当前位置: 仪器信息网 > 行业主题 > >

芯片拾取放置系统

仪器信息网芯片拾取放置系统专题为您提供2024年最新芯片拾取放置系统价格报价、厂家品牌的相关信息, 包括芯片拾取放置系统参数、型号等,不管是国产,还是进口品牌的芯片拾取放置系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片拾取放置系统相关的耗材配件、试剂标物,还有芯片拾取放置系统相关的最新资讯、资料,以及芯片拾取放置系统相关的解决方案。

芯片拾取放置系统相关的资讯

  • 生物芯片北京国家工程研究中心新疆分中心生物芯片培训班
    生物芯片北京国家工程研究中心 新疆分中心生物芯片培训班 主办:生物芯片北京国家工程研究中心新疆分中心 协办:生物芯片北京国家工程研究中心   生物芯片技术凭借着显著的优势和巨大的潜力,已经成为在医学、农业、微生物等相关研究领域快速增长的一项重要技术。随着基因组学、蛋白质组学的不断深入研究,生物芯片技术的应用范围不断扩大,已经广泛应用于重大疾病预警、产前诊断、食品安全检测、作物经济性状关联研究(GWAS)、遗传育种;动植物病理学、农作物病虫害防治、种质资源鉴定、转基因作物等领域。   以生物芯片为工具的研究已经渗透到生命科学领域研究中的每个角落,随着研究的不断深入,产生了大量的科研成果,几乎每天都有大量高水平研究文章发表。为了扩大交流,促进科研成果转化,搭建科研成果与成果转化之间的桥梁,由生物芯片北京国家工程研究中心新疆分中心举办&ldquo 生物芯片技术在生命科学领域的应用&rdquo 培训班。本培训班将系统讲解基因芯片的设计、制作以及相关实验操作,旨在为您打造一片属于您的&ldquo 芯&rdquo 天地。   在此次培训班的尾声,2012' 喀纳斯科学与艺术论坛恰在乌鲁木齐举行。此次论坛特邀请了多位院士、科技部领导及三甲医院院长,将围绕新疆特高发疾病等重大科学问题开展学术探讨和合作交流。欢迎各位在8月10日前来观会。 培训内容 | 生物芯片技术培训 1.1 理论部分:生物芯片技术在生命科学领域中的应用 1.2 理论部分:表达谱芯片构建、探针设计、数据分析等基础理论知识讲解 2.1 实践部分: 观摩芯片点制过程 2.2 实践部分:晶芯表达谱实验整个实验流程(视频) 2.3 实践部分: 芯片杂交、清洗、扫描(培训学员模拟杂交、扫描) 2.4 实践部分: 数据分析(培训学员亲自对数据进行分析) 2.5 实践部分: SAM、Cluster等数据分析软件使用 2.6 实践部分:分子功能注释系统(MAS)分析 注册方法:申请培训学员填写培训回执表后,发到培训联系人吕国栋邮箱中,进行确认,培训联系人在收到回执表后3天之内给 予回复。 培训时间:2012年8月7-9日 培训地点:新疆医科大学第一附属医院 科技楼4楼 省部共建国家重点实验室培育基地会议室 (新疆乌鲁木齐市新市区鲤鱼山路1号)。 培训费用:培训费用免费,食宿费用自理。 培训规模:20人左右,为保证培训班质量,采取小班模式。请学员自带电脑。 培训资料:包括培训讲师幻灯、培训教材、培训学员通讯录、培训证书(生物芯片北京国家研究中心印)、精美礼品一份。 注意事项 报到时间:2012年8月6日 报到地点:新疆医科大学第一附属医院 科技楼7楼生物芯片北京国家工程研究中心新疆分中心。 住宿地点:新疆医科大学第一附属医院附近宾馆酒店(仅供参考): 1、新疆昆仑宾馆(三星级) 地址:乌鲁木齐市新疆维吾尔自治区 友好北路146号 电话:0991-5190000 2、乌鲁木齐宇豪馨怡酒(四星级) 地址:乌鲁木齐市新疆维吾尔自治区 新市区新医路359号 电话:0991-4328555 行车路线: 1、火车站(距新疆医科大学第一附属医院8公里左右):(1)、乘出租车到达新疆医科大学第一附属医院(车费大约15元左右)。 (2)、乘坐906,52路公交车均可以到达新疆医科大学第一附属医院(车费1元)。 2、机 场(距新疆医科大学第一附属医院13公里左右): (1)、乘坐出租车到新疆医科大学第一附属医院(大约21元左右); (2)、从乌鲁木齐地窝堡国际机场535路公交车通往新疆医科大学第一附属医院。 联系方式:联系人: 新疆医科大学第一附属医院 生物芯片北京国家工程研究中心新疆分中心 吕国栋 电话: 0991-4366042 邮箱:xjmicroarray@163.com 客户培训回执表 姓名: E-mail: 单位: 电话: 地址: 邮编: 是否需要帮助预定宾馆(协议宾馆): 是 否备注:如果需要安排宾馆,请注明入住时间: 您感兴趣的领域:
  • 华微发布海风系列II型_芯片实验室_器官芯片控制系统新品
    创新点:海风HW-SeaBreeze 芯片实验室。 可实现器官芯片、仿生环境建立、维持等操作。关键技术: (1)器官芯片 (液滴/液流 ,液/气/氧/温/光/电/时:多维精准控制); (2)柔性操控 (保持活性;液滴/液流,电场/气压/激光多场景控制); (3)精准控温 (恒温孵育:微流培养池/器官芯片 液滴数字PCR ); (4)测控方式 (支持 拉曼/影像/阻抗等无标记筛选,荧光标记筛选) (5)耗材定制 (芯片内生物存活7日,按需定制, 价格远低进口) ■ 应用领域:器官芯片、药物开发、肿瘤细胞医疗、细胞培养、仿生微环境、文库、单细胞(菌)液滴包裹/操控/筛选、单亲克隆、滴内PCR、定向进化等。 海风系列II型_芯片实验室_器官芯片控制系统
  • 三星开发新的芯片封装技术FOWLP-HPB,以防止AP过热
    三星正在开发一种新的芯片封装技术,以防止应用处理器(AP)过热。消息人士称,该封装在SoC顶部附加一个热路径块(HPB),预计将用于未来的Exynos芯片。该技术的全名是FOWLP(扇出晶圆级封装)-HPB,由三星芯片部门下的高级封装(AVP)业务部门开发,计划第四季度完成开发,然后开始批量生产。作为后续产品,三星团队还在开发一种可以安装多个芯片的FOWLP系统级封装(SIP)技术,将于2025年第四季度推出。两种封装类型都将HPB安装在SoC顶部,而存储器则放在HPB旁边。HPB是一种散热器,已用于服务器和PC的SoC。由于智能手机的体积较小,该技术目前才被引入智能手机芯片应用中。如今的智能手机大多使用蒸汽室来容纳制冷剂,以冷却AP和其他核心组件。HPB仅用于SoC。三星正在考虑采用2.5D或3D封装来采用该技术。端侧人工智能(AI)的日益普及也增加了人们对AP过热的担忧。两年前,三星因Galaxy S22系列智能手机的过热问题而受到严厉批评。三星试图通过其游戏优化服务(GOS)应用程序来防止这种情况发生,该应用迫使AP降低其性能以防止其过热,但三星却没有告知用户。三星通过改变AP设计并在后续型号上采用蒸汽室来改善这个问题。
  • naica®微滴芯片数字PCR系统助力微生物菌株分群
    导读反刍动物是指具有反刍习性的一类哺乳动物,如牛、羊、长颈鹿、兔子等。反刍动物采食一般比较匆忙,大部分未经充分咀嚼就吞咽进入瘤胃,经过瘤胃浸泡和软化一段时间后,食物经逆呕重新回到口腔,经过再咀嚼混入唾液并再吞咽进入瘤胃,这种行为称为反刍行为。反刍动物的食物种类比其他种类的动物更丰富,结构组成也更复杂,但草料中的粗纤维含量较高导致其难以消化,反刍动物依赖于胃部微生物群的代谢能力来消化各种物质,但其转化效率低也是养殖业广泛关注的问题。虽然已有研究证明瘤胃中不同微生物的活性可以调节宿主利用植物生物能量的能力,但定植于宿主瘤胃中的微生物却很少受到关注。奥地利维也纳兽医大学的Cameron等人在Research Square在线发表了题为《Differential partitioning of key carbon substrates at the rumen wall by recently diverged Campylobacteraceae populations》的研究论文。文章采用多重数字PCR(dPCR)量化同一菌科的两种菌群,分析反刍动物瘤胃上的定植菌群分布及生物进化动态,为今后畜牧业提高动物代谢能力的研究提供了新思路。应用亮点:▶ 宏基因组测序发现瘤胃上皮细胞中弯曲杆菌科两个种群的基因序列高度相似,利用naica® 微滴芯片数字PCR系统可以对两个种群进行精准量化。▶ 使用不同培养添加物后,可以利用naica® 微滴芯片数字PCR系统进行微生物种群分布跟踪。研究成果:作者通过对瘤胃上皮微生物组的16S rRNA扩增子分析发现了一个优势菌株(OTU)为弯曲杆菌科(Campylobacteraceae),并通过宏基因组测序发现该OTU两个主要种群Ca. C. stinkeris与Ca. C. noahi的基因含量高度相似,但pgl(蛋白质糖基化)操纵子不同。为了探究Ca. C. stinkeris与Ca. C. noahi两个种群空间分布的差异,作者通过naica® 微滴芯片数字PCR系统比较了这两个种群在不同动物瘤胃乳突离上皮壁最近和最远两个位置的含量。结果发现不同动物的两个种群在这两个位置的比例接近。▲图1 Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突顶端和隐窝的含量比例。A)从乳突切片两个位置提取DNA使用dPCR进行定量分析。B) Ca. C. stinkeris 和Ca. C. noahi在动物瘤胃乳突两个位置的含量比例。横坐标为取样动物的名字。然后作者使用naica® 微滴芯片数字PCR系统对两种菌群进行生长和适应性测定,数据显示Ca. C. stinkeris可以在以醋酸盐为主要碳源时积累的生物量,更好地生长,但被丙酸盐抑制,而Ca. C. noahiz在任何一种添加物存在的情况下在都没有检测到生长优势。因此,作者推断可能存在一些其他机制来最小化竞争,这种机制通过某些代谢生态位维度上的分化,防止它们生长动力学的重叠来支持两个种群的共存。▲图2 醋酸盐利用和丙酸盐抗性检测。A)通过种群特异性dPCR,评估添加5 mM醋酸盐(acetate)或丙酸盐(propionate)对生物量积累的影响。分别用单个菌株(左,单一培养)和竞争菌株(右,共培养)进行了实验。通过数字PCR这种精准的定量技术,作者发现在瘤胃乳突的顶端和隐窝都分布有这两种优势菌群,且与上皮细胞分布数目无显著的相关性。另外,这两种菌群能够促进相关脂肪酸的代谢,进而发挥促进食物消化的功能。该文章为通过调节反刍动物体内某些盐离子浓度来调节优势菌群的分布比例进而提升消化能力提供了思路。
  • 重磅!美对芯片实施新出口管制
    美国政府7号发布了对华芯片出口的新限制,要求芯片制造商必须获得美国商务部的许可,才能向中国出口先进芯片和芯片制造设备。美方称,最新措施旨在防止美国技术被用于提升中国的军事实力。美国商务部7号发布了针对先进芯片和芯片制造设备对华出口新限制。美国高级政府官员表示,这些规则将要求美国芯片制造商获得商务部的许可,才能对华出口某些用于先进人工智能计算和超级计算的芯片。美国政府此前已经出台了对华芯片及设备的出口限制,最新举措将限制扩大到阻止使用美国技术的外国芯片的对华出口。美方官员称,先进芯片和制造设备是现代武器系统的关键技术,最新出口限制对于“阻止中国利用美国技术,开发新的、最先进的武器,进一步加强监视网络和军事实力”来说,是必要的。美方认为,某些依赖美国芯片、软件、工具和技术的先进计算能力,正在推动中国军事现代化,包括大规模杀伤性武器的发展。美方认定,允许中国及其军方获得最先进的芯片和芯片制造设备对美国“构成严重的国家安全风险”。除了对芯片和芯片设备出口的限制外,美国商务部正在增加对为部分中国芯片制造设施提供支持的美国公民、永久居民和公司的限制,并扩大对已列入美国商务部出口黑名单的28家中国超算实体的限制。美国商务部7号将31家中国企业,添加到其所谓的“未经核实”名单中,这是美国商务部感到担心、但尚未准备好将其添加到黑名单中的一个实体类别。美国商务部还表示,如果外国不合作缓解这些担忧,则可以将这些公司移至黑名单中。美国商务部负责出口管制的助理部长在声明中表示,中国已投入资源发展超级计算能力,并力争到2030年成为人工智能领域的世界领导者。美国半导体行业协会当天表示,正在评估政府新规的影响。协会表示,理解确保国家安全的目标,但希望这些规则能够以一种不会导致“对美国创新造成意外伤害”的方式实施。
  • Nanoscribe微纳3D打印技术应用于光子集成芯片到光纤的3D对接耦合器研发
    光子集成电路 (Photonic Integrated Circuit,PIC) 与电子集成电路类似,但不同的是电子集成电路集成的是晶体管、电容器、电阻器等电子器件,而光子集成电路集成的是各种不同的光学器件或光电器件,比如激光器、电光调制器、光电探测器、光衰减器、光复用/解复用器以及光放大器等。集成光子学可广泛应用于各种领域,例如数据通讯,激光雷达系统的自动驾驶技术和医疗领域中的移动感应设备等。而光子集成电路这项关键技术,尤其是微型光子组件应用,可以大大缩小复杂光学系统的尺寸并降低成本。光子集成电路的关键技术还在于连接接口,例如光纤到芯片的连接,可以有效提高集成度和功能性。类似于这种接口的制造非常具有挑战性,需要权衡对准、效率和宽带方面的种种要求。针对这些困难,科学家们提出了宽带光纤耦合概念,并通过Nanoscribe的双光子微纳3D打印设备而制造的3D耦合器得以实现。该3D自由曲面耦合器利用全内反射,结合Nanoscribe的3D微加工技术可直接在光子芯片上进行3D打印制作。该新型技术可应用于例如光通信技术,计算机传感器等领域,并且科学家们已经在微型光谱仪上验证了光纤到芯片的键合技术,用于便携式传感技术和芯片实验室(微流控芯片技术)。连接芯片到光纤的3D对接耦合器 来自德国明斯特大学物理研究所,CeNTech纳米技术中心,马克思伯恩研究所和柏林洪堡大学的多学科研究团队提出了这个全新概念并共同研发了连接芯片到光纤的3D聚合物耦合器。该3D耦合器基于全内反射的原理直接在光子集成电路上进行3D打印。这种新颖的方法旨在于可见光波长范围内实现低损耗和宽带光纤到芯片的耦合。该设计由模式转换器,全反射平面和一个充当将光速聚集到光纤端面上的透镜球体所组成。这项研究的成果证明耦合可扩展性的概念可通过3D微纳加工技术得以实现。 LEFT:SEM of a freeform 3D fiber-to-chip coupler printed by means of Nanoscribe’s Photonic Professional GT system and connected to a silicon nitride waveguide.RIGHT: Close-up view of the 3D-printed coupler on total internal reflection for fiber-to-chip coup领.Image: H. Gehring, W. Hartmann, W. Pernice et al., University of Münster3D微纳加工实现光子封装 通常,在一个微纳芯片上组装各种光子和光学组件需要多个步骤来完成操作,例如组装、对准、拾取和放置或固定等一系列操作步骤。而利用3D微纳加工技术则可以轻松地在光子集成电路上直接打印高精度自由曲面的微纳组件。因此,3D打印可以大大节省光子封装过程中的设备成本和时间成本。SEM of a photonic chip with several devices illustrating scalable fabrication of hybrid 3D-planar photonic circuits.Image: W. Hartmann, H. Gehring, W. Pernice et al., University of Münste近年来,随着光学、光电子、纳米光子和仿生等领域中各种微纳器件的广泛开发,与之相应的3D微纳加工技术逐渐成为加工技术中的重要一环。 凭借着独有的3D微纳加工技术,Nanoscribe参与了各种研究项目,以开发基于集成光子学新技术。例如,在MiLiQuant研究项目中,Nanoscribe与科学以及工业领域的合作伙伴一起开发了具有微型化,稳定频率和功率的二极管激光器。该项目旨在为医疗诊断产业应用,自动驾驶传感器和基于量子的成像方法制造合适的辐射源。 此外,Nanoscribe还在今年年初加入了欧盟资助的研究项目Handheld OCT。这是由来自不同大学、研究机构和科技公司的科学家和工程师们所组成的研究团队,旨在开发用于眼科检查的便携式成像设备。该新型设备可以拓展基于光学相干断层扫描技术(OCT)的应用,实现从现在的固定眼科临床使用扩展到即时眼科移动护理中。更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 灰度光刻微纳打印设备
