中国至少存在了10年以上,从奶农开始到各地的收购站,再到中国政府部门以及所有的乳制品公司都逃不了干系。 三聚氰胺(Melamine)(化学式:C3H6N6),俗称密胺、蛋白精,是一种三嗪类含氮杂环有机化合物,被用作化工原料,可用于塑料及涂料工业,也可作纺织物防摺、防缩处理剂,对身体有害,不可用于食品加工或食品添加物。 一种主要用于工业,并且具有毒性的物资为何会出现在奶粉食品中呢?因它的性状是白色无臭无味粉末,与蛋白粉极为相似,且又价格低廉、易于生产购买。不法商贩为了追求更大利益,将三聚氰胺改名&ldquo 蛋白精&rdquo ,误导奶农向饲料和原料奶中添加。缺乏科学知识的奶农,并不懂得此事的后果,为了奶好卖而添加。多年来,由于三聚氰胺对成人肾脏的伤害没有明显广泛的临床症状,使之在乳品行业潜伏,成为一个乳品和饲料企业公开的行业秘密,一直得不到政府部门和厂家的重视。直到大规模的爆发婴幼儿肾结石病例,才东窗事发。此事产生的负面影响是恶劣且巨大的,造成的后果是人民付出巨大的健康代价,企业信用遭质疑,国家声誉损失惨重。一味把责任推给农民道德水准低的想法是非常片面的,而作为化学材料的三聚氰胺,一直都在各领域内使用。如何从根本上防止此类现象在中国再次发生,如何在复杂的各种因素相互影响的宏观系统内,找到造成严重后果的关键控制因素,是我们企业、学术、科技届和政府都必须要思考的一个课题。 追究出现三聚氰胺现象的原因,既是经济问题,更是体系问题。一方面,在于企业为了追求利益,散失了最起码的诚信和社会责任感;更重要的是,于中国食品安全质量控制体系中,相关法规存在三大直接先天性的重大缺陷: 1、中国牛奶里蛋白质含量标准脱离中国实际情况,一味迎合国外标准,规定得太高,高到比中国平均真正牛奶里蛋白质水平还高。这是因为,中国土地经过五千年的耕种养分缺失,导致草地营养含量和奶牛品质下降。与中国不同的是,美国和西方牛奶本身蛋白质含量就足够,企业不需要额外添加蛋白质来迎合标准。 2、蛋白质检测方法和相关法规存在缺陷,传统蛋白质检测方法是凯式定氮法,这种方法检测蛋白质是间接法,先测总氮含量,根据总氮含量再计算出蛋白质含量,而非直接测定蛋白含量。在奶源紧张遭抢购、原料奶粉暴涨近一倍的情况下,一些不法厂商就利用这个检测漏洞,加入高含氮量的三聚氰胺,骗过凯氏定氮法获得虚假的蛋白质含量,造成蛋白质检测值虚高,来蒙混过关。只要三聚氰胺含量添加到限量范围内,既不违背国家技术标准,又能节约成本。 3、牛奶生产涉及环节和监管机构复杂繁多,生产奶粉涉及奶牛饲养、中间商收购、乳品厂加工、中间商批发、终端商销售等环节,由农业、卫生、工商、质检等多个部门监管,这导致任何一个部门都无法对整个生产、销售链条全程监督。直到2009年3月,三聚氰胺事件爆发近半年后,国务院成立食品安全委员会,由卫生行政部门承担食品安全综合协调职责。 对中国来说,一切犯错误的理由都具备的时候,就出现了三聚氰胺事件。三聚氰胺是中国食品安全评估体系的综合缺陷的爆发点。问题是,为什么西方用凯式定氮法检测蛋白质多年也没有出问题,而在中国就出现了非常严重的安全事故?当然,我们会认为中国的企业家,如蒙牛的牛根生等,在早期市场经济环境下,往往通过恶劣竞争胜出,道德素质普遍偏低,思想上不能马上转型,与他们所应承担的社会责任不相匹配。加之奶农的科学知识水平低下,相关政府职能部门的缺失这些因素综合起来导致了这场恶劣事件的发生。而由于西方健全的商业法制系统和个人的法律意识,企业不敢冒这个风险添加三聚氰胺。 蛋白质检测方法的缺陷导致了致命的造假。在三鹿事件后经过反思,2008年9月14日起,检测项目中增加了三聚氰胺,成为乳制品必检项目。这种利用排他法来确保蛋白质含量的措施,虽然堵住了三聚氰胺添加到牛奶中的渠道,却并不能保证其他含氮量高的添加剂被加入。无疑不能解决根本问题。因为我们目的是为了检测蛋白质,而不是为了测三聚氰胺。这是一种舍本逐末的无奈之举,如果有未为列入检测范围的高含氮量添加剂出现,依然能骗过凯氏定氮法。 必须指出,从中央层面国家来看,非常重视食品安全,每次事故后都进行搞运动式的大量投资,而食品安全体系不完善的客观原因造成收效甚微,造成这些投资大量浪费,很多地方上连耗材都用不起。反问我们的专家系统,有没有责任帮国家和社会找到并建立更有效管理宏观经济的方法和勇气? 