当前位置: 仪器信息网 > 行业主题 > >

小鼠清醒给药系统

仪器信息网小鼠清醒给药系统专题为您提供2024年最新小鼠清醒给药系统价格报价、厂家品牌的相关信息, 包括小鼠清醒给药系统参数、型号等,不管是国产,还是进口品牌的小鼠清醒给药系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠清醒给药系统相关的耗材配件、试剂标物,还有小鼠清醒给药系统相关的最新资讯、资料,以及小鼠清醒给药系统相关的解决方案。

小鼠清醒给药系统相关的资讯

  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 镜头聚焦!更便捷 更安全|纽迈清醒小动物体成分分析仪PRO版新品首发!
    2023年9月6日,第二十届北京分析测试学术报告会暨展览会(BECIA 2023)在中国国际展览中心(顺义馆)隆重开幕。千余位资深专家、723家仪器企业、万余人参会观展,共聚行业盛会!纽迈分析作为一家深耕低场核磁领域20年的国产品牌,已多次参加北京分析测试展,本次展会于E3馆E3076展台展示了多款产品,其中包括MesoMR系列、PQ001系列、MacroMR系列等,其中新品首发的QMR06-060H/090H-PRO清醒小动物体成分分析仪更是吸引了众多观展嘉宾、行业媒体及业界同行的关注。QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。新品PRO版 全新升级只为满足您的需求点击查看新品介绍视频BECIA 2023是全球分析科学与生化技术的博览盛会,汇聚了来自世界各地的专业人士和领军企业,为分享分析检测技术、产品、经验和创新提供了宝贵的机会。纽迈分析作为国产低场核磁领域的佼佼者,借此机会展示了在生命科学、能源岩土、食品农业等领域的创新成就,同时也收获了来自行业及客户的认可和赞誉。在未来的发展中,纽迈分析将继续面向世界前沿、面向市场需求,不断推出更加优质的产品和服务,为推动国产低场磁共振行业的发展做出更大的贡献。
  • 转化医学系列|人源化模式小鼠在肿瘤免疫药物研究中的应用
    肿瘤免疫疗法是当前肿瘤治疗领域中最具前景的研究方向之一,已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式。肿瘤免疫学治疗的方法种类繁多,目前各大医药研发企业的关注焦点主要包括:免疫检查点抗体药物,CAR-T疗法,溶瘤病毒等等,但新型的免疫疗法如何进行可靠有效的临床前效果评估,是推进肿瘤免疫疗法的一关键节点。百奥赛图自主研发了一系列免疫检查点人源化小鼠,为免疫检查点抗体药物筛选提供了可靠的体内药效模型,此外基于重度免疫缺陷B-NDG小鼠建立的免疫系统人源化小鼠模型也为药物验证提供了更多的选择。本期转化医学系列webinar邀请到的是百奥赛图药理药效事业部总监郭雅南博士,郭博士将给大家介绍:1. 免疫检查点抗体单用或联用在体内药效筛选的策略2. 利用免疫重建小鼠和B-hCD3e人源化小鼠进行双特异性抗体的体内药效评估与毒性检测3. 利用重度免疫缺陷小鼠B-NDG小鼠对CAR-T药物进行体内药效评估与毒性检测转化医学系列网络讲座第五期讲座题目:人源化模式小鼠在肿瘤免疫药物研究中的应用讲座时间:7月25日下午14:00-15:00主讲人:郭雅南 博士(百奥赛图)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)即刻报名扫描下方二维码主讲人简介郭雅南 博士百奥赛图 药理药效事业部总监清华大学生物科学与技术系本科;美国罗切斯特大学神经生物学/药理学博士学位;2009-2013年,在哈佛大学医学院伯明翰妇女医院转化医学系从事博士后研究工作;2014年回国,担任百奥赛图基因生物技术有限公司研发部副总监。拥有10多年癌症生物学和神经生物学的研究经验,现担任药理药效事业部总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间高内涵筛选助力个性化癌症医疗8月小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
  • 王凯研究组:共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像
    p style=" text-align: justify text-indent: 2em " 8月10日23点, i Nature Biotechnology /i 在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。 /p p style=" text-align: justify text-indent: 2em " 跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。 /p p style=" text-align: justify text-indent: 2em " 传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。 /p p style=" text-align: justify text-indent: 2em " 然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。 /p p style=" text-align: justify text-indent: 2em " 研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μm sup 3 /sup 的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。 /p p style=" text-align: justify text-indent: 2em " 团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。 /p p style=" text-align: justify text-indent: 2em " 研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。 /p p style=" text-align: justify text-indent: 2em " 研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9bfa0661-24ad-4d0d-9ccd-10db465617c7.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: justify text-indent: 2em " 图1.(上)共聚焦光场显微镜原理示意图。(下)不同于传统光场显微镜,共聚焦光场显微镜采用片状照明,选择性激发样本的一部分,在垂直照明的方向上扫描,采集到的信号被遮挡板过滤掉焦层范围之外的部分。对采集到的图像进行重构可以得到焦层内的三维信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/28e2bd6d-59f5-4ff1-8085-355f6d295cbf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: justify text-indent: 2em " 图2.(左)斑马鱼幼鱼捕食行为的一个例子。0s 为斑马鱼吞食草履虫的时刻。(右)左图斑马鱼捕食行为中,共聚焦光场显微镜记录到的两个不同脑区的神经元活动。箭头所指为过程中激活的单个神经元。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c26412e7-a408-4c67-8533-1c5a118fdb4b.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(68, 68, 68) font-family: 微软雅黑 background-color: rgb(255, 255, 255) "   /span 图3.(左)共聚焦光场显微镜拍摄得到的小鼠视皮层中的复杂血管网络。6个在不同深度拍摄的体积连接为一个深度达600 μm的三维结构。(中)100 μm到250 μm深度血管网络的平面投影,颜色代表不同血管分支中血细胞的平均流速。(右)图中箭头所指的区域中五个血管分支在一段时间内流过血细胞数量的计数。 /p
  • 安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片
    安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片 安捷伦公司与根特大学合作在芯片中整合入了 LNCipedia 内容2015 年 6月 10 日,北京 — 安捷伦科技公司(纽约证交所:A)近日宣布更新其新型 SurePrint 基因表达微阵列芯片用于人、小鼠和大鼠模型的信使 RNA 分析应用。此次更新改进了编码和非编码内容,为研究人员提供在常用平台上研究表达模式的最新工具。安捷伦公司与根特大学合作开发了最新款旗舰版 SurePrint G3 人基因表达 v3 微阵列芯片,其中完整包含的 LNCipedia 2.1 数据库能够对长链非编码 RNA (lncRNA) 转录物进行可靠分析。LncRNA(长度大于 200 个核苷酸的非编码 RNA)能够通过直接作用于 DNA、RNA 和蛋白质而改变基因调控,从而实现靶标特异性或系统范围内的调控。 通过 lncRNA 与癌症、心血管疾病和神经退行性疾病的关联不难看出其广范却至关重要的作用。经重新设计的安捷伦基因表达微阵列芯片是高质量的特征捕获工具,可实现目标基因或通路的有效分析,涉及从协助疾病危险分层到阐明药物作用机制的各种应用。根特大学的 Jo Vandesompele 教授说:“我们与安捷伦密切合作设计了一流的 mRNA 和 lncRNA 表达分析方法。在单次分析中对这两种类型的RNA进行的同时测定有助于从相对基因表达水平深入探究mRNA与lncRNA之间的生物学联系。 其中的关键在于实现编码和长链非编码特征的良好平衡,而LNCipedia 2.1 则是与安捷伦基因表达内容配对的最佳数据源。微阵列芯片的最终设计经优化后可快速给出大量有价值的信息。”最新的微阵列芯片采用能够实现寡核苷酸精确合成的 SurePrint 技术制造。 SurePrint 微阵列芯片的灵敏度处于业内领先水平,具有5 个数量级以上的动态范围以及 5% 的阵列间变异系数中值,且在 R20.95 时与外部 RNA 对照联盟 (External RNA Controls Consortium) 的加标 RNA 对照品相比具有出色的定量一致性。“我们的 SurePrint 基因表达微阵列芯片不仅包含 LNCipedia 的 lncRNA 等严谨的专业内容,还能够为专家级用户提供灵活的定制服务。”安捷伦基因组学高级总监 Alessandro Borsatti 博士谈道, “凭借基因表达微阵列芯片的出色性能和定量一致性以及 RNA 测序和靶向序列捕获产品,我们能够使研究人员在微阵列芯片的筛查应用与更深度的二代测序的发现性应用之间实现完美转换。”SurePrint 基因表达微阵列芯片属于 SurePrint 产品系列,该系列包括 microRNA 与比较基因组杂交微阵列芯片。 安捷伦基因组学工作流程包括用于质量控制的 2100 生物分析仪和 2200 Tapestation、用于数据采集的SureScan 扫描仪、用于数据分析的 GeneSpring 软件,以及用于进行实时聚合酶链反应的 AriaMX 系统。如需了解有关 SurePrint 基因表达微阵列芯片的更多信息,请访问 www.agilent.com/genomics/v3。关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com.cn。编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 成像质谱:非酒精性脂肪肝病模型小鼠中脂类成分的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱法不仅经常被用于血液和尿液样本中脂质的研究,同时也可用于以实验动物器官为样本的脂质研究。近年来,将匀浆样本的多变量分析结果与待测样本组织切片空间分布研究结果相结合的方式,有望加速有关疾病机理阐释或新药研发方面的研究工作。 