  • 上海微系统所等制备出石墨烯基量子电阻标准芯片
    电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度和更大电流下工作,易于计量装备小型化。此外,量子电阻标准的性能通常与石墨烯的材料质量、衬底种类和掺杂工艺相关。如何通过克服绝缘衬底表面石墨烯成核密度与生长调控的瓶颈,获得高质量石墨烯单晶,并以此为基础,优化器件结构和工艺,开发出工作稳定且具有高比对精度的量子电阻标准芯片至关重要。近日,中国科学院上海微系统与信息技术研究所报道了采用在绝缘衬底表面气相催化辅助生长石墨烯,成功制备高计量准确度的量子霍尔电阻标准芯片的研究工作。相关研究成果以“Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device)”为题,发表于期刊《Advanced Materials Technologies》上。研究人员首先采用氢气退火处理得到具有表面台阶高度约为0.5nm的碳化硅衬底,然后以硅烷为气体催化剂,乙炔作为碳源,在1300°C条件下,生长出高质量单层石墨烯。该温度条件下衬底表面台阶依然可以保持在0.5nm以下。采用这种方法制备的石墨烯可以制成量子电阻标准器件,研究团队直接将该量子电阻标准器件集成于桌面式量子电阻标准器,在温度为4.5K、磁场大于4.5T时,量子电阻标准比对准确度达到 1.15×10-8,长期复现性达到3.6×10-9。该工作提出了适用于电学计量的石墨烯基工程化、实用化的轻量级量子电阻标准实现方案,通过基于其量值的传递方法,可以满足不同应用场景下的电阻量值准确溯源的需求,补充国家计量基准向各个行业计量系统的量传链路。中科院上海微系统与信息技术研究所是该研究工作第一完成单位,陈令修、王慧山和孔自强为共同第一作者,通讯作者为上海微系统所的王浩敏研究员和中国计量科学研究院的鲁云峰研究员。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中科院先导B类计划和上海市科委基金的资助。论文链接:https://doi.org/10.1002/admt.202201127
  • 上海微系统所等开发出可批量制造的新型光学“硅”与芯片技术
    5月8日,中国科学院上海微系统与信息技术研究所研究员欧欣团队在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。相关研究成果以《可批量制造的钽酸锂集成光子芯片》(Lithium tantalate photonic integrated circuits for volume manufacturing)为题,发表在《自然》(Nature)上。随着全球集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切寻找新的技术方案。以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术可以应对这一问题。其中,铌酸锂有“光学硅”之称,近年来备受关注。与铌酸锂类似,欧欣团队与合作者证明单晶钽酸锂薄膜同样具有优异的电光转换特性,在双折射、透明窗口范围、抗光折变、频率梳产生等方面比铌酸锂更具优势。此外,硅基钽酸锂异质晶圆的制备工艺与绝缘体上的硅更接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有应用价值。欧欣团队采用基于“万能离子刀”的异质集成技术,通过氢离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆。进一步,合作团队开发了超低损耗钽酸锂光子器件微纳加工方法,使对应器件的光学损耗降低至5.6 dB m-1,这低于其他团队报道的晶圆级铌酸锂波导的最低损耗值。该研究结合晶圆级流片工艺,探讨了钽酸锂材料内低双折射对于模式交叉的有效抑制,并验证了可以应用于整个通信波段的钽酸锂光子微腔谐振器。钽酸锂光子芯片展现出与铌酸锂薄膜相当的电光调制效率;同时,基于钽酸锂光子芯片,该研究首次在X切型电光平台中产生了孤子光学频率梳,结合电光可调谐性质,有望在激光雷达和精密测量等方面实现应用。当前,该研究已攻关8英寸晶圆制备技术,为更大规模的国产光电集成芯片和移动终端射频滤波器芯片的发展奠定了材料基础。欧欣介绍:“相较于薄膜铌酸锂,薄膜钽酸锂更易制备,且制备效率更高。同时,钽酸锂薄膜具有更宽的透明窗口、强电光调制、弱双折射、更强的抗光折变特性,这种先天的材料优势扩展了钽酸锂平台的光学设计自由度。”上述成果的第一完成单位为上海微系统所。该工作由上海微系统所和瑞士洛桑联邦理工学院合作完成。(论文链接 )钽酸锂异质集成晶圆制备及高性能光子芯片示意图(a)硅基钽酸锂异质晶圆(b)薄膜钽酸锂光学波导制备工艺及波导的扫描透镜显微镜(a)钽酸锂弯曲波导、(b)铌酸锂弯曲波导的色散曲线设计(实线)与实际色散曲线(散点),可观察到铌酸锂波导色散曲线中明显的模式交叉效应(a)薄膜钽酸锂电光调制器;(b)首次实现X切型钽酸锂上的克尔孤子光频梳8英寸硅基薄膜钽酸锂晶圆制备
  • 成熟芯片发展趋势:需求仍强劲,20nm为成本分水岭
    尽管所有人的目光都集中在前沿硅工艺节点上,但许多成熟节点仍然享有强劲的制造需求。连续的节点发展到大约20nm后,芯片成本不再降低。“在FinFET工艺时代,推动技术进步的先进工艺要求增加了大量成本和复杂性,”新思科技(Synopsys)解决方案集团逻辑库IP首席产品经理Andrew Appleby解释道。“这在每个节点之间创造了强大的过渡点。”从那时起,任何芯片缩小都会被更昂贵的加工所抵消,而这些成本急剧上升。掩模组更昂贵,而高级节点通常需要更多层,因此需要更多掩模组。大多数代工厂和集成设备制造商(IDM)在传统节点上都有强劲的业务。“选择您的IDM,而不是英特尔或存储制造商,许多仍在130nm及以上制造,”Tignis营销副总裁David Park表示,“某些部件根本不需要在较小的节点上制造。”先进节点的客户也较少,因为没有多少公司能够负担得起。“在3nm节点,只有2到3个客户。”联电公司营销副总裁Michael Cy Wang观察到。“在7nm节点,可能有5到10个客户。但到了22nm或28nm节点,我们谈论的是数十个甚至更多的客户。”目标设计决定了哪些公司可以转向先进节点,哪些不能。“工艺节点的选择取决于应用,有些应用在不久的将来不会转向需要极紫外(EUV)技术的节点。”新思科技解决方案事业部NVM IP产品管理高级总监Krishna Balachandran表示。“这是因为大量模拟电路无法从微缩中受益,而且不需要以较低的功率运行或提高性能。成熟节点的晶圆价格要低一个数量级,设计和掩模成本也要低几个数量级。”颠覆是常态降低每个节点的成本曾经很容易。“从历史上看,即使是在1µ m之前,甚至在28nm节点之前,每个晶圆的制造工艺成本也总是增加约25%~30%”,新思科技硅技术集团应用工程高级架构师Kevin Lucas表示。“但是,每个晶圆的芯片数量增加约50%,因此每个芯片的制造成本在每个节点下降约20%~25%。”企业甚至可以利用几乎不需要工程运作的光学微缩。这是摩尔定律盛行的经典微缩时代。当时,新节点可能涉及一些新的工艺元素,与之前的节点相比,这会增加一些费用。但随着每个晶圆上的芯片数量增加,每个芯片的净成本得以下降。这种情况在20nm工艺节点左右发生了变化。新节点带来了更高的性能和/或更低的功耗,但成本降低的停止意味着迁移到最新节点不再是必然的。“将设计移植到更新或更小的工艺节点可能没有增量市场价值。”Tignis的David Park指出。关于每个节点的讨论包含一些模糊性。节点名称令人困惑,公司并不总是同意给定节点的“纳米”级别。此外,分配给节点的数字不再像以前那样反映实际栅极长度。诸如使用高K金属栅极之类的变化改变了比较的基本点,允许更大的特征表现得像更小的一样。节点命名使用数字,就好像其中一些重大中断从未发生过一样,而今天这些名称除了作为节点的标签之外没有任何意义。此外,不同的晶圆厂在不同的节点上进行一些工艺更改,例如FinFET的实现。新节点成本的增加来自多个方面。可能会有额外的步骤(特别是光刻技术)、新材料,而且几乎总是会有新设备。“领先的晶圆厂将产生溢价,因为他们必须收回巨额的资本支出和研发成本,”联电Michael Cy Wang说。“然后,当然,他们需要在下游销售时证明溢价的合理性。”传统工艺的一个好处是能够使用旧设备。“许多公司仍在使用20多年前的相同设备制造零件,”Tignis的David Park指出。“晶圆厂和设备早已计提折旧,因此他们实际上是在用他们制造的每一个芯片印钱。”追踪节点硅工艺已经从微米级发展到纳米级。但在那段历史的最后阶段,发生了重大的工艺变革。一些最大的变化是:在130nm和90nm之间,晶圆尺寸从200mmm(8英寸)变为300mm(12英寸)。300mm晶圆比200mm晶圆更贵,但可以将成本分摊到更多芯片上,从而降低净芯片成本。在45nm左右,特征足够小,需要计算光刻来推动光线干净地打印特征。大约在同一时间,带有金属栅极的高K电介质开始使用,防止栅极氧化物厚度变得太薄。在30nm的NAND闪存和20nm的数字逻辑中,使用193nm浸润技术的多重图案化变得必要,因为EUV光刻(13.5nm)尚未准备好投入生产。双重图案化(以及后来的四重图案化)显著增加了制造成本,但这是打印较小特征的唯一方法。在22nm节点,FinFET首次被采用。然后它们在14nm节点成为主流。EUV从7nm节点开始被使用,并在5nm节点成为必需。在5nm左右,开始使用EUV进行多重图案化制作。14埃(&angst )节点可能会首次使用高数值孔径(High NA)EUV技术。图1:硅工艺的变化。更大的晶圆、高K金属栅极、计算光刻和多重图案制作增加工艺成本,但它们对于性能、功耗(最初是成本)是必需的。但在大约20nm时,芯片成本开始增加。极紫外(EUV)及其高数值孔径(High NA)版本更加昂贵,全环绕栅极(GAA)晶体管也是如此。经济的变化导致行业出现某种分裂。一些公司和产品追逐在任何时候都能提供最高性能(或更低功耗)的任何工艺,并且他们的产品定价可以支持每个节点的更高成本。英特尔、三星和英伟达等公司处于令人羡慕的地位。其他所有公司都必须坚持使用较旧的节点,因为他们无法获得相同的价格。有些芯片售价为20~30美分。这使得一些工艺节点(例如10nm或7nm)的设计需求量可能会下降,因为它们不再是最快的。但对于许多正在制造的更平淡无奇的芯片而言,它们仍然过于昂贵。这表明许多设计将堆积在较旧的节点上,而不是向前发展。与此同时,性能最高的芯片将遵循最快的节点,为高性能的过时工艺节点留下空白。连续的工艺节点的生产成本更高,设计成本也更高。“当设计公司决定工艺节点时,他们不仅需要考虑晶圆和掩模的成本,还需要考虑设计成本及其对上市时间的影响。”新思科技EDA集团产品管理负责人Al Blais表示。“包括双重图案化的工艺节点需要额外的设计和IP复杂性。FinFET设计有额外的设计限制,EUV也是如此。High NA EUV绝对也会有新的要求。”联电公司营销副总裁Michael Cy Wang表示同意。“目前,在5nm或7nm上,一套掩模版的成本可能为300万~500万美元,”他说。“但是,如果将项目期间的所有设计工程和IP成本加起来,设计成本很容易达到数千万美元。”不同节点,不同应用制造尖端芯片的公司通常将需求增长归因于人工智能(AI)应用的增长,这些应用依赖于CPU、GPU或专用神经处理芯片。较少出现的是智能手机应用处理器(AP)、高性能计算(HPC)和云计算的服务器芯片等。当实施下一代产品时,构建这些产品的节点是最脆弱的。“领先应用的关键客户已准备好转向下一个前沿节点,然后晶圆厂将出现产能空缺,尤其是在产量很高的情况下,”联电Michael Cy Wang说。但更多的芯片是在较传统的节点上构建的。例如,电动汽车对电源管理IC(PMIC)的需求不断增加。“PMIC通常使用180nm或130nm等成熟节点,但采用BCD工艺(双极型、CMOS、D-MOS),”Krishna Balachandran说。“PMIC变得越来越智能,结合了越来越多的数字逻辑和模拟电路。因此,设计正在转向90nm、55nm和40nm的BCD工艺节点。”与此同时,传感器则更早回到180nm和150nm节点。“对于汽车应用来说,需要为了提高对高压的耐压性,它们与其他模拟电路集成在BCD工艺上——同样主要采用180nm或130nm,”Krishna Balachandran说道。“先进的智能传感器集成了微控制器(MCU),正在向65nm或40nm工艺发展,但这些是应用的最新技术。顶级CMOS图像传感器采用22nm低功耗工艺,正在向12nm FinFET工艺发展。”工艺节点通常特定于应用和用例。“用于物联网系统的芯片代表了目标工艺节点的一些分化,”新思科技Krishna Balachandran说道。“出于成本原因,它们大多停留在40nm和22nm这样的节点上。”但随着人工智能走向边缘,更多的设备将具有一些推理能力,而执行该功能的芯片将需要比其他数字逻辑更高的性能,因此它们正在向6nm工艺发展,新思科技Krishna Balachandran表示。模拟信号和混合信号芯片也倾向于滞后。“如果应用中混合了模拟和数字电路,那么我们认为55nm是最佳选择,”联电Michael Cy Wang指出。“纯模拟趋于停留在8英寸先进节点——通常是180nm和150nm。”这些较旧的节点也不是一成不变的。一些晶圆厂试图通过改进来吸引新设计,为成熟工艺注入新的活力。“随着节点从前沿退下后,代工厂积极采用计划来更新其中期技术产品,”新思科技的Andrew Appleby表示。“这可能包括引入特定的晶体管设备来提高性能或最大限度地减少泄漏,缩小工艺以改善成本和工具利用率,增加特定的射频功能或高电压以启用混合信号系统,或增加汽车级资格认证。”Chiplet技术的出现也影响了这些选择。从理论上讲,人们不再需要将某些功能迁移到更先进的节点,只需将所有东西放在一个芯片上即可。相反,只有真正需要先进节点功能的部件才能移到那里,从而最大限度地减少昂贵节点的芯片尺寸。其余部分可以作为单独的Chiplet集成在封装内。然而,这种封装如今成本高昂。“使用最适合每种芯片类型的工艺节点和技术来构建Chiplet很容易,”联电Michael Cy Wang说。“如果经济合理,客户肯定会考虑转向Chiplet。但目前的Chiplet解决方案仍然面临各种产量和成本挑战,对许多应用来说还不具成本效益。”因此,即使Chiplet可以节省芯片成本,先进封装成本也必须降低才能实现净成本节约。保持生产线运转虽然一些晶圆厂和代工厂专注于突破极限,但其他晶圆厂,如联电公司,则专注于传统的主力工艺节点。它将22nm/28nm视为其主要节点。“这是平面技术的最后一代,”联电Michael Cy Wang观察到,“转向FinFET会大大增加制造成本。”与此同时,一些节点可能会逐渐消失。“代工厂很少采用10nm节点,因为性能与成本不符,”联电Michael Cy Wang指出。剩下的问题是,现在5nm、3nm、2nm及以下节点已经可用,有多少新设计将以7nm为目标。例如,不需要FinFET技术的器件将保留在14nm或12nm之前的节点上。EUV是下一个重大技术突破,它将过滤掉更多的设计。与10nm不同,7nm和5nm可能会继续存在,仅仅是得益于现有的生产。但三年后,当这些生产单元被更新节点的生产单元取代时,是否会有足够的新设计来保持该晶圆厂生产线的满负荷运转?如果FinFET的主要障碍是成本,那么似乎将实施持续的工艺改进。结论考虑到工艺迁移的障碍规模,与传统节点相比,12nm至2nm之间的节点设计需求可能会减少。例如,当设计在28nm堆积如山时,行业可能会出现“扫雪机效应”,并抵制为了获得令人信服的利益而进一步跳跃的诱惑。“处于尖锐过渡点的技术,例如上一代平面节点,可以保证长寿命,因为它们为许多不需要下一个节点的产品类别提供了最佳功能集。”新思科技Andrew Appleby说。与此同时,使用成熟技术的公司仍然表现良好。“Microchip(微芯)是一家仍在成功利用传统节点的公司的例子,”Tignis的David Park观察到。“去年,他们从两家8英寸和一家6英寸晶圆厂出货超过80亿颗芯片,工艺节点从0.13µ m到1µ m。32年来,他们每个季度都盈利。他们只是众多在成熟节点上盈利制造的半导体公司之一。”
