当前位置: 仪器信息网 > 行业主题 > >

遗传因子发现系统

仪器信息网遗传因子发现系统专题为您提供2024年最新遗传因子发现系统价格报价、厂家品牌的相关信息, 包括遗传因子发现系统参数、型号等,不管是国产,还是进口品牌的遗传因子发现系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合遗传因子发现系统相关的耗材配件、试剂标物,还有遗传因子发现系统相关的最新资讯、资料,以及遗传因子发现系统相关的解决方案。

遗传因子发现系统相关的论坛

  • 【资料】进行基因遗传因子生物技术和医学生物研究的仪器

    进行基因遗传因子生物技术和医学生物研究的仪器俄罗斯科学院西伯利亚分院细胞遗传研究所特性:已经研究完成和正在制造用于进行分子遗传、医学物理和生物技术的工作:用于死骨基因的、在丙稀酰胺的和凝胶拟琼的电离子透入法的、真空迁移断列体和其它箱、室(请阅仪器的清单表)。目前正和瑞士Guest Elchrom Scientific公司有关电离子透入法设备的制造进行合作。这些仪器在工作中使用方便和简单,它们不低于类似Bio-Rad(美国)和LKB(瑞典)国外公司制造生产的模拟装置。设备是由可得到的材料(基本上是由有机玻璃)制造的并在价格上便宜50%。目前大部分仪器已准备成系列生产。已与科学委员会有关人的基因”签订了供应仪器设备的协议书。俄罗斯科学院和俄罗斯医学科学院大学已向我们订了货,同样瑞士Guest Elchrom Scientific公司也已向我们订了货。仪器明细表:1.用于在琼质凝胶中、10/20个样品的电离子投入法的小屋;2.用于在淀粉中的电离子投入法的小屋;3.用于在丙稀酰胺中的电离子投入法的小屋;4.电迁移室;5.逻辑运算室;6.48~96间隔的窗口室;7.真空迁移室;8.电动洗提器;9.装50 ml试管的离心杯;10.装10、25和50 ml的梯度器;11.用于10~15~22样品的聚四氟乙烯清除梳刀;12.用于清洗滤清器的漏斗;14.装吸移管的旋转式支架;13.磁混合器用的整套磁铁;15.在无菌操作室工作室用的滴液管支架把手;16.电极把手—“第三个手”;17.逻辑运算用的П型玻璃;18.夹玻璃用的紧定器;19.带冷却的在淀粉凝胶中(很小的)用于电离子透入法的小屋;20.用于SEA2000电离子透入法的小屋;21.用于玻璃滴液管的消毒器;22.切淀粉用的小桌;23.灌凝胶用的带有水准的小桌;24.用于染色、冲洗和察看УФ琼质凝胶的小槽。实际实施的情况:样品(24件样品的名称已列出明晰表)正在进行鉴定并在莫斯科、圣• 彼得堡、伊尔库茨克、符拉迪沃斯托科(海渗威)、克拉斯诺亚尔斯克、新西伯里亚、乌克兰、哈萨克斯坦医学和医学生物专业大学研究所中使用。专利的保护:没有。合作意向:提供产品;寻找投资者。单位名称:俄罗斯科学院西伯利亚分院细胞遗传研究所;单位地址:630090俄罗斯新西伯利亚州新西伯利亚市拉夫琳捷夫大街10号;单位电话:007 (3832) 33-35-26;单位传真:007 (3832) 33-12-78;单位电子信箱:E-mail: icg-adm@bionet.nsc.ru 单位网站:http://www.bionet.nsc.ru/。