因此,本应用实例对2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药后,非酒精性脂肪肝(NAFLD)模型小鼠脂质成 span style=" text-indent: 2em " 分的变化进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1 研究背景 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 肝细胞癌通常由肝炎病毒引起,但也可能由酒精性肝炎引起。然而,由于代谢综合征病例的增加,与酒精无关的非酒精性脂肪性肝炎(NASH)的发病率也有增加。因此,目前正在进行各种各样的相关研究。以往的研究表明,非酒精性脂肪肝病(NAFLD)的出现或其发展为非酒精性脂肪性肝炎(NASH)的进程与氧化应激之间存在很强的相关性。然而,这一机制的细节和诱发、影响因素尚不清楚。近年来, 动物实验结果表明2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药可以抑制脂肪在肝脏的过度积累1)。为了阐明其作用机制,可使用多种类型的质谱仪对同一样本进行分析,充分利用不同类型质谱提供的数据信息。本文描述了对AAPH 给药后NAFLD 模型小鼠研究的实例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5915422f-fd59-4161-8be6-0d165758d8f2.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 实验动物准备 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验材料及方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 以NAFLD 模型小鼠为实验动物, AAPH 单剂量(90mg/kg)给药24 小时后取肝脏进行实验。肝脏匀浆样本用于LCMS 分析,制备10μm 厚肝脏冰冻组织切片用于成像质谱分析。将给予磷酸盐缓冲液(PBS)的模型小鼠肝脏作为对照样本(图1)。成像质谱分析的流程图如图2 所示。使用冷冻切片机制备10μm 厚的老鼠肝脏组织切片(I),将切片放置于ITO 导电载玻片表面(II),在组织切片表面涂敷基质辅助电离(III),获取成像质谱分析数据(IV)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e65e6c2a-746e-4a29-9027-5c007baf8713.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2 成像质谱分析流程 /p p style=" text-indent: 2em line-height: 1.75em " 3. 使用LCMS 数据进行验证 /p p style=" text-indent: 2em line-height: 1.75em " 取模型小鼠肝脏,匀浆后由LCMS进行分析,对脂质成分进行检测。实验条件如表1所示。 /p p style=" text-indent: 2em line-height: 1.75em text-align: center " 表1 LCMS实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/452b470c-8f24-4e51-a583-8212f9502448.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 LCMS-IT-TOF /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图3 显示实验数据进行统计学分析的结果。对AAPH给药组与对照组进行比较,多种脂质成分存在差异。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表2 总结了出现特征变化的不同脂质成分。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 表2 AAPH 给药后发生变化的脂质组分 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8039b671-0c06-454f-90ef-c37c83bf5af0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 根据分析结果,通过对比给药组与对照组肝脏匀浆检测数据的统计学分析结果,可以鉴别给药后发生变化的组分。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 294px " src=" https://img1.17img.cn/17img/images/202006/uepic/2817dda4-851e-4ea4-bd22-9c96d9047c8d.jpg" title=" 5.png" alt=" 5.png" width=" 600" height=" 294" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图3 统计学分析结果 /p p style=" text-align: center " (A) PCA score plot, (B) PCA loading plot, (C) OPLD-DA score plot, (D) OPLS-DA S-plot /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 使用成像质谱进行脂类成分的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表3显示了iMScope成像质量显微镜的分析条件。成像质谱分析的实验结果如图5所示。相邻切片的HE染色结果如图4所示。使用正离子模式分析组织切片,成功获得表2中在LCMS分析结果中出现变化脂质成分的质谱图像,如图5中虚线框选的质谱图像。此外,还获得了在采集范围内其他具有类似特征分布的脂质成分的质谱图像。成像质谱技术的主要优点之一是通过一次分析在同样的分析条件下,可以同时提供多个不同质荷比化合物的空间分布信息。这一特点使无标记成像质谱分析成为可能。本应用实例中,部分脂质成分可以根据iMScope的检测数据并参考相关文献得到鉴别2),3)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/173cb788-d8f8-4c66-96e4-e859095877ee.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 连续切片的HE染色结果 /p p style=" text-align: center " 表3 iMScope成像质谱实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/1067befb-7acb-4e1d-881c-9c868b4db0b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center" img style=" width: 600px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/34ee0d51-4b7a-4519-832b-051e09819ef2.jpg" title=" 8.png" width=" 600" height=" 350" border=" 0" vspace=" 0" alt=" 8.png" / /p p style=" text-align: center" img style=" width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/202006/uepic/ee38d58c-510f-4865-9a5d-d1c0a79298d1.jpg" title=" 9.png" width=" 600" height=" 186" border=" 0" vspace=" 0" alt=" 9.png" / /p p style=" text-align: center " 图5 iMScope 质谱成像分析结果 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 小 结 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本文展示了AAPH 给药后发生变化的脂质成分在模型小鼠肝脏切片上的空间分布结果。在新药研发或临床应用相关的基础医学研究领域中,必须建立可以针对给定研究目标及样本特点进行优化的实验体系。因此,多种类型的质谱仪被广泛使用。此外,如本文所述,利用新型质谱仪进行多层面分析也有望发现新的信息,并提高研究效率。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) Free. Radic. Res, 38: 375–84 (2004) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Anal. Chem. 80(23): 9105–14 (2008) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Anal. Chem. 84(4): 2048–54 (2012) /p p br/ /p
  • 岛津微焦点X射线CT助力动物实验-小鼠股骨CT观察
    现在的研究中经常需要动物实验提供数据支持,这些研究包括对骨病的研究、药物管理评价和代谢中的脂肪测量等。实验对象的动物有大、小鼠和兔子等。 X射线CT系统通常用于观察和分析小动物的骨骼,人类或小动物的牙齿。对小动物的观察包括活体动物的CT成像,猝死动物整体或切除部位的体外CT成像。 本案例介绍了利用inspeXio SMX-100CT Plus采集的小鼠股骨CT图像(体外)数据以及其三维解析结果。 图1. 岛津微焦点X射线CT inspeXio SMX-100CT Plus 对小鼠股骨的观察 使用inspeXio SMX-100CT Plus微焦点X射线CT系统(图1)进行数据采集。该设备采用密封式微焦点X射线发生源,最大输出电压为100 kV,图像亮度高,可对树脂、药物、骨骼等软材料在高放大倍数下进行三维观察。图2为小鼠股骨。红色矩形框部分是股骨,红色矩形框右侧的是胫骨。图3显示了小鼠股骨的原理图。股骨由近端、股骨本身和远端三部分组成。近端肢体与臀部骨共同构成髋关节。远端肢体与胫骨共同构成膝关节。本标本观察是股骨远端离体成像的一例。图2.小鼠股骨照片 图3 小鼠股骨的原理图 图4为骨骺的横断面图像,图5为骺端和干骺端横断面图像,图6为干骺端的横断面图像。在干骺端横断面上,圆形骨区为皮质骨,内部网状区为骨小梁。使用inspeXioSMX-100CT进行锥束扫描,一次即可获得区域内所有的横断面图像,还可以连续进行图像观察。 图4骨骺的CT图像图5骺端和干骺端的CT图像图6 干骺端CT图像 图7为MPR(多平面重构)图像,MPR显示的是在虚拟空间中堆叠的多个CT图像。 图7 小鼠股骨MPR图像 图8 小鼠股骨的三维图像 小鼠股骨分析 使用X射线CT获取图像,不仅可以进行横断面和三维观察,而且可以单独提取感兴趣区域进行观察,并测量骨的厚度。 图9 小鼠股骨三维图像 图10~14显示小鼠股骨皮质骨、骨小梁及皮质骨内血管的扫描结果,图像处理为某软件公司的TRI/3D-Bon骨结构分析软件。 图10 白色:皮质骨和骨小梁红色:皮质骨中的血管绿色:生长板软骨 图11 白色:骨小梁红色:皮质骨中的血管绿色:生长板软骨 图10、11中白色为皮质骨和骨小梁、红色部分为皮质骨中的血管、绿色部分为生长板软骨,图10中皮质骨在外观上是半透明的。 图12 骨小梁和生长板软骨图13 提取的生长板软骨图14 皮质骨和骨小梁厚度的测量 图13是提取的成长板软骨。图14是对提取的皮质骨和骨小梁测量出的厚度结果,从外观上使用不同颜色标示出各不相同的薄、厚部分。 结论 使用inspeXio SMX-100CT Plus不仅可以对小鼠股骨结构进行三维观察,而且可以通过其它分析软件提取感兴趣区域,并测量、评价皮质骨和骨小梁的厚度。 另外,针对专用软件(例如TRI/3 DBON),可利用BMD模型(骨矿定量) 将影像数据的亮度值转换为CT值,分离出皮质骨和骨小梁,获得皮质骨和骨小梁各自的BMD值。因此,在骨成像后,用BMD模型代替骨成像来建立分析曲线是可行的。(此应用只可针对特定第三方软件进行。)
  • FLIR红外热像仪助力揭秘小鼠阳虚证,成为中医科研新利器!