  • 低压直流细胞电穿孔微流芯片系统
    成果名称 低压直流细胞电穿孔微流芯片系统 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 电穿孔(电转染)是一种利用外加电场击穿细胞膜,使平时不能穿透细胞膜的大分子(核酸、蛋白质、药物等)进入细胞的技术。电穿孔技术已在细胞实验、基因治疗等领域广泛应用。但目前的技术均需要金属电极,金属电极产生的金属离子渗出、气泡等对细胞有不利影响,降低了转染效率。此外,高压脉冲电源的使用使得目前此类仪器操作复杂、价格居高不下。这些都大大限制了电穿孔技术的广泛应用。针对上述问题,北京大学工学院熊春阳课题组采用微流芯片技术,实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。 2009年,熊春阳副教授申请的&ldquo 低压直流细胞电穿孔微流芯片系统&rdquo 项目得到了第二期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。课题组利用微流体中因尺度效应而产生的层流,用高电导率的液体来代替电极,将细胞悬浮液通过流动聚焦技术夹在高电导率溶液之间,形成三个平行流动的稳定流层。通过将电极与两侧的高电导率溶液相连,再与直流电源相连,电压会大部分施加在中间电阻较大的细胞流层。由于微流尺度较小,即使很低的电压都可产生较大的场强,从而可以实现细胞电穿孔。 这项工作在基金的支持下得以顺利的推进,通过相关设备的购置和实验测试,课题组完成了微流控芯片的设计和加工、液体导电层的引入、不同类型细胞电转染参数的优化等工作。该项目目前已经顺利结题,相关成果已经申请中国专利,正在申请国际专利。 应用前景:该项目实现一种不需要微电极,仅利用简单低压直流电源即可实现的细胞电穿孔技术。这一技术将大大降低仪器制造成本,简化操作流程,并可以进一步发展为高通量、高效率的细胞电转染系统。由于课题组具有完全的自主知识产权,这一工作可以打破目前国外同类仪器建立的技术壁垒,具备较强的市场推广前景。
  • 汇顶科技“打码控制及打码方法、系统、芯片、电子设备及存储介质”专利获授权
    天眼查显示,深圳市汇顶科技股份有限公司近日取得一项名为“打码控制及打码方法、系统、芯片、电子设备及存储介质”的专利,授权公告号为CN111868669B,授权公告日为2024年8月6日,申请日为2020年3月17日。背景技术目前,电容主动笔与电容触控屏系统里,两者一般是基于预设的通信协议工作,主动笔的打码信号幅度在工作时一直是固定的,为了保证在最恶劣应用环境下也能正常工作,主动笔打码信号幅度通常会一直固定在一个很高的值。发明内容本申请部分实施例提供了一种打码控制及打码方法、系统、芯片、电子设备及存储介质。上述打码控制包括:获取触控屏的噪声幅度(301);确定噪声幅度对应的打码参数值(302);其中,打码参数值包括打码信号幅度;向与所触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码(303)。采用本申请的实施例,使得主动笔可以根据应用环境自适应的调整打码信号幅度。
  • AMAT与Ushio共同开发线宽为2μm的小芯片数字光刻系统
    2023年12月12日,应用材料公司(Applied Materials, Inc.)和牛尾公司(Ushio, Inc.)宣布建立战略合作伙伴关系,以加速将小芯片异构集成到3D封装中的行业路线图。两家公司正在联合向市场推出首款数字光刻系统,该系统专为人工智能(AI)计算时代所需的先进基板图案化而设计。快速增长的 AI 工作负载推动了对具有更强大功能的更大芯片的需求。随着 AI 的性能要求超过了传统的摩尔定律扩展,芯片制造商越来越多地采用异构集成(HI)技术,将多个小芯片组合在一个先进的封装中,以提供与单片芯片相似或更高的性能和带宽。该行业需要基于玻璃等新材料的更大封装基板,以实现极细间距的互连和卓越的电气和机械性能。应用材料公司和 Ushio 之间的战略合作伙伴关系将两家行业领导者聚集在一起,以加速这一转变。应用材料集团副总裁兼半导体产品事业部HI、ICAPS和外延总经理Sundar Ramamurthy博士表示:“应用材料公司的新型数字光刻技术(DLT)是首款直接满足客户先进基板线路图需求的图形化系统。“我们正在利用我们在大型基板加工方面无与伦比的专业知识、业界最广泛的HI技术组合以及深厚的研发资源,在高性能计算领域实现新一代创新。Ushio集团执行官兼光子学解决方案全球业务部总经理William F. Mackenzie表示:“Ushio在为封装应用构建光刻系统方面拥有20多年的经验,在全球交付了4000多种工具。通过这种新的合作伙伴关系,我们可以通过可扩展的制造生态系统和强大的现场服务基础设施加速DLT的采用,并扩大我们的产品组合,为包装技术快速发展的挑战提供更多解决方案。新的DLT系统是唯一能够实现先进基板应用所需分辨率的光刻技术,同时提供大批量生产所需的吞吐量水平。该系统能够形成小于 2 微米的线宽,可在任何基板上实现最高的小芯片架构面积密度,包括由玻璃或有机材料制成的晶圆或大型面板。DLT系统经过独特设计,可解决不可预测的基板翘曲问题并实现覆盖精度。生产系统已经交付给多个客户,并且已经在玻璃和其他先进的封装基板上展示了 2 微米图案化。应用材料公司开创了DLT系统背后的技术,并将与Ushio一起负责研发和定义可扩展的路线图,以实现1微米线宽及以上先进封装的持续创新。Ushio将利用其成熟的制造和面向客户的基础设施来加速DLT的采用。此次合作将共同为客户提供最广泛的光刻解决方案组合,用于先进封装应用。
  • 芯片法案:它将如何影响中国和美国的半导体行业?
    ●美国的法案旨在提高美国对中国的竞争力,特别是在半导体行业的竞争力,给北京的长期计划蒙上了阴影,削弱了中国的芯片自给自足驱动力。●美国显然也在考虑禁止将美国芯片制造设备运往中国制造先进NAND芯片的工厂。●即使是美国公司,由于这种艰难的技术脱钩和禁止国内半导体公司向中国客户销售,预计也会失去其全球市场份额和收入。华盛顿一直在不懈地加大力度,遏制中国芯片产业的发展,中国芯片产业依靠进口技术发展壮大。8月9日,拜登总统签署《芯片法案》——补贴美国半导体行业,使其与中国更具竞争力。预计数十亿美元的努力将削弱中国在全球半导体供应链中的作用,但在影响会有多大呢?该法案于两周前通过,其中包括超过520亿美元的半导体制造和研究资金,拜登政府已将其列为美国与北京竞争的当务之急。虽然芯片制造商普遍欢迎华盛顿期待已久的通过一项为美国半导体行业提供资金的法案,但他们在两者之间处于困境,因为接受这些补贴可能会束缚他们未来在中国的投资。这意味着,像韩国三星电子(Samsung Electronics)和SK海力士(SK Hynix)这样的芯片巨头,在英国和中国都有业务,将受到限制,无法向在中国经营的工厂运送新技术工具。三星和SK海力士控制着全球一半以上的NAND闪存芯片市场,近几十年来在中国投入巨资,生产对包括苹果、亚马逊、Facebook所有者Meta和谷歌在内的客户至关重要的芯片。除了计算机和手机,这些芯片还用于需要数字数据存储的电动汽车等产品中。简而言之,成为Chips基金的接收者将阻止三星和SK海力士升级为全球客户提供服务的工厂。自半导体法案在过去两年中浮出水面以来,中国本身并没有停滞不前。中国驻华盛顿大使馆甚至表示,中国“坚决反对”它,称其让人想起“冷战心态”。减缓中国及其半导体产业崛起的所有努力除了芯片法案,华盛顿还一直在推动所谓的Chip 4联盟 - 美国设想的包括韩国,日本和台湾在内的伙伴关系 - 以排除中国。与此同时,美国官员也在游说荷兰芯片设备巨头ASML停止向中国的晶圆厂出售更多的光刻系统。甚至最近的更新表明,美国正在考虑禁止将美国芯片制造设备运往中国制造先进NAND芯片的工厂,这将是美国首次瞄准存储芯片行业。就在该报告发布几天前,包括参议院多数党领袖查克舒默(Chuck Schumer)在内的美国参议员写信给美国商务部长吉娜雷蒙多(Gina Raimondo),要求将长江存储器技术公司(YMTC)等中国芯片制造商列入美国贸易黑名单。与2020年12月被列入美国实体名单的中芯国际不同,自2016年成立以来一直与华盛顿保持相对良好关系的YMTC未被列入任何美国贸易黑名单。就背景而言,有关潜在禁令的讨论正值YMTC一直在加大其在武汉的第二家制造工厂的建设力度,以提高产量并提高其生产水平。据日经亚洲报道,该公司于6月开始在新的芯片工厂安装设备,最早可能在2023年生产196层3D NAND闪存 。不幸的是,与中国大多数其他芯片制造商一样,尽管中国推动了技术独立,但这家中国存储芯片巨头仍然严重依赖进口芯片制造设备。截至今年7月,YMTC的制造设备中只有18%来自国内公司,中信证券首席电子分析师徐涛在最近的一份研究报告中表示。根据行业研究公司Yole Development的数据,YMTC去年NAND闪存芯片的全球市场份额为5%,到2027年有望超过10%。媒体报道甚至表明,华盛顿通常正在推动对中国的更严格的出口法规,涵盖制造14纳米及以下芯片所需的设备。这样的举动将使中国顶级芯片制造商半导体制造国际公司(SMIC)更难扩展到先进的芯片制造领域。到目前为止,甚至在《芯片法案》颁布之前,中国的半导体产业就已经显示出蓬勃发展的迹象,这让拜登政府怀疑他们应对其增长的努力是否奏效。根据行业机构Semi提供的数据,2021年中国来自海外供应商的芯片制造设备订单增长了58%,使其成为这些产品连续第二年的最大市场。“请记住,中国超过40%的设备支出是由跨国公司在那里运营的设施,以生产更接近大型合同装配基地的工厂,”SEMI负责人Ajit Manocha说。“此外,中国铸造厂的绝大部分装机容量都用于落后技术。中国连续两年成为芯片制造设备的最大买家。资料来源:Bloomberg & SEMI公平地说,中国公司并不是唯一一个失败的公司。波士顿咨询集团(BCG)估计,如果华盛顿采取硬性技术脱钩并完全禁止国内半导体公司向中国客户销售产品,美国公司将失去18%的全球市场份额和37%的收入,从而导致15,000至40,000个高技能国内工作岗位的损失。相比之下,如果华盛顿不扩大现有的实体清单出口限制,美国只会损失约8%的全球市场份额和16%的收入。然而,对于中国来说,脱钩的成本甚至更高,中国的生产商完全依赖进口由ASML和应用材料公司等外国公司设计的电子设计自动化(EDA)工具和半导体制造设备(SME)。
  • 欧姆龙开发出30秒快速检测半导体芯片的设备
    日本医疗保健设备和工厂自动化供应商欧姆龙公司正将目光投向利润丰厚的芯片制造设备市场,以推动未来的增长。欧姆龙将于明年春季推出一款X射线扫描仪,将更好地检测先进半导体制造中的缺陷,并提高全球芯片制造商的产量。VT-X950设备将生成具有足够分辨率的芯片3D图像,以识别1nm尺度的缺陷,至少比当前一流的硅制造技术领先一代。由于每次扫描仅需30秒,芯片制造商近乎实时地监控生产情况,并更有效地进行调整和修正。对于台积电和三星电子等制造商来说,良率(即每个硅片生产的无缺陷芯片的比例)是受到密切关注的指标——它影响着每家公司的成本和完成客户订单的速度。欧姆龙检查系统总经理Kazuhisa Shibuya表示:“半导体行业的需求趋势是小批量生产更多种类的芯片,但如果没有实时CT扫描,这在经济上是不可行的。”CT(计算机断层扫描)是医疗诊断的支柱,也已经成为芯片制造中重要的质量控制工具。拥有90年历史的欧姆龙,其8760亿日元(59亿美元)年收入的一半以上来自工厂自动化产品,该公司于2012年发布VT-X900,首次进入半导体供应链。Kazuhisa Shibuya表示,这仍然是其业务的一小部分,主要局限于几家主要芯片制造商。Kazuhisa Shibuya认为,随着芯片变得越来越复杂、制造成本越来越高,需求将会增长。在仅仅几平方厘米的区域内,制造商需要编写比人的头发还细的金属线,并沉积数千个纳米级焊料凸点。将晶体管堆叠成三维结构的新技术——例如台积电和三星的(GAA)环栅架构——提高了精度要求。Omdia分析师Akira Minamikawa表示:“半导体制造过程中对CT扫描的需求非常迫切。随着行业追求芯片缩小和Chiplet(小芯片)技术,所需的键合技术水平飙升,特别是在过去几年。”当今需求最大的芯片是英伟达的顶级人工智能(AI)加速器,但台积电先进封装的生产能力却遇到了瓶颈。在这种情况下,质量控制和产量提高变得至关重要,因为微小的偏差都可能使售价数万美元的芯片变得一文不值。对制造出来的芯片进行X射线检查可以帮助检测缺陷,并允许工人根据需要微调流程。索尼集团此前表示,其最新智能手机摄像头传感器的量产遇到了麻烦,最终导致该公司的营业利润前景下降了15%。一般来讲,芯片制造商依靠所谓的功能测试来判断设备是否能按设计运行。CT也已被使用,但速度要慢得多:从生产线拾取样品单元,在单独的房间进行X射线检查,每次可能需要长达一个小时。东洋证券分析师Hideki Yasuda表示,对速度更快的检查设备的需求将急剧增加。尖端芯片制造的成本将要求更多的实时监控,以最大限度地减少硅浪费。Kazuhisa Shibuya表示,欧姆龙的CT扫描仪是芯片制造商在其装配线上安装的唯一现实选择,因为没有其他设备可以实时生成高质量的CT图像。与欧姆龙之前的型号相比,最新型号将扫描时间缩短了一半。
  • HLA检测的新芯片系统于Invitrogen推出