  • 【金秋计划】基于ISSR和SCoT分子标记的丹参遗传多样性评价及生境因子对丹酚酸和丹参酮的影响

    优良的遗传基因是决定优质药用植物形成的基础和内在因素[1]。DNA分子标记可以从居群及分子的水平上来阐明优质药用植物产生的生物学本质[2],已有大量报道表明基于DNA分子标记的遗传多样性分析揭示了厚朴、肉苁蓉、甘草等道地药材独特药材品质是由当地独特的环境与药材基因型相互作用所产生的[3-6]。目前,已开发出包括扩增片段长度多态性(amplified fragment length polymorphism,ALFP)、简单重复序列(simple sequence repeats,SSR)、相关序列扩增多态性(sequence related amplified polymorphism,SRAP)、简单重复序列间区(inter-simple sequence repeat,ISSR)、目标起始密码子多态性(start codon targeted polymorphism,SCoT)、单核苷酸多态性(single nucleotide polymorphisms,SNP)在内的大量分子标记可用于药用植物研究[7-9],其中,ISSR和SCoT由于具有引物通用性、随机性、设计简单、重复性好等优势而更加适用于药用植物遗传多样性及亲缘关系分析[10, 11]。 《神农本草经》中提出“土地所出,真伪新陈,并各有法”。特定的大气、水文、土壤等环境条件造就了不同的药材特性[12]。因此,为了增加药用植物中有效成分的含量,提高药材的品质,需要探索分析药用植物的品质与赖以生存的环境之间的联系[13]。例如,年平均气温、年日照时数、pH、Sr、Ca、S和交换性K等生态因子都是影响远志有效成分和生物活性的主要因素[14]。日照时数、相对湿度是影响黄芪中黄芪甲苷和黄芪多糖及黄酮类成分的关键因子[15]。除遗传因素和环境因素的影响外,药材的栽培、采收技术和产地的初加工等人文因素都会对药用植物的次生代谢产物有影响[16],近年来,随着野生资源的逐渐减少。栽培的中药材已经成为了常用中药的主要来源。大多药材栽培产区的药农在长期栽培过程中结合实践,积累了丰富的种植生产经验,有效的控制了药材的质量[17-18]。 丹参Salvia miltiorrhiza Bge.隶属唇形科(Labiatae)鼠尾草属Salvia L.,为多年生草本植物[19],以其干燥根及根茎入药,用于治疗胸痹心痛、月经不调、疮瘍肿痛等病症[20]。丹参酮Ⅰ、丹参酮ⅡA、隐丹参酮等是丹参中主要的二萜类有效成分[21-22]。迷迭香酸、丹酚酸A、丹酚酸B等则是主要的酚酸类成分[23-24]。现代药理学认为,丹参酮类和丹酚酸类化合物(尤其是丹酚酸B)均具有较强的抗肿瘤、抗菌消炎、心脏保护等多种药理作用,临床上广泛应用于心脑血管疾病的治疗[25-26]。丹参一般栽种在海拔较低的丘陵地带,野生丹参常见于草丛、林下、山坡及溪谷旁[27]。其对环境的适应性较强,广泛的分布于我国华东、华中、华北、华南等地区,西北、西南的部分省区也有分布。四川、山东、陕西、河南是丹参栽培的传统道地产区,其中,四川中江所产丹参在各产区丹参中品质较佳,一直作为中药丹参出口的优质道地药材,大量出口于中国周边东南亚国家。 近年以来,由于丹参长期的只种不选导致栽培品种退化,质量下降,使得道地性丧失。另一方面,由于过度采挖,导致野生资源遭到破坏,而临床需求量不断增大使得丹参资源日益紧缺、丹参的药材市场混杂,药材质量和数量难以保证,严重影响其疗效,制约其产业发展。因此,本研究以采自四川中江、陕西商州(镇安、山阳)、山东蒙阴(临朐、济阳、新泰、平邑)、河南伊川、山西曲沃等丹参主要栽培区的丹参样品以及栽培区土壤气候为研究对象,利用ISSR和SCoT标记对不同产区丹参进行遗传多样性评价,并结合有效成分、生态环境的分析,明确影响丹参品质的主导因子以及丹参种植的适宜环境,以期为丹参的高产稳产、优质及后续丹参扩大种植的产区选择提供理论依据。 1 仪器与材料 T100 [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪(美国Bio-Rad公司)、GelDoc XR凝胶成像系统(美国Bio-Rad公司)、DYY-7C型电泳仪(北京六一生物科技有限公司)、BCD-532WDPT型超低温冰箱(青岛海尔股份有限公司)、LC-20A型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](日本岛津公司)、CR22N型高速冷冻离心机(德国Eppendorf公司)、Thermo Scientific? iCAP? PRO XP ICP-OES(美国Thermo Fisher公司)等。本研究共采集22个丹参S. miltiorrhiza Bge.居群,每个居群随机选取3株植株分别取适量幼嫩叶片,用于丹参遗传关系的分析。选择部分产地丹参为代表测定丹参有效成分,同时采集丹参根际土壤,材料采集信息如表1、2所示。 2 方法 2.1 ISSR和SCoT分子标记分析 使用植物DNA提取试剂盒(浙江兰博生物科技有限公司)提取四川、山东、陕西、河南、山西5个省22个居群66份材料的DNA。由擎科生物技术有限公司合成UBC加拿大哥伦比亚大学设计的ISSR引物和Collard & Mackill开发的36条SCoT引物[28-29]。2种分子标记的[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]反应体系均为10 μL 2×Taq [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] Master MIX Ⅱ(北京天根生物科技有限公司)、引物1 μL、模版DNA 1 μL、ddH2O补齐至总体积20 μL。ISSR标记的[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增步骤为:94 ℃预变性10 min,39个循环下94 ℃变性30 s、48~59 ℃退火1 min、72 ℃延伸1 min,最后再设置72 ℃继续延伸10 min。SCoT标记的[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增步骤为:94 ℃预变性5 min,36个循环下94 ℃变性30 s、52.9~59.7 ℃退火90 s、72 ℃延伸1 min,最后72 ℃继续延伸10 min。 2.2 丹酚酸和丹参酮类成分测定 按照《中国药典》2020年版[20]所规定的提取方法及色谱条件,提取不同居群丹参中的丹参酮Ⅰ、丹参酮ⅡA、隐丹参酮和丹酚酸B,并利用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(HPLC)进行含量测定。 2.3 气象指标调查 在中国气象数据网(http://data.cma.cn)上查询极大风速、最低气压、最高气压、最高温度、平均气温、平均最高气温、平均气压、平均水气压、平均2 min风速、平均相对湿度、日降水量≥0.1 mm日数、日照时数、最大风速、最大日降水量和最小相对湿度等15个气象指标。 2.4 土壤理化检测 参照《土壤分析技术规范》(第二版)[30]中土壤样品的采集、处理与贮存,采用五点取样法,收集丹参种植土壤,混合均匀,自然风干,过筛备用。并参照其中方法测定土壤有机质(油浴加热重铬酸钾氧化-容量法)、颗粒组成(比重计法)、阳离子交换量(乙酸钙法)、全N(凯氏蒸馏法)、全P(氢氧化钠熔融—钼锑抗比色法)、全K([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法)、水解N(碱解扩散法)、有效P(碳酸氢钠法)、速效K(火焰光度计测定法[31])、全量铜、锰、锌、钠、钙、镁、硼、铝(电感耦合等离子体原子发射光谱法)。 2.5 数据处理与分析 利用Excel 2019、SPSS 19.0进行数据的统计和分析,本研究所有数据均保证3个生物重复和3个技术重复。对于扩增产物的电泳结果,有条带的记为“1”,无条带的记为“0”,通过Excel 2019统计扩增位点总数(total number of amplification bits,TB)和多态性位点数(number of polymorphic bits,PB)。采用非加权组算术平均法(UPGMA)进行聚类分析。使用POPGENE 1.32分析得到的存在/不存在数据矩阵,计算等位基因数(number of alleles,Na)、有效等位基因数(effective number of alleles,Ne)、Nei氏基因多样性指数(Nei’s gene diversity index,H)、香农信息指数(Shannon information index,I)、多态性百分比(percentage of polymorphic bits,PPB)等遗传参数。 3 结果与分析 3.1ISSR和SCoT标记多态性分析 本研究从42对ISSR引物中筛选出了14对扩增条带清晰,多态性好、重复性好的引物,用于后续ISSR多样性分析。共扩增出140条条带,其中有133条多态性条带,PPB达到95%,平均每对引物扩增得到10条条带。引物UBC 808、UBC 823、UBC 825、UBC 834扩增的条带数目最多,有12条,多态性条带也是12条,PPB为100%。引物UBC 841扩增得到的条带数目最少为7条,(图1-A,表3)。 利用POPGENE 1.32计算,得到Na、Ne、H和I。其中UBC 811的Ne、H、I各项指数最高,分别为1.68、0.37和0.53。UBC 825的Ne、H、I各项指数最低,分别为1.19、0.14和0.26。Na、Ne、H和I平均值分别为1.95、1.41、0.24和0.37(表3)。 从36对SCoT引物中共筛选出10个扩增条带清晰、重复性好的引物,用于扩增22个?丹参居群(66个样本)的DNA。共扩增出97条条带,其中93条为多态性条带,平均多态性率为95.88%(图1-B,表4)。SCOT 28引物的扩增条带数最低为7条,多态性条带也是7条,PPB为100%。SCOT 3引物的扩增条数最高(14条),多态性率为100%,表明SCoT引物也具有较高的多态性和信息量。SCoT 28的Ne、H、I各项指数最高,分别为1.70、0.40和0.58。SCoT 14的Ne、H、I各项指数最低,分别为1.33、0.19和0.31。Na、Ne、H和I平均值分别为1.96、1.51、0.30和0.45(表4)。 3.2 不同居群丹参遗传多样性分析 结合ISSR和SCoT标记计算不同居群丹参的遗传多样性参数,Na范围1.64~1.79,平均值为1.71,Ne为1.34~1.43,平均值为1.38。H为0.21~0.26,平均值为0.23,I为0.31~0.37,平均值为0.35。其中,山东产区各居群的杂合度较高,遗传多样性较为丰富,四川中江产区杂合度较低,遗传多样性较低,稳定性较强(表5)。 3.3 不同丹参居群间遗传距离、PCA及聚类分析 遗传距离是用来衡量居群之间亲缘关系的重要参数,遗传距离越小,代表居群间的亲缘关系越近。结合ISSR和SCoT标记,计算了居群间的遗传距离,如图2-A所示,方格颜色越蓝代表2个居群间的遗传距离越近,越红则越远。来自四川中江的5个居群(SCZJ-1、SCZJ-2、SCZJ-3、SCZJ-4、SCZJ-5)互相之间表现出较近的遗传距离,而其他居群间的遗传距离较远。PCA分析和UPGMA聚类分析均表明SCZJ-1、SCZJ-2、SCZJ-3、SCZJ-4、SCZJ-5聚到了一类,而山东产区的丹参居群混杂的聚到了河南、陕西产区的类群中(图2-B、C)。总体说明四川中江各居群间的遗传稳定性较强,亲缘关系较近,而山东各居群的遗传变异性较大,亲缘关系混杂。 3.4 不同居群丹参有效成分含量测定 测定了不同产区丹参中丹酚酸B、隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA和总丹参酮的含量。色谱图见图3。各产地丹参的丹酚酸B含量均达到《中国药典》2020年版要求,其中,四川中江(SCZJ)的丹酚酸B含量远高于药典规定的3%,并且显著高于其他产区栽培丹参。陕西野生丹参(SXZA-Y、SXSY-Y)也具有较高的丹酚酸B含量,具体结果见图4。除了山西曲沃(SXQW)丹参酮总量未达到《中国药典》要求外,其他产地均达到《中国药典》的0.25%。此外,2个陕西野生丹参(SXZA-Y、SXSY-Y)的总丹参酮含量均未达到《中国药典》要求,且明显低于各产区栽培丹参。 山东蒙阴(SDMY)的隐丹参酮、丹参酮Ⅰ以及总丹参酮含量均显著高于其他产区,并且,SDMY和山东济南(SDJN)的丹参酮ⅡA含量显著高于其他产区。此外,SCZJ、山东临朐(SDLQ)、山东新泰(SDXT)和河南伊川(HNYC)等产区也具有较高的丹参酮ⅡA含量。总体而言,SCZJ富含丹酚酸B,山东产区丹参的丹参酮含量普遍较高,而SXQW的丹参酮类化合物和丹酚酸B均显著低于其他产区。 3.5 丹参产地气候资料收集与分析 丹参各产地间的多个气象因子均有明显差异,其中,平均相对湿度在51.02%~80.91%,日降水量≥0.1 mm的天数在66~123 d,这2个气候因子均以四川中江最高,陕西商州次之,山西曲沃最低。最大日降水量32.0~151.8 mm,年日照时数在1 084.4~2 363.4 h,其中,四川中江和陕西商州的日照时数明显低于其他几个产地。平均气温在13.37~17.77 ℃,陕西商州最低,四川中江最高。平均最高气温(19.68~22.33 ℃)也是四川中江为最高,陕西商州为最低。山东产区最高气压、最低气压、平均气压、日照时数均高于其他产区,但其日降水量≥0.1 mm日数低于其他产区。山西曲沃产区的降水量最少,相对湿度最低(表6)。 3.6 丹参种植土壤理化性质分析 11个不同的产地中有6个产地为壤质黏土,2个产地为砂质壤土,2个产地为黏壤土,1个产地为砂质黏壤土。丹参种植土壤多为壤质黏土,没有过砂和过黏的土壤(表7)。进一步对不同产地丹参种植土壤的pH、有机质含量、阳离子交换量进行测定,结果显示SXQW丹参种植土壤pH最高(8.37),SDMY丹参种植土壤pH最小(6.75),不同产区土壤pH值介于6.75~8.37栽培产区丹参种植土壤pH值呈中性和弱碱性,由此可见,丹参在中性和微碱性的土壤中都可生长(图5-A)。丹参种植土壤中有机质含量以SDXT最高,为28.17 g/kg;以SXZA-Y最低,为7.15 g/kg,除了SDMY和SXZA-Y偏低外,有机质含量大多为10~20 g/kg(图5-B)。土壤阳离子交换量是衡量土壤肥力的指标和合理施肥的重要依据,本次研究结果表明不同采集地丹参种植土壤阳离子交换量均有显著性差异(P<0.05)。其中SXSY-Y土壤阳离子交换量最高,为20.482 cmol(+)/kg。除SDXT和SDPY 2个产地含量较低外,其他几个产地丹参种植土壤阳离子交换量均在10~20 cmol(+)/kg(图5-C)。 3.7 不同产地丹参土壤中矿质元素分析 通过对丹参种植土壤速效N、P、K的研究发现,不同产地丹参种植土壤碱解N含量差别较大,含量在3.80~66.85 mg/kg,其中,SXQW土壤碱解N含量最低(3.80 mg/kg),SCZJ和SDMY 2个产地土壤碱解N含量较其他产地丰富。土壤速效P质量分数处于27.61~63.29 mg/kg,11份土壤样品速效P含量均较丰富。土壤速效K研究结果表明,SXQW土壤速效K量极高,达到420.95 mg/kg。不同产地全N量在1.00~4.97 g/kg不等,全P量在0.19~0.67 g/kg,全K量在9.27~25.46 g/kg(表8)。进一步对不同采集地丹参种植土壤中的微量元素进行测定,8种无机元素中Ca的含量最高,Cu的含量最低。各产地中Na、Ca、B和Mg元素的变化范围很大,这不仅与土壤的理化性质有关,而且与植物自生营养的吸收以及代谢产物的合成有关。道地产区SCZJ产地的丹参种植土壤中Al、Mn、Ca、Mg等无机元素含量明显低于其他大部分产地,B含量高于其他产地(表9)。 3.8 环境因子与丹参有效成分相关性 丹参药材中的有效成分与气象因子之间呈现出不同程度的相关性,风速、气压等与丹参酮ⅡA、丹参酮Ⅰ、隐丹参酮呈显著(P<0.05)或极显著正相关(P<0.01)。日降水量≥0.1 mm日数与丹参酮Ⅰ含量呈显著负相关(P<0.05)。平均水气压、平均相对湿度、日降水量≥0.1 mm日数与丹酚酸B含量成显著(P<0.05)或极显著(P<0.01)正相关,日照时数与丹酚酸B含量成显著负相关(P<0.05)(图6-A)。同时,将土壤理化指标及矿质元素含量与丹参有效成分进行相关性分析,发现隐丹参酮含量与土壤质地中<0.002 mm粒径含量显著性负相关(P<0.05),丹酚酸B含量与土壤有机质呈显著性负相关(P<0.05)(图6-B)。隐丹参酮含量与丹参种植土壤中的Cu、Mg元素含量呈极显著(P<0.01)正相关,丹酚酸类化合物中的丹酚酸B含量与碱解N(HN)含量呈极显著性正相关(P<0.01),与K、速效K(AK)含量呈显著(P<0.05)或极显著负相关(P<0.01)(图6-C)。 综上所述,风速、气压以及土壤中Cu、Mg元素含量是促进丹参酮类成分积累的主要环境因子,气压、湿度、降水量、以及土壤中碱解N含量主要促进了丹酚酸B含量的积累。同样的,过多的降水,土壤粒径过小也会抑制丹参酮的积累。日照过长、土壤中有机质含量或是钾离子含量过高则阻碍了丹酚酸B的积累。 3.9 遗传因子与环境因子、有效成分之间的相关性 平均水气压与Na、I之间呈显著负相关,平均相对湿度与Na显著负相关,与Ne和I极显著负相关。平均最高气温与H呈显著负相关,日降水量≥0.1 mm日数与Na和H显著负相关,与Ne和I极显著负相关。日照时数与Na、Ne和I极显著正相关,与H显著正相关(图7-A)。pH、阳离子交换量、有机质含量以及土壤粒径含量等指标与遗传因子之间均不具有显著相关性(图7-B)。土壤中的N与H呈显著正相关,而碱解氮(HN)与H呈显著负相关。Al与H显著正相关,Ca与Ne显著正相关,与H极显著正相关(图7-C)。I与丹参酮ⅡA含量显著正相关,丹参酮I与Na呈显著正相关,与Ne、H和I呈极显著正相关,I与隐丹参酮含量显著正相关,而丹酚酸B含量与H和I显著负相关(图7-D)。综上所述,水气压、湿度、气温、降水、日照等气候因子以及土壤中N、Al和Ca影响了丹参的遗传变异。不同居群丹参的遗传多样性越强可以促进丹参酮类成分的积累,而遗传稳定性越强则有助于丹酚酸B含量的积累。 4 讨论 ISSR和SCoT标记由于引物设计具有随机性和通用性的特点,在以往多种药用植物的研究中均表现出高的多态性[32-34]。本研究利用这2种标记对不同居群丹参遗传多样性进行分析,基于PPB、Na、Ne、H、I、Ht、Hs等指标发现ISSR和SCoT都具有丰富的多态性,说明了它们都是鉴别丹参亲缘关系的有力标记。结合ISSR和SCoT标记分析的不同居群丹参之间的遗传距离指数进行聚类分析,四川中江所有居群(SCZJ1~SCZJ5)单独聚到一类,在DNA水平和其他群体产生了较大的差异,是由于四川丹参花发育异常导致不结实,长期采取无性繁殖[35-36]。这种繁殖方式加速了四川丹参的地理隔离进程,阻碍了与其他产区丹参之间的基因交流。而四川丹参表现出的色朱味浓、皮细而肥壮、丹酚酸B含量高等独特的性状,与其在基因型上与其他产区丹参的差异密切相关。但是,长期单一的无性繁殖方式会导致其种性退化,因此,想要促进四川丹参产业的可持续性发展,应加强对四川丹参的品种选育和资源保护。 温春秀等利用AFLP对几个丹参居群的遗传分化情况进行了研究,结果显示山东居群丹参的遗传多样性最丰富[37]。本研究得到的分析结果与其一致,山东产区丹参居群分布在不同聚类组中,并且其遗传距离和地理分布没有直接的相关性,显示山东丹参遗传变异较大,这可能是由于山东丹参栽培主要靠种子繁殖,同时丹参在山东种植区域分布很广,人工选育和引种的手段也是导致其遗传变异大,种质资源混杂的原因之一[38]。所以后续应加强山东丹参种植过程中的种子种苗选育过程,从而来保证其种质的稳定。 药材道地性的形成往往是生态环境与基因型相互作用的结果,不同产地之间的气候类型存在一定差异,或许是造就不同产区丹参遗传变异以及质量差异的重要原因。在本研究中,风速、气压与丹参酮类成分含量呈显著正相关,降水量≥0.1 mm日数与丹参酮I含量呈显著负相关。可能是由于降水较少,植物易受到干旱胁迫,轻度的干旱胁迫能够促进丹参酮类成分的积累[39],且降水量≥0.1 mm日数与Na、Ne、H、I等遗传因子均显著负相关,而这些遗传因子与丹参酮类有效成分呈显著正相关,说明降水过多会制约丹参的遗传多样性,将不利于丹参酮类成分积累。但相对湿度不足的情况下,降水量过低则导致重度干旱,同时也会抑制有效成分的积累,这可能是山西产区有效成分偏低的原因。本研究还发现,水气压、相对湿度和日降水量≥0.1 mm日数与丹酚酸B含量呈显著正相关,日照时数与丹酚酸B含量呈显著负相关。已有研究表明,轻度的水分涝胁迫能显著提高丹酚酸B的含量,降低丹参酮的含量[40]。丹参是喜光植物,一定的日照时数有利于有机物的合成积累,但过长的日照时数则会引起土壤水分的蒸发,抑制丹参根系生长,因此日照时数保证的情况下,较少的日照时数和充足的降水量有利于植物根系的生长,从而导致分布在整个根的丹酚酸B含量的积累[41]。并且,水气压、相对湿度和日降水量≥0.1 mm日数与Na、Ne、H、I等遗传因子呈显著负相关,而这些遗传因子与丹酚酸B含量具有显著负相关关系。说明了这些气候因子可以增强丹参居群的遗传稳定性,从而促进丹酚酸B含量积累。总体而言,降水量、湿度和日照时数是影响丹参遗传变异和有效成分的主要气候因子,这与此前余彦鸽对野生丹参生态因子分析研究的结果相似[31]。其中,降水量介导了丹酚酸B和丹参酮含量积累的分流。因此,后期可根据当地的降水量、湿度和日照时数等条件判断是否适宜丹参种植。 除气候因素外,由于不同的土壤类型中土壤质地及理化性质差异会引起土壤水、热、养分、通透性的不同,从而影响到植物根系水分及养分吸收,最终也会对药用植物的生长发育和产量、质量造成一定影响[42-43]。本研究中,土壤粒径<0.002 mm以后将不利于隐丹参酮的积累。这可能与植物成分在根系的分布类型有一定关系,水溶性成分相对于脂溶性成分的分布在全根中比较均匀,脂溶性丹参酮主要都集中在表皮上,所以更易受到土壤质地的影响。土壤中矿质元素是影响药用植物生长发育及次生代谢物积累的生态因子[44-46],中药材生长所需要的矿质元素主要有N、P、K等10多种[47]。本研究发现,隐丹参酮含量与无机元素Cu和Mg含量呈显著正相关,Cu和Mg是植物所需的微量元素,适量的Cu和Mg积累能促进药用植物中有效成分合成。丹酚酸B含量与碱解N呈显著性正相关,与K、速效K呈显著负相关,碱解N含量与H遗传因子显著负相关,而H与丹酚酸B含量显著负相关,说明碱解N能促进丹参遗