我们认为,许多事故原因的专家分析都拘泥表层现象,用行政政策取代科学和法制精神,结果治标不治本。目前,中国食品安全体系已经到了一个关键时刻,一个需要反省传统方法和思路,并从思想上转变的创新时刻。食品安全评估应该从宏观控制系统中找到关键控制因素,利用巧实力进行安全质量管理。改变食品安全风险管理思路已经到了一个刻不容缓的时刻,我们必须思考如何建立具有中国特色的食品安全体系,如何建立更开放的专家体系,如何引进更深刻的全新思想概念。否则,中国的食品安全质量体系就会形成安全事故越多,投资越大,成本越高,成效越微这样的劳民伤财的恶性循环。 2. 非蛋白氮&mdash 传统蛋白质表征方法的本质缺陷 检测蛋白质含量的传统和现行标准方法依然是凯式定氮法和杜马斯燃烧定氮法,即还原无机氮或单质氮,用还原后无机氮或单质氮元素含量表征氨基酸,并反推蛋白质含量。在没有人往被测物里人为添加三聚氰胺等无机氮的前提下,传统方法是可行的。但是,如果有人就把无机氮加到系统中去,干扰反推法检测蛋白质的含量,因为含氮量的提高有助于蛋白质含量反推结果的提高,会导致蛋白质含量的虚高。 1.凯氏定氮仪:这种方法是Mr. Johan Kjeldahl在1883年发明的。凯氏定氮法,即采用化学方法,样品消解后含氮化合物转化成氨气,被吸收后经滴定后,测定出总氮元素含量,后经换算转化成蛋白质含量,由于不同的氨基酸序列,凯氏定氮法需要许多不同的校正因子。并且需要使用浓硫酸和较长时间的加热。所以造成了凯氏定氮法只能粗略的测量总蛋白质含量。更致命的缺陷是,测总氮指标后再换算成蛋白指标,造成非蛋白氮会干扰测定的漏洞和机会。 2.杜马斯燃烧定氮法:样品经完全燃烧后转变为氮气,后经测定出的总氮含量后转化为蛋白质含量,步骤是:燃烧&rarr 还原&rarr 净化&rarr 检测,问题依然在于只测总氮指标后再换算成蛋白指标,非蛋白氮会干扰测定,造成蛋白含量值虚高。 无机氮或单质氮在蛋白质里面是不存在的。只有把他烧完以后,有机物质经氧化还原后才会出现无机氮或单质氮。检测蛋白质这些传统方法如凯氏定氮、杜马斯定氮、都是需将蛋白质里面的有机氮经过还原转化为无机氮或单质氮元素来定量,造成不法商贩只要把无机氮或单质氮加进去以次充好,反正用反推法算出来就变成蛋白质含量了。都是以无机氮或单质氮含量来反推蛋白质含量,并不能分辨氮的来源。 无机氮或单质氮&ne 蛋白质 蛋白质中含有氮,不等价于测出的氮都是蛋白质中的氮。所以,用无机氮或单质氮来表征蛋白质含量是有问题的。只要无机氮或单质氮反推法依然是现行的蛋白质测试标准,就会形成一个开放性的动态的系统,利用反推原理,在这个动态系统中,在利益驱使下,不断有人往里面加各种含氮化合物,提高总氮含量,没完没了,防不胜防。 传统蛋白质测定一直采用凯氏定氮法。该法通过氧化还原反应,氧化低价氮为氨盐,通过标定氨盐中总氮元素的量进而换算成蛋白质的含量。凯氏定氮主要针对有机氮化合物,包括蛋白质、游离氨基酸、核酸、尿素等N3-化合物。检测过程中非蛋白氮同样被消化成氨盐,不能反应真实的蛋白质含量,使检测结果虚高,造成严重的国家食品安全的信用危机。只有真正基于蛋白质结构的真蛋白检测方法才能这个解决问题,才能从源头上杜绝再次出现三聚氰胺或其他非蛋白氮事件。寻找一个真蛋白的测定方法迫在眉睫。 3. 蛋白质的组成结构 事实上,蛋白质的基本组成结构是多肽,而多肽的基本组成是氨基酸分子,当然组成氨基酸的主要元素为碳、氢、氧、氮等元素。所以,从根本上说,蛋白质是由氨基酸组成,不是由无机氮或单质氮组成,无机氮或单质氮在蛋白质里面是不存在的。 蛋白质的组成是由氨基酸通过肽键连接而成的长链。组成蛋白质的常见氨基酸有20种。组成蛋白质的主要元素:C、H、O、N、S。蛋白质的含氮量约为16%。凯氏定氮和杜马斯燃烧法都是基于蛋白质的含氮量来计算的。目前,实践经验已经证明了这个方法的缺陷,并让我们付出了惨痛的代价。 20种常见的氨基酸 天冬氨酸 Asparagine 丙氨酸 Alanine 精氨酸 Arginine 天冬酰胺 Aspartate 胱氨酸 Cystine 酪氨酸 Tyrosine 谷氨酰胺 Glutamate 甘氨酸 Glycine 组氨酸 Histidine 异亮氨酸 Isoleucine 亮氨酸 Leucine 赖氨酸 Lysine 苯丙氨酸 Phenylalanine 蛋氨酸 Methionine 脯氨酸 Proline 丝氨酸 Serine 苏氨酸 Threonine 缬氨酸 Valine 色氨酸 Tryptophan 谷氨酸 Glutamine 4. 