    Invitrogen(现属于生命科技公司)近日推出最新的自动化芯片系统,用于免疫遗传学检测,包括人白细胞抗原(HLA)的研究。Prodigy™ 系统是一种高级的DNA和蛋白分析工具,能简化并加速组织相容性研究、疫苗和药物开发,以及疾病相关的研究。      Prodigy™ 系统是第一个高通量、序列特异性的寡核苷酸探针系统,能简化HLA检测的复杂性。HLA标志物是细胞表面蛋白,在人类免疫系统中起了重要的调节作用。当身体受到外源蛋白或分子如细菌、病原体和病毒的侵袭时,它们充当了警报的角色。   与市场上的其他系统相比,Prodigy系统有着一些独特的技术改进。它的密度是目前磁珠分析的5倍,而且支持一键式的无人值守自动化,使研究人员能将宝贵的时间花在数据处理或制备更多样品上。Prodigy的内在可扩展性使它能够对500多个分析物进行多重分析,同时提供高分辨率和无以伦比的可靠性。   它的通量也是行业领先的,能在9小时内获得约290个基因型,并包含了集成软件,能简化数据分析和说明。由于具有500多个分析物的分析能力,Prodigy系统还能在未来容纳新的基因型,使它能够与现有设备轻松整合。   Prodigy的工作流程只是简单的5步:(1) 生成工作表 (2) PCR准备与扩增 (3) 将扩增物和试剂加入仪器,按下开始的按钮,然后离开 (4) 仪器自动运行分析,对芯片成像并处理数据 (5) Prodigy HLA分析软件将数据转化成基因型。   Prodigy系统的特征:   用户友好的触摸屏,用于仪器的设定   集成照相机对芯片进行快照,并转移到软件分析   芯片的容量是目前磁珠的5倍   条形码阅读器能识别胶条的批号,便于追踪   每次能运行1-12个胶条,8-96个样品   所有基因座的相同1.5小时扩增策略   体型小巧,占地面积少
  • 蒋尚义:集成芯片将是后摩尔时代的发展趋势
    近日,蒋尚义在回归中芯国际之后首次公开亮相,出席了第二届中国芯创年会,并发表演讲。据科创板日报报道,蒋尚义此次演讲提出了多个观点,如摩尔定律的进展已接近物理极限;后摩尔时代的发展趋势是研发先进封装和电路板技术,即集成芯片;半导体主要芯片已不再掌握在少数厂商;以及中芯国际先进工艺和先进封装都会发展、半导体产业需建立完整的生态环境才能在全球市场竞争中取胜等。蒋尚义指出,先进工艺研发是基石,因应摩尔定律的发展规律,先进工艺长期持续发展是毋庸置疑的。在此摩尔定律趋缓与后摩尔时代逼近的关键时刻,提前布局,先进工艺和先进封装双线并行的发展趋势显得尤为必要。而研发先进封装和电路板技术,目标是使芯片之间连接的紧密度和整体系统性能类似于单一芯片。蒋尚义表示,从系统层面看,重新规划各单元,包括特别情况下把目前极大型芯片折成多个单元,依据个别系统,针对各单元的特殊需求,选择合适的单元,分别制成小芯片,再经由先进封装和电路板技术重新整合,称之为集成芯片,这将是后摩尔时代的发展趋势。蒋尚义指出,要重新定义芯片与芯片间沟通的规格,必须先把整体生态环境和产业链建立起来,整合从设备原料到系统产品产业链,同时,还需要EDA Tools,Standard Cells,IP’s,Testing等配合。这些环节缺一不可,更重要的是,需要彼此之间的配合,保证一致性和完整性,以达到系统性能的最佳化,建立完整的生态环境,才能在全球市场竞争中取胜。2020年12月中旬,中芯国际发布公告,宣布蒋尚义博士获委任为中芯国际董事会副董事长、第二类执行董事及战略委员会成员。据了解,蒋尚义曾于2016年加入中芯国际并开始出任第三类独立非执行董事。不过2019年,中芯国际公告披露称,任期届满三年的蒋尚义因个人原因不再连任独立非执行董事。对于蒋尚义此次回归后,中芯国际未来发展方向成为了业界关注的焦点,对此,蒋尚义表示先进工艺一定会走下去,先进封装是为后摩尔时代布局的,中芯国际先进工艺和先进封装都会发展。此外,蒋尚义还指出,半导体应用市场从主要芯片掌握在少数供应商转变为主要芯片不再掌握在少数厂商。芯片供应链重整,不同的应用需要不同的芯片,芯片的需求成多元化。
  • 国产生物芯片新突破 引领桌面式高通量NanoSPR分子互作系统
    近年来,生物药的市场需求逐年扩容,其中抗体药物因其靶向性好,治疗效果显著,在生物药中占据着举足轻重的地位,目前已经进入了抗体药物发展的黄金时代。随着抗体药的需求越来越大,抗体筛选技术的发展也是日新月异。分子互作系统作为研究分子间相互作用的重要工具,在药物筛选及相关药物动力学检测等研究中发挥了重要作用,分析生物分子之间的相互作用可深入理解动力学信息,并为早期治疗提供宝贵的建议。目前,分子相互作用分析方法包括生物层干涉法(BLI),表面等离子体共振(SPR)和局域表面等离子体共振(LSPR)等,尽管它们都可以实现无标记、实时和高通量分子互作分析,这些方法仍具有局限性,例如样本需要纯化、仪器成本高、设备体积大等。这些限制了它们在个人、小型制药公司和其他资源有限的环境的广泛使用。因此,开发出一种快速、高通量、低成本的实时检测分子间相互作用的方法对药物筛选或临床早期诊断是非常有必要的。2022年9月1日,华中科技大学刘钢教授团队在Advanced Functional Materials杂志以“An Nanoplasmonic Portable Molecular Interaction Platform for High-Throughput Drug Screening”为题发表最新研究成果,开发了一种便携式的桌面 NanoSPR 分子相互作用分析平台,该研究成果目前已成功完成多种药筛产品转化。纳米等离子共振(NanoSPR)技术是无需荧光或染料标记生物分子、病毒和细胞的一种光学分析测试技术。NanoSPR芯片表面对电介质的折射率变化非常灵敏,无需标记,就可以实现快速、实时、原位、无损、动态检测分子的相互作用或溶液中目标物浓度的测定。刘钢教授团队利用其拥有的国际最新NanoSPR光学芯片专利技术,首次将NanoSPR传感芯片与标准微孔板(NanoSPR CP)和便携式八联微孔柱(NanoSPR CEP)集成并用于高通量实时检测分子之间结合与解离过程的互作平台,同时也构建了多种类型的即用型生物芯片筛选技术已成功用于抗体定量、抗体亚型鉴定、亲和力检测、抗体人源化改造、抗原表位分析,靶点筛选、抗体对筛选等,可助力基因治疗、基因疫苗研究、抗原表位研究、药物筛选与设计、细胞信号传导研究等领域的研发生产效率。纳米杯阵列增强表面等离子体共振(NanoSPR)芯片传感器用于实时监测分子间相互作用示意图。该研究首先通过纳米压印光刻、电子束蒸发和接合技术设计并制造了晶圆级纳米杯状阵列增强的NanoSPR传感芯片,并将NanoSPR芯片集成至标准的96孔板或简单的八联微孔柱装置形成分子互作平台,开发设计的两种便携式NanoSPR分子互作分析平台,由于其独特的光学特性,采用自制便携式透射光强度检测系统,就能进行高灵敏度、快速、高通量、无标记实时动态分析分子间的结合与解离过程。便携式NanoSPR分子互作分析平台(点击查看 )NanoSPR分子互作分析平台可对各种不同的分子相互作用提供深入的无标记的结合动力学检测和分析。选择包括新冠病毒蛋白与抗体系列在内的各种分子对分别与行业标准Biacore或Octet系统进行数据比较分析,在不同的比对数据中均获得了NanoSPR分子互作平台与Biacore仪器和Octet仪器对同一组分子对相似的动力学和亲和力值,有力的支持了具有100%自主知识产权的NanoSPR分子互作平台可准确高效且经济地进行分子间结合相互作用的检测和研究。研究表明NanoSPR技术有望成为一种革命性新技术用于高灵敏度、快速、高通量、无标记、低成本和实时检测分子相互作用的分析,应用于药物筛选、临床早期诊断和表位鉴定等领域,给研究人员提供可在自己的实验室中完成深入的无标记结合动力学分析检测技术。(a) SARS-CoV-2 Nucleocapsid Protein (Np)检测示意图。(b)固定SARS-CoV-2 Np抗体的传感器检测104 nM SARS-CoV-2 Np的结合与解离实时曲线图。SARS-CoV-2 Np抗体与不同浓度SARS-CoV-2Np(0-208nM)之间的结合动态拟合曲线(c),解离动态拟合曲线(d)和结合解离动力学曲线(e)。华中科技大学 刘钢教授刘钢教授团队近年来致力于超灵敏度微纳米新型生物传感器以及移动传感技术在医学、生物学等方面的广泛应用,并在基于NanoSPR生物传感芯片在生物检测,药物筛选等领域进行了系统深入的研究,主要研究成果发表在Biosensors&Bioelectronics(2018, 2021, 2022)、Sensors and Actuators B: Chemical(2021)、Advanced Functional Materials (2022)、 Materials Today Bio(2022)、Chemical Engineering Journal(2022)等期刊,部分研究成果已完成转化。量准公司在上海,杭州和武汉均有研发和生产基地。量准专注于利用其独特传感器芯片设计和制造专利技术开发创新型生物检测芯片及相应的检测设备产品,并将其作为生命科学工具仪器应用于生物医药研发以及作为检测试剂和设备应用于临床医学体外诊断中。量准自主研发生产的晶圆级高性能纳米等离子共振NanoSPR芯片产品实现了对传统药物筛选芯片及分子互作检测设备的技术路线突破和超越,并且借助其产品在性价比上的明显优势打破进口检测产品垄断并涵盖到更加广泛的生物医药研发应用领域, 助力生物医药科技产业的自主创新发展。论文链接:https://doi.org/10.1002/adfm.202203635
  • QIAGEN发布QIAcuity Eight集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Eight集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行八张芯片,8小时可完成多至1248个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂或融合。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升; 2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染; 3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器; 4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片 QIAcuity Eight集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity Four集成式纳米芯片数字PCR 系统新品
    QIAGEN 全新基于集成式纳米芯片的数字PCR 系统QIAcuity适用于对靶 DNA 或 RNA 分子进行绝对定量分析,兼容EvaGreen 或基于Taqman探针的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR 实验一般简单快速。QIAcuity Four 集成式纳米芯片数字PCR系统支持5色荧光系统,每次可运行四张芯片,2小时可完成多至384个样本检测。。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 2plex——单芯片2色荧光数字PCR系统QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将dPCR的样本液滴制备、PCR和数据分析集成到全自动仪器中,在1.5小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易QIAcuity采用创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。加样后的对芯片上的每个小孔密封,消除了交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 编辑基因检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升; 2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染; 3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果; 4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片 QIAcuity Four集成式纳米芯片数字PCR 系统
  • QIAGEN发布QIAcuity集成式纳米芯片数字PCR 系统新品
    QIAGEN全新基于集成式纳米芯片的数字PCR系统QIAcuity适用于对靶 DNA或 RNA分子进行绝对定量分析,兼容基于EvaGreen 染料法或探针法的检测。QIAcuity采用独特技术,使实验流程简化至如同qPCR实验一般简单快速。QIAcuity One 2plex集成式纳米芯片数字PCR系统支持2色荧光系统,每次可运行一张芯片,8小时可完成多至384个样本检测。QIAcuity有更多机型满足不同检测和运行通量的需求:QIAcuity One 5plex——单芯片5色荧光数字PCR系统QIAcuity Four——四芯片5色荧光数字PCR系统QIAcuity Eight——八芯片5色荧光数字PCR系统 集成式设计,实验流程简便快速QIAcuity基于集成式纳米芯片技术,将数字PCR的样本液滴制备、扩增和数据分析集成到全自动仪器中,在2小时内实现从样本到数据解读全过程。纳米芯片技术,全自动流程更容易 QIAcuity创新性纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中的液滴大小均一,无液滴破裂融合或交叉污染。三种规格芯片,通量更灵活 24孔芯片,每孔包含26,000微滴,适用于稀有突变检测、液体活检等 24孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 96孔芯片,每孔包含8,500微滴,适用于CNV检测、NGS文库定量等 快速数据读取PCR扩增结束后,同时扫描芯片上所有微孔中的信息,10分钟内即可获得96个样本中的信息,更快获得实验结果。 QIAcuity系统的应用领域 微生物分析或病原体检测 拷贝数变异 稀有靶标检测 标准品定量 SNP 分型 NGS 文库定量 转基因检测 基因/ 细胞治疗 基因表达,miRNA 检测 NGS 文库定量 基因编辑检测(CRISP/Cas9)创新点:1. 集成式一体化设计:与传统数字PCR仪器包含样本制备、PCR扩增、数据读取三台仪器不同,QIAcuity将样本液滴制备、PCR扩增和数据分析全部集成到一台自动化仪器中,只需将配置好的样本反应液加入到仪器中,即可实现后续过程,自动化程度有很大提升。 2.独特创新的纳米芯片:纳米芯片采用微流体技术,配置好PCR反应体系后,仪器自动将样品压入微流体芯片的纳米小孔中并对每个小孔独立密封。芯片技术可以做到物理分隔,保证分配到每个纳米小孔中液滴大小均一,无液滴破裂融合或交叉污染。 3.耗时短:PCR扩增结束后,与其他数字PCR扫描单个样品不同,QIAcuity自动同时扫描芯片上的所有微孔信息,可在10分钟内获得96个样本中的信息,更快获得实验结果。8小时工作时间可完成高达1248个样本检测,显著快于其他仪器。 4.芯片的通量灵活:可根据检测通量选择24/96样本芯片以及应用选择8,500/26,000微孔芯片 QIAcuity集成式纳米芯片数字PCR 系统
  • 外媒:《芯片法案》对半导体生态系统意味着什么?