  • 【转帖】研究发现:适当节食有助于修复遗传基因创伤

    近日,日本滨松医科大学与三菱化学生命科学研究所的研究人员利用动物试验证实,通过适当节食的方法可以增加修复体内受创遗传基因的蛋白质的数量,而遗传基因受创被认为是有可能导致衰老和癌症的重要原因。这一成果不但有助于探索防止衰老的秘密,也为减肥有利于身体健康找到了新的论据。日本《每日新闻》报道了这一消息。   在以往的动物试验中,人们已经了解到适当的控制投喂食物的量可以延长动物的寿命。此次日本研究人员从一种可以修复遗传基因创伤的蛋白质“WRN”入手,调查其与食物摄取量之间的关系。结果显示,在使用兔子作为对象的试验中,与在1个月内得到充分饵料的一组6只兔子相比,另一组6只被减去30%卡路里摄取量的兔子的WRN数量要多出3倍。   此外,节食的兔子体内一种与长寿有关的蛋白质“SIRT1”也增加了3倍。研究人员进而用人的细胞进行实验,发现当加入可以抑制SIRT1活动的药剂时,细胞中WRN的数量就会减少。这证实适当限制卡路里的摄入可以使SIRT1增加,而SIRT1可以抑制WRN的流失。研究人员认为,这次发现使人们掌握了可以很容易地修复遗传基因创伤的原理,为人类找到抵抗衰老,延年益寿之路指明了方向。

  • 【转帖】生命科学新的里程碑:DNA双螺旋结构发现前前后后

    作者:徐九武 文章来源:科技日报 生命科学新的里程碑:DNA双螺旋结构发现前前后后 丰富多彩、引人入胜的生命现象,历来是人们最为关注的课题之一。在探索生物之谜的历史长河中,一批批生物学家为之奋斗、献身,以卓越的贡献扬起生物学“长风破浪”的航帆。今天,当我们翻开群星璀璨的生物学史册时,不能不对J沃森(JinWatson)、F克里克(FrancisCrick)的杰出贡献,予以格外关注。50年前,正是这两位科学巨匠提出了DNA双螺旋结构模型的惊世发现,揭开了分子生物学的新篇章。如果说十九世纪达尔文进化论在揭示生物进化发展规律、推动生物学发展方面,具有里程碑意义的话,那么,DNA双螺旋结构模型的提出,则是开启生命科学新阶段的又一座里程碑。由此,人类开始进入改造、设计生命的征程。   诚然,生物科学的每一次突破都是其自身发展到一定阶段的产物,是不同学科新理论、新技术相互渗透融合的结果,但勿庸置疑,它首先是科学家个人创造性劳动的宝贵结晶。今天,了解DNA双螺旋结构模型产生的背景、条件,以及对生物学发展产生的积极影响,对我们深刻认识这一重大发现的科学价值,正确把握现代生命科学发展的规律和方向,是大有裨益的。正是基于这一认识,笔者撰写了这篇短文,权作对DNA双螺旋结构模型提出50周年的纪念。   浩繁纷杂的生物尽管千差万别,但不论哪一个种类,从最小的病毒直至大型的哺乳动物,都毫无例外地可以把自己的性状一代一代地传下去;而无论亲代与子代,还是子代各个体之间,又多少总会有些差别,即便是双胞胎也不例外。人们曾用“种瓜得瓜,种豆得豆”和“一母生九子,九子各别”,生动形象地概括了存在于一切生物中的这一自然现象,并为揭开遗传、变异之谜进行了不懈的努力。   17世纪末,有人提出了“预成论”的观点,认为生物之所以能把自己的性状特征传给后代,主要是由于在性细胞(精子或卵细胞)中,预先包含着一个微小的新的个体雏形。精原论者认为这种“微生体”存在于精子之中;卵原论者则认为这种“微生体”存在于卵子之中。但是这种观点很快为事实所推翻。因为,无论在精子还是卵子之中,人们根本见不到这种“雏形”。代之而来的是德国胚胎学家沃尔夫提出的“渐成论”。他认为,生物体的任何组织和器官都是在个体发育过程中逐渐形成的。但遗传变异的操纵者究竟是何物?仍然是一个谜。   直到1865年,奥地利遗传学家孟德尔在阐述他所发现的分离法则和自由组合法则时,才第一次提出了“遗传因子”(后来被称作为基因)的概念,并认为,它存在于细胞之内,是决定遗传性状的物质基础。1909年,丹麦植物学家约翰逊用“基因”一词取代了孟德尔的“遗传因子”。从此,基因便被看作是生物性状的决定者,生物遗传变异的结构和功能的基本单位。1926年,美国遗传学家摩尔根发表了著名的《基因论》。他和其他学者用大量实验证明,基因是组成染色体的遗传单位。它在染色体上占有一定的位置和空间,呈直线排列。这样,就使孟德尔提出的关于遗传因子的假说,落到具体的遗传物质———基因上,为后来进一步研究基因的结构和功能奠定了理论基础。尽管如此,当时人们并不知道基因究竟是一种什么物质。直至本世纪40年代,当科学工作者搞清了核酸,特别是脱氧核糖核酸(简称DNA),是一切生物的遗传物质时,基因一词才有了确切的内容。1951年,科学家在实验室里得到了DNA结晶;1952年,得到DNAX射线衍射图谱,发现病毒DNA进入细菌细胞后,可以复制出病毒颗粒… 在此期间,有两件事情是对DNA双螺旋结构发现,起了直接的“催生”作用的。一是美国加州大学森格尔教授发现了蛋白质分子的螺旋结构,给人以重要启示;一是X射线衍射技术在生物大分子结构研究中得到有效应用,提供了决定性的实验依据。   正是在这样的科学背景和研究条件下,美国科学家沃森来到英国剑桥大学与英国科学家克里克合作,致力于研究DNA的结构。他们通过大量X射线衍射材料的分析研究,提出了DNA的双螺旋结构模型,1953年4月25日在英国《发现》杂志正式发表,并由此建立了遗传密码和模板学说。之后,科学家们围绕DNA的结构和作用,继续开展研究,取得了一系列重大进展,并于1961年成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性,从而使沃林、克里克同威尔金斯一道于1962年获得诺贝尔医学生理学奖。

  • 【转帖】"铁公鸡"或源自遗传 科学家发现"吝啬基因"

    "铁公鸡"或源自遗传 科学家发现"吝啬基因"   如果你有一位朋友从来都不请客,甚至都很少愿意AA制,那么你也不必太生气,因为这很可能与他的基因有关系。据英国《每日邮报》11月4日报道,科学家终于找到了“吝啬基因”,这或许可以从遗传学角度解释小气鬼们为什么把钱包捂得这么严实。  德国波恩大学研究人员提取了101位年轻男性和女性嘴里的细胞样本,并在样本中检测一段名为COMT的基因。该基因分成G碱基和A碱基两种类型,其能够影响脑化学,进而有可能左右人们慷慨与否。  在实验中,志愿者被要求去玩一个赌博电脑游戏,然后告诉实验人员他们愿意将赢取的一部分还是全部奖金捐赠给秘鲁的贫困儿童。为了使实验任务更加真实,实验人员还给志愿者呈现了一个名叫莉娜的秘鲁贫困女孩的照片,以及一只由她编织的手镯。  实验结果表明,拥有G碱基的志愿者有超过20%的人将他们赢的所有钱都捐给了莉娜,但是拥有A碱基(即“吝啬基因”)的志愿者仅有不到2%的人能够像G型人这样慷慨。  通常,人类每4人中间大约就有1人携带有“吝啬基因”,他们表现得特别注重自己的钱财,比如时常讨要香烟而不是自己去买,或者定期借钱付公交车车票,但不怎么还钱。而且,那些携带“吝啬基因”的人比其他人捐赠给慈善机构的钱更少。  不过,吝啬的形成也不能完全归咎于基因。之前的研究已经表明,一个人慷慨与否只能部分地用基因来解释,诸如抚养、教育和宗教等其他因素也有不同程度的影响。

  • 武汉大学分子遗传学 第二、三章

    第二章 遗传物质的基础——DNA的结构与性质2.1 核酸是遗传物质遗传物质这种特殊的分子必须具备以下基本特点:1.稳定地含有关于有机体细胞结构,功能,发育和繁殖的各种信息2.能精确地复制,这样后代细胞才能具有和亲代细胞相同的信息3.能够变异,通过突变和重组生物才能发生改变,适应和进化`遗传物质的发现1928年英国F Griffith 的肺炎球菌转化实验导致了遗传物质的发现。十年后O Avery 的体外转化实验弄清了这种转化因子的化学本质是DNA,而不是蛋白质或其他的大分子。1952年Hershey-Chase 的实验使遗传物质的结论得到了进一步的证实,而于1969年获得了诺贝尔医学生理学奖。`RNA也是遗传物质:如烟草花叶病毒的遗传物质是RNA。2.2 DNA携带两类不同的遗传信息DNA几乎是所有生物的遗传信息的携带者,除开少数RNA 病毒之外。`DNA携带着两类不同的遗传信息:一类是负责蛋白质的氨基酸组成的信息,以三联体密码子进行编码另一类遗传信息是关于基因选择性表达的信息2.3 DNA和RNA的化学组成及双螺旋模型1.DNA和RNA的化学组成核酸包括DNA和 RNA。经水解成单核苷酸(nucleotides),单核苷酸由磷酸基团(phosphate group)和核苷(nucleotide)组成,核苷含有戊糖(pentose)和碱基(base)。DNA中戊糖是D-脱氧核糖,碱基是ATGC;而RNA中戊糖是D-核糖。碱基是AUGC。`2.DNA双螺旋模型的诞生美国J D Watson在芝加哥大学读本科时对鸟类赶兴趣,到了高年级时,他想了解基因是什么。1949年他带着这种想法进入了剑桥大学卡文迪实验室医学研究组,与物理出生的青年学者F Crick 合作,决定研究DNA的分子结构。Crick 在1946年读了薛定谔(E Schrodinger)的名著(生命是什么)后,舍弃物理学转向生命科学领域。刚到剑桥大学时Watson由于自己的化学与物理学基础较差而担心听不懂R Fr