回到氨基酸的蛋白质表征方法&mdash 关键控制因素事实证明,凯氏定氮的总氮(无机氮或单质氮),不能作为蛋白质表征的关键因素,继续下去,后患无穷,如果能找到以通过氨基酸为表征的原理测试蛋白质,以这个点为中心,进行宏观控制,这样就从本质上,杜绝了加三聚氰胺的风险。蛋白质是由氨基酸组成的,找到特征氨基酸标示,进行分子级别的身份证明,根据氨基酸的含量反推蛋白质的含量,从源头上,使加任何东西都没有用,包括添加皮革边角料,也都没有用。所以,如果找到一个以氨基酸为基础的方法,以氨基酸标示蛋白质。国家蛋白质检测标准建立在这个基础上,就不会有厂家再去加不需要加的东西,因为以特征氨基酸为表征蛋白质含量的时候,即使添加类似三聚氰胺的无机氮,也起不到提高蛋白质含量的作用。这是利国利民的、很有意义的事情。找到这个关键因素进行控制,今后没有人往食品里添加三聚氰胺,因为加了对检测结果也毫无影响。 解决检测漏洞最根本的办法是,检测牛奶中蛋白质的真正含量。为了解决以上这个问题,我们提出并研发了以特殊氨基酸作为蛋白质表征的iTAGTM的标签技术,iTAGTM的标签技术的核心,是基于用特殊氨基酸作为蛋白质的表征的原理。 iTAGTM的标签技术,直接检测真蛋白质含量,而非总氮含量传统的蛋白测定方法,通过iTAGTM标签技术实现了对真蛋白含量的测定,避免了非蛋白氮添加物、残留物对于测试结果的影响。使得蛋白测定结果更为科学可信。例如三聚氰胺、尿素、皮革水解蛋白等非法添加物不会造成测定结果虚高。 这和国家整体的思路有关系,如果中国食品安全质量控制体系的整体思路,回归到从复杂宏观系统找到并建立关键控制因素,如果以氨基酸为标示蛋白质的方法得到推广普及,从而今后没人有必要向牛奶中加非蛋白氮的物质,中国人民今后就不会受到三聚氰胺的困扰。用特殊氨基酸作为蛋白质的表征,这是我们研发iTAGTM的标签技术的理念。 5. 真蛋白质测定技术从根本解决三聚氰胺皮革奶的问题 蛋白质是由氨基酸组成的,不是由无机氮或单质氮组成的。iTAGTM标签技术是直接测量法,用氨基酸表征蛋白质,根据氨基酸含量反推蛋白质含量,非常精确。目前,iTAGTM标签技术非常成熟,与传统方法有本质的区别。目前凯氏定氮法和杜马斯燃烧定氮法都无法排除非蛋白氮的干扰,无法直接测定真实蛋白质含量。iTAGTM标签技术彻底超越了用无机氮或单质氮表征蛋白质含量,即凯式定氮法所出现的问题。 如果在中国采用这种欧美非常流行的方法检测真蛋白质,就不会出现以前企业为提高总氮含量,而往牛奶中添加三聚氰胺或皮革奶的问题,因为往牛奶中添加三聚氰胺只是提高假蛋白的含量,不会提高真蛋白质数据值。如果中国食品安全质量控制体系中检测蛋白质时,以氨基酸为标示的方法得到推广普及,中国人民就不会受到三聚氰胺皮革奶等的困扰。 CEM特殊配方的蛋白质标签技术iTAGTM标签技术,基于传统AOAC、AACC方法 Method 46-14B的技术突破,试剂经改性优化后具备更高的目标性和抗干扰能力,可直接区分及测量蛋白质含量(而非总氮元素),不受样品中过量含氮物质添加或被含氮物质污染所造成的结果失真的影响。iTAGTM 标签技术,直接标定蛋白质中的氨基酸,该技术优化了目标性和针对性,几乎没有干扰物质,因此结果更精确,重复性和再现性更好,优于并超越了传统标准的结果。绿色iTAGTM标签技术,直接准确检测真实蛋白质含量,不受非蛋白氮干扰,安全性更高、目标性更强、所以准确性更好。iTAGTM标签技术快速、安全、环保! iTAGTM 标签技术结合生物与食品技术,进行快速精确的蛋白质测定,可在2min得到准确的结果,精确度达到0.01%。当添加小麦面筋蛋白时不会产生蛋白质测量错误结果,加入三聚氰胺时也不会产生错误结果; iTAGTM标签技术解决了凯氏定氮检测缺陷,即非蛋白氮干扰,区别蛋白质与非蛋白氮的意义在于可以获得精确的蛋白质含量。这对需要进行准确蛋白质检测的行业如食品、饲料和蛋白研究领域具有极大的应用价值。 iTAGTM 标签技术覆盖AOAC 967.12 ,适合分析:乳品(成品或半成品)蛋白、巧克力饮料、脱脂奶及冰激淋等。 另外,iTAGTM 标签技术也符合美国联邦法规(CFR)Title 47。