    现在,2022年的《芯片和科学法案》已成为法律,半导体公司正在评估如何以及是否从分配给支持芯片制造的527亿美元联邦补贴中分一杯羹。这项两党立法是在半导体供应链严重中断之后制定的,标志着多年来关于如何最好地提高美国在一个被认为对国家和经济安全至关重要的行业中的竞争力的政治争论的高潮。美国半导体制造能力已从1990年占全球供应量的近40%下降到今天的12%。未来五年将分配的CHIPS资金中约有四分之三(390亿美元)专门用于建设半导体制造厂或“晶圆厂”,其中包括专门用于军事以及汽车和制造业所必需的成熟半导体的20亿美元。其余的资金将促进更强大的美国国内的半导体生产生态系统,包括研发和劳动力培养。这些补贴可以将为美国半导体公司提供必要的缓冲,不仅可以缩小他们今天面临的巨大的人才缺口,还可以提高技能和实现劳动力的多样化。该法律为数字制造和相关劳动力技能的重大变化提供了机会。这种方法可能是跟上竞争的关键,以减小芯片的尺寸和功率,同时提高性能。然而,这笔资金带来了一个问题:新的地理制造业限制。海外制造限制《芯片法案》禁止资金接受者在中国和美国法律定义为对美国构成国家安全威胁的国家扩大半导体制造。这些限制将适用于任何新设施,除非该设施主要为该国的市场生产传统半导体。此外,这些限制 - 自资助之日起10年内适用于资助接受者 - 可能会改变。为了确保这些限制与半导体技术和美国出口管制法规保持同步,法律规定,商务部长必须与国防部长和国家情报局局长协调,在行业投入下,定期重新考虑哪些技术受到此禁令的约束。企业应仔细考虑联邦资金的潜在价值是否足以抵消这些地理制造业的限制。评估《芯片法案》的价值旨在利用芯片法案资金的公司应考虑这五个关键问题。一、全球战略首先,公司应全面评估其企业战略,以确定其全球运营方式。主要考虑因素包括:●研究与开发设计和销售半导体但与代工厂签订合同制造它们的公司可能需要考虑新的合作伙伴关系,以遵守芯片法案的地理限制。这也适用于设计自己的芯片并外包制造的非半导体公司。●制造足迹随着半导体行业对地缘政治安全变得越来越重要,世界各国政府都向芯片制造商提供补贴——通常是根据他们自己的地理要求。以此为背景,公司应考虑芯片法案的资金及其附带的限制如何要求重新平衡其制造战略。●采购和供应链随着晶圆厂在美国产能的扩大,公司应该考虑是否也应该为后端组装、测试和设备包装寻找新的合作伙伴。集成设备制造商(IDM)和代工厂可能还需要考虑在美国扩大晶圆厂产能是否更具成本效益,而不是寻求代工厂合作伙伴关系。●联盟和上市能力成功扩大产能将需要公司在其合作伙伴生态系统中共同努力,包括代工厂、半导体设备、知识产权、设计服务、无晶圆厂公司和系统制造商。二、资金追踪预计获得资助的赠款机会的竞争将非常激烈。制定一份引人注目的拨款申请,不仅要描述该项目,还要描述其支撑美国供应链,就业增长,经济效益和社会影响的潜力,这将是至关重要的。此外,联邦基金需要合规和报告。公司需要了解这些要求,其中可能包括成本的资格和允许性,围绕性能和成本的大量报告,采购法规以及项目会计和跟踪。其他法律,如戴维斯 - 培根法案,规范联邦政府资助的建筑项目的劳动力,可能适用。公司将需要一个计划来获取适当的人才,或考虑聘请外部提供者来管理授予的赠款。三、资本项目管理鉴于最近供应链的动荡和持续的熟练劳动力短缺,半导体公司比以往任何时候都更加紧张。投资扩大半导体产能的公司需要保持强大的资本项目管理能力,以确认他们可以在高通胀和高行业周期性的环境中开展项目。拥有合适的人才来为大型复杂的建筑项目提供全面的风险管理和监督至关重要。四、数字化转型平衡快速将新晶圆厂上线的财务动机与创新需求至关重要。行业特定的云解决方案旨在通过提高生产力和优化资源来加快上市时间,从而提供竞争优势。五、资本融资策略在公司考虑是否申请芯片法案资金时,他们最好为多种情况进行规划。鉴于地缘政治气候在10年内可能会发生变化,公司应考虑是否能够吸收与改变制造禁令有关的任何财务损失。除了直接补贴外,该法律还包括一项临时的25%的先进制造业投资信贷,用于半导体制造资产的支出,为购买专业工具设备创造了激励措施。符合条件的纳税人需要遵守《芯片法案》的地理制造限制,并可以选择将抵免视为税款(“直接支付”)。前景《芯片法案》可能会为半导体公司带来机会,但要实现其潜力,就需要重新思考全球战略以及数字化转型、资本项目管理和财务规划计划。地缘政治的不确定性,加上最近市场的巨大变化,要求公司仔细评估自己在半导体价值链中的地位,以及如何提高自己的地位——不仅是为了今天的敏捷性,也是为了明天的稳定性。总结为了充分利用芯片法案,半导体公司应重新评估全球战略,同时规划拨款追求,数字化转型,资本项目管理和财务规划。资金接受者不得在中国或任何对美国国家安全构成威胁的国家扩大半导体制造业。这些补贴可以为半导体公司提供缓冲,以提升技能和使其劳动力多样化。一、会议概述半导体产业作为现代信息技术产业的基础,已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分;伴随着全球科技逐渐进步,全球范围内半导体产业规模基本都保持着持续扩张态势。美国半导体产业协会(SIA)发布数据显示,2021年全球售出1.15万亿颗芯片,销售额达到创纪录的5559亿美元,同比增长26%。这也是全球半导体市场规模首次突破5000亿美元。基于此,仪器信息网联合电子工业出版社特主办首届“半导体工艺与检测技术”主题网络研讨会。会议旨在邀请领域内专家围绕半导体产业常用的工艺与检测技术,从各种半导体制造工艺及其检测技术等方面带来精彩报告,依托成熟的网络会议平台,为半导体产业从事研发、教学、生产的工作人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩的报告。主办单位: 仪器信息网 电子工业出版社直播平台:仪器信息网网络讲堂平台会议官网:https://www.instrument.com.cn/webinar/meetings/semiconductor20220920/会议形式:线上直播,免费报名参会(报名入口见会议官网或点击上方图片)二、会议日程首届“半导体工艺与检测技术”网络会议9月26-27日时间专场名称9月26日上午薄膜沉积与外延及其检测技术9月26日下午光刻与刻蚀及其检测技术9月27日上午封装及其检测技术9月27日下午半导体失效分析及沾污检测三、 会议联系 会议内容: 康编辑(仪器信息网) 15733280108 kangpc@instrument.com.cn 会议赞助: 刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 生物芯片国家分中心落户烟台
    医院党委书记、院长刘运祥与生物芯片北京国家工程研究中心副总裁许俊泉签署合作协议   签约仪式主席台就座人员    签约仪式现场   通过遗传基因检测判断一个人此生将患何种疾病,从而提前干预治疗,这种先进的生物技术来到了我们身边。24日上午,生物芯片北京国家工程研究中心烟台分中心签约仪式在毓璜顶医院隆重举行。该中心是目前全国仅有的四家分中心之一,也是华东地区唯一的分中心。该中心的成立,将全面提高全省乃至我国东部沿海地区生物芯片技术的临床应用水平和科学研究水平。   生物芯片技术是上世纪90年代迅速发展起来的一种生物技术,它是将成千上万个与生命相关的遗传信息聚成于非常小的玻璃芯片上,对细胞、基因、蛋白质等进行高通量、快速处理的高新技术。通过分析,可以对人类健康进行综合检测,并在与人类健康密切相关的生命科学、临床医学、新药开发、司法鉴定等众多领域发挥重要作用。   “今后,对个人进行遗传基因信息检测将成为诊断疾病的常规手段之一”,烟台毓璜顶医院检验中心分子生物学检验科主任孙成铭说,“医生们可以通过研究个人的基因序列,向携带不良基因的人士提出医疗建议,从而更有效地治疗精神疾病、肥胖症和糖尿病等诸多疾病,还可以针对目前的肝癌、肺癌、结肠癌等肿瘤病人进行相应药物的耐药性监测,指导个体化治疗。”同时,将来生物芯片在疾病预防,个体化治疗,药物开发等众多领域发挥不可替代的作用,因而有着非常广阔的应用前景。烟台分中心将致力于建设一个资质过硬、资源共享的区域性生物芯片研究、开发及检测服务平台,为生命科室发展及区域性社会经济建设做出更大的贡献。   据了解,烟台分中心目前已经能够开展遗传性耳聋基因检测,分枝杆菌菌种鉴定检测,结核分枝杆菌耐菌药检测,乙型肝炎病毒耐药检测,系统性红斑狼疮、干燥综合症、混合性结缔组织病、系统性硬皮病、多发性肌炎/皮肌炎等抗核抗体检测项目,并进行心脑血管疾病、肿瘤、糖尿病、精神心理疾病、血液性疾病、免疫代谢疾病、肾脏疾病、肝脏疾病、易感性疾病9大类、68种疾病的风险预测和评估。这些项目的推广应用,将对疾病预防和治疗产生划时代的意义。   市政府杨丽副市长、卫生局、科技局、计生委、科协、残联和市直卫生系统、各县市区医院以及驻烟部分高校相关负责同志出席了签字仪式。
  • 世界上最高分辨率的光刻系统来了,可制造0.7纳米芯片
    9月21日,美国原子级精密制造工具的纳米技术公司Zyvex Labs发布公告,已推出世界上最高分辨率的光刻系统“ZyvexLitho1“,其使用电子束光刻技术,实现了768皮米(即0.768纳米)的原子级精密图案和亚纳米级分辨率。Zyvex Labs已经开始接受ZvyvexLitho1系统的订单,交货期约为6个月。EUV光刻机是当前先进制程的必备设备。荷兰阿斯麦(ASML)作为全球第一大光刻机设备商,同时也是全球唯一可提供EUV光刻机的设备商。在市调机构CINNO Research发布的2022年上半年全球上市公司半导体设备业务营收排名Top10报告中排名第二。Zyvex Labs此次推出的ZyvexLitho1光刻系统,基于STM扫描隧道显微镜,使用的是EBL电子束光刻方式,可以制造出了0.7纳米线宽的芯片,相当于2个硅原子的宽度,是当前制造精度最高的光刻系统。据悉,ZyvexLitho1光刻系统ZyvexLitho1的高精度光刻可以用于实验室阶段高端制程工艺的产品研发,是传统芯片制造所需光刻机的一个应用补充,主要可用于制造对于精度有较高要求的量子计算机的相关芯片,例如高精度的固态量子器件以及纳米器件及材料,对半导体产业的发展也具有巨大的促进作用。目前,Zyvex Labs已经开始接受订单,6个月内就可出货。对于这个新型光刻系统是否会威胁到EUV光刻的统治地位,赛迪顾问集成电路产业研究中心一级咨询专家池宪念表示:“短期内并不会“,他指出ZyvexLitho1是一种使用电子束曝光作为光刻方式的设备,与传统光刻机工作原理会有明显的差异。它是通过电子束改变光刻胶的溶解度,最后选择性地去除曝光或未曝光区域。它的优势在于可以绘制10纳米以下分辨率的自定义图案,是属于无掩模光刻直接写入的工作方式,精度远高于目前的传统光刻机。但是由于这类型设备的单个产品光刻的工作时间要在几小时到十几小时不等,工作效率方面还需进一步提高,因此不会快速取代EUV光刻机。
  • 生物芯片北京国家工程研究中心宁夏分中心生物芯片培训班
    生物芯片北京国家工程研究中心宁夏分中心生物芯片培训班 &mdash &mdash 打造一片属于您的&ldquo 芯&rdquo 天地   生物芯片技术凭借着显著的优势和巨大的潜力,已经成为在医学、农业、微生物等相关研究领域快速增长的一项重要技术。随着基因组学、蛋白质组学的不断深入研究,生物芯片技术的应用范围不断扩大,已经广泛应用于重大疾病预警、产前诊断、食品安全检测、作物经济性状关联研究(GWAS)、遗传育种;动植物病理学、农作物病虫害防治、种质资源鉴定、转基因作物等领域。   以生物芯片为工具的研究已经渗透到生命科学领域研究中的每个角落,随着研究的不断深入,产生了大量的科研成果,几乎每天都有大量高水平研究文章发表。为了扩大交流,促进科研成果转化,搭建科研成果与成果转化之间的桥梁,由生物芯片北京国家工程研究中心宁夏分中心举办&ldquo 生物芯片技术在生命科学领域的应用&rdquo 培训班。本培训班将系统讲解基因芯片的设计、制作以及相关实验操作,旨在为您打造一片属于您的&ldquo 芯&rdquo 天地。 培训内容: 生物芯片技术培训 1.1 理论部分:生物芯片技术在生命科学领域中的应用 1.2 理论部分:表达谱芯片构建、探针设计、数据分析等基础理论知识讲解 2.1 实践部分: 观摩芯片点制过程 2.2 实践部分:晶芯表达谱实验整个实验流程(视频) 2.3 实践部分: 芯片杂交、清洗、扫描(培训学员模拟杂交、扫描) 2.4 实践部分: 数据分析(培训学员亲自对数据进行分析) 2.5 实践部分: SAM、Cluster等数据分析软件使用 2.6 实践部分:分子功能注释系统(MAS)分析 1:注册方法:申请培训学员填写培训回执表后,发到培训联系人于晶晶(yujingjing333@163.com)邮箱中,进行确认,培训联系人在收到回执表后3天之内给予回复。 2:培训地点:宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心实验室(宁夏银川市兴庆区胜利街804号)。 