  • Science最新专题:表观遗传学

    “表观遗传”使获得性遗传再次引起科学家的兴奋,短短数年,它已成为生命科学界最热门领域之一。以DNA为载体的中心法则仍是传递遗传信息的主要方式;而表观遗传可作为它重要的有益补充,而非你死我活的针锋相对。孩子维特式的多愁善感,可能缠绕他今后的一生;瘾君子吸毒之后生出的婴儿,长大后也有步父母后尘的可能;甚至不经意的一些习惯,都会影响后代……这听起来有些可怕。不过,经典遗传学家斩钉截铁的“不”字会给你些许安慰。传统知识告诉我们,后天的行为方式不会在短时间内遗传,需要漫长世代的自我选择;而所谓的“获得性遗传”,更是一度被当做反例“批判”。进化论泰斗达尔文曾经希望他的物种演化理论能让即使十岁的孩子也看得懂,然而大自然不会给人类这样的机会。人类发现,自身获得的知识越多,越不得不感叹生命的精妙和复杂。花相似 人不同7岁的奥利维亚和伊莎贝拉来自英国,她们是一对同卵双胞胎,拥有近乎完全一致的遗传信息。不过,两个女孩的命运却迥然相异。2005年6月,1岁的奥利维亚忽然高烧不退。血液化验的结果让大家大吃一惊:奥利维亚患上了急性白血病。因为是同卵双胞胎,医生连忙对伊莎贝拉也进行了检查,结果让人松了一口气:一切正常。在医生们的帮助下,小奥利维亚最终恢复健康,但医学专家们却遇到了一个困惑多年的难题:既然是同卵双胞胎,为何奥利维亚不断生病,而伊莎贝拉却非常健康呢?随着研究越来越深入,困扰医生的答案也将渐渐浮出水面。这些经典遗传学无法解释的现象,表观遗传学有望部分揭示。2009年,西班牙和美国的科学家在全基因组水平分析了一对同卵双胞胎的基因组:他们一方正常,一方患有红斑狼疮。研究人员发现,虽为同卵双胞胎,但双方个体对遗传信息的“表观修饰”存在大量差异――DNA甲基化水平不同。事实上,很多例子证明了“表观修饰”的存在。同样是2009年,来自拉什大学医学中心和塔夫茨大学医学院的科学家对一些小鼠的遗传基因进行人为突变,使其智力出现缺陷。当这些小鼠被置于丰富环境中进行刺激、并频繁与各物体接触两周后,它们原有的记忆力缺陷得到了恢复。数月后,小鼠们受孕。虽然它们的后代也出现了和母亲同样的基因缺陷,但没有接触复杂丰富的环境并受刺激的新生小鼠丝毫没有记忆力缺陷的迹象。在这篇发表在《神经科学》的文章中,拉里・费格博士谈到,发生在小鼠身上、把对环境的感应遗传下去的现象,在理论上被称为“表观遗传学”。“表观遗传学是指在基因组序列不变的情况下,可以决定基因表达与否、并可稳定遗传下去的调控密码。” 清华大学医学院表观遗传学与癌症研究所教授孙方霖曾如此介绍。也就是说,人类不仅有作为遗传物质的基因组信息,还有一套管理、调控、修饰基因组的密码指令系统。不同的个体,指令系统也不同。另外,这套密码指令还能在特定环境下发生改变。更神奇的是,改变后的指令很可能会遗传下去。然而,这套系统是如何发生改变并遗传,在相当长一段时间内并不为人知。

  • 朊蛋白与免疫系统相互作用的新发现

    朊蛋白与免疫系统相互作用的新发现http://www.bioon.com/biology/UploadFiles/201112/2011123113381385.jpg  12月29日,据《每日科学》报道,痒病是一种神经退行性疾病,它可以作为其他由蛋白积累致组织畸形(蛋白质病)疾病的模型,如阿尔兹海默氏病和帕金森氏病。有关这些基因的许多问题仍然悬而未决。在一个新的博士论文研究中,发现了数个与阮蛋白(PrPSc,与疾病的发展有关)摄取相关的因子以及朊蛋白是如何与肠道内的免疫细胞相互作用。  羊瘙痒病属于一组被称为"传染性海绵状脑病(TSE)"的疾病,因为它们可以在动物个体之间传播,并导致大脑产生海绵状、退行性改变。这些疾病不仅折磨羊,还折磨牛(牛海绵状脑病,又称疯牛病,BSE)、鹿(鹿慢性消耗性疾病,又称疯鹿病,CWD)以及人类(克雅氏病CJD)。它们在一定程度上也可以在物种见传播,在20世纪90年代,超过200人经由食物感染而患上了克雅氏病。  传染性海绵状脑病(TSE),或者称阮病毒疾病,被认为是感染了一种能致病的蛋白质变体--朊蛋白,它是机体细胞的正常组成部分,在脑中含量最为丰富。一般而言,阮病毒疾病可能是传染的、遗传的或偶发/自发的。当正常的朊蛋白突变成致病的变种,疾病便发生了,变种朊蛋白在空间结构上与健康的朊蛋白不同。由于变种的朊蛋白具有不同的空间结构,机体细胞很难降解它,因此它就一直在积累。  因为朊蛋白(PrPSc)是在疾病早期在肠道系统的淋巴组织中被发现,推测它是经由肠胃道传染。在兽医学家Caroline Piercey Akesson博士研究杂交仪期间,研究了朊蛋白在肠道内的吸收,从而对疾病发展的早期阶段所发生的过程有了新的了解。与早先的推测相反,她通过免疫电镜证明阮蛋白不是直接从肠道转运到肠道相关的的淋巴组织。相反,她发现朊蛋白自由地穿过或穿进肠道淋巴组织之外的淋巴细胞。  树突状细胞据推测发挥着"看门人"的作用,它决定机体能容忍什么以及当面对外来物时该策划哪一种免疫防御反应。Akeeson的目标之一就是树突细胞与朊蛋白摄取之间的相互作用。首先,需要了解正常的羊肠道内树突状细胞的特点;其次,去调查哪一类型的细胞与阮病毒的摄取有关。  她的研究结果表明,不是树突状细胞,而是巨噬细胞负责朊蛋白的摄取。Akesson的研究揭示,朊蛋白利用了肠道中大分子物质摄取的正常生理通道,这可能对机体的免疫监视系统有显著影响。一个可能的后果就是免疫耐受被激活,从而阻碍了肠道对所吸收的朊蛋白的正常免疫反应。  今后的研究能够揭示免疫细胞是如何运输朊蛋白及机体是如何处理朊蛋白,这将具有非常重要的意义,不仅是为了提供更多的关于痒病的知识,还为研究人类和其他动物中神经退行性蛋白质病提供重要见解。  Caroline Piercey Akesson于12月20日在挪威兽医科学系进行了博士论文答辩,论文的题目是:研究阮病毒的摄取及其与羊肠道中免疫细胞的早期相互作用。

  • 武汉大学分子遗传学笔记(不断更新中)

    第一章 绪论1.1 分子遗传学的含义1.不能把分子遗传学单纯地理解成中心法则的演绎 *分子遗传学≠中心法则传统:分子遗传学=中心法则实际:分子遗传学≠中心法则,他首先是遗传学,其坚实的理论基础仍然是摩尔根的《基因论》中心法则只是对基因,性状及突变在核酸分子水平上的解释。从中心法则到性状的形成仍然是一个复杂的甚至未知的遗传,变异与发育的生物学过程。分子遗传学不仅盯住DNA/RNA,蛋白质,更要研究活细胞内与遗传便宜有关的一切分子事件。 分子遗传学≠核酸+蛋白质分子遗传学研究的对象是分子水平上的生物学过程-遗传与变异的过程。它研究的是动态的生物学过程,而不是脱离生物体,在试管里孤立地研究生物大分子的结构与功能。1992年,Nature 的主编J.Maddox 曾著文 Is molecular biology yet a science?指出:"现在有那么一些叫分子生物学家的人, 他们的文章无视全部的动物,植物,也很少言及他们的生理学。实验的大部分资料来自所谓的\'凝胶\'---""分子生物学在很大程度上变成定性的科学。---如果事情只是简单的说明某个基因版本与某种遗传病相关,那么,分离这种片段(如电泳),然后测序足以。"但是"以往的巨大成就表明,生命过程是由严格控制下进行的一些有序事件组成"他说:"在人们长期为细胞生物学现象寻找定性的解释中,他们将会相信细胞只不过是一个充满了分子开关的袋子,他们作为分子传动器或开或关而出现在预定的事件序列中。要真正在分子水平上了解遗传变异的本质,仅仅研究核酸或蛋白质的生物化学是不够的。分子遗传学所研究的应该是细胞中动态的遗传变异过程,以及与其相关的分子事件。所以不止是中心法则,核酸,蛋白质。 2.分子遗传学不是核酸及其产物(蛋白质)的生物化学分子遗传学是分子生物学的一个分支, 或理解为狭义的分子生物学。他依照物理,化学的原理来解释遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。因此,分子遗传学是在生命信息大分子的结构,功能及相互关系的基础上研究遗传与变异的科学。 3.传统的遗传学"主要研究遗传单元在各世代的分布情况",分子遗传学则着重研究遗传信息大分子在生命系统中的储存,复制,表达及调控过程。研究范畴如下: DNA RNA Protein 现象信息源 信息模板 工作分子 生长、分化、发育、代谢 1.2 分子遗传学的产生1.物理学的渗透1945年奥地利物理学家量子力学的创始人之一薛定谔(ERWIN SCHRMODINGER)的《生命是什么》一书出版。倡导用物理学的思想和方法探讨生命的秘密。引入热力学第二定律,熵概念等。他认为有机体在不断地增加他的熵并趋向最大值的熵的危险状态,那就是死亡。要摆脱死亡而正常生长发育,就要从环境中吸取负熵,负熵是一个积极的东西。有机体就是依赖负熵为生的。他认为生命系统中可能还包含迄今未知的"其他的物理学定律"极大地鼓励着很多物理学家转入生物学来研究基因的本性。整个40年代,新的物理学定律并未发现,但信息论,量子论,氢键等概念把生物学推向分子水平。 2.微生物学向遗传学的靠拢1926年摩尔根的《基因论》已经问世,但20世纪30年代,微生物学家采用拉马克的遗传观念,因为他们对微生物的遗传可塑性有很深刻的印象。如在含有致死药物的培养基上,可以很

  • 【转帖】基因组所有关高原低氧适应遗传研究论文在PNAS发表

    [size=3]近日,中国科学院北京基因组研究所曾长青研究组,通过与英国、爱尔兰和美国的研究人员研究合作,发现了藏族人群能够适应高海拔地区低氧环境,并且免于罹患高原疾病的一个重要遗传机制——EPAS1基因的多态性。其相关研究成果已于6月7日在美国《国家科学院院刊》(PNAS)网络版发表。该项目的策划人之一,文章的通讯作者——中国科学院北京基因组研究所曾长青研究员(代表中国参加国际HapMap计划的主要负责人)表示,HapMap绘制的人群多态性图谱是目前研究人类遗传多态性的最主要数据,占其样品总量六分之一的汉族样品数据是研究中华民族遗传多态性的基础。此次新发现的藏族人群特有的EPAS1基因多态,不但是不同人群高原适应机制遗传研究领域的重要进展,同时也为科研人员进一步研发低海拔人群对于高原低氧敏感性的检测手段提供了基础。 [/size]