    中医证候表征的量化研究是学术界探索的重要领域,其中,寒热属性是中医辨别病邪性质、机体的阴阳盛衰及病属外感或内伤的重要依据。上海中医药大学基础医学院曾借助FLIR红外热像仪,对小鼠阳虚证模型进行了验证实验,以科学手段深化了对中医证候的理解,具体详情一起来瞧瞧吧~ 热成像技术在中医领域的广泛应用随着红外热成像技术的成熟与运用,医学上已有大量红外测温的研究,这些探索给中医证候实验研究提供了有益的借鉴,有助于寒热信息在证候判别中的定量化。比如当机体处于热量不足或功能衰减状态时,红外辐射少可能表现出寒证;一旦热量过剩或代谢旺盛时,红外辐射多则可能呈现类似热证。红外热成像技术可以很好地的量化检测人体表寒热情况,其作为评价中医“阳”盛衰程度的手段非常契合,但在实验动物证候模型的研究方面鲜有报道。因此上海中医药大学基础医学院的三名研究人员就围绕小鼠的“阳”盛衰程度,对典型的糖皮质激素诱发的药源性证候模型小鼠展开了探索,通过红外热成像技术对小鼠体表头部最高温度、体表尾部最低温度和躯干平均温度3个温度指标进行了研究。 FLIR红外热像仪助力实验成功小鼠适应性饲养,当小鼠体质量稳定至30g左右,开始实验。通过分组给小鼠灌胃使用不同剂量的氢化可的松、泼尼松龙、地塞米松,在实验的第14天,检测各组小鼠体表红外温度。本研究中运用红外热成像技术检测了三种糖皮质激素造模后小鼠的体表温度变化。考虑到所采集图像信息能尽可能全面反映小鼠的体表温度差异,实验人员选择了拍摄小鼠自然站立状态下侧腹部整体轮廓图像,包括小鼠头面部、颈项部、侧腹部、全尾等区域温度,且背部与腹部的切缘温度可以有效显示。其中,小鼠头部的眼睛区域温度最高、尾部温度通常最低、而侧腹部温度从头到尾逐步降低。根据以上现象,实验人员选取了头部最高温度、躯干平均温度和尾根部最低温度三个指标进行分析。严格控制检测环境、固定FLIR红外热像仪拍摄参数、调整好镜头中心与小鼠的位置与距离等,准备完成后开始拍摄红外热像图,保存图片后,使用FLIR配套软件进行分析。 使用不同剂量氢化可的松后小鼠的红外热像图以及数据柱状图 使用不同剂量泼尼松龙后小鼠的红外热像图以及数据柱状图 使用不同剂量地塞米松后小鼠的红外热像图以及数据柱状图结果表明,给予氢化可的松和地塞米松后小鼠头部最高温度、躯干平均温度和尾部最低温度均出现下降,而泼尼松龙对小鼠体表温度影响不明显。通过研究验证和理论知识结合后可以得出结论:氢化可的松和地塞米松可诱发药源性虚证小鼠类似阳虚的外寒征象,且随着用药时间和剂量的增加而小鼠阳虚外寒征象越显著。红外热成像技术在评估实验小鼠 “阳”盛衰程度的过程中起到了关键作用!FLIR Axxx科研套件:满足实验需求FLIR有多款适合实验研发的红外热像仪,如果实验检测过程需要长期在线监测,无需移动热像仪,比如类似上述生物实验类,建议选择FLIR A400/A500/A700科研套件,它简化了温度测量工作,可为电子、航空航天、生命科学等广泛应用领域的研究人员和工程师提供极大的便利。作为在线热像仪,集成到整个实验系统中,搭配FLIR微距模式,可精准测得微小红外数据,实时传输保存每帧每个像素点温度数据,能进行7*24小时的长期监测。 搭配FLIR Research Studio软件使用,可进行“连接➞查看➞记录➞分析”的极简工作流程,为研发场景快速获取和分析红外测量结果。 无论是生物研究,还是产品研发的过程中红外数据的采集都可以很简单您只需一台连接便利,简单易用测量功能齐全的红外热像仪FLIR A400/A500/A700系列科研套装刚好集成了以上所有重要因素检测后搭配功能强大的分析软件让您后续的分析、研究与备案更便捷科研道路上,您还有哪些疑惑?点击“阅读原文”填写检测难点
  • 北航冯林课题组: 磁流体基靶向给药微纳米机器人小鼠体内实现肿瘤杀伤
    近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死肿瘤细胞,在体内抑制肿瘤体积、破坏肿瘤间质、增加肿瘤细胞凋亡、抑制肿瘤细胞增殖。这项研究为基于磁流体的毫米机器人在体内实现靶向治疗提供了参考。近日,北京航空航天大学机械学院冯林课题组提出了一种通过具有生物相容性的磁流体机器人实现肿瘤的光热治疗方法。该方法将磁流体的基载液改为具有生物相容性的植物油,通过三维电磁控制系统实现磁流体机器人的靶向控制,对该种磁流体机器人在体外与体内的生物相容性和光热肿瘤杀伤效果进行了细致的研究。本研究中的所有3D模型均使用摩方精密nanoArch® S140设备打印。相关研究内容以“Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in Near-Infrared II window”为题发表在《Advanced Healthcare Materials》期刊上,冯林教授为通讯作者,硕士生纪易明为第一作者。图1.用于近红外 II 窗口肿瘤光热治疗的生物兼容磁流体液滴机器人(BFR)概念图。图2. BFR表征。(A)Fe3O4纳米粒子的 XRD 图。(B)Fe3O4纳米颗粒的傅立叶变换红外图。(C)油酸包裹Fe3O4纳米颗粒的傅立叶变换红外图。(D) BFRs 中纳米粒子的透射电子显微镜(TEM)结果。(E) 所制备磁流体的磁滞线。(F) 磁流体的紫外-可见-近红外吸收光谱。(G) 不同浓度的BFR在 1064 纳米近红外照射下的温度曲线。(H) 5个加热-冷却循环过程中BFR的光热稳定性研究。该研究制备了一种生物相容性磁流体(BFR),并对其进行了详细表征,如图2所示。该生物相容性磁流体由超顺磁性纳米颗粒(磁响应组分)和生物相容性植物油(基载液)构成。双层的油酸包裹磁颗粒使磁流体获得较好的稳定性。磁滞回线展现出该磁流体良好的磁响应能力。红外吸收光谱和光热升温曲线体现了该磁流体较好的光热转换效率和光热稳定性。图3. BFR在体外模拟血液循环环境中的运动。(A) BFR 可被控制移动到全血环境中三维血管模型的任意分支。比例尺:5 毫米:(B) BFR 在肝门静脉血管模型中的运动控制,显示了 BFR 由于可变形性和分裂能力而在血管中的可移动性。比例尺:2 毫米。(C) 磁流体机器人越过障碍物的侧面示意图。(D) BFR 在磁阻力作用下穿过障碍物和心脏组织表面的沟槽。(E) BFR 超声成像示意图。比例尺:5 毫米:(F) BFR 在一块牛心血管组织的内表面形成一个稳定的球体。(G) 超声成像视频快照,显示运动控制过程中 BFR 在不同时间的位置。比例尺:2 毫米。(H) BFR 在全血环境中逆流而上。比例尺:1 毫米。同时该研究对BFR在针对模拟体内靶向治疗环境的运动控制进行了详细研讨。通过四线圈三维电磁系统,磁流体机器人可以实现高精度三维运动控制。由于其具有极强的变形、分裂和融合能力,BFR可以在更为复杂的血管环境(如模拟肝门静脉模型)中运动,以及逆血流的运动。此外,因所选磁流体基载液材为有机液体,该种磁流体并不会与血管和心脏内壁发生粘连,可以实现在血管中和心脏表面的运动控制。磁颗粒与体内环境的密度差异也使得超声成像对BFR在体内的位置进行实时显示。图4. 体内肿瘤杀伤实验。(A) 各实验组裸鼠在治疗六天后的肿瘤情况,(B) 体重曲线。(C) 肿瘤大小曲线。(D) 六天治疗后离体肿瘤组织的体积统计。(E) 小鼠肿瘤切片的 H&E 染色结果。比例尺:50 微米。(F) 和 (G) 肿瘤切片的 TUNEL 和 KI67 染色结果。黑色背景图像为荧光图像,白色背景图像为特征荧光图像。比例尺:100 μm。此外,该种磁流体对体内肿瘤的治疗效果得到了验证。通过小鼠实验可以观察到治疗组小鼠的肿瘤体积有明显的减小。在染色结果中治疗组也展现出了对肿瘤组织的杀伤和抑制生长效果。
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。
  • 小鼠原代海马神经元细胞的分离培养方法!