iTAGTM 标签技术可用于所有食品中蛋白质含量的检测,如乳制品、肉制品、粮油制品、果蔬、种子、坚果等。适合分析:谷粒、油籽、豆类、饲料(包括草料)、动物制品、乳制品等。 iTAGTM技术与凯氏法结果平行性对比 iTAGTM技术与凯氏法测试结果对比 Milk Run Sprint Kjeldahl 1 3.13 3.15 2 3.12 3.16 3 3.12 3.13 4 3.12 3.17 5 3.12 3.12 6 3.13 3.18 7 3.12 3.138 3.12 3.16 Average3.12 3.12 Std dev 0.005 0.017 % RSD 0.1% 0.5% Milk (Sample spiked with 0.3g melamine/100 g) RunSprint Kjeldahl 1 3.12 4.53 2 3.13 4.44 3 3.12 4.37 4 3.12 4.40 5 3.14 4.44 6 3.12 4.32 7 3.12 4.41 8 3.13 4.35 Average 3.14
  • 干货!食品加工过程中的质量控制
    奥豪斯助力食品行业,关注食品安全及合规。食品行业是一个备受关注的行业,每个生产环节都需要严格审查,尤其是食品的加工过程,政府有严格的监督和规定,以确保消费者和工人的安全。生产商必须依靠质量控制措施来保证其产品和流程符合监管机构制定的严格标准。更重要的是,质量控制准则使食品生产商需要最大限度地降低污染风险,并为客户提供安全、优质的食品。食品生产商实施标准操作程序,并采用高质量的测量仪器,以确保记录结果的可靠性和各批次产品的一致性。由于政府机构对食品行业的密切关注,食品类产品的质量状况必须在生产过程的各个阶段进行仔细披露和记录。最常见的两套监督要求是 GMP(药品生产质量管理规范)体系和HACCP(危害分析和关键控制点)。在为全球食品行业用户开发分析天平、台秤、平台秤等精密称重和水分仪、pH计等测量仪器时,奥豪斯始终牢记这两个标准。质量保证质量控制贯穿于食品加工的每一个环节,包括采购、研发、生产和分销。在经过严格筛选的原材料获得批准后,生产团队将按照配料、建议重量、批量大小和加工时间的标准操作程序来配制成品。不仅需要仔细记录标准操作程序,还需要记录持续的生产过程,以确保一致性和合规性,并在出现问题时确定原因。最后一道工序--贴标签--也受到严格监管,因为从配方、一致性到重量和其他因素,包装外部所标注的内容必须与内部的成品相符。生产应用前端(台秤、水分仪)和后加工区(冲洗秤)都需要有支持食品质量控制的仪器。 为了满足食品生产商的需求,奥豪斯提供各种耐用、可靠的测量仪器,以满足加工、研发、测试、包装、仓储、运输等领域的多种应用。数十年来,我们一直与全球食品加工行业合作,帮助提高企业生产的安全性、效率、产量和盈利能力。我们为提高消费者安全、产品一致性和质量控制提供多种解决方案。奥豪斯商用仪器旨在帮助您满足食品安全、质量和法规要求。我们的秤和水分仪几乎覆盖了食品加工的许多方面,并能针对性地提供有效的解决方案--物料接收、配方、质量控制、灌装、配料、基本称重和检重。我们精密的食品称重和测量仪器性能可靠、易于设置和使用,而且精确可靠,旨在帮助您最大限度地提高产品产量和减少浪费。选择合适的设备及仪器 奥豪斯提供一系列专为食品行业设计的精密分析天平。这些天平结构坚固,使用方便,结果精度高。我们提供的天平经过NSF 认证,支持 HACCP 系统,并被 USDA-AMS 认可。奥豪斯食品业用秤的表面光滑、无障碍,易于清洁,没有可能积聚物质和造成污染的区域。以下是我们支持的几款高性能食品秤和水分仪。对于最高达到150kg的大容量食品称重,奥豪斯提供 Defender&trade 6000 系列台秤。Defender 6000 专为食品加工而设计,秤体平台和框架采用耐用的 316 不锈钢材质,显示器也采用了316 不锈钢和食品级聚碳酸酯,能够应用于潮湿、恶劣的环境下。它有各种秤台尺寸、量程、可读性和特殊功能可供选择,以满足您的需求。Defender 6000 台秤的设计可应对高压冲洗和刺激性的清洁剂,配备激光焊接密封的 IP68 和IP69K 不锈钢称重传感器,符合贸易应用的计量标准。Defender 6000 台秤具有明亮的大显示屏和彩色检重灯,方便查看称重结果,提高工作效率。