  • 走出基因论的误区

    走出基因论的误区本文刊于《生物科学进展》1997;(6):16-21。周慕瀛山东肥城矿务局中心医院271608摘要基因只是蛋白质分子的规格信息,它远不是物质本身.性状却必然意味着性状物质以及它的四维分布。从规格到实际物质的分布欠缺着有时、空坐标的物质制造活动.可见,基因根本决定不了性状的全过程。基因论的失误起始于孟德尔,延续到摩尔根并直至如今.生命的最大特色是主动性.牢记这一事实既易于走出基因论的误区,也易于找到生物最原发的物质——活素(liven).分子生物学和现代化学向人们提供的资料其实已足可揭开生命(遗传)之迷。作者认为:1只有能促建RNA聚合键的Ribozyme以及RNA的其它—些性能可以逾越聚合系列过程中的寡聚障碍形成一个多聚“RNA世界”;2、信息只起源于功能体上,作为储存体的DNA的信息只可能由RNA贮入;3、只有RNA能组建出生物界特有的信息大分子(DNA、RNA.蛋白质)的复制系统。1. DNA的误区基因论的根本命题是:基因是决定生物性状的遗传因子.在DNA生物里,更可具体为:DNA是决定生物性状的遗传物质.当涉及众多性状时就会产生它们的相互关系问题:谁先谁后,谁东谁西,还是大家同时产生而随机乱挤?基因论能回答这个问题吗?答案是否定的.生物在时空出现的全部性状总和其实就是我们所看到的生物的一生.就人而言,人一生中每一时相都是个立体,故各性状在立体内就有一个空间坐标的问题,即空间三维分布问题;同时还有个时相问题,所以性状至少有个四维分布问题.但DNA能发出何种活动去决定四维分布呢?颜料齐全后可用来画蝴蝶,但也可以画果蝇。颜料能决定是蝴蝶还是果蝇吗?果蝇何以与蝴蝶有别,与蚊子有别?摩尔根的遗传学说无法说明这些,也无法说明整个个体结构的遗传机制,如身体的背腹、前后的决定,器官位置的安排等等.控制颜料四维分布的是主动的人(画家).那么性状物质四维分布的调控者在哪里?所谓的调控基因或顺式作用元件都不足以说明这个问题。基因论所丢弃的是操作运用DNA的主动要素.把一种生物的基因组DNA理解为电子计算机里的磁盘——贮存有一个生物工程的各种材料制造、结构关系、工程管理直至时空程序的信息,那么基因论丢弃的就是会操作运用这一磁盘并实施工程建造的主动要素——人,各种工程技术人员.2. 陷入误区的轨迹——孟德尔的疏误基因论的失误起源于孟德尔,在他提出孟德尔因子(后来被定名为基因)时,他的结论是:决定豌豆性状的就是这种因子——基因.他没有特别提醒自己或别人:基因可能只是参与决定性状的遗传因子之一.这自然会给人印象:遗传因子(就是基因)是决定性状的唯一内因.20世纪里盂德尔定律被重新发现并逐步应用于豌豆之外的许多物种,却没有人提请学界注意:孟德尔在逻辑上是不应该排除基因之外的遗传因子存在的可能.因为证实一种因素有作用并不等于其作用是包办性和排他性的,古代人目睹过女人分娩当然证实了女人对孩子形成要负责,但是就此以为孩子就是女人包办造成的(这是母系社会发端基础)却在逻辑上犯了错误.因为虽见到了孩子形成的结果(孕妇腹部隆起及分娩),却对此以前的发端经历(排卵、受精和胚胎发育等)一概不知,有何根据把女人之外(如男人)的因子排除掉呢?看清基因的作用是有条件的,即:(1)排除非基因因子的干扰,(2)进行杂交的双亲有等位基因差异.孟德尔只选中豌豆作实验正是因为豌豆客观上可满足上述条件.豌豆杂交中正、反交子代没有差异,这证明正反交形成的两种受精卵在非基因因子方面无差异.在正反交无干扰的背景下反映等位基因差别的性状分离就暴露出来了.同理,要看清非基因因子的作用也是有条件的,即(1)基因机率应均等,(2)杂交双亲有相当明显的非基因因子差异.由于非基因因子的固有特性(它们涉及的是细胞生命因果连续性的程序控制,不像基因那样单个缺陷多数不会危及细胞生存,单个非基因因子缺陷每每导致细胞终止生存),能满足上述条件且能杂种存活的例子就较少,但并非没有.例如:(1)马(F)x驴(M)——骡(mule);驴(F)×马(M)——驴骡(hinny)(2)柳叶菜属:Jena(F)×Munchen(M)杂种植株很高;Munchen(F):×Jena(M)-杂种植株很矮(3)蟾蜍:Bufo comnunis(F)×Bufo vividis(M)——杂种发育良好Bufo vividis(F)×Bufo comnunis(M)——杂种发育不良(4)果蝇:D.W.Willistoni(F)xD.W.Quechna(M)——可育杂种D.W.Quechna(F)×D.W.Willistoni(M)——杂种雄性不育(5)植物中,特别在禾本科里正反交杂种之一出现雄性不育的例子更为多见所有这些例子都不能用豌豆实验的结论来予以解释,其中有些事实(如马驴互交差异)即使在孟德尔时代也是众所周知的,可见无视非基因不仅在逻辑上而且在事实上都是疏误。3.RNA永远是生命的主角,而蛋白质及DNA则是主角创造的二类工具至今为止,在基因论框架里最激进的观点只是:RNA曾经是最初的遗传物质,但后来则是DNA的信使;或者说生命起源时RNA曾经起过中心作用,曾经有过“RNA世界”,但后来总是不敌DNA,因为人们根本没有怀疑过当今DNA的主角地位.

  • 广州生物院发现细胞的免疫原性在重编程中可被遗传记忆

    中科院广州生物医药与健康研究院裴端卿博士和潘光锦博士领导的研究组通过对人的不同组织来源的三个细胞状态(体细胞,体细胞衍生的iPS细胞和iPS细胞分化获得的神经前体细胞)的免疫原性的研究,发现细胞的免疫原性在重编程及分化后仍然具有一定的遗传记忆。这项研究成果7月26日在线发表在学术期刊Plos One上。研究人员主要比对了较为成熟的体细胞(成人皮肤来源的成纤维细胞)和较为幼稚的体细胞(胎儿脐带组织来源的间充质细胞)相应的三个细胞状态的免疫学特性。研究结果表明:由免疫原性较高的体细胞(皮肤成纤维细胞)最终获得的神经前体细胞人具有较高的免疫原性。与之相对的是,由免疫原性较低的体细胞(脐带间充质细胞)最终获得的神经前体细胞,在HLA-I表达、激活淋巴细胞等方面,均会保持较低的免疫原性。这种低免疫原性的神经前体细胞为iPS技术开拓了新的应用领域——异体移植,并且可以通过免疫原性较低的体细胞获得iPS细胞库建立异体移植的治疗模式。 http://www.cas.cn/ky/kyjz/201307/W020130731665880470908.jpg广州生物院发现细胞的免疫原性在重编程中可被遗传记忆

  • Cell:“人造精子”基因可加工遗传

    细胞副主编 的评论是, 什么时候能应用于实践?中国科学家在细胞杂志发表重要论文Cell:“人造精子”基因可加工遗传Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem CellsHaploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.单倍体细胞,如酵母,是遗传学研究的重要工具。自然状态下存在的单倍体细胞只有结构和功能均已特化的配子,包括卵子和精子。然而卵子和精子不能在体外进行培养,因此也不能对其进行基因操作。如果能够在体外建立哺乳动物的单倍体细胞系,那将极大地促进哺乳动物遗传学及相关生命科学的研究。4月27日,国际著名学术期刊Cell发表了中科院上海生科院生化与细胞所李劲松研究组和徐国良研究组的一项合作研究,他们建立了来自孤雄囊胚的单倍体胚胎干细胞系,证明这些细胞保持了一定水平的雄性印记,进一步验证这些细胞能够代替精子在注入卵母细胞后产生健康的小鼠。为了获得单倍体的孤雄囊胚,研究人员采用了核移植的技术,即将卵母细胞的核通过显微操作的方法去掉,然后注入一个精子形成携带来自父本基因组的单倍体重构胚胎。这些胚胎在体外能够发育到囊胚,从这些囊胚中分离建立了单倍体胚胎干细胞系。单倍体胚胎干细胞系具有典型的小鼠胚胎干细胞特征,能够在注入两倍体囊胚中后形成嵌合体小鼠。因为精子在形成过程中会产生雄性印记状态,这种印记状态是受精后胚胎发育的重要保证,而且在整个发育过程中一直维持,因此,研究人员分析了单倍体胚胎干细胞系的雄性印记水平,发现这些细胞保持了一定的雄性印记。接下来,为了验证这些细胞是否能像精子一样具有“受精”能力,研究人员将单倍体胚胎干细胞系注入卵母细胞中,发现部分“受精”的胚胎能够发育成健康的小鼠。最后,研究人员成功地利用单倍体胚胎干细胞系进行了基因打靶的尝试。单倍体胚胎干细胞系的建立为获取遗传操作的动物模型提供了一种新的手段,也为细胞重编程研究提供了一种新的系统。杨辉、施霖宇、王邦安为本文的共同第一作者,参与该研究的合作单位和人员包括中科院上海生命科学信息中心李党生研究员、南京大学高翔教授、第四军医大学聂勇战教授,工作得到了国家科技部、国家基金委、中国科学院以及上海市科委经费的支持。(生化与细胞所)

  • 【转帖】《自然—遗传学》:中美科学家揭示玉米杂交机制

    《自然—遗传学》:中美科学家揭示玉米杂交机制 作者:刘传书 来源:科技日报由中国农业大学玉米中心、华大基因研究院、美国爱荷华大学、明尼苏达大学等单位合作的研究成果“基因丢失与获得的多态变化揭示玉米中的杂交优势的机制”近日在国际著名杂志《自然—遗传学》上发表。该研究报道了中国重要玉米骨干亲本的全基因组的单核苷酸多态性、插入/缺失多态性以及基因获得和缺失变异图谱,为玉米的遗传学研究和分子育种提供了宝贵资源。该研究对6个中国重要玉米杂交组合骨干亲本进行全基因组重测序,发现了100多万个单核苷酸多态性位点(SNPs)和3万多个插入缺失多态性位点(IDPs),建立了高密度分子标记基因图谱;同时研究还发现了101个低序列多态性区段,在这些区段中含有大量在选择过程中与玉米性状改良有关的候选基因。此外,通过将玉米自交系Mo17及其他自交系的基因序列与玉米自交系B73的基因序列比对,研究人员对玉米自交系中基因丢失与获得的多态性进行了研究,发现在不同的自交系中存在不用数量的基因丢失与获得性变异;利用SAOPdenovo软件对在其他自交系中存在而在B73中缺失的序列进行组装,研究人员发现了很多目前公布的B73参考基因组序列中丢失的基因。这些发现不仅为高产杂交玉米育种骨干亲本的培育提高了重要的多态性标记,同时也补充了玉米基因数据集,为进一步挖掘玉米基因组和遗传资源提供了大量数据。玉米具有非常显著的杂交优势,利用该优势是提高产量的主要手段之一。研究人员选择了中国历史上和目前广泛流行的高产杂交组合骨干亲本,并根据多态性追踪了这些骨干亲本育成过程中基因组的变化方式。该研究还发现这些骨干亲本组合基因组的组合可弥补另一方功能元件的缺失,此种基因丢失与获得的多态变化和其他无义突变的互补作用可能与杂种优势有关。

  • 用于治疗癌症的“自然杀伤”细胞的表观遗传学开关

    自然杀伤细胞是免疫系统中的即时杀手,能够即时杀灭外来侵入物和癌细胞。尽管科学家就如何利用这些细胞的潜在能力所开展研究已经有三十多年,但对这些自然杀伤细胞是如何从非免疫细胞转化而来的这个问题几乎没有取得任何进展。目前,研究者发现了一种酶,能够利用一种外遗传途径(一种能够修改细胞中DNA的读取方式,而不改变其基因蓝图)来促进自然杀伤细胞的生长及其功能的形成。自然杀伤细胞可能有助于癌症的免疫治疗。这些免疫系统卫士时刻都在履行其警戒的职责,因此,人们认为它们能够消除那些偶遇的且经常躲过化疗的肿瘤细胞。目前,正在进行的二十几项旨在提高自然杀伤细胞应对癌症的能力的临床试验正在进行中。然而,正在开发的这类药物当中,没有一种采用外遗传途径。根据今天发表在美国国家科学院院刊的一份研究报告,这种情况也许是个错误。来自洛杉矶的南加州大学-诺里斯综合癌症中心的一个由陈思毅(Si-Yi Chen)带领的团队的研究表明,酶MYSM1(代表 Myb-like, SWIRM 和 MPN 结构域蛋白 1)控制了自然杀伤细胞通过表观遗传变异达到成熟的最后步骤。他们认为,这种酶水平的提高将有助于通过增加成熟自然杀伤细胞的数量来与癌细胞作斗争。来自北得克萨斯大学健康科学中心的癌症免疫学家普鲁诺罗尔·马修(Porunelloor Mathew)说:“这对我们理解自然杀伤细胞的发育非常重要”。他本人并未参加这项研究。一种使肿瘤细胞自毁的新型癌症治疗方法一种新型化疗药物将其目标指向癌细胞的组织结构,可导致所有类型的恶性肿瘤自我毁灭。澳大利亚新南威尔士大学的研究人员开发了一种万灵抗癌新药。这种药名为TR100,该药的原理是摧毁构成癌细胞结构的蛋白质而不会对健康细胞造成任何损害。研究人员在实验室中对老鼠进行了试验,研究结果发表在本月的“癌症研究”期刊上。就像一栋建筑物,细胞要保持其形状就必须有一定的支撑结构。两种分别称为肌动蛋白和肌球蛋白的蛋白质为癌细胞提供结构支持;它们就像一些较长的结实且互锁的线缆。健康的人体肌肉细胞,包括构成心脏的细胞也利用肌动蛋白和肌球蛋白。由于这个原因,多数研究人员已经放弃了将肌动蛋白和肌球蛋白作为化疗的目标,针对这些蛋白质的药物的开发在过去的25年中几乎停滞不前。然而,国际肌球蛋白专家Dr. 彼得﹒冈宁(Peter Gunning)始终在不断推进这项研究,而目前,他的研究已取得一些成果。他和其他研究人员已经能够分离两种特定类型的肌球蛋白,称为原肌球蛋白。只有癌细胞需要利用这些蛋白,而健康的肌肉细胞并不需要它们。他与本论文的首席作者贾斯汀·史丹(Justine Stehn)共同开发了TR100这种药物。程序性细胞死亡:致使肿瘤发生内爆“我们已经对癌细胞的内部构架或结构的核心组件进行了跟踪,”一位来自新南威尔士大学医疗科学系,肿瘤学研究室的研究人员史丹(Stehn),在一次健康热线的专访中说道,“当细胞察觉到其构架出现重大错误时,它将会出现程序性细胞死亡的情况。”程序性细胞死亡是一种遗传性定时炸弹,潜伏在每个人体细胞中。如果细胞被损坏、被感染或运转失常,人体能够对它发出自毁信号。“它就像我们看到的大楼坍塌那样”,史丹(Stehn)说,“如果一个大楼的结构和支架被移除,它就会自己坍塌。”程序性死亡导致细胞自身分裂成为小块的碎片,这些碎片能够被其它细胞所吸收、回收并重新利用。