    小鼠原代海马神经元细胞的分离培养方法!海马体主要负责记忆和学习,日常生活中的短期记忆都储存在海马体中。神经元是构成神经系统结构和功能的基本单位。神经元具有长突起,由细胞体和细胞突起构成。小鼠海马神经元细胞的组织来源于实验小鼠的正常脑组织,因为海马神经元细胞类似于干细胞属于高分度分化的细胞特性,具有不能传代,不能增殖等特点,所有收到细胞后尽快使用。为了更好的服务于广大科研工作者,百欧博伟生物技术人员特提供了海马神经元细胞分离培养方法,技术因人而异仅供参考:1、试验所需仪器设备及试剂(1)仪器生物安全柜CO2细胞培养箱荧光倒置显微镜高速冷冻离心机电热恒温鼓风干燥箱(2)试剂耗材T25细胞培养瓶血球计数板细胞培养孔板红细胞裂解液神经元完全培养基0.25%胰蛋白酶(含0.02%EDTA)多聚甲醛(PFA)DAPITriton X-100山羊血清NSEGoat anti-Rabbit lgG(H+L)Cross-Adsorbed Secondary antibody,Alexa Fluor 594Fluoromount-G荧光封片剂2、分离培养方法1) 取1-10 d的新生小鼠。用75%的乙醇浸泡,2) 在冰浴的PBS中分离海马,PBS洗涤3次,剪碎,3) 用0.25% Trypsin + 0.1% Ⅰ型胶原酶37℃水浴振荡消化30min,4) 用FBS终止消化,轻轻吹打,5) 过100 μm 滤网,6) 收集滤液,300 g离心5 min,7) 用完全培养基重悬沉淀,铺瓶。3、免疫荧光3.1.实验步骤(1)细胞爬片取3片玻璃片于24孔板中,每孔加入培养基1mL,加入细胞0.02million个/孔。置培养箱2h或过夜。(2)固定细胞爬片后,吸出培养基,用PBS洗1遍,加入4% PFA于4℃固定30min。用PBS洗3×5min/次。也可最后一次不吸出PBS,放4℃过夜。(3)破膜封闭将玻片除去水分,置于培养皿支撑物上,玻璃片封闭液配置:0.5% Trition X-100与PBS 1:1混合,再加10% 血清,取50uL破膜封闭液滴于防水膜上,将玻片上有细胞的一面盖上2h。(4)一抗孵育一抗配制:抗体与PBS 1:100(200)稀释破膜封闭后,取50uL一抗于防水膜上(湿盒中),将玻片(有细胞的一面)盖上置于4℃(最多可放置一周)(5)二抗孵育室温避光孵育二抗(二抗:PBS=1:500)2h后,PBS洗3×5min/次,染DAPI(DAPI:PBS=1:1000)5min,PBS洗3×5min/次。(6)包埋玻片上各滴1滴Fluoromount-G,将有细胞的一面盖上。鉴定细胞为P1代细胞3.2.检测结果(1)细胞免疫荧光鉴定照片阴性100X-DAPINSE100X-DAPI(2)检验基本情况:经免疫荧光鉴定,该细胞纯度达到90%以上。除了上述的细胞分离方法以外,百欧博伟还有很多关于其他细胞的分离方法,想要学习的小伙伴可以来百欧博伟进行现场学习,如果想要其他原代分离培养方法,可打电话或咨询相关技术人员哦。
  • Nat. Commun.| 胡家志课题组与合作者利用Cas9TX在年龄性黄斑病变小鼠模型中成功实现高效安全的基因编辑
    Nat. Commun.| 胡家志课题组与合作者利用Cas9TX在年龄性黄斑病变小鼠模型中成功实现高效安全的基因编辑CRISPR-Cas9是目前领域内最为常用的基因编辑工具,在基础科研领域以及临床应用上都有着广阔的使用前景。然而Cas9在完成靶向位点突变的同时,还会在脱靶位点进行切割,并会造成染色体易位和染色体大片段缺失等染色体结构异常副产物。除此之外,在以腺相关病毒(Adeno-associated virus,AAV)为递送载体的体内基因编辑治疗中,存在着AAV片段高频插入的现象。这些基因编辑中的副产物严重威胁了基因组的稳定性,可能会导致细胞的癌化,为基因编辑的治疗结果带来不确定性。通过抑制Cas9反复切割靶向位点的完美修复产物,胡家志课题组近期发表的Cas9TX可以在CAR- T的改造过程中大幅度降低染色体易位的发生频率(胡家志课题组开发目前最安全的Cas9基因编辑工具变体Cas9TX),但在与临床应用更为密切相关的体内基因编辑场景中,Cas9TX能否有效降低这些副产物的产生仍需要进一步印证。2022年12月22日,北京大学、北大-清华生命科学联合中心胡家志课题组与上海中科院神经所杨辉课题组在Nature Communications上共同发表了题目为Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration的研究论文。在年龄相关性黄斑病变(age-related macular degeneration, AMD)的体内基因编辑治疗模型中,该工作首次定量揭示了CRISPR-Cas9在体内基因编辑过程中染色体易位和腺相关病毒片段插入的发生模式与发生频率,并通过利用该课题组之前开发的Cas9TX变体大幅度减少了这些副产物在体内基因编辑过程中的产生,为CRISPR-Cas9的临床应用提供了重要的指导意义。年龄性黄斑病变是世界范围内导致老年人失明的主要原因之一。其中湿性黄斑病变主要是视网膜后的异常血管增生所导致的。目前以注射拮抗调控血管生成的VEGFA蛋白的小分子或抗体为治疗该疾病的主流手段,但反复注射不但不能保证治疗效率也会对眼部造成局部并发症。近期以CRISPR-Cas9为主的基因编辑技术为治疗该疾病带来了曙光,通过激光照射小鼠眼部造成新生血管入侵视网膜来模拟黄斑病变,研究者们进一步通过Cas9靶向Vegfa,从而一劳永逸地消除新生血管的产生,为治疗该疾病提供了临床的可操作性。利用该课题组开发的全面评估基因编辑工具安全性的高通量测序方法PEM-seq,该工作首先在以双AAV载体包装系统为递送载体的小鼠眼部脉络膜增生编辑模型中(靶向Vegfa位点),发现了体内基因编辑过程中靶向位点和脱靶位点之间,靶向位点和基因组自发产生的DNA双链断裂之间仍然会形成染色体易位(频率接近1%)(图一a)。与此同时,该研究也发现靶向位点上存在着频率高至40%的AAV片段整合(图一b)。更为重要的是,这些副产物在基因编辑后可以在体内稳定存在12周之久,引发了研究者对于这些副产物的担忧(Nucleic Acids Research | 胡家志课题组与合作者追问在体基因编辑的安全性)。随后该工作利用双AAV载体递送Cas9TX靶向小鼠眼部的Vegfa,结果表明Cas9TX不仅能够提高靶向位点的编辑效率,完成对小鼠脉络膜增生模型的治疗,而且还能大幅度消除靶向位点上所产生的染色体易位(图一c),值得一提的是Cas9TX并没有在脱靶位点造成更高的编辑效率。更为重要的是,该工作发现了Cas9TX也可以有效降低AAV片段在靶向位点的整合(图一d),据悉这是领域内首个可以减少AAV片段在基因编辑过程中插入的基因编辑工具,对临床上的应用具有重要的意义。总体而言,该工作不仅表明了Cas9TX可以成功兼容双AAV递送系统用于体内基因编辑,大幅低降低基因编辑过程中的副产物,也说明了DNA损伤修复在体外与体内的相对保守性,以此为出发点进行基因编辑安全性优化的可行性。图一. a. PEM-seq检测在小鼠眼部Vegfa位点Cas9编辑后染色体易位的发生频率。b. PEM-seq检测在小鼠眼部Vegfa位点Cas9编辑后AAV片段插入的频率。c. Cas9TX大幅度降低染色体易位产生的比例。d. Cas9TX大幅度降低AAV片段插入的比例。北京大学、北大-清华生命科学联合中心胡家志研究员和上海中科院神经所杨辉研究员为该论文的共同通讯作者。上海复旦大学附属眼耳鼻喉科医院干眼中心主任洪佳旭医生也为本论文做出了指导。北京大学前沿交叉学院2022届博士研究生尹健行,上海中科院神经所博士后方凯伦,博士后高艳霞为该文章的共同第一作者。北京大学生命科学学院本科生元绍鹏,博士研究生欧丽琼,辛昌昌以及上海辉大公司高级经理吴炜炜与吴伟威研究员对此工作亦有重要贡献。PI简历胡家志北京大学生命科学学院研究员北大-清华生命科学联合中心PI邮箱:hujz(at)pku.edu.cn “ 实验室主页:https://hulab.pku.edu.cn/实验室长期招收对生物信息学和免疫基因组学和感兴趣的研究生和博士后。研究领域:有颌脊椎动物的免疫系统可以有效地抵御病原体的入侵并清除自身的异常细胞,包括癌细胞。其中,适应性免疫系统的淋巴细胞可以产生多样性的抗原受体而特异性识别病原体和异常细胞。淋巴细胞受体包括B细胞受体和T细胞受体,前者的分泌形式即抗体。淋巴细胞介导的获得性免疫在疾病治疗方面具有巨大的应用价值,如单克隆抗体相关药物在肿瘤治疗方面取得了显著成效。本课题组的研究方向集中在免疫基因组学与人类疾病。我们开发了一系列基因组学测序方法用于免疫学方向的研究,可以用于基因编辑工具(以基于细菌免疫系统的CRISPR/Cas为主)的评估、基因组稳定性的检测以及抗体和T细胞受体的测序。我们的研究方向主要集中在:1. 基因编辑工具的安全性评估及改进2. 淋巴细胞的复制与转录及其基因组稳定性维持机制3. 抗体的发育成果过程的系统研究和工程化改造。