3:培训时间:2012年7月25-27日 4:培训费用:2000元/人,收费包含培训期间芯片试剂耗材费,实验操作及数据分析培训费,中午工作餐、听课费。住宿费自理。 优惠措施: 宁夏地区培训学员培训费用:1000元/人。 报到时现金缴纳培训费,也可提前转账支付。 缴纳培训费账户信息 用户名:宁夏医科大学总医院 开户行:中国工商银行银川胜利街支行 人民币帐号: 2902006919100004647 (请注明缴费用于参加宁夏分中心生物芯片培训班) 5:培训班规模:20人左右,为保证培训班质量,采取小班模式。请学员自带电脑。 6:培训资料:包括培训讲师幻灯、培训教材、培训学员通讯录、培训证书(生物芯片北京国家研究中心印)、精美礼品一份。 7:报到时间:2012年7月24日。(提前转账支付者请在报到时务必携带出示缴费收据证明)   报到地点:宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心(宁夏银川市兴庆区胜利街804号, 科技楼三楼)。 8:住宿地点:宁夏医科大学总医院附近宾馆酒店: 1)银川御泉湾温泉假日酒店(四星级) 地址:银川市兴庆区胜利南街541号 电话:0951-6734888 2)银川天豹酒店(三星级) 地址:宁夏银川市兴庆区清和南街1352号 电话:0951-7899555 3)如家快捷酒店(银川南门广场店) 地址:银川市兴庆区清河南街345号 电话:0951-6082333 4)兰花花大酒店延安店 地址:银川市兴庆区胜利南街739号 电话:0951-4076588;0951-4076388 具体前往报名地点的路线如下: 1)火车站(距宁夏医科大学总医院8公里左右):乘出租车到达宁夏医科大学总医院(大约30元左右)。 2)机场(距宁夏医科大学总医院20公里左右): a:乘坐出租车到宁夏医科大学总医院(大约80元左右); b:从宁夏河东机场乘机场大巴至民航大厦(25元), 再转乘出租车(8元)。 3)12路,23路,302路,37路,38路,3路,中巴5路,15路公交车通往医科大学总医院。 9:联系方式: 联系人: 宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心实验室 于晶晶 电话: 13895193050 邮箱: yujingjing333@163.com 备注:宁夏医科大学总医院附近交通示意图: 客户培训回执表: 姓名: E-mail: 单位: 电话: 地址: 邮编: 是否需要帮助预定宾馆(协议宾馆): 是 否 备注:如果需要安排宾馆,请注明入住时间: 您感兴趣的领域: 主办方:生物芯片北京国家工程研究中心分中心宁夏分中心 协办方:生物芯片北京国家工程研究中心
  • 速度创纪录,基于芯片的量子密钥分发系统制成
    瑞士与意大利科学家开发了一种基于集成光子学的量子密钥分发(QKD)系统,能以前所未有的速度传输安全密钥。在新QKD系统中,除激光器和探测器外,所有组件都集成到芯片上,这具有紧凑、低成本和易于大规模生产等诸多优点。该原理验证实验代表了向实际应用这种高度安全的通信方法迈出了重要一步。该成果发表在最新一期《光学研究》期刊上。QKD技术的一个关键目标是能将其简单地集成到现实世界的通信网络中。实现这一目标的一个重要且必要的步骤是使用集成光子学,它允许使用与制造硅计算机芯片相同的半导体技术来制造光学系统。新研发的QKD系统使用发射器发送编码光子,并使用接收器检测它们。瑞士日内瓦大学团队开发了一种将光子集成电路与外部二极管激光器结合在一起的硅光子发射器。QKD接收器由二氧化硅制成,由光子集成电路和两个外部单光子探测器组成。意大利米兰的CNR光子学和纳米技术研究所团队则使用飞秒激光微机械加工来制造接收器。对于发射器,使用带有光子和电子集成电路的外部激光器可以高达2.5吉赫兹的创纪录速度准确地产生和编码光子;对于接收器,低损耗和偏振无关的光子集成电路和一组外部检测器允许对传输的光子进行被动和简单的检测。用标准单模光纤连接这两个组件可高速生成密钥。研究人员使用150公里长的单模光纤和单光子雪崩光电二极管在不同的模拟光纤距离上进行了密钥交换。他们还使用单光子超导纳米线探测器进行了实验,使量子误码率低至0.8%。
  • 陕西省“十四五”重点发展:生物芯片、病原微生物快检仪、纺织检测仪器
    “十四五”时期是我国开启全面建设社会主义现代化国家新征程的起步期,是谱写陕西高质量发展新篇章的关键期,具有鲜明的时代特征和里程碑意义。制造业是国民经济的主体,是支撑陕西经济高质量发展的主动力,赢得未来竞争新优势的主战场。为加快推进全省制造业高质量发展,陕西省人民政府办公厅印发《陕西省“十四五”制造业高质量发展规划》,其中重点提及仪器:  规划指出,要大力发展生物技术和生物药品,积极研发新型临床诊断试剂,开发用于生物芯片检测、病原微生物快速检测的高端精密检测仪器。  陕西省还将延伸发展棉纺产业,优化调整印染产业,大力发展服装、家用纺织和产业用纺织产业,加快发展高端纺织机械和纺织检测仪器。  全文如下:陕西省“十四五”制造业高质量发展规划  “十四五”时期是我国开启全面建设社会主义现代化国家新征程的起步期,是谱写陕西高质量发展新篇章的关键期,具有鲜明的时代特征和里程碑意义。制造业是国民经济的主体,是支撑陕西经济高质量发展的主动力,赢得未来竞争新优势的主战场。为加快推进全省制造业高质量发展,根据国家有关规划和《陕西省国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要》,特制定本规划。  一、发展基础与面临形势  (一)发展基础。  “十三五”期间,面对错综复杂外部环境和艰巨繁重的改革发展稳定任务,全省上下坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻落实党中央、国务院决策部署和习近平总书记来陕考察重要讲话重要指示精神,坚持以新发展理念引领制造业高质量发展,聚焦创新能力提升、结构优化升级、产业融合发展、优质企业培育和产业集聚发展等重点工作任务,固根基、扬优势、补短板、强弱项,推动制造业为全省经济实现量的合理增长和质的稳步提升提供强有力支撑。  一是注重规模效益提升,工业经济综合实力再上新台阶。全省工业经济保持平稳较快增长态势,规模以上工业总产值年均增长8.0%,规模以上工业增加值年均增长6.1%,高于全国0.6个百分点。2020年全部工业增加值达到8860.1亿元,位列全国第14位,制造业增加值较2015年增加23.1%。截至2020年底,全省规模以上工业企业达到7164户,完成营业收入23435.3亿元,实现利润1942.3亿元,利润率较2015年提高1.0个百分点。  二是注重新旧动能转换,产业结构持续优化。安排省级专项资金27.5亿元,支持技改项目3874个,带动社会投资2579亿元,企业技改投资占工业投资的比重由2015年的9.7%提高到2020年的19.6%。传统产业改造效果明显,非能工业增加值年均增长7.1%,高于规模以上工业增加值年均增速1.0个百分点。高技术制造业持续领跑,高技术制造业增加值年均增长16.4%,高于规模以上工业增加值年均增速10.3个百分点。狠抓高端装备、电子信息、汽车、现代化工、新材料和生物医药等六大支柱产业,建成和在建汽车产能超过200万辆,三星二期一阶段实现满产、二阶段进展顺利,比亚迪高端智能终端产业园加快建设,高强高韧钛合金棒材、3D打印用合金粉末等十多个产品进入工业和信息化部首批次推广应用目录,实现国内“领跑”。  三是注重创新驱动发展,创新能力显著增强。创新平台建设持续推进,建成国家级制造业创新中心(国家增材制造创新中心)1家,筹建省级制造业创新中心24家,认定11家,培育国家级企业技术中心41家、省级企业技术中心405家、国家级工业设计中心1家。创新投入效率稳步提升,2020年科技活动产出指数达到75.97%,居全国第4位 高技术产业化指数达到65.83%,居全国第12位 国家科技奖数量和万人发明专利拥有量稳居全国前列。创新技术成果持续产出,先后承担航空万吨级铝合金张力拉伸机装备、机器人关节减速器、高端电力装备数字化车间等国家科技重大专项49项,数控锥齿轮磨齿机、高速数控车削中心、大型锻造操作机等一批国际国内领先水平的主机新产品打破国外垄断,实现进口替代。  四是注重产业转型升级,融合发展步伐持续推进。两化融合贯标企业数量进位跃升,285户企业参加国家两化融合管理体系贯标,135户通过贯标获证。陕西省工业互联网标识解析国家二级节点(综合型服务平台)建成运营,西安、宝鸡两市工业互联网平台落地实施。截至2020年底,培育国家智能制造试点示范企业38户、省级智能制造试点示范企业82户,培育国家级服务型制造示范企业3户、示范平台2个,“陕鼓模式”在全国示范推广,创建国家级绿色工厂52家、绿色园区4个、绿色供应链管理示范企业3户,认定国家工业产品绿色设计示范企业3户、绿色产品7种,渭南、韩城入选国家级工业资源综合利用基地。  五是注重企业培育发展,市场主体活力进一步激发。截至2020年底,培育国家级制造业单项冠军企业12户、国家级专精特新“小巨人”企业52户、省级“专精特新”中小企业822户,高新技术企业达到6198家,科技型中小企业达到8069家,数量均居西部地区前列。上市公司数量达到60家(含“新三板”精选层),较2015年底增加17家,排名从全国第18位跃升至第16位,上市公司总市值超过1万亿元。入围中国制造业500强的企业数量达到9家。  六是注重空间布局调整,产业集聚效应凸显。关中地区工业经济实力稳步提升,陕北和陕南转型升级步伐不断加快。2020年,关中、陕北和陕南地区规模以上工业增加值占全省比重分别为49.2%、36.8%和12.1%。园区建设成果显著,截至2020年底,创建国家新型工业化产业示范基地14家,涉及软件和电子信息、装备制造、汽车、有色金属、能源化工、食品深加工6大产业,西安高技术转化应用(航天)基地和汉中航空产业基地被工业和信息化部评为全国五星级新型工业化产业示范基地。县域经济发展态势良好,2020年,重点建设县域工业集中区实现工业总产值1.28万亿元,较2015年增长了48.8%。集群发展进入国家队,西安航空集群在国家先进制造业集群竞赛决赛中胜出,是航空装备领域唯一胜出集群。  七是注重营商环境优化,民营经济得到较快发展。及时发布《陕西省优化营商环境条例》,出台《推动民营经济高质量发展的若干意见》和《优化提升营商环境五大专项行动方案》等一系列政策举措,持续聚焦难点痛点优化营商环境。设立10亿元省级中小企业技术改造专项资金、民营企业纾困基金。截至2020年底,共推荐认定国家中小企业公共服务示范平台12家、省级公共服务示范平台96家。2018-2020年,共争取中央融资担保业务降费奖补资金累计达3.75亿元,支持融资担保机构业务发展,普惠小微企业担保费率由1.79%降至1.21%。在一系列强有力政策推动下,涌现出了一大批具有较强竞争力的民营企业,2020年,全省非公经济增加值13389.78亿元,占GDP比重达到51.1%。  (二)存在问题。  对标高质量发展要求,全省制造业发展也存在一些突出问题,主要包括:一是创新资源优势还没有较好地转化为创新动能。作为全国科技资源大省,2020年规模以上工业企业中开展研发活动的企业占比约为17.8%,远低于全国34.2%的平均水平。全省每万人发明专利拥有量为14.1件,与全国的差距从2016年的0.69个百分点扩大到2020年的1.7个百分点。二是新旧动能转换步伐还不够快。全省目前具有竞争优势的工业产品仍主要集中在能源行业。2020年全省能源工业增加值占全省工业增加值的比重为46%,战略性新兴产业增加值占地区生产总值的比重为117%,战略性新兴产业、先进制造业尚未得到充分发展,尤其是新一代信息技术、生物医药、新材料等产业发展规模仍然较小。三是市场主体活力还不够强。全省工业大企业大集团相对较多,“专精特新”中小企业和民营企业数量偏少,产业链配套率总体偏低,产业整体竞争力不强,高技术产业供应链存在风险。  (三)面临形势。  从国际看,当今世界正经历新一轮大变革大调整,不稳定性不确定性因素明显增多,对全省制造业发展提出新要求。以数字经济为核心的新一轮科技革命和产业变革深入推进,催生一系列新的生产方式和经济增长点,为全省制造业“换道超车”带来契机。国际力量对比深刻调整,全球多边贸易格局面临重构、新冠肺炎疫情冲击等不确定因素日益增多,全球制造业布局呈现本地化、分散化、区域化趋势,参与国际竞争合作的变数增多。全省要完整准确全面贯彻新发展理念,坚持创新引领新兴产业发展,以高端化、智能化、绿色化改造提升传统产业,加快构建现代产业体系,高水平融入全球产业链分工新体系。  从国内看,我国经济进入高质量发展阶段,以国内大循环为主体、国内国际双循环相互促进的新发展格局加快构建,对全省制造业发展赋予新使命。高质量发展,意味着更高质量、更有效率、更加公平、更可持续、更为安全的发展,是当前和今后一个时期确定发展思路、制定经济政策、实施宏观调控的根本要求。面对高质量发展目标,我们既拥有超大规模市场优势、新型举国体制优势和经济发展韧性好、潜力足、回旋余地大等优势条件,同时也面临资源环境约束趋紧、要素成本攀升、区域竞争分化加剧等不利因素影响。