应用模式包括计数、百分比称重甚至灌装。通过一系列连接选项和带实时时钟的GLP/GMP 数据输出,可实现简单的通信,从而实现加工过程追踪和可追溯性。为了更好地提供便利性和安全性,Defender 6000 装载了多种特殊功能,包括 150% 的过载能力保护、菜单和按键锁、环境可选和自动打印设置、稳定标记、过载/欠载指示灯、自动关机、自动去皮和可调橡胶脚垫。为进一步帮助食品行业提升质量控制和行业合规性,奥豪斯提供一系列具有直观功能的快速水分仪,帮助企业通过水分含量分析监控产品质量和一致性。我们的MB 系列水分仪具有卤素和红外加热器、耐用的结构和易读的显示屏,可提供各种量程、可读性和功能设置,快速且有更高重复性,以满足企业的应用需求。了解更多奥豪斯在食品行业的解决方案,请登录奥豪斯官网或关注奥豪斯官方微信号。
  • 赛多利斯食品安全与质量控制讲座邀请函
    食品安全与质量控制巡回讲座邀请函   赛多利斯作为全球知名的过程技术和实验室仪器供应商,不仅致力于为食品行业客户提供先进的称量设备、生物过滤等设备,也希望能为客户提供一个交流沟通的平台,传播先进的知识技术、管理方法和经验。为此,赛多利斯继2008年成功举办《食品安全标准及质量控制讲座》之后,再次为中国食品企业举办“2009食品安全与质量控制巡回讲座”,以回馈广大用户多年来对赛多利斯的支持与信赖。   随着经济的发展,食品消费已经不再满足于“饱腹”和感官享受,而是更加注重食品的营养补充、发育促进、疾病预防和辅助治疗等内在品质。要满足这些需求,食品工业唯有同相关的多种学科和产业结合,同高新技术结合,进行全面的技术改造和产品升级换代。为了帮助用户更好地理解食品安全、营养改善等方面的知识,了解知名食品企业先进的食品安全及质量管理方案,赛多利斯集团特别邀请了国家发改委宏观院公众营养与发展中心、国家公众营养改善项目于小冬主任,为大家解析食品安全、营养强化和营养健康倡导产品以及食品产业发展方向等方面的热点话题。同时还将邀请青岛啤酒厂(青岛会场)以及麦德龙相关负责人(上海会场)讲解质量控制过程中的关键环节及检测方法等方面的内容。在此我们诚挚地邀请您参加本次技术交流会,相信赛多利斯能为您呈上我们的经验、解答质量管理规范中的困惑!   公司简介:德国赛多利斯公司成立于1870年,是世界著名的过程技术和实验室仪器供应商,是称量技术、生物过滤技术的市场领导者。可为食品行业的生产和研发提供全套的解决方案。而今,赛多利斯的产品已经遍布各个领域,可以满足绝大多数食品安全的需要,包括GMP、HACCP、IFS、EHEDG等。赛多利斯产品的卓越品质在世界范围获得了极高荣誉。   第一场:青岛 青岛老转村China公社文化艺术酒店 时间:2009年 10 月26日   第二场:广州 广州远洋宾馆四楼莱茵河厅 时间:2009年 10月28日   第三场:上海 上海金轩大酒店2楼大会议室 时间:2009年 10月30日 主要议程:   1、与会代表签到   2、全行业总动员重塑中国食品的安全形象   于小冬教授/主任 国家发改委宏观院公众营养与发展中心、国家公众营养改善项目   3、质量控制和食品安全管理(青岛会场)   宋永皓先生 青岛啤酒厂技术质量管理总部经理   4、食品领域认证审核的趋势与企业的发展(上海会场)   邹翔先生 麦德龙集团中国总部供应链及产品质量保证经理   5、卫生环境下的称量   6、水份测定仪在食品质量控制管理方面的应用以及过程测量技术   7、金检重检, 加强质量控制确保食品安全   8、利用过程称重和批料控制提升产品质量控制   9、食品行业实验室及生产设备的维护及保养   10、 幸运抽奖…………………………………………………………………………………………………………… 回 执 为了安排好讲座、资料、免费午餐等工作,敬请有意参加者于2009年10月20日前传真确认。 联系人:赛多利斯北京公司 市场部刘小姐 电话:010-80426440 传真:010-80426551联系人:赛多利斯广州办 市场部陈小姐 电话:020-37619159*211 传真:020-37616234 联系人:赛多利斯上海分公司 市场部郑小姐 电话:021-64270612*234 传真:021-64270604 单位 部门 姓名 电话 传真
  • 欧赛众泰发布瑞士万通831水分仪智能控制盒新品