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism &hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • 瑞沃德发布RWD71000全自动脑立体定位仪-大小鼠新品
    71000全自动脑立体定位仪是一款应用于小型啮齿动物的自动化、智能化脑立体定位仪,通过电脑软件精确控制操作臂移动(精度1um),软件内置大小鼠脑图谱能更方便、更直观的进行脑立体定位,三大自动化程序(自动开颅、组织移除和多位点注射程序)可减少人为操作带来的误差,节省手动操作时间。精确:高精度步进电机,位移分辨率1μm高效:内置自动化程序,减少人工误差简单:软件内置脑图谱,简化手术操作三大自动化程序,实验更高效自动开颅程序:设置参数,颅钻自动按照运行轨迹进行开颅,节省人为操作时间组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性1、操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm;2、一键校准功能,当长时间使用,电脑显示位置参数和定位仪读数出现偏差时,用户可以通过一键自行校准;3、定位仪移动控制功能, 4种控制方式:a、PC端软件界面箭头控制;b、PC端输入目标坐标位置后自动移动到目标坐标;c、微操平台能精密控制定位仪运动,按钮可控制持续移动,微操旋钮每旋转18°执行1μm位移;d,键盘按键控制定位仪移动。4、定位仪移动速度调节功能,a、在PC端软件界面三个轴对应位置可分别输入移动速度进行调节,其中AP轴和ML轴4种移动速度可选: 2.00 mm/s、1.00 mm/s、0.50 mm/s、0.20 mm/s;DV轴7种移动速度可选2.00 mm/s 、1.00 mm/s、0.50 mm/s、0.20 mm/s 、0.01 mm/s、0.005 mm/s、0.001 mm/s;b、在微操端可通过按键对三个轴移动速度以一定步进量进行统一调节;5、 一键设置Bregma/Lambda位点,当用户使用定位仪到达Bregma/Lambda位点时可以标记,一键设定Bregma/Lambda位点;6、定位仪坐标与脑图谱集成,脑图版本为小鼠第二版大鼠第六版,用户可选脑图版本,选定版本后显示脑图版本信息;7、探针位置与脑图显示,当用户找到并设置Bregma/Lambda点后电脑界面能够显示脑图及探针所在位置,能够实时显示移动过程;8、自动开颅程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;9、多位点程序设定,用户可手动输入或脑图谱上选择至多10个坐标,可以选择自动运行或者信号触发后启动运行,用户可以设定定位仪到达目标点位后是否输出TTL信号,用户可以设定在每个位点停留时间(输入范围:00:00:00 23:59:59);10、组织移除程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),支持2种针头规格27G、30G,6个梯度的密度系数设置1-6,AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;11、位置坐标存储功能,用户可手动输入或脑图谱上选择至多个坐标并命名,最多可存储10个位点;12. Z轴回缩功能,当用户定义Bregma/Lambda点之后,定位仪在执行X、Y方向的移动时,无论探针位于Z轴的任意位置,需要使探针先回缩至高于动物头骨表面5mm的位置,保证电机的水平方向移动不会触碰到动物的头骨;13、消隙功能选择,可尽量消除电机反向运动时,电机齿轮间缝隙引起的误差,用户可选择开启或关闭;14、错误日志自动保存功能,方便对产品进行维护;15、软件要求适配win7、win10中英文操作系统;16、报警功能,实时检测,遇到故障时停止所有部件运动,PC端弹框提示;17、能够接收或输出TTL信号,例如接收TTL信号触发全自动脑立体定位仪按设定程序自动移动,或者到达特定位置时输出TTL信号;18、微操控制,能够实现手柄按键对全自动脑立体定位仪上下左右前后六向控制持即续按键持续移动,能调节电机移动速度,有急停按钮;19、控制盒有2种电源指示灯,通电正常状态为绿灯,异常状态为红灯;控制盒有12V电源接口,USB方口与电脑通信,3个电机接口,有丝印标识区分,BNC接口处理TTL信号。创新点:简介:71000是一款自动化、智能化的脑立体定位仪,通过电脑软件精确控制步进电机,进而驱动定位仪操作臂移动。软件内置大小鼠脑图谱和三大自动化程序,可自动化运行,减少人为操作带来的误差,能更方便、更直观的进行脑立体定位。同时配备了微操,满足更灵活的操作需求。 创新点: 1、精度更高:传统机械型脑立体定位仪精度100um,数显型脑立体定位仪精度为10um,而全自动脑立体定位仪精度达到1um,满足更高实验需求; 2、内置脑图谱:用户可直接在软件上翻阅脑图谱,探针实时显示与脑图谱的相对位置,更加直观便捷; 3、三大自动化程序:自动开颅程序可预设开颅的尺寸、深度等参数,颅钻自动按照预设轨迹运行,可减少手动操作带来的损伤;组织移除程序可预设移除组织的尺寸、深度等参数,保证创口端面平整,减少神经元死亡;多位点注射程序可设置十个位点的注射,软件控制运行轨迹,精准并减少人工操作的繁琐步骤。 RWD71000全自动脑立体定位仪-大小鼠
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 借助双光子显微成像技术 北京大学陈良怡团队合作揭示小鼠社交行为神经编码机制
    陈良怡团队合作揭示小鼠偏好“喜新厌旧”的神经元集合和孤独症小鼠的缺陷社交行为是个人和人类社会生存和发展的基础。有关大脑通过何种方式编码社交行为信息这一科学问题,目前尚无确切答案。此外,孤独症、抑郁症、精神分裂症、社交恐惧症或创伤后应激障碍(PTSD)等患者,均存在显著社交识别或互动障碍,给家庭、社会和国家带来诸多问题和负担,当前仍缺乏行之有效的干预手段或治疗方法,原因之一在于对大脑处理和编码社交行为信息的神经机制知之甚少。既往研究表明,大脑内侧前额叶皮层(mPFC)在社交探索、社交恐惧和社会竞争等方面均发挥重要调控功能[1-4]。当小鼠进行社交探索行为时,mPFC脑区前边缘皮质(PrL)内部分兴奋性锥体神经元活动会显著增强[5, 6],mPFC神经元集群在处理不同社交对象信息时,其活动表现出较强的异质性[7, 8],而且mPFC脑区内抑制性GABA能中间神经元也同社交行为密切相关[1, 4, 9],然而,由于缺乏在体单细胞分辨率水平、实时动态可视化的神经编码研究方法,这些不同亚型神经元集群是如何编码特定社交对象信息的尚不明了。北京大学未来技术学院分子医学研究所、IDG麦戈文脑科学研究所、北大-清华生命科学联合中心、生物膜国家重点实验室陈良怡实验室,联合军事医学研究院吴海涛实验室以及北京大学工学院张珏实验室,在Science Advances杂志发表了题为“Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex”的研究论文,解析了孤独症小鼠“喜新不厌旧”社交缺陷下的神经编码机制。在陈良怡实验室和程和平院士团队联合开发两代高时空分辨率的微型化双光子显微成像系统基础上[10, 11],通过建立改进型小鼠两箱社交行为学研究范式,利用MeCP2转基因孤独症小鼠模型和细胞亚型特异性Cre小鼠,借助微型化双光子显微镜钙成像技术,结合基于Tet-off系统的细胞特异性化学遗传学操控技术、CRISPR-Cas9介导的基因编辑和功能挽救等前沿技术,系统探讨了正常和孤独症小鼠模型不同社交行为过程中,PrL脑区内不同亚型神经元集群编码特定社交信息的模式差异。首先,借助微型化双光子钙成像技术,研究人员发现在小鼠自由社交活动过程中,PrL脑区内抑制性中间神经元较之于兴奋性锥体神经元具有更强的相关性。数学分析揭示其中存在稀疏分布的“社交特异”神经元,与之前研究的“社交相关”神经元不同,它们特异性地参与了同“陌生”或“熟悉”老鼠的社交行为。