特别是碳达峰、碳中和目标的提出,对我省在稳定发挥国家重要生态安全屏障以及黄河、长江流域重要水源涵养地作用的基础上,进一步推动制造业高质量发展提出更大挑战。全省制造业要在保持合理增速的前提下,加快从要素驱动向效率驱动、创新驱动转变,实现资源能源节约、环境友好的绿色发展。  从全省看,共建“一带一路”、新时代推进西部大开发形成新格局、黄河流域生态保护和高质量发展等多个国家重大战略叠加,为全省制造业发展提供了新空间。陕西从内陆腹地迈向开放高地,为制造业进一步开放合作、深度融入国内国际双循环拓展了更大空间。全省要充分发挥区位和产业优势,加快对内改革和对外开放步伐,将制造业发展与国家重大战略全面链接、深度绑定,加快推动制造业企业“走出去”和“引进来”,积极推进国际产能合作,深化与全球产业链合作,形成面向中亚南亚西亚国家的战略通道、商贸物流枢纽、重要产业基地,为促进经济高质量发展、构建新发展格局贡献陕西力量。  二、总体思路与主要目标  (一)总体思路。  以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中、四中、五中、六中全会精神,认真学习贯彻习近平总书记来陕考察重要讲话重要指示精神,贯通落实“五项要求”“五个扎实”,立足新发展阶段、贯彻新发展理念、构建新发展格局,以推动高质量发展为主题,以深化供给侧结构性改革为主线,以打造全国重要先进制造业基地为目标,以创新、改革和开放为动力,以提升制造业发展质量和效益为着力点,着力提升产业链供应链现代化水平,着力构建“6+5+N”的现代制造业新体系,着力推动陕西制造业实现“三个转型两个升级”,进一步做实做强做优制造业,为奋力谱写陕西高质量发展新篇章提供坚实支撑。  (二)基本原则。  把创新作为陕西制造业高质量发展的核心动力。按照习近平总书记提出的围绕产业链部署创新链、围绕创新链布局产业链的总要求,聚焦制造业这一创新主战场,充分挖掘和利用全省科教资源丰富优势,构建开放、协同、高效的创新生态体系,推动制造业发展实现动力变革。  把智能作为陕西制造业高质量发展的主攻方向。加快推动新一代信息技术在制造业全要素、全产业链的融合应用,以智能制造为主攻方向,加速产业数字化和数字产业化,加快建设数字陕西,赋能制造业高质量发展。  把绿色作为陕西制造业高质量发展的基本遵循。深入实施绿色制造工程和工业低碳行动,全面构建绿色制造体系,推动工业绿色低碳转型迈上新台阶,强化安全发展保障,确保如期实现碳达峰、碳中和目标。  把开放作为陕西制造业高质量发展的关键路径。充分利用好国内国际两种资源、两个市场,深度融入共建“一带一路”,积极参与国内国际双循环,进一步扩大对内对外双向开放,提高制造业发展的质量和水平。  把改革作为陕西制造业高质量发展的根本保障。全面深化体制机制改革,破除生产要素合理流动、有效配置的障碍,完善政策体系,营造良好的市场环境和制度环境,增强制造业发展的动力和活力。  (三)主要目标。  到2025年,全省制造业高质量发展迈上新台阶,构建起特色鲜明、创新力强、绿色安全的现代制造业新体系,质量变革、效率变革、动力变革加快推进,高端化、智能化、绿色化发展水平不断提高,制造业在国民经济中的地位更加巩固,建设国家重要先进制造业基地取得重大进展。  规模结构持续优化:“十四五”时期,制造业增加值年均增速达到7%以上。到2025年,制造业增加值占地区生产总值比重达到23%,规模以上工业战略性新兴产业总产值占工业总产值比重达到25.5%,高技术制造业增加值占规模以上工业增加值比重达到18%。  质量效益显著提升:“十四五”时期,制造业全员劳动生产率年均增长6.5%,制造业产品质量水平显著提升。到2025年,省级质量标杆工业企业达到100家,形成100家以上省级工业品牌培育试点示范企业。  创新能力不断增强:到2025年,规模以上制造业研发经费内部支出占营业收入的比重达到1.5%,规模以上制造业企业每亿元营业收入有效发明专利数达到1.3件,规模以上工业企业中有研发活动企业占比达到25%,建成国家级和省级制造业创新中心20个。  智能化绿色化转型深入推进:到2025年,200户以上企业智能制造能力成熟度达2级标准,50户企业达到3级以上水平,工业企业关键工序数控化率达到61%,创建国家级和省级绿色工厂100家、绿色园区10个、绿色供应链管理示范企业20家以上,规模以上单位工业增加值能耗累计降低12%,单位工业增加值用水量累计降低5%,单位工业增加值二氧化碳排放降低16%。  对外开放全面提高:深入参与“一带一路”建设,实现高质量“引进来”和高水平“走出去”,到2025年,全省规模以上工业出口交货值年均增速达到15%。  三、发展重点  立足国家制造业相关要求,综合全省产业基础和特色优势,着力构建“6+5+N”现代制造业新体系。即做大做强高端装备、电子信息、节能与新能源汽车、现代化工、新材料、生物医药6大支柱产业,做优做特冶金、建材、食品、轻工、纺织5大传统产业,做精做实人工智能、云计算与大数据、物联网、增材制造、光子、量子信息、空天信息等一批新兴产业。  (一)做大做强六大支柱产业。  立足高技术层次、高产品附加值、高配套能力、高市场竞争力发展目标,推动高端装备、电子信息、节能与新能源汽车、现代化工、新材料、生物医药6大支柱产业高质量发展,为打造国家重要先进制造业基地提供有力支撑。  1.高端装备。  (1)发展思路与目标。  以航空航天装备、先进轨道交通装备、智能制造装备、节能环保装备,以及应急装备、电力装备、石油装备、工程机械等其他装备为重点,聚焦延链补链强链,着力培育一批优质产品,打造全国高端装备研发和制造中心。力争到2025年,高端装备产业总产值年均增长7%左右。  (2)发展重点。  航空航天装备。聚焦航空产业链转型提升,推进大型运输机系列化研制生产,推进运8、运9系列产能提升。加快支线飞机国产化研制,积极开发多用途飞机并扩大市场份额。围绕C919/CR929、ARJ21、AG600等重大机型开展配套,推动航空发动机、机载系统、关键部件、专用设备等产业自主发展。大力发展无人机产业,加快培育形成层级合理、优势明显的无人机产业链。加快发展直升机产业,扩大先进直升机总装制造能力。持续优化新舟60/600飞机生产线,充分利用全球资源快速提升产品设计能力,建立国产民机用户维修定检、运行支援、综合培训等服务中心。重点围绕载人航天、深空探测等重大专项,加快新一代航天运载动力系统研制,推动航天液体、固体火箭发动机的系列化发展,探索未来单级入轨飞行器及新型混合动力系统。强化商业航天卫星测运控能力建设,积极推进商业航天发展。  先进轨道交通装备。以轻量化、智能化、绿色化为方向,大力发展中国标准高速动车组、30吨轴重重载电力机车、城际快速动车组、低地板现代有轨电车等整车产品,以及350千米/小时高铁接触网、中低速磁悬浮钢铝复合导电轨、牵引变流器、列车网络控制系统等关键零部件产品,发展轨道交通大型施工和养护装备,重点突破车体轻量化、安全保障、储能与节能、列车网络控制等关键技术,提升轨道交通总集成、总承包能力。  智能制造装备。聚焦智能制造核心关键环节瓶颈,做大做强数控机床产业链,推进工业机器人和高端数控机床等智能制造装备集成应用,加速自主化突破和产业化发展。机器人与增材设备领域,重点发展精密减速器、伺服电机及驱动器、控制系统等核心功能部件,积极研发和生产工业机器人、特种机器人、服务机器人、增减材一体机等新产品,完善原材料、关键零部件、本体系统集成的工业机器人和增材制造产业链。高端数控机床领域,促进数控机床产业链向高端化迈进,做强优势功能部件和高端功能部件,加强机床配套能力,重点推进智能化数控机床及成套装备的研发制造,提高丝杠、轴承、高速高效系列刀具、高效精密异型与成型刀具等关键零部件供给能力,打造产品结构合理、配套能力突出的产业体系。在煤炭采掘、石油钻采、炼油化工、专用车辆、印刷包装、纺织机械等领域积极发展重大智能成套设备。  节能环保装备。加快净化设备、回收利用成套设备、固体废弃物处理设备和资源综合利用设备的研发生产,积极发展高效节能电机、高效节能能量回收设备、高效节能碳排放技术及设备。突破减振降噪等技术,发展一批噪声控制器产品和设备。  其他装备。应急装备领域,聚焦科学应对自然灾害,保障人民群众生命和财产安全,大力发展新型应急指挥装备、特种交通应急保障装备、专用医学救援装备、智能无人救援装备、自然灾害专用抢险装备、监测预警灾害信息获取装备等。前沿装备领域,积极在深海资源开发、极地资源开发、太空资源制造、生物制造技术与装备等新兴交叉前沿领域,推动一批新兴技术和装备研发。电力装备领域,聚焦输变电设备产业链,重点发展特高压交直流输变电成套装备,大力发展低风速电机组及关键零部件、集中监控、智能风场、光伏电站等管理系统及设备,有序推进先进储能装置、超级电容器、智能电网用输配电及用户端设备、中低压成套设备研发生产。石油装备领域,着力提高石油油管套管、抽油机、油管、配套接箍等产品质量,加快应用于超深井、高压油、高硫化氢、大管径等条件的石油装备和零部件的研发制造,开展针对各种复杂井况的非美国石油学会(API)标准产品生产。重型装备领域,重点发展冶金装备、煤炭综合采掘装备、成套装备及大型化工成套设备,进一步提升高压厚壁设备、特种材料设备等产品自主研发制造能力。工程机械领域,重点突破动力换挡变速箱设计制造技术等关键技术,加快开发液压系统、传动系统等关键零部件。农机装备领域,着重发展果园多功能作业平台、智能选果线、智能畜牧机械、特色农产品加工机械等适宜我省农业特色产业的农业机械及关键零部件。  (3)空间布局。  高端装备产业重点布局在西安、宝鸡、汉中、渭南、咸阳、榆林等地。其中,西安重点发展航空航天装备、智能制造装备、先进轨道交通装备、重型装备等优势产业,加快建设国家先进装备制造业基地。宝鸡依托现有装备制造业基础,重点发展智能制造装备、先进轨道交通装备、节能环保装备、石油装备等优势产业,建设全国重要的高端装备制造业基地。汉中重点发展智能制造装备和应急装备等产业,建设中国现代航空新城。渭南重点发展智能制造装备、工程机械等产业,建设陕西增材制造产业集聚区。咸阳重点发展电力装备、节能环保装备、农机装备等产业,建设陕西机械加工和零部件生产基地。榆林重点发展节能环保装备产业,着力建设全国重要的能化装备制造基地。杨凌示范区重点发展智能农机装备。  2.电子信息。  (1)发展思路与目标。  做大规模与做强实力并重,以半导体及集成电路、智能终端、新型显示、太阳能光伏等领域为重点,强化技术创新和项目招引,着力提高产业技术水平,提升产业链供应链保障能力。力争到2025年,电子信息制造业总产值年均增长12%左右。  (2)发展重点。  半导体及集成电路。以集成电路制造为核心,做精半导体及集成电路产业链,积极支持半导体设备及材料研发生产,大力发展集成电路设计与封装测试产业,着力补齐产业链短板,提高集成电路生产线工艺水平,提升电子级硅材料及硅片自主配套能力。整合现有科研院所及高校资源,联合芯片设计和制造企业,积极推进碳化硅(SiC)、氮化镓(GaN)等宽禁带半导体技术研发和产业化,着重布局从衬底和外延材料、器件设计和工艺到模块及电路应用的宽禁带半导体产业链。积极攻克半导体及集成电路产业关键技术难题,促进产业链上下游合作,提升产业链协同能力,打造国内领先的集成电路设计业强省和国家重要的半导体及集成电路产业基地。  新型显示。围绕新型显示产业链关键环节,鼓励龙头企业加强与省内外科研院所在优势领域联合开发,充分利用西北工业大学、陕西科技大学在柔性光电材料、有机发光二极管(OLED)、高分子发光二极管(PLED)显示技术等领域的研发优势,提升液晶材料和有机发光二极管(OLED)、高分子发光二极管(PLED)等新一代显示材料的技术水平,积极布局柔性、主动矩阵有机发光二极管(AMOLED)等新型显示技术。加快新型显示产业基地建设,着力补齐驱动芯片、彩色滤光片、偏光片、液晶材料、功能化学品、铟锡氧化物(ITO)靶材、光学膜、基板玻璃等产业链环节,不断提升工艺和装备水平。以构建省内完整的新型显示产业链体系为核心,打造具有全国影响力的新型显示产业基地。  智能终端。发挥智能终端产业优势,按照“政府引导、集群引进,重点突破、完善配套”工作思路,积极引进智能终端关键芯片、摄像头、天线、触控面板、电池等零部件生产企业和设计研发企业,提升智能终端产业
  • 封装行业正在采用新技术应对芯片散热问题