  • 科学家观察到酶“编辑”DNA过程 有助纠正遗传疾病

    科学家观察到酶是如何“编辑”DNA的 有望用以纠正人类遗传疾病 科技日报讯 (记者陈丹)一个国际研究小组在了解酶如何“编辑”基因方面取得了重要进展:观察到了一类被称为CRISPR的酶绑定并改变DNA(脱氧核糖核酸)结构的过程。这项发表于5月27日(北京时间)美国《国家科学院学报》上的研究成果有望为纠正人类的遗传疾病铺平道路。 CRISPR意即“成簇的规律间隔的短回文重复”,在上世纪80年代才首次为人们所认知。到目前为止,已发现40%已测序细菌和90%已测序古细菌的基因组存在这种重复序列,而且细菌已开发出一套可以探测和切断外来DNA的免疫策略。其机理大致如此:CRISPR序列与很多病毒、噬菌体或者质粒的DNA序列同源,受到攻击的细菌会以相匹配的DNA为目标进行自然防御。它们所采用的手段,就是利用一种名为Cas9的内切酶,裂解外来DNA。 基因工程师们意识到,如果将细菌的CRISPR-Cas9系统插入其它生物体细胞,它们也能够对目标DNA进行切割。就在去年,这一革命性的基因编辑技术收获了一系列成果:多个研究团队已经成功对人体、小鼠、斑马鱼、大米、小麦等细胞中的基因进行删除、添加、激活或抑制等操作,从而证明该技术的广泛适用性。 不过,人类基因组有30亿个碱基对,要准确锁定某个目标DNA,工作量大致相当于从一套23卷的《百科全书》中找出一个拼错的单词。因此,研究人员为Cas9这把“基因剪刀”找了一个与目标基因匹配的RNA(核糖核酸)作为“导航仪”。在这个靶向过程中,Cas9拉开DNA链,并插入RNA,使之形成了一个被称为R环的特定序列结构。 在最新研究中,英国布里斯托尔大学和立陶宛生物技术研究所的科学家使用经过特别改装的显微镜对R环模型进行了检测。显微镜下的单个DNA分子被磁场拉伸着,通过改变DNA受到的扭力,他们能够直接观测由单个CRISPR酶介导R环形成的过程。这使得这个过程中以前不为人知的一些步骤毕现无疑,也让研究人员能够探讨DNA碱基对序列对R环形成的影响。 布里斯托尔大学生物化学系教授马克·斯兹克泽尔昆说:“我们进行的单分子实验加深了有关DNA序列对R环形成的影响的认识。这将有助于未来合理地重新设计CRISPR酶,以提高其精确度,将脱靶效应(即在不需要的地方引起基因变异)降至最低。这对我们最终利用这些工具来纠正患者的遗传疾病至关重要。” 总编辑圈点: 不知基因谁裁出,免疫系统似剪刀。Cas9蛋白酶,本来是原始生命用来防御生物入侵的防御性武器,但却被人类变成进攻利器。它在人类手中犹如火箭弹,威力巨大,使用方便。但它精确度有限,容易误切人类不希望影响的基因段。科学家们此次通过改造显微镜,看清了Cas9破拆单个DNA的全过程。这样,人们就能将火箭弹改造成导弹,指哪儿打哪儿。曾经让患者绝望的遗传病,未来或许一针下去就解决了。来源:中国科技网-科技日报 作者:陈丹 2014年05月28日

  • 【哀悼+怀念】遗传学家谈家桢院士今晨逝世 享年100岁

    遗传学家谈家桢院士今晨逝世 享年100岁2008-11-01 11:23:21 来源: 新华网 网友评论 17 条 点击查看  核心提示:著名遗传学家、中国现代遗传科学的奠基人之一谈家桢先生因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。 谈家桢院士新华网11月1日报道 著名遗传学家、中国现代遗传科学的奠基人之一谈家桢先生因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。新华社记者肖春飞报道【新民网报道】新民网11月1日从复旦大学获悉,中国现代遗传科学的奠基人之一,杰出的科学家、教育家,著名的爱国***和社会活动家,原民盟中央名誉主席、中国科学院院士、原复旦大学副校长谈家桢先生,因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。得知谈家桢逝世消息后,上海市和有关方面领导先后赶赴华东医院与谈家桢先生告别,并向其家属表示亲切慰问。(新民网 戴颖敏) --------------------------------------------------------------------------------谈家桢,国际遗传学家,我国现代遗传学奠基人之一,杰出的科学家和教育家。浙江宁波人。1909年9月15日出生于浙江省宁波县的慈溪。1930年获东吴大学理学士,1932年获燕京大学理硕士。1934年在T.多布然斯基教授指导下从事果蝇进化遗传学研究,利用当时研究果蝇唾腺染色体的最新方法,分析了果蝇近缘种之间的染色体差异和染色体的遗传图,促进了"现代综合进化论"的形成。在美国工作期间,先后单独或与美,德等国科学家合作发表论文10余篇。1946年,在亚洲异色瓢虫(Harmonia axyridis)中发现色斑嵌镶显性遗传现象,受到国际遗传学界的重视。1936年获美国加州理工学院哲学博士。回国后(1937年),应竺可桢校长之邀任浙江大学生物系教授、理学院院长。 1952年院系调整后任复旦大学生物系教授兼系主任,建立了全国第一个遗传学专业,历任生物系主任、遗传研究所主任、副校长、生命科学学院院长等职。 1978年以来,先后发起和担任中国遗传学会副会长、会长和名誉会长,遗传学报主编,中国环境诱变剂学会理事长和中国生物工程学会会长。1983年任复旦大学顾问,当选为第五、六届全国政协常委,中国民主同盟副主席。1980年当选为中国科学院生物学部委员、院士。谈家桢从事教育工作几十年,培养了大批科学人才。他还广泛参加各种社会活动,身兼多种职务。主要有中国遗传学会理事长,第十五届国际遗传学会(1980)副会长。上海市自然博物馆馆长,上海市人民代表大会常务委员会副主任,全国政协第六届常务委员会委员,中国民主同盟第五届中央委员会副主席,上海市民盟八届主任委员。1985年获“求是科学基金会”杰出科学家奖。1993年9月28日,由国家自然科学基金委员会生命科学部组织的以谈家桢教授为组长的专家组,在沪论证并通过了强伯勤教授、陈竺研究员申请的《中华民族基因组中若干位点基因结构的研究》重大项目之后,宣布中国人类基因组研究正式启动。2000年获“上海市首届教育功臣”称号。 谈家桢为我国遗传学的发展作出了重要贡献,特别在果蝇种群间的遗传结构的演变和异色瓢虫色斑遗传变异研究领域有开拓性成就,为奠定现代进化综合理论提供重要论据。谈家桢从事遗传学教学和研究已七十年,先后教过普通生物学、脊椎动物比较解剖学、胚胎学、遗传学、细胞学、实验进化学、细胞遗传学、达尔文主义、辐射遗传学、原生动物学等课程。他先后发表了百余篇研究论文和学术论述方面文章,主要汇集在“谈家桢论文选”(1987年,科学出版社)和“谈家桢文选”(1992年,浙江科技出版社)中。他的研究工作主要涉及有关瓢虫、果蝇、猕猴、人体、植物等的细胞遗传、群体遗传、辐射遗传、毒理遗传、分子遗传以及遗传工程等。特别在果蝇种群间的演变和异色瓢虫色斑遗传变异研究领域有开创性的成就,为奠定现代综合进化理论提供重要论据。在浙江大学任教期间他发现了瓢虫色斑遗传的镶嵌显性现象。引起国际遗传学界的巨大反响,认为是对经典遗传学发展的一大贡献。谈家桢先生坚持科学真理,把毕生精力贡献给了遗传学事业。他为遗传学研究培养了大批优秀人才;建立了中国第一个遗传学专业,创建了第一个遗传学研究所,组建了第一个生命科学院。(本文来源:新华网 )

  • 【转帖】细胞生物学发展史

    1677年荷兰Antonie van Leeuwenhoek (1632-1723)显微镜学家、微生物学,用简单显微镜观察到动物的“精虫”(细胞)。1665年英国Hooke Robert(1635-1703)博物学家提出细胞和细胞结构的概念。1827年贝尔发现哺乳类的卵子,对细胞本身进行认真的观察。1838年描施莱登述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性。1845年德国动物学家西博尔德(1804-1885)断定原生动物都是单细胞的。1852年德国病理学家菲尔肖(1821-1902)在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。1867年德国植物学家霍夫迈斯特对植物,分别比较详细地叙述了间接分裂。1873年施奈德对动物,分别比较详细地叙述了间接分裂。1875年德国植物学家施特拉斯布格首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒。1882年德国细胞学家弗勒明在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂。施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。1882年捷克动物生理学家浦肯野提出原生质的概念。1888年瓦尔代尔才把核中的着色物体正式命名为染色体。1891年德国学者亨金在昆虫 的精细胞中观察到 X染色体。1902年史蒂文斯、威尔逊等发观了 Y染色体。1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展美国遗传学家和胚胎学家摩尔根(1866—1945)研究果蝇 的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。

  • 【转帖】遗传学家李振声摘得2006年度国家最高科技奖

    遗传学家、小麦育种专家李振声27日被授予中国2006年度国家最高科技奖。胡锦涛向李振声颁奖。 李振声是中国科学院院士、第三世界科学院院士。1931年2月生,1951年毕业于山东农学院农学系。1951-1956年在中国科学院遗传选种实验馆任研究实习人员,1956-1965年在中国科学院西北农业生物研究所任助理研究员、研究室副主任,1965-1987年在西北植物研究所任助理研究员、研究员、研究室主任、副所长、所长,1983-1987年兼任中国科学院西安分院与陕西省科学院院长,1987-1992年任中国科学院副院长兼遗传研究所所长,1992-1997年任遗传所植物细胞与染色体工程国家重点实验室主任,现任该实验室学术委员会主任。 李振声长期从事小麦与偃麦草远缘杂交与染色体工程育种研究,育成小偃麦八倍体、异附加系、异代换系、易位系和小偃4、5、6号等系列小麦良种。利用偃麦草蓝色胚乳基因作为遗传标记性状,首次创制了蓝色单体小麦系统、自花结实缺体小麦系统,建立了选育小麦异代换系的新方法--缺体回交育种法,为小麦染色体工程育种奠定了基础。近十年开展了小麦高效利用土壤氮、磷营养元素研究,完成了种质资源筛选、生理机制、遗传规律和育种研究,开辟了作物营养遗传育种研究的新途径。在国内外学术刊物上发表论文60余篇,出版专著3本。 李振声曾获全国科学大会奖,陕西省科技成果一、二等奖,国家科技发明一等奖(1985),陈嘉庚农业科技奖(1989),何粱何利农业科技奖(1995)。