通过化学遗传学技术,特异性抑制社交行为过程中被激活的这些抑制性中间神经元亚群,能够显著破坏小鼠社交偏好及社交新颖性行为。提示PrL脑区内这群稀疏分布的中间神经元集群在调控小鼠社交偏好性以及“喜新厌旧”行为模式中,扮演着极为关键的角色。进一步,研究人员在进行小鼠两箱社交行为学观察时发现,MeCP2转基因孤独症小鼠社交偏好性并无显著缺陷,但会丧失典型的“喜新厌旧”样社交新颖性行为。利用CRISPR-Cas9基因编辑技术,在MeCP2转基因孤独症小鼠PrL脑区中间神经元内特异性剔除外源性MeCP2转基因后,可显著挽救孤独症小鼠“喜新厌旧”样社交缺陷表型。表明PrL脑区抑制性中间神经元内过表达MeCP2转基因可能是诱发孤独症小鼠产生社交新颖性行为缺陷的罪魁祸首。最后,通过系统分析野生型和MeCP2转基因孤独症小鼠模型PrL皮层内编码“陌生”和“熟悉”社交对象信息、且稀疏分布的抑制性中间神经元钙信号动力学特征,研究人员发现,当野生型小鼠分别与“陌生”或“熟悉“小鼠发生社交时,其PrL皮层中编码相关社交对象特异性神经元的发放概率、钙信号变化幅度以及达峰时间均存在显著差别。这两群细胞通过“跷跷板”式的协同增强效应,帮助小鼠确定面对不同类型对象采取不同的社交策略。而孤独症小鼠PrL脑区内相关神经元集群均明显异常,总体表现为“陌生”或“熟悉”社交对象引起社交特异神经元间反应差异消失,从而无法区分“陌生”和“熟悉”不同社交对象之间的差别,最终导致社交新颖性行为缺陷。综上,该研究工作发现在小鼠前额叶皮层内存在一群稀疏分布的中间神经元集群,分别负责编码社交行为中的“熟悉”和“陌生”社交对象信息,这些稀疏分布的神经集群在调控小鼠社交行为,尤其是社交新颖性行为中发挥着重要作用,揭示了个体在面对不同类型对象进行社交行为时的神经编码机制。该研究为深入理解孤独症等神经精神疾病患者社交行为缺陷的神经机制,探索精准靶向诊疗新策略提供了新的证据和线索。PI简历陈良怡北京大学未来技术学院学院教授北大-清华生命科学联合中心PI邮箱:lychen@pku.edu.cn实验室主页:http://www.cls.edu.cn/PrincipalInvestigator/pi/index5489.shtml研究领域:我们发展自驱动的活细胞智能超分辨率成像技术,并应用这些技术来研究生物医学重要问题。目前一方面的工作主要集中在引入物理光学中新成像原理、数学和信息学科中的图像重建新方法等,致力于发展可以在活细胞中实现两种以上模态光学信号探测的三维超分辨率成像的通用工具,实现同一活细胞样本上长时间、超分辨率、三维成像特定生物分子(荧光)和主要细胞器(无标记)。建立基于深度学习等手段Petabyte级的图像数据的高速处理以及分割手段,自动化、定量化描述活细胞内不同蛋白等分子以及细胞器的形状、位置以及相互作用等参数,找到新的细胞器并定义它们生化特性,最终目标是建立单细胞细胞器互作组学以及活细胞超分辨率病理学的概念,利用成像来揭示细胞内的异质性动态变化以及如代谢类疾病的发生发展机制。另一方面,我们也应用发展的高时空分辨率生物医学成像的可视化手段,系统研究血糖调控紊乱激素分泌在活体组织、细胞水平以及分子代谢水平的关系。参考文献:1.Xu, H., et al., A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the Prefrontal Cortex. Neuron, 2019. 102(3): p. 668-682 e5.2.Kingsbury, L., et al., Cortical Representations of Conspecific Sex Shape Social Behavior. Neuron, 2020.3.Báez-Mendoza, R., et al., Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science, 2021. 374(6566): p. eabb4149.4.Zhang, C., et al., Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2021.5.Murugan, M., et al., Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell, 2017. 171(7): p. 1663-1677 e16.6.Liang, B., et al., Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration. Neuron, 2018. 100(3): p. 700-714 e9.7.Pinto, L. and Y. Dan, Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron, 2015. 87(2): p. 437-50.8.Rigotti, M., et al., The importance of mixed selectivity in complex cognitive tasks. Nature, 2013. 497(7451): p. 585-90.9.Cao, W., et al., Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice. Neuron, 2018. 97(6): p. 1253-1260.e7.10.Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.11.Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • 科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为
    科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为自闭症谱系障碍(Autism spectrum disorder,ASD)是一种主要在儿童中出现的神经发育障碍性疾病,主要特征是社交功能障碍和局限、重复的行为或兴趣。妊娠期母体感染是子代发生ASD的重要原因,母体免疫激活(Maternal immune activation,MIA)引起的炎症浸润可导致胎儿神经发育障碍。根据流行病学调查,全球大约有7800万人患有ASD,而且在过去20年里,ASD患者的数量迅速增加。然而,一些用于治疗ASD的药物效果有限,而且还会引起高血糖、血脂异常、体重增加等副作用。因此,迫切需要找到更有效的治疗方法。近期,哈尔滨医科大学公共卫生学院儿少卫生与妇幼保健教研室在《Journal of Nutritional Biochemistry》发表题为“Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring”(第一作者:曾心、范琳琳;通讯作者:武丽杰、梁爽)的研究成果,基于中医药食同源的概念,验证了白藜芦醇对母体免疫激活诱导的小鼠ASD样行为的治疗作用。研究团队采用综合生物信息学方法,对药食同源的中草药和药物靶点进行了大规模筛选和分析,确定白藜芦醇和Thoc5分别是治疗母体免疫激活诱导的小鼠ASD样行为的最佳小分子成分和药物靶点,经体外实验结果显示,发现白藜芦醇能够增加Thoc5的表达。为更好的验证白藜芦醇的药用潜力,研究人员对小鼠进行了体内实验,通过 SOPTOP激光共聚焦扫描显微镜 观察Iba-1(小胶质细胞的标志物)在胎鼠大脑中的表达情况。实验结果显示,MIA胎鼠大脑中Iba-1的表达水平明显高于PBS组,但经过白藜芦醇预处理后,Iba-1在胎脑中的表达显著降低。▲免疫荧光法观察Iba-1表达情况本研究首次全面探索了药食同源草药治疗ASD的有效成分和靶点。通过体外和体内实验,成功证明了白藜芦醇能够增加Thoc5的表达,降低IL-6的水平,并抑制MIA引起的胎盘、胎脑和后代大脑皮层的炎症,改善成年后代的ASD样行为。论文信息:Zeng X, Fan L, Li M, Qin Q, Pang X, Shi S, Zheng D, Jiang Y, Wang H, Wu L, Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem. 2024 Apr 5:109638. doi:10.1016/j.jnutbio.2024.109638. Epub ahead of print. PMID: 38583499.