    为了解决散热问题,封装厂商在探索各种方法一些过热的晶体管可能不会对可靠性产生很大影响,但数十亿个晶体管产生的热量会影响可靠性。对于 AI/ML/DL 设计尤其如此,高利用率会增加散热,但热密度会影响每个先进的节点芯片和封装,这些芯片和封装用于智能手机、服务器芯片、AR/VR 和许多其他高性能设备。对于所有这些,DRAM布局和性能现在是首要的设计考虑因素。无论架构多么新颖,大多数基于 DRAM 的内存仍面临因过热而导致性能下降的风险。易失性内存的刷新要求(作为标准指标,大约每 64 毫秒一次)加剧了风险。“当温度提高到 85°C 以上时,就需要更频繁地刷新电容器上的电荷,设备就将转向更频繁的刷新周期,这就是为什么当设备变得越来越热,电荷从这些电容器中泄漏得更快的原因。不幸的是,刷新该电荷的操作也是电流密集型操作,它会在 DRAM 内部产生热量。天气越热,你就越需要更新它,但你会继续让它变得更热,整个事情就会分崩离析。”除了DRAM,热量管理对于越来越多的芯片变得至关重要,它是越来越多的相互关联的因素之一,必须在整个开发流程中加以考虑,封装行业也在寻找方法解决散热问题。选择最佳封装并在其中集成芯片对性能至关重要。组件、硅、TSV、铜柱等都具有不同的热膨胀系数 (TCE),这会影响组装良率和长期可靠性。带有 CPU 和 HBM 的流行倒装芯片 BGA 封装目前约为 2500 mm2。一个大芯片可能变成四五个小芯片,总的来说,这一趋势会持续发展下去,因为必须拥有所有 I/O,这样这些芯片才能相互通信。所以可以分散热量。对于应用程序,这可能会对您有所一些帮助。但其中一些补偿是因为你现在有 I/O 在芯片之间驱动,而过去你在硅片中需要一个内部总线来进行通信。最终,这变成了一个系统挑战,一系列复杂的权衡只能在系统级别处理。可以通过先进的封装实现很多新事物,但现在设计要复杂得多,当一切都如此紧密地结合在一起时,交互会变多。必须检查流量。必须检查配电。这使得设计这样的系统变得非常困难。事实上,有些设备非常复杂,很难轻易更换组件以便为特定领域的应用程序定制这些设备。这就是为什么许多高级封装产品适用于大批量或价格弹性的组件,例如服务器芯片。对具有增强散热性能的制造工艺的材料需求一直在强劲增长。Chiplet模块仿真与测试进展工程师们正在寻找新的方法来在封装模块构建之前对封装可靠性进行热分析。例如,西门子提供了一个基于双 ASIC 的模块的示例,该模块包含一个扇出再分布层 (RDL),该扇出再分配层 (RDL) 安装在 BGA 封装中的多层有机基板顶部。它使用了两种模型,一种用于基于 RDL 的 WLP,另一种用于多层有机基板 BGA。这些封装模型是参数化的,包括在引入 EDA 信息之前的衬底层堆叠和 BGA,并支持早期材料评估和芯片放置选择。接下来,导入 EDA 数据,对于每个模型,材料图可以对所有层中的铜分布进行详细的热描述。量化热阻如何通过硅芯片、电路板、胶水、TIM 或封装盖传递是众所周知的。存在标准方法来跟踪每个界面处的温度和电阻值,它们是温差和功率的函数。“热路径由三个关键值来量化——从器件结到环境的热阻、从结到外壳(封装顶部)的热阻以及从结到电路板的热阻,”详细的热模拟是探索材料和配置选项的最便宜的方法。“运行芯片的模拟通常会识别一个或多个热点,因此我们可以在热点下方的基板中添加铜以帮助散热或更换盖子材料并添加散热器等。对于多个芯片封装,我们可以更改配置或考虑采用新方法来防止热串扰。有几种方法可以优化高可靠性和热性能,”在模拟之后,包装公司执行实验设计 (DOE) 以达到最终的包装配置。但由于使用专门设计的测试车辆的 DOE 步骤耗时且成本更高,因此首先利用仿真。选择 TIM在封装中,超过 90% 的热量通过封装从芯片顶部散发到散热器,通常是带有垂直鳍片的阳极氧化铝基。具有高导热性的热界面材料 (TIM) 放置在芯片和封装之间,以帮助传递热量。用于 CPU 的下一代 TIM 包括金属薄板合金(如铟和锡)和银烧结锡,其传导功率分别为 60 W/mK 和 50 W/mK。随着公司从大型 SoC 过渡到小芯片模块,需要更多种类的具有不同特性和厚度的 TIM。Amkor 研发高级总监 YoungDo Kweon 在最近的一次演讲中表示,对于高密度系统,芯片和封装之间的 TIM 的热阻对封装模块的整体热阻具有更大的影响。“功率趋势正在急剧增加,尤其是在逻辑方面,因此我们关心保持低结温以确保可靠的半导体运行,”Kweon 说。他补充说,虽然 TIM 供应商为其材料提供热阻值,但从芯片到封装的热阻,在实践中,受组装过程本身的影响,包括芯片和 TIM 之间的键合质量以及接触区域。他指出,在受控环境中使用实际装配工具和粘合材料进行测试对于了解实际热性能和为客户资格选择最佳 TIM 至关重要。孔洞是一个特殊的问题。“材料在封装中的表现方式是一个相当大的挑战。你已经掌握了粘合剂或胶水的材料特性,材料实际润湿表面的方式会影响材料呈现的整体热阻,即接触电阻,”西门子的 Parry 说。“而且这在很大程度上取决于材料如何流入表面上非常小的缺陷。如果缺陷没有被胶水填充,它代表了对热流的额外阻力。”以不同的方式处理热量芯片制造商正在扩大解决热量限制的范围。“如果你减小芯片的尺寸,它可能是四分之一的面积,但封装可能是一样的。是德科技内存解决方案项目经理 Randy White 表示,由于外部封装的键合线进入芯片,因此可能存在一些信号完整性差异。“电线更长,电感更大,所以有电气部分。如果将芯片的面积减半,它会更快。如何在足够小的空间内消散这么多的能量?这是另一个必须研究的关键参数。”这导致了对前沿键合研究的大量投资,至少目前,重点似乎是混合键合。“如果我有这两个芯片,并且它们之间几乎没有凸起,那么这些芯片之间就会有气隙,”Rambus 的 Woo 说。“这不是将热量上下移动的最佳导热方式。可能会用一些东西来填充气隙,但即便如此,它还是不如直接硅接触好。因此,混合直接键合是人们正在做的一件事。”但混合键合成本高昂,并且可能仍仅限于高性能处理器类型的应用,台积电是目前仅有的提供该技术的公司之一。尽管如此,将光子学结合到 CMOS 芯片或硅上 GaN 的前景仍然巨大。结论先进封装背后的最初想法是它可以像乐高积木一样工作——在不同工艺节点开发的小芯片可以组装在一起,并且可以减少热问题。但也有取舍。从性能和功率的角度来看,信号需要传输的距离很重要,而始终开启或需要保持部分关断的电路会影响热性能。仅仅为了提高产量和灵活性而将模具分成多个部分并不像看起来那么简单。封装中的每个互连都必须进行优化,热点不再局限于单个芯片。可用于排除或排除小芯片不同组合的早期建模工具为复杂模块的设计人员提供了巨大的推动力。在这个功率密度不断提高的时代,热仿真和引入新的 TIM 仍然必不可少。
  • 突发!美国制裁俄罗斯最大芯片制造商
    3月31日,美国财政部发布新闻稿《Treasury Targets Sanctions Evasion Networks and Russian Technology Companies Enabling Putin’s War》。报道称,财政部将制裁权限扩大到航空航天、海洋和电子行业。美国财政部外国资产控制办公室(OFAC)将制裁俄罗斯技术领域的运营商,以防止其逃避前所未有的多边制裁,并采购关键的西方技术。OFAC本次制裁涉及21个实体和13名个人,作为其打击克里姆林宫逃避制裁网络和技术公司的一部分。美国财政部称这些公司对俄罗斯联邦的战争机器至关重要。财政部还确定,根据第14024号行政命令(E.O. 14024),俄罗斯联邦经济的三个新部门将受到制裁。这允许财政部对任何被确定在这些部门运营或曾经运营的个人或实体实施制裁。此次制裁指定的一家科技公司出口了俄罗斯50%以上的微电子产品,是俄罗斯最大的芯片制造商。在此之前,OFAC于3月24日指定了俄罗斯国防工业基地的数十家公司。这家科技公司Joint Stock Company Mikron (Mikron) 是俄罗斯最大的微电子产品制造商和出口商。事实上,Mikron负责出口超过50%的俄罗斯微电子产品。该公司还生产集成电路,电子元件,是俄罗斯最大的芯片制造商。Mikron为俄罗斯的国家支付卡系统(也称为Mir)生产国产芯片。Mir支付卡系统是在之前对俄罗斯实施制裁后开发的。Mikron根据第 14024 号行政命令被指定为在俄罗斯联邦经济的技术部门运营或曾经运营。据了解,Mikron是俄罗斯老牌的半导体公司。在 1960 年至 1980 年期间,Mikron积极为苏联开发微电子技术。2010 年,Mikron获得了90nm工艺的许可,并于 2012-2013 年左右开始生产。90nm 生产设施和设计中心由Rusnano共同出资近 50% ,总成本为 165.7 亿卢布。2014年末宣布,Mikron已开始在俄罗斯的进口替代计划下使用90 纳米工艺试生产名为Elbrus-2SM的国产微处理器。Elbrus-2SM微处理器的国产化被技术杂志CNews的读者评选为2014年最重要的事件。 65nm工艺也在随后几年完成,并在 2020 年通过了生产工艺的鉴定和改进。原文链接:Treasury Targets Sanctions Evasion Networks and Russian Technology Companies Enabling Putin’s War | U.S. Department of the Treasury
  • 皮肤器官芯片,化妆品安全评价创新研究趋势
    化妆品质量评价主要是关注其安全性和功效性,在过去通常是采用动物实验进行毒性、刺激性等测试方法进行。自《人道实验技术法则》中提出的3R理论(Reduction, Replacement, Refinement)在全球推行后,更多科学方法被开发和采用,以减少或替代动物实验,如体外测试、细胞培养等。2013年3月,欧盟委员会下令全面禁止在动物身上进行化妆品成分测试。美国环境保护总署提出在2035年前将停止在环境评测技术和产品中使用哺乳类动物进行评估。随着我国《化妆品监督管理条例》、《化妆品功效宣称评价规范》及《化妆品安全评估技术导则》等法律法规的逐步施行,不仅与国际化妆品的检测标准进一步接轨,而且强调了按照风险程度对化妆品和化妆品原料实行分类管理,并同时要求对化妆品的功效宣称进行评价的原则。因此开发动物替代的体外重组皮肤模型,应用于化妆品的皮肤刺激性、腐蚀性、渗透性等安全和功效评估的重要性和迫切性凸显。皮肤器官芯片是一种新兴的组织/器官模型构建的颠覆性技术。与传统静态皮肤模型相比,基于器官芯片技术的皮肤芯片可改善皮肤模型的功能,并实现自动化和模块化的构建或检测。艾玮得生物器官芯片团队与东南大学苏州医疗器械研究院、中国食品药品检定研究院一起,共同开发了一种高仿真的皮肤器官芯片,可进行化妆品的刺激性或非刺激性的准确预测。表皮芯片结构及表皮形成示意图艾玮得生物研发人员设计了一种可培养和分化原代人角质形成细胞的微流控芯片(iEOC),经过气液培养,表皮芯片上形成的表皮模型表现出类似于在人正常表皮中观察到的组织学特征:增殖的基底层和分化的棘层、颗粒层、角化层。特别是 TEER 值可达到 3 kΩ cm2,由于增强的屏障功能,可阻止超过 99% 的低分子量荧光染料渗透。进一步的免疫荧光分析还显示了典型的角蛋白特征表达,包括角蛋白-14、角蛋白-10、兜甲蛋白、内批蛋白和丝聚蛋白。相关表征预示该构建的表皮芯片具有人正常表皮的屏障和生物学功能。构建的表皮结构与人正常皮肤结构对比(a)表皮芯片(b)示意图(c)人正常表皮(d)人正常全层皮肤随后,使用iEOC进行化学品的刺激性检测,根据OECD 439提供的检测方法,通过 MTT 法对10种已知刺激性的化学品进行了检测,结果显示iEOC可以准确区分化学品的刺激性与非刺激性。由于皮肤刺激性是一种复杂的生理机制,研究进一步检测了炎症因子的释放和屏障功能的变化,结果显示刺激性化学品接触会导致IL-6 and TNF-α等炎症因子的表达量增高,TEER值的下降以及紧密连接蛋白ZO-1的表达下降。刺激反应的初步检测显示可以区分不同物质的刺激性,也提示具有真皮、血管等结构的复杂皮肤模型的构建需求。非刺激性物质异丙醇与刺激性物质作用于iEOC的刺激反应利用体外重组表皮模型进行皮肤刺激性和腐蚀性预测在国际上已通过欧盟验证并被OECD认可载入指南439和431,国内由中国食品药品检定研究院牵头,进行化妆品替代方法的研究和验证,多家机构联合进行相关标准的验证和制定,艾玮得生物积极参与其中,目前艾玮得皮肤芯片技术作为中国器官芯片模型标准,已获得国家标准化管理委员会立项,为我国器官芯片技术和评估标准的确立打下基础。作为化妆品功能性与安全性评估的一部分,使用皮肤器官芯片可控制临床试验风险,又符合伦理道德规范,可应用于皮肤美白检测服务、皮肤刺激性检测服务、皮肤光毒性检测等广泛层面。艾玮得皮肤芯片作为一种体外皮肤刺激性评估模型,也可为化学品、制药、医疗器械等多种应用方向的高通量检测提供创新研究方法。江苏艾玮得生物科技有限公司(AVATARGET)成立于2021年,是一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司。艾玮得核心技术转化于东南大学器官芯片科研团队,技术成果已成功应用在新药研发、精准医疗、疾病建模、美妆安全性评价等科研场景中。目前,艾玮得与国内外知名药企,多所医院、研究机构及高校等40余家单位达成深度合作,包括恒瑞、先声、齐鲁、美国哥伦比亚大学、江苏省人民医院、江苏运动健康研究院、鼓楼医院、上海第六人民医院、军区总院、颐华医药等,持续推动器官芯片在更多高端医疗器械领域的应用,助力生命科学快速发展。文献来源:Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. Lab Chip, 2021, 21, 3804.
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制