    瑞士万通的831库仑水分仪,是许多行业微水检测的权威设备,以稳定、准确、耐用著称。 但苦于没有中文界面,且只能存储一个结果。因此,很多国内用户一直期盼这台设备的汉化以及数据管理的智能化。欧赛众泰结合多年瑞士万通的专业知识和应用经验,利用现有KFas软硬件平台,创新性地推出了831水分仪智能控制盒(型号:KFas-831M1),让这台经典的水分检测设备实现了操作界面中文化,存储结果海量化的强大功能。 产品亮点:? 彩色触摸屏,图形化中文操作界面;? 海量存储,数据管理量可达几十万条;? 实时跟踪831的漂移值、微水值和电位值,并可全程查看这些数值与时间的对应曲线;? 涵盖831水分仪90%以上的硬件参数和滴定参数设置,所设参数可实时传送;? 创新的双向互控系统,可沿用原有的键盘操作习惯,将智能盒作为数据管理器,也可将智能盒作为主控制器完全控制831;? 权限管理功能:设置权限控制参数设置、硬件管理和数据管理,避免误操作;? 体积小巧,开机即用,无需配备电脑即可工作。 备注:KFas:即Karl Fisher Assistant(卡氏水分助手),是欧赛众泰公司推出的一系列卡氏水分辅助设备,产品主要包括单通道卡氏炉2010,全自动卡氏炉3011/3012/3036,卡氏水分换液器6001,全自动定体积进样系统6024等。创新点:1、实现了瑞士万通831卡氏水分测定仪操作界面的中文本土化,使实验参数的设置与修改更加简便快捷,从而提升了实验结果的精确度和可验证性; 2、极大地扩展了数据存储量,不需外接电脑即可独立工作; 3、可作为831卡氏水分测定仪的数据管理器,亦可作为主控制器完全控制831卡氏水分测定仪,满足用户的多种操作需求; 4、权限管理功能,有效避免误操作,提高实验效率、延迟仪器使用寿命。 瑞士万通831水分仪智能控制盒
  • 关于参加“2014中国国际食品安全与质量控制会议暨检测仪器设备展览”的邀请函
    当今世界食品贸易的本质就是在全世界范围内加强食品安全。食品安全也是一个可以从对话、知识分享和协作中获得巨大利益的问题。每年,中国国际食品安全与质量控制行业暨检测仪器设备展览会给来自各国政府、工业界和科技学术界的利益攸关者提供非常难得的机会,聚集一堂,商量挑战的应对之策和探讨各种可行的解决方案。如果您从事食品安全事务,就不能错过这个重要的年度会展活动。就请与来自食品安全各方面的800多名领导人一起出席本活动,体验无与伦比的知识学习和社交联谊。第八届中国国际食品安全与质量控制会议暨检测仪器设备展览会将于2014年11月5 &ndash 6 日在上海龙之梦大酒店举行。   食品安全事关公众健康、社会经济稳定和全球贸易的重大问题,因此,食品保护是一个全球范围内的重大问题,也是一个可以通过对话、协作和知识共享而得到极大改善的问题。作为中国食品安全领域年度性盛会,以搭建交流平台、展示中国食品安全进展为宗旨中国国际食品安全与质量控制会议暨检测仪器设备展览会(CIFSQ)自2007年举办以来,迄今已连续成功举办了七届,为国内外食品产业链的参与者提供了一个无与伦比的机会,大家共聚一堂,商讨与应对最紧迫的食品安全挑战。   如果您从事食品安全相关的工作,这是一个不能错过的一年一度的重要活动。为期两天的会议里研讨话题精彩纷呈,800多位世界顶级的食品安全监管与产业界的专业人士将参会,从中您将得到丰富的收获。   一、主办及承办单位   全球主办单位:国际食品保护协会   全球合作伙伴 : 全球食品安全倡议(GFSI), 美国食品饮料和消费品制造商协会(GMA),美国食品技术协会(IFT)   承办单位:北京讯息展信息技术有限公司   支持及参与单位:中国国家认证认可监督管理委员会,国家食品药品监督管理总局,国家食品安全风险评估中心,中国食品工业协会,国家卫生和计划生育委员会,AOAC中国分部,北美华人食品保护协会,食品法典委员会,全球食品可追溯性中心,美国疾病预防控制中心,美国食品药品管理局   二、时间地点   时间:2014年11月5-6日,会期为2天。   