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 轻型车“国六”标准来了!仪器行业应该关注啥?
    近日,环境保护部、国家质检总局联合发布《轻型汽车污染物排放限值及测量方法(中国第六阶段)》(简称“轻型车国六标准”),公布了第六阶段轻型汽车的排放要求和实施时间。  近年来,我国机动车污染物排放标准逐步提升,2001年,国家第一阶段机动车排放标准开始实施,经过15年的发展,目前全国实施国家第四阶段排放标准,重点区域实施第五阶段排放标准,单车污染物排放降低90%以上,有效促进了汽车行业技术升级。为进一步强化机动车污染防治工作,从源头减少排放,落实《国民经济和社会发展第十三个五年规划纲要》有关“实施国VI排放标准和相应油品标准”的要求,环境保护部、国家质检总局出台了轻型车国六标准。  轻型车国六排放标准改变了以往等效转化欧洲排放标准的方式,邀请汽车行业全程参与编制,充分吸取专家学者和企业界的意见和建议。编制组开展了大量的调查研究工作,共分析汇总8600种国五车型排放数据,调查了50万辆轻型车行驶里程情况,设计开展了验证试验。轻型车国六标准的重要意义体现在:一是从以往跟随欧美机动车排放标准转变为大胆创新,首次实现引领世界标准制定,有助于我国汽车企业参与国际市场竞争,推动我国汽车产业发展 二是在我国汽车产能过剩的背景下,可以起到淘汰落后产能、引领产业升级的作用 三是能够满足重点地区为加快改善环境空气质量而加严汽车排放标准的要求。  轻型车国六标准在技术内容上具有六个突破,一是采用全球轻型车统一测试程序,全面加严了测试要求,有效减少了实验室认证排放与实际使用排放的差距,并且为油耗和排放的协调管控奠定基础 二是引入了实际行驶排放测试(RDE),改善了车辆在实际使用状态下的排放控制水平,利于监管,能够有效防止实际排放超标的作弊行为 三是采用燃料中立原则,对柴油车的氮氧化物和汽油车的颗粒物不再设立较松限值 四是全面强化对VOCs的排放控制,引入48小时蒸发排放试验以及加油过程VOCs排放试验,将蒸发排放控制水平提高到90%以上。五是完善车辆诊断系统要求,增加永久故障代码存储要求以及防篡改措施,有效防止车辆在使用过程中超标排放。六是简化主管部门进行环保一致性和在用符合性监督检查的规则和判定方法,使操作更具有可实施性。  为保证汽车行业有足够的准备周期来进行相关车型和动力系统变更升级以及车型开放和生产准备,本次轻型车国六标准采用分步实施的方式,设置国六a和国六b两个排放限值方案,分别于2020年和2023年实施。同时,对大气环境管理有特殊需求的重点区域可提前实施国六排放限值。目前,标准实施的行业生产和油品条件也已初步具备。多家轻型汽车生产企业已基本完成符合轻型车国六标准样车的开发工作。国家质检总局、国家标准委也已于同期批准发布了第六阶段车用汽、柴油国家标准。  下一步,环境保护部将积极协调有关部门,切实保障轻型车国六标准的实施,进一步加大机动车环保达标监督检查力度,推动车用油品升级,切实改善城市空气质量。  近年来,我国机动车污染物排放标准逐步提升,2001年,国家第一阶段机动车排放标准开始实施,经过15年的发展,目前全国实施国家第四阶段排放标准,重点区域实施第五阶段排放标准,单车污染物排放降低90%以上,有效促进了汽车行业技术升级。为进一步强化机动车污染防治工作,从源头减少排放,落实《国民经济和社会发展第十三个五年规划纲要》有关“实施国VI排放标准和相应油品标准”的要求,环境保护部、国家质检总局出台了轻型车国六标准。  轻型车国六排放标准改变了以往等效转化欧洲排放标准的方式,邀请汽车行业全程参与编制,充分吸取专家学者和企业界的意见和建议。编制组开展了大量的调查研究工作,共分析汇总8600种国五车型排放数据,调查了50万辆轻型车行驶里程情况,设计开展了验证试验。轻型车国六标准的重要意义体现在:一是从以往跟随欧美机动车排放标准转变为大胆创新,首次实现引领世界标准制定,有助于我国汽车企业参与国际市场竞争,推动我国汽车产业发展 二是在我国汽车产能过剩的背景下,可以起到淘汰落后产能、引领产业升级的作用 三是能够满足重点地区为加快改善环境空气质量而加严汽车排放标准的要求。  轻型车国六标准在技术内容上具有六个突破,一是采用全球轻型车统一测试程序,全面加严了测试要求,有效减少了实验室认证排放与实际使用排放的差距,并且为油耗和排放的协调管控奠定基础 二是引入了实际行驶排放测试(RDE),改善了车辆在实际使用状态下的排放控制水平,利于监管,能够有效防止实际排放超标的作弊行为 三是采用燃料中立原则,对柴油车的氮氧化物和汽油车的颗粒物不再设立较松限值 四是全面强化对VOCs的排放控制,引入48小时蒸发排放试验以及加油过程VOCs排放试验,将蒸发排放控制水平提高到90%以上。五是完善车辆诊断系统要求,增加永久故障代码存储要求以及防篡改措施,有效防止车辆在使用过程中超标排放。六是简化主管部门进行环保一致性和在用符合性监督检查的规则和判定方法,使操作更具有可实施性。  为保证汽车行业有足够的准备周期来进行相关车型和动力系统变更升级以及车型开放和生产准备,本次轻型车国六标准采用分步实施的方式,设置国六a和国六b两个排放限值方案,分别于2020年和2023年实施。同时,对大气环境管理有特殊需求的重点区域可提前实施国六排放限值。目前,标准实施的行业生产和油品条件也已初步具备。多家轻型汽车生产企业已基本完成符合轻型车国六标准样车的开发工作。国家质检总局、国家标准委也已于同期批准发布了第六阶段车用汽、柴油国家标准。  下一步,环境保护部将积极协调有关部门,切实保障轻型车国六标准的实施,进一步加大机动车环保达标监督检查力度,推动车用油品升级,切实改善城市空气质量。  曾有专家预测,汽车尾气监测潜在市场规模将达十亿至数百亿元。巨大需求量带来市场机遇,对于仪器企业来说,这正是更新环境科学和监测分析仪器产品、提高技术水平的好时机,也只有这样才能在激烈的竞争中挣得一席之地。  附件:轻型汽车污染物排放限值及测量方法(中国第六阶段)(GB18352.6—2016代替 GB18352.5—2013).pdf
  • 【Advanced NanoBiomed Research】全自动Digital WB系统助力神经退行性疾病药物递送系统研究