  • 科学家发现一种基因识别新技术

    科学家发现一种基因识别新技术科学家们发现了一项基因识别新技术,能将我们掌握的动物遗传信息增加70-80%。研究结果发表在《自然—方法学》(Nature Methods)杂志上,有可能彻底改变我们对于动物遗传学和疾病的认识,并提高我们对于如SARS等跨越物种障碍由动物向人类传播的危险病毒的认识。现代基因组测序技术的进步使得科学家们能够揭示各种各样动物、植物和昆虫的遗传密码,确定控制一切事物,从我们的眼睛颜色到对某些疾病易感性的遗传信息和变异。直到现在,正确识别隐藏在新测序物种遗传物质中的基因和蛋白质还是一项艰巨的任务,需要细致的观察以及编撰大量构成任一动物、植物或昆虫的成千上万基因的数据。论文的主要作者、布里斯托大学细胞与分子医学院的高级讲师David Matthews说:“基因识别主要是借助计算机程序搜寻与在其他动物或人类中已经发现的基因相似的基因组区域。然而,这种分析并不总是有效。”布里斯托大学研究小组现在发现了一种更有效的方法:测序表达的mRNA生成蛋白质数据库再进行质谱分析。这种将高通量测序与蛋白质鉴别技术相结合的方法可以直接观察生成的基因和所有蛋白质,检测存在于动物、植物和昆虫中的遗传信息。为了证实他们的技术起作用,研究人员进行了一项实验,验证他们的程序在基因发现方面的能力。他们用一种充分了解的感冒病毒模拟新发现的病毒感染人类细胞。随后采用新技术分析了这些感染细胞。 当与人类和感冒病毒的已知遗传信息进行比较时,由此生成的“发现”基因和蛋白质的列表证实是极其成功的,并且证明了这一方法的效力。对于仓鼠细胞的类似分析提供了直接观察的证据,在一项相对廉价的实验中研究人员证实仓鼠存在数以千计的基因和蛋白。这些仓鼠中几乎所有基因和蛋白质的直接证据均无法在仓鼠基因和蛋白质的“官方”列表上获得。Matthews博士补充说:“这些研究发现为利用当前强有力的分析工具研究人类疾病,并将它们应用于动物、昆虫或甚至植物——研究一些以往非常具有挑战性或根本不可能的事物开辟了可能性。这一技术也将使得科学家们能够更容易更有效的研究从农场动物及其疾病到危害农作物的病虫害等一切事物。”近年来,包括流感、SARS、埃博拉病毒(Ebola virus)、亨德拉病毒(Hendra virus)和尼帕病毒(Nipah virus)等许多危险的新病毒从动物向人类传播。今年早些时候在中东有三人接触了一种被认为是直接来自蝙蝠的新SARS样病毒而患重病,其中两人死亡。“由于对这些生物体的遗传构成所知甚少,为何这些病毒对蝙蝠的疾病影响有限是一个待解谜题。我们开始将我们的技术应用于实验室培养的蝙蝠细胞,通过分析蝙蝠的遗传和蛋白质含量更多地认识它们的遗传学,了解它们是如何能够与常常对人类造成致命后果的这些病毒明显共存的。

  • 【第二届网络原创参赛】遗传小作坊里的大科学

    【第二届网络原创参赛】遗传小作坊里的大科学

    [color=#DC143C]我们的实验室隶属于遗传学科,在2001年被批准成立“分子细胞遗传与作物育种”校重点实验室。主要的研究内容是:1. 着丝粒蛋白与细胞增殖调控的研究:应用模式生物线虫,Hella细胞和其他细胞系,通过基因克隆、基因表达及其定位,着丝粒蛋白表达的调控及其与其他已知着丝粒蛋白的相互作用的研究,阐述新着丝粒蛋白在细胞中的定位,及其与细胞增殖状态和细胞分化的调控的作用。2. 植物特殊基因资源及抗逆分子遗传机理的研究:应用特殊基因资源植物好好芭、盐芥等,通过基因组学、蛋白质组学、比较转录组学等方法克隆植物抗逆基因新资源,进行功能鉴定。并通过抗逆资源基因与植物激素、信号转导途径的代谢组学的分子生物学研究,揭示抗逆响应的分子遗传机理。从而发掘新的资源基因,认识抗逆新途径,为作物抗逆遗传育种作出新贡献。[/color][B]带大家参观一下我们的实验室吧![/B]楼道里,还有放衣服及书包的柜子![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175134_1856701_3.jpg[/img]平常做实验的屋子,呵呵,东西有些多啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175135_1856701_3.jpg[/img]实验室的冰箱和摇床[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175136_1856701_3.jpg[/img]细胞间外面[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101509_175137_1856701_3.jpg[/img]细胞培养箱[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175138_1856701_3.jpg[/img]超净台,有人要做实验了[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175139_1856701_3.jpg[/img]显微镜,包括倒置显微镜和荧光显微镜,这可是我们的宝贝啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175140_1856701_3.jpg[/img]-80℃冰箱,实验室不可或缺的设备啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175141_1856701_3.jpg[/img]烘箱,同样举足轻重![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175142_1856701_3.jpg[/img]灭菌锅,别看是老式的,但是很好用的![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175143_1856701_3.jpg[/img]组培室1—主要是组培苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175144_1856701_3.jpg[/img]组培室2 ---这是大家种的苗苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175145_1856701_3.jpg[/img]这是做分子实验的超净台哦[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175146_1856701_3.jpg[/img]做核酸电泳的台子[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175148_1856701_3.jpg[/img][color=#DC143C]说实话啊,我们的实验室不算很好,甚至可以说有些落后,但就是这个小的实验室也做出了不小的成就啊,近年来发表了不少SCI的核心期刊,其中细胞方向的两篇论文影响因子达到了5,而植物方向发表的论文也在3左右;另外,我们实验室近两年来均有国家和北京的自然基金支持,相信未来的发展会更好的。PS:呵呵,我们不贪心,只要做好分内的工作,完成基金任务就行了![/color]

  • 【转帖】中国科学家发现白癜风易感基因

    由安徽医科大学第一、第二附属医院等国内30多家单位共同协作,中国科学家通过对近2万份样本进行分析,发现了白癜风的易感基因。此项研发的成功进行,标志着我国白癜风易感基因研发跻身世界领先行列。  白癜风是一种常见的色素脱失性皮肤病,皮肤黑素细胞被破坏,原因不明。目前我国患病人数已超过1000万。该病好发于颜面等暴露部位,严重影响形象美观,甚至毁损患者容貌,并经常合并炎症性肠病、银屑病、糖尿病、恶性贫血及系统性红斑狼疮等多种自身免疫性疾病,严重危害患者身心健康。  此项研究由安徽医科大学第一、第二附属医院、复旦大学华山医院等国内30多家单位共同协作,历时5年,采用国际最先进的全基因组关联分析方法和生物分析技术进行。通过对近2万份样本进行分析,以强有力的证据指出由遗传因素导致的自身免疫异常是白癜风发病的主要原因,首次在国际上明确白癜风是自身免疫性疾病,并构建了第一个亚洲人群白癜风病例对照的全基因组关联分析数据库,为今后白癜风易感基因的深入研究打下坚实的基础。北京时间6月7日凌晨1点,国际著名学术期刊《自然遗传学》在线发表了该项研究的研究成果。专家认为,此研究成果对于解释白癜风的发病机制具有重大意义,并为疾病预警、临床诊断及新药开发奠定了良好的理论基础。

  • 发现影响牛奶成分的奶牛基因

    新西兰牲畜改良协会(LIC)的科学家近期发现了影响牛奶成分的奶牛基因变化。 新西兰乳品网(NZDN.CO.NZ)的记者从新西兰牲畜改良协会的媒体发布中心了解到,所有的奶牛其实都有“肥胖基因”,被称为AGPAT6,但是新西兰牲畜改良协会的高级科学家 Matt Littlejohn博士表示,所发现的基因变化在遗传学方面解释了为什么有一些奶牛所产的牛奶的脂肪含量高于其它奶牛所产的牛奶。 “如果你觉得牛奶产量低于一般生产值,这便是因为牛群中的某些奶牛和”脂肪链“有关。这意味着一些奶牛在产量上很有效率,但是有一些就非常的”懒“.与AGPAT6相关的发现可以更好的帮助我们了解奶牛的乳腺以及遗传基因如何影响牛奶本身的成分。” 这一新的发现,被发布到了国际科学杂志《 PLOS ONE》上,现在将用来帮助奶农改进奶牛基因选择的准确性并且提高新西兰奶牛牛群未来的遗传基因。但这次发现的基因变化只能代表全球一小部分已确认的因奶牛潜在遗传基因的区别而造成牛奶成分的不同。 这次所发现的变化是新西兰牲畜改良协会基因排序程序的一部分,为了是能够将遗传的基因变化安置在奶牛的遗传基因里并改良牛群的生产和健康。这次所发现的基因变化是为了能够更准确的选择奶牛的遗传基因。 新西兰牲畜改良协会的这次研究项目是由新西兰初级产业部主办,并由恒天然和新西兰乳品协会带领的,这次和之前的发现将为新西兰牲畜改良协会的资料库进行排序。 Littlejohn博士表示,“排序工作有点像将整只奶牛重新拼装起来,你拼的越多,整个遗传基因上面的选择性的整体部分就会越清晰。现在最大的优势就是我们意识到我们可以查出更多的遗传基因和现在所掌握的基因变化。将这些信息积累起来,就会得到很大的成果,特别是在基因选择方面。”

  • 遗传算法进行波长选择的困惑

    想用遗传算法进行光谱的波长选择,遗传算法的原理算是搞得差不多了,又看了一些相关的论文,有以下问题望大家指教:1、遗传算法的实现一般是通过Matlab工具箱实现还是自己编程实现,见有的文章说用Vc自己编写的;有没有建模软件自带遗传算法的,我用的TQ Analyst软件是不带的。2、求最优解的过程应该是自动实现的过程,而最优解的确定又是通过模型有关参数决定的,这应该要求针对每个解(即选择的不同波长组合)都要建立一次模型,以便得到模型的相关参数。若不是建模软件自带遗传算法,而是借助matlab或自己编程实现,那么由不同波长组合得到不同参数的整个自动实现过程如何完成的?不知道自己这样理解有没有错误,接触近红外分析时间不长,有错误的地方望大家批评指正,先谢谢了!

  • “少量饮酒有益健康”仅适用少数人

    “少量饮酒,有益于身体健康”。相信这种说法在人们的认知中,认可度还是比较高的。瑞士哥德堡大学博士塔格泰勒表示,少量饮酒有益健康仅适用于携带胆固醇酯转移蛋白遗传因子的变异型(TaqlB)的人的心血健康有益。20名人中,一般只有3人可能携带这种变异遗传基因。也就是说,多少年来,我们其实是被误导了的。所以,我认为,相比于寄希望于我们可能携带这种变异遗传基因的侥幸,为了我们的身体健康,还是戒酒更有利一些。你认为然否?

  • 我学者首次发现中国人群IgA肾病新的易感基因

    最新发现与创新 新华社广州1月8日电(记者肖思思)中山大学附属第一医院8日发布IgA肾病重要研究成果——对亚洲受试者的研究中发现了IgA肾病新的易感基因。 中山大学附属第一医院肾内科余学清教授带领科研团队联合国内二十多家医院和研究机构,并与新加坡专家合作,完成了基于汉族人群IgA肾病全基因组易感基因筛查研究。 余学清介绍,IgA肾病是全球最常见的原发性肾小球疾病,在亚太地区占原发性肾小球疾病的比例高达40%—50%。该病是以IgA或IgA为主的免疫球蛋白在肾小球沉积,肾小球系膜细胞增生和细胞外基质积聚为主要特征。根据目前的资料,有15%—40%的患者最终发展至终末期肾脏病(尿毒症)。研究发现,IgA肾病存在明显的家族聚集倾向,被列入多基因遗传病范畴。IgA肾病发病隐匿,早期诊断和治疗对延缓肾功能恶化具有重要意义。 余学清介绍,这次研究是迄今为止最大样本的亚洲全基因组关联分析研究,包括1万多名受试者(4137例IgA肾病患者与7734例健康人群),利用先进的遗传学分析方法和策略,在全基因组水平进行研究。 “研究人员既验证了欧美学者的部分研究结果,更为重要的是首次发现了中国人群中IgA肾病独有的两个新的易感基因位点——17号染色体和8号染色体,证明了遗传因素在IgA肾病的发病机制中起重要作用,并能够影响IgA肾病的发病过程及临床表现。”他说,由于遗传基因的差异,IgA肾病的临床表现差异很大,有慢性肾脏病历史的家族中的后代和一级亲属的发病率,要高于没有该病历史的家族。 《科技日报》(2012-1-9 一版)

  • 武汉大学分子遗传学 第六章

    第六章 突变 6.1 概述 一、定义突变是一种遗传状态,可以通过复制而遗传的DNA结构的任何永久改变,都叫突变mutation 。所有突变都是DNA结构中碱基所发生的改变。携带突变的生物个体或群体或株系,叫突变体mutant。突变位点发生在基因内,该基因称为突变基因mutant gene;而没有发生突变的基因称为野生型基因wild type gene。如arg+ 为Arg合成的野生型基因,而突变的基因型写成 arg-, 即精氨酸合成缺陷型,其表型为 Arg-表现型。野生型和突变体的表现型和基因型的表示方法见表5-1。P161所有基因表型名称均用3个小写的斜体字母或小写字母在底下画线,而有关的具体基因则在3 个小写字母后用大写的斜体字母表示,如lacZ, lacZ。所有的表现型名称均用3个正写的字母表示(其中第一个字母大写),如Lac+ , Lac-。还有一些其他的特殊意义的突变表示方法,如抗性,敏感性,温度敏感性,无意义等突变。-r, -s, Ts, 有兴趣的自己看。引起突变的物理化学因素称突变剂mutagen。由于突变剂的作用而产生突变的过程或作用称为突变生成作用mutagenesis。简称突变分类:自发突变生成spontaneous mutagenesis——自发突变spontaneous mutation——自然突变体spontaneous mutant. 诱发突变生成,3. 简称诱变induced mutation——诱发突变induced mutaion——诱发突变体induced mutant.`二 突变分类从DNA碱基序列改变多少来分:单点突变和多点突变从对阅读框架的影响来看:由于插入缺失一个或两个碱基会引起移码框架突变从对遗传信息的改变来说:点突变可引起同一突变,错意突变,无义突变或无声突变(含中性突变和同8. 一突变)从突变表型对外界环境的敏感性来区分,可分非条件型突变和条件型突变,如温度敏感突变为条件型突变。从突变的效应背离或返回到野生型这两种方向来分:正向突变和回复突变突变位点也可能存在于负责基因调控的DNA序列中:启动子上升突变和启动子下降突变。产生表达方式的操作子突变或调节基因的突变叫做组成型突变constitutive mutation.