地点:上海龙之梦大酒店(上海市延安西路1116号 电话:021- 61159988 酒店网址www.thelongemonthotels.com/)   三、参加人员   国内外食品安全监管部门、政府机构、行业协会、高校及科研机构、知名食品制造商、零售商、服务商,设备及包装供应商,第三方检测机构等负责食品的测试、检验、质量控制/质量保证、审计、认证、守法、卫生清洁、研究、科研、执法、监管事务、政策制定、立法、诉讼、标准化、培训等专家和管理人员及新闻媒体,共计约800-1000人。   四、会议议程 2014年11月5日(星期三) 主题演讲 展览联谊午餐 主题演讲 圆桌讨论 晚间招待会 2014年11月6日(星期四) 专题论坛 专题 A 专题 B 专题 C 专题 D 专题 E 专题 F 国际食品安全最佳实践 &mdash 从农场到餐桌 食品过敏原管理 &mdash 迈向亚太经济体内更广泛的融合 先进的应用食品检测方法与技术 创新的生产与加工的食品安全解决方案 风险评估与管理 由(微生物)风险评估支撑的食品安全管理 专题 G 专题 H 专题 I 专题 J 专题 K 专题 G 中国食品安全培训项目 食品安全管理 -通过案例分享最佳实践 为美国食品安全现代化法案建立一个成功的海外供应商验证计划 食源性传染病的监测与疫情检测:来自全球不同的看法 食品可追溯性 中国食品安全培训项目  具体议程请访问官网http://www.chinafoodsafety.com/index_c.htm 。   五、参会事项   (一)报名方式:   请登录大会官网http://www.chinafoodsafety.com/网上注册,报名截止时间是2014年10月31日(星期五)下午17:00.   (二)参会费用: 优惠价格 (10月15日下午17 :00以前付款) 标准价格 会议套票 o RMB2000 o RMB2500   会务费包含会议资料、会刊、两天的自助午餐和会议茶点,差旅和住宿自理。   (三)账户信息:   开户名称:北京讯息展信息技术有限公司   开户行:北京银行清华园支行   帐 号:01090334600120105167422   请将参会费用汇出后,把银行出具的付款凭证复印件传真至010-62771799,并注明登记者姓名及&ldquo CIFSQ2014&rdquo   六、联系方式:   大会秘书处:王向荣 先生   电话:+86-10-62771798 传真:+86-10-62771799   邮件:xr.wang@infoexws.com
  • 使用向实时检测转变的路线图,实现对制药水质的更佳控制
    制药业正在快速发展。随着向去中心化临床试验和精准医疗的转变,制造业开启了Pharma 4.0时代,制药业必须以更快的速度和同等或更高的准确性为患者提供健康。此外,未来的制造设施需要灵活地适应不断变化的生产需求和过程分析技术(PAT),以确保对制造过程的控制。质量仍然是制约制药企业快速生产和向市场推出治疗药物的因素之一,因为许多质量检测需要几天才能获得结果。在不影响质量标准或合规性的情况下,提高速度就需要优化效率,同时继续降低或消除风险。一个可以改进的领域是制药用水监测。水在整个制药设备中使用——作为最终产品和中间体或清洁等工艺中的成分——并且必须检测其中的杂质和污染物含量,如总有机碳TOC、电导率、内毒素和微生物限度。因此,水质检测的速度和频率对有效的质量控制和生产至关重要。实时检测(RTT)能加速质量控制和提高效率。RTT结合了在线分析仪表,可以将超纯水实时放行到生产中,避免不必要的延误或产品损失。多年来,在线分析仪表通过标准的安装、操作和性能确认(IQ、OQ和PQ),支持过程监测和控制。现在,由于希望根据在线分析仪表的数据将水放行到生产中,供应商开始通过额外的验证支持文件开发和支持RTT应用中的在线仪表,以符合RTT相关法规——ASTM E2656。RTT目前支持TOC和电导率检测,有效和可行的内毒素和微生物限度在线检测技术的出现也只是时间问题。一旦有效的在线内毒素和微生物限度检测平台出现,验证文件也会被开发以支持这些质量检测的RTT应用。随着在研产品的增加,对水的有条件放行带来的风险也随之增加随着制药商扩大运营规模以满足快速发展的需求,尤其是围绕新疗法的需求,他们需要优化研发和生产流程效率。然而,当QC团队进行水质检测时,他们通常会需要一天甚至最多两周的时间来等待结果,具体所需时间取决于检测类型。因此,许多制药公司基于风险做出决定,假设水将会通过所需的检测,有条件地提前放行水投入生产,以提高投放市场的速度。