  • 人体免疫的重要调节因子—维生素D

    近年来,由于人类生活方式的改变(室内生活时间变长,防晒霜和防晒衣服的普及)和人体本身的原因(皮肤黑色素含量,皮肤维生素D产生减少和破坏增加),维生素D缺乏已经成为了一个全球性的问题。全球估计有数百万的儿童血清维生素D水平低下。维生素D和人体健康的关系已经成为了全球科学家和临床研究的热点。自从1921年美国科学家Elmer发现维生素D以来,维生素D,俗称为抗佝偻病维生素,一直被认为是和骨骼健康相关。研究表明:维生素D的缺乏可能会导致骨质疏松,跌倒和骨折等一系列骨骼健康失衡的疾病和症状。关于维生素D和骨骼健康的监测,治疗和预防,国内外都已经有了相关的指南(1)。随着对维生素D的研究不断深入,近30年来的研究发现:除了参与维护骨骼的健康,维生素D还参与了人体广泛的生理作用,为维护全身各个系统的功能平衡起到了重要的作用。其中,维生素D和人体免疫功能的关系一直是研究的热点。研究显示,维生素D和很多的自身免疫性疾病密切相关,比如过敏性疾病,如哮喘,炎症性肠病,多发性硬化,I型糖尿病等等,维生素D和自身免疫性甲状腺疾病(例如桥本氏甲状腺炎和格雷夫斯病)的关系还在研究当中。维生素D与哮喘人体内几乎所有的细胞都有维生素D受体,维生素通过结合体内免疫细胞上的维生素D受体参与人体免疫调节的过程维生素D参与了淋巴细胞功能的调节,T细胞抗原受体信号的转导和激活,以及细胞因子的产生等过程。研究发现:维生素D缺乏会影响细胞因子Th1和Th2,而这些因子可以导致过敏体质。Th17细胞是一种和哮喘病变相关的炎症细胞,维生素D能够抑制T17细胞的反应(2)。此外,补充维生素D对治疗某些变态性疾病是有益的。比如:在对地塞米松治疗有激素抵抗的哮喘患者体内,维生素D能够使调节性T细胞(Treg)分泌IL10,使患者对激素治疗产生反应(3)。另有数据表明:过敏性哮喘和Fox3p的表达下降有关,而Fox3p是调节性T细胞发育过程中很重要的转录因子。一项研究发现:对过敏性哮喘的小儿患者使用脱敏联合维生素D补充治疗的12个月过程中,可以发现哮喘症状的好转与Foxp3+细胞的诱导上调以及高水平的TGF-beta产生有关,而这些因子的高表达都和血清25羟维生素D的水平相关(4)。因此,维生素D的水平被认为是一个潜在的因子,可以在过敏性疾病包括哮喘,尤其是儿童哮喘的发生,发展和严重程度上起到重要的调节作用。美国儿科学会已经建议增加儿童和青少年的维生素D日摄入量:一岁以内,建议日摄取量为400IU,一岁以上为400-600IU,从一出生就开始补充以达到血清维生素D的充足水平(5)。维生素D与炎症性肠病炎症性肠病也是一种免疫性疾病。维生素D和炎症性肠病的关系在80年代初就已经确认。已经有多次研究报道:低的血清25-羟维生素D水平和炎症性肠病的病情活动度相关。维生素D结合它的受体,通过控制细胞增殖、抗原受体信号、和肠屏障功能来影响免疫稳态。此外,1,25-二羟基维生素D也参与了NOD2-介导的β2的表达,后者对炎症性肠病病变发挥着至关重要的作用。同时,维生素D受体的几种遗传变异体已被认定是炎症性肠病的候选易感基因。并且,在动物模型中维生素D受体缺失可以导致更严重的炎症性肠病。而越来越多的研究和临床已经发现使用维生素D或维生素D受体拮抗剂可以缓解或治疗炎症性肠病。这些研究结果都提示维生素D可以作为炎症性肠病治疗的一个靶点(6)。维生素D与多发性硬化随着全球的"冰桶挑战",多发性硬化已经为人们所熟悉。多发性硬化已经影响了全球大约2.1亿人,而且逐年增加。多发性硬化的产生因素是遗传和环境的共同结果。T细胞介导的自身免疫和疾病密切相关,而维生素D是免疫系统的重要调节因子,因此近年来,关于维生素D缺乏和多发性硬化的相关性研究也越来越多。有研究发现:女性血清1,25-二羟维生素D浓度每增加10nmol/l,发生多发性硬化的可能性就会减少20%,提示高维生素D的保护作用。也有很多研究谈探讨了阳光照射和多发性硬化的关系,他们发现儿童时期如果阳光照射多,多发性硬化的风险相对会小,而且多发性硬化与日照和纬度的相关性表明了维生素D水平和疾病的关系(7)。流行病学调查研究发现:多发性硬化患者的血清维生素D水平普遍较低;每天补充维生素D大于400IU可以减少40%的患多发性硬化的风险。如果每天补充1000到4000IU达到血清维生素D浓度在99nmol/L以上的话可以减少62%的发病率。由此可见,维持足够的血清维生素D浓度可以有效预防多发性硬化。维生素D与I型糖尿病I型糖尿病也是一种自身免疫性疾病,它和维生素D的关系已经被很多临床研究证实。有研究通过对患儿的血清维生素D水平检测发现,患儿的1,25-二羟维生素D水平低下(8)。而补充维生素D可以降低I型糖尿病的患病风险(9)。关于维生素D和I型糖尿病的第一项病案分析研究由欧洲7个国家Eurolab主导,研究发现:出生后第一年补充维生素D,I型糖尿病的风险可以降低33%(10)。因此,用补充维生素D来预防I型糖尿病是可行的。维生素D与自身免疫性甲状腺疾病维生素D和自身免疫性甲状腺疾病的关系已经有了相关研究。有些遗传研究证明甲状腺自身免疫易感性与维生素D受体的基因多态性,维生素D结合蛋白以及1-α-羟化酶和25羟化酶之间有关联。但是,也有很多其他研究结果反对它们之间的相关性。对于在自身免疫性甲状腺疾病中维生素D的作用,研究仍然存在争议。由于研究设计的局限性,研究人群的异质性,采血的季节变化,维生素D检测和维生素D缺乏/不足不同的定义, 方法之间分析的差异都可能导致结果的不确定。因此,补充维生素D是否能够预防或改善自身免疫性甲状腺疾病,还需要更完善的研究设计和深入的研究(11)。除了上述自身免疫性疾病,维生素D 还和其他自身免疫性疾病如类风湿性关节炎,胰岛素抵抗,白癜风等关系密切。维生素D水平的检测和维持与人体健康密切相关。准确检测和监测血清维生素D的水平,对评估维生素D水平和补充维生素D至关重要。索灵诊断公司是第一家进行维生素D检测试剂研发和推广的公司,随着技术的不断更新,索灵在过去的25年以来在全球已经售出超过1.75亿个测试,其严谨的科学研究和以人为本的服务理念,使得索灵的维生素D检测一直处于世界领导地位,为全球的维生素D检测实验室和临床提供了可靠的工具,为全球人类的健康发挥了不可或缺的作用。

  • 中科院遗传与发育生物学研究所王国栋课题组招聘启事

    因工作需要,中国科学院遗传与发育生物学研究所基因组生物学中心王国栋研究员课题组现向海内外公开招聘研究人员1名(助研)。王国栋课题组的主要研究方向是综合基因组学,代谢组学(Mass-based)和传统的分子和生化技术去探索植物中未知代谢途径,克隆,功能鉴定重要代谢途径中的酶和酶学及调控机理,并应用于实际生产。课题组具体信息参见http://www.genetics.ac.cn/wangguodong。一、基本招聘条件  1. 具有高度的责任心和上进心,性格乐观开朗,有良好的人际沟通能力,富有团队协作精神;  2. 对本研究组工作感兴趣,可追踪本研究领域的发展前沿;  3. 非应届毕业生需要有北京市户口(博士后不受此限制)。   对于应聘者具体要求如下:  1. 具有分析化学及相关专业或生物学硕士研究生以上学历、学位,较强的英文阅读能力和中英文写作能力,在SCI杂志发表第一作者研究论文至少1篇;  2. 同时具有色谱——质谱联用等大型分析仪器操作经验和熟悉相关数据处理流程经历的申请者优先。二、岗位职责  1.独立完成研究组长交给的科研任务或承担相关课题;  2.培训研究生相关知识、技能,协助课题组长在相关课题中指导研究生及实验室管理;三、申请材料的投递  应聘者请将《科研岗位工作申请表》及本人简历、包括研究经历简介、未来事业规划,代表性论文及两位推荐人的姓名及电话等相关资料发至:gdwang@genetics.ac.cn(邮件主题请注明:工作岗位申请),本招聘长期有效,招到合适人选为止。四、审查  研究所对申请者进行资格审查,并在收到材料的一个月内通知初审合格者前来面试,资格审查未通过者,不再另行告知。五、待遇  试用期考察合格后根据其学历和专业经历拟聘为中国科学院遗传发育所固定工作人员,享有相关待遇,特别优秀者具体职称、待遇可协议。六、政策咨询:人力资源处 崔老师 64806520

  • 【转帖】科学家发现海洋巨型病毒拥有73万个碱基对

    科学家发现海洋巨型病毒拥有73万个碱基对   北京时间10月29日消息,据物理学家组织网报道,英属哥伦比亚大学(UBC)已经发现世界上最大、最复杂的海洋病毒,Cafeteria roenbergensis病毒主要感染那些吃海洋生态系统中非常重要和分布广泛的浮游生物的掠食者。  这种病毒的基因组比一些细胞生物的基因组还大,它的遗传复杂性使科学家感到疑惑,不知道该把它归为“无生命”生物,还是“有生命”生物行列。海洋微生物学和环境病毒学专家、这项研究的第一论文作者和英属哥伦比亚大学教授柯蒂斯·苏特勒说:“我们一般认为病毒都很小,是简单生物体,只有少量基因。然而我们在这种病毒里发现的大量遗传机制,只能在有生命的细胞生物体里找到,它们需要很多基因才能产生DNA、RNA、蛋白质和糖。”  该研究成果发表在本周的《美国国家科学院院刊》上。一般情况下,病毒在活宿主细胞外无法自我复制,它们需要利用宿主提供的蛋白质进行复制,自我复制形式是区分“无生命”和“有生命”生物的分界线。然而最新发现的这种巨型病毒却对上述归类标准发起了挑战,它们虽然仍需要一个细胞进行复制,但它们是在自己的基因组里进行编码的。  20世纪90年代初,有人在德克萨斯州沿海水域发现这种巨型海洋病毒。苏特勒和他的科研组确定该病毒的基因组含有大约73万个碱基对。这使Cafeteria roenbergensis病毒成为目前已知的世界最大海洋病毒和第二大病毒,排名仅次于淡水病毒——多噬棘阿米巴模仿病毒,后者拥有120万个碱基对。Cafeteria roenbergensis病毒还感染在海洋食物链中处于重要地位的浮游动物。  苏特勒说:“尽管这些海洋浮游生物的掠食行为在海洋和淡水系统的碳转移及营养循环过程中起着重要作用,但是我们对该病毒在这个系统里所扮演的角色几乎一无所知。毫无疑问,这种病毒可能还是一大组未知但是具有生态重要性的海洋巨型病毒的代表。”

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制