通过收集足够的历史数据,制药公司在等待可接受的检测结果出来并确认的时候,已经接受了提前放行的风险。然而,一旦水质检测不合格,由此产生的延误可能会持续数天或数周,并造成数百万美元损失。这是制药公司为优化生产正常运营时间而定期承担的计算出的风险。尽管如此,这仍威胁到公司的进度表和预算,并可能导致相反效果——延迟药品的生产和市场投放。RTT直接解决了这种风险,但当公司希望实施RTT时,必须遵循经过验证的路线图以确保现在与未来的成功。以下是如何开始实施RTT实时检测路线图多年来,Sievers分析仪与全球许多制药客户合作,制定了使用的Sievers仪器的路线图,以确保成功实施RTT。制造商寻求的不仅是简化仪器的安装,他们需要完整的解决方案来满足整个企业的监管要求、数据管理和效率。集成的实时检测做法可以分为五个阶段,如下所示。第一阶段组织和定义与所有以业务驱动的项目一样,公司必须确定需求并证明其合理性,并了解RTT项目的投资回报率。在建立一个致力于项目成功的团队时,领导者应确保它是跨职能的,例如包括来自质量控制、过程控制、设备和验证的不同人员。第二阶段风险评估无论公司是从实验室分析仪还是其他在线分析仪表过渡,评估当前运营将有助于确定新方向是否会带来更好的结果。此阶段包括选择技术和确定在线分析仪表将放置在水回路中哪个位置。执行团队必须了解水回路沿线的哪个位置最能体现每个使用点的水质。此位置通常位于返回储存水的水池或水库附近,因为理论上讲,水已经流过回路的每个部分,因此该位置将检测到水所接触到的任何污染物。第三阶段实施/验证这个阶段既关乎实际执行,也关乎降低过渡风险。这个阶段可以分解为方法验证和过程验证。方法验证需要验证新仪器用于监测和控制的目的,通常指安装、运行和性能确认。过程验证的第一步是方法转移——一项更有针对性的桥接试验,记录实验室仪器的性能并将其转换为在线分析仪表。此步骤根据美国药典USP ,从监管角度确定新设备适合其预期用途。此外,供应商通常会提供系统适用性或准确性和精确性标准品,将实验室分析仪的结果与最新的在线分析仪表结果进行对比。根据美国材料与试验协会(ASTM)E2656-16规定的步骤,过程验证的下一步是建立检测系统的等效性。必须验证在线分析仪表的性能是否与实验室分析仪相当或更好,这意味着在线分析仪表检测值必须低于实验室检测值。过程验证的最后一步是使用点(POU)可比性研究,以降低使用单一仪器监测整个水回路相关的风险。第四阶段数据记录和处理随着对数据可靠性、安全性和传输性的关注和法规的增加,最理想的拥有能够处理数据并将其传输到QC实验室的软件。根据实验室做法,在同一个样品瓶中收集一到五个数据点。在线仪器则会发送和连续收集多个数据点。一些供应商将软件平台与在线分析仪表相结合,以实现在RTT应用中,对连续生成的数据进行实时审查和验证签发。在此阶段,团队制定措施和报警限值也很重要,需要考虑到不合格的检测结果将如何影响运营与进一步调查。第五阶段维护这一阶段有多个组成部分,从准备备份方案开始。例如,从实验室做法过渡到在线分析仪表的制药商,必须能够在出现故障时恢复到实验室取样,并且有一个标准的操作程序来执行此操作。沿着这些思路,制药商还希望为在线分析仪表和调查程序(基于FDA指南)建立预防性维护计划,以便他们对不合格(OOS)结果进行调查。如何执行计划RTT项目的时间表可能差异很大。因疫情影响以及业内人才流动,RTT的执行成为重中之重。有更紧急项目的公司可以在短短三个月内完成这五个阶段,但优先级较低的项目可能需要长达一年时间。由项目团队推动上述大部分阶段,因此他们必须充分了解是否有资源来完成整个RTT项目,或者确定第三方如何更好地协助提供解决方案。Sievers分析仪团队正努力为制药客户带来更多RTT方案。例如,我们的软件平台DataShare Elite将来自所有仪器(包括实验室和在线)的数据传送至一个集中位置,以便方便、快速地访问检测结果。此外,我们的Sievers M500在设计时已考虑了RTT,可自动取样,同时提高了TOC检测的数据可靠性和安全性。点击图片,查看DataShare Elite软件平台介绍优化效率,同时继续降低或消除风险是现代制药公司努力将挽救生命的治疗方法更快推向市场的必要条件◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制