    来自美国顶尖公立大学北卡罗来纳大学教堂山分校(University of North Carolina at Chapel Hill,简称:UNC)的科学家们,利用全自动Digital Western Blot系统,对不同细胞来源的细胞外囊泡(Extracellular Vesicles, EVs)进行蛋白表征,探索不同细胞来源的EVs作为治疗神经退行性疾病药物递送系统的可能性,相应结果发表在Advanced NanoBiomed Research (IF: 13.052)。1EVs简介EVs的命名和分类细胞外囊泡(Extracellular Vesicles, EVs)是由细胞释放的各种具有膜结构的囊泡结构统称。EVs根据其来源(细胞类型)、大小、形态和载荷分为:微泡(microvesicles)、外泌体(exosomes)、凋亡小体(apoptotic bodies)和癌小体(oncosomes)。目前作为药物递送系统研究最多是微泡和外泌体。EVs通过质膜出芽形成的称为微囊泡(microvesicles);多囊泡内体(Multivesicular Endosomes,MVEs)与质膜融合后,释放的腔内囊泡(Intraluminal vesicles,ILVs)称为外泌体(exosomes)。EVs作为药物递送系统的优势EVs具有:A)能够穿过各种生物屏障,包括组织屏障或质膜,并通过endosomal运送载荷;B)利用内源性细胞机制,在细胞核内生产或装配成相应的载荷物,然后装载到多泡体(Multivesicular Bodies,MVBs)或质膜,并最终以EVs形式释放到细胞外;C)在脾脏和肝脏中具有较低的毒性,并且具有较低的免疫原性。因此EVs已作为脂质体(Liposome)、纳米颗粒的生物替代品,进入了药物递送领域,用于治疗各种疾病,包括癌症、神经系统疾病(阿尔茨海默病、帕金森病、中风)、传染病(脑膜炎、人类免疫缺陷病毒(HIV)和HIV相关痴呆)、炎症性关节炎、以及自身免疫和心血管疾病(动脉粥样硬化和心脏病等)。受体细胞摄入EVs的过程和机制EVs可以通过多种途径被内化,内化会将外源性EVs靶向典型的内体通路,从而到达多囊泡内体(MVEs)。EVs停靠在MVEs的质膜上,通过膜融合将其内容物释放到受体细胞中。同时EVs也可以直接与受体细胞膜融合,将内容物释放到受体细胞中。EVs还可以通过细胞表面的整合素(Integrins)-细胞粘附分子(ICAM)的结合或抗原呈递等方式,对受体细胞进行细胞信号通路的调节或免疫调节。2研究内容细胞外囊泡(EVs)将纳米颗粒大小与跨越生物屏障的非凡能力、低免疫原性和毒性特征相结合,成为了一类有前途的药物递送系统。因此如何成功应用这种输送生物化合物的自然方式,需要深入了解EV从其母细胞继承的内在特性。因此本文评估了不同来源的细胞释放的EVs,利用其将药物输送到大脑,来治疗神经退行性疾病。本文通过一些检测方法对原代巨噬细胞(mEV)、神经元(nEV)和星形胶质细胞(aEV)分泌的EV的形态、大小、zeta电位、表面蛋白进行鉴定和分析。结果显示与nEVs和aEVs相比,mEVs显示出对炎性组织更高水平的粘附性和靶向性。同时,在帕金森病转基因小鼠模型中,mEVs的大脑积累水平明显高于nEVs和aEVs。因此,mEVs被认为是最有前途的将药物输送到大脑的纳米载体系统。全自动Digital WB表征EVs膜蛋白揭示mEVs高粘附和靶向炎症组织能力HP90(HSP90):热休克蛋白,EVs表面特异性marker;TSG101:四跨膜蛋白,EVs表面特异性marker;Integrin α:整合素α,EVs表面特异性marker;CD11b:属于Integrin β2家族,通常在白细胞(如巨噬细胞)表面表达;CD9:四跨膜蛋白,EVs表面特异性marker。研究结果:本文利用利用全自动Digital Western Blot技术,对不同来源的EVs膜蛋白进行表征,结果显示与nEVs和aEVs相比,mEVs显示出最高水平的四跨膜蛋白和整合素的表达,表明mEVs对炎性组织的粘附性和靶向性更高。在帕金森病转基因小鼠模型中也得到了相同结论。证实mEVs对比nEVs和aEVs而言,是能将药物递送到大脑的更有前途的一种纳米载体系统。其它神经方面的研究请见以下链接:【Science】单细胞蛋白分析技术揭示肠脑神经回路新机制全自动Digital Western Blot揭示多小脑回畸形发病新机制Ella全自动ELISA在神经领域上的应用Wes助力:中科院阎锡蕴课题组协同北大医院神经内科郝洪军主任 共同揭示血脑屏障损伤机制Milo单细胞Western blot开启神经生物学研究新纪元Ella 平台推出神经退行性疾病Biomarker: Nf-L超敏检测方法Wes:定量研究神经退行性病变关键蛋白参考文献:1. Extracellular Vesicles as Drug Delivery System for the Treatment of Neurodegenerative Disorders: Optimization of the Cell Source.2.Shedding light on the cell biology of extracellular vesicles.3.Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System.4.Extracellular vesicles as drug delivery systems: Why and how?5.β2 integrins As Regulators of Dendritic Cell, Monocyte, and Macrophage Function.
  • 1994万!云南中医药大学中医药教育现代化设备更新项目——校级共享平台建设项目
    一、项目基本情况项目编号:ZZ2301862B020368项目名称:云南中医药大学中医药教育现代化设备更新项目——校级共享平台建设项目预算金额(万元):1994最高限价(万元):1994采购需求:标段划分 序号 项目(产品)名称 是否接受进口产品 数量 计量单位 是否是核心产品 采购标的对应的中小企业划分标准所属行业1标段 1 实时单细胞多模态分析系统 否 1 套 是 工业2标段 2 超分辨显微镜 否 1 套 是 工业3标段 3 大小鼠动物行为学分析系统 否 1 台 是 工业 4 清醒自由神经信号采集分析系统 否 1 套 是 工业 5 多色多通道光纤记录系统 否 1 套 否 工业 6 二氧化碳安乐死箱 否 2 台 否 工业 7 移动式微屏障(小鼠) 否 1 套 否 工业4标段 8 离活一体micro-CT成像系统 否 1 台 是 工业5标段 9 高性能计算平台 否 1 套 是 工业6标段 10 二氧化碳培养箱 否 15 台 是 工业 11 三气培养箱 否 1 台 否 工业 12 超净工作台 否 2 台 否 工业 13 生物安全柜 否 10 台 是 工业 14 制冰机 否 2 台 否 工业 15 电冰箱 否 5 台 否 工业 16 低速离心机 否 5 台 否 工业 17 倒置显微镜 否 5 台 否 工业 18 全自动化学发光图像分析系统 否 2 台 否 工业 19 超纯水机 否 3 台 否 工业 20 自增压液氮罐 否 1 台 否 工业 21 真空泵 否 1 台 否 工业 22 防爆冰箱 否 1 台 否 工业 23 全自动图像熔点仪 否 1 台 否 工业 24 荧光定量PCR系统 否 1 台 否 工业 25 多功能荧光成像分析系统 否 1 台 否 工业 26 超低温冰箱 否 1 台 否 工业7标段 27 超高效液相色谱-三重四级杆质谱仪 否 1 台 是 工业注:▲本项目共划分7个标段,投标人必须对所投标段内所有内容作出完整唯一的投标报价,不得缺项、漏项,否则投标文件将按无效处理。具体要求等详见本招标文件第五章《采购需求》。合同履行期限:1标段、3标段、4标段:合同签订后90日历天内完成安装、调试、交付使用和设备使用培训工作,投标人可自报最短合同履行期限(交货期)。 2标段:合同签订后120日历天内完成安装、调试、交付使用和设备使用培训工作,投标人可自报最短合同履行期限(交货期)。 5标段、6标段、7标段:合同签订后30日历天内完成安装、调试、交付使用和设备使用培训工作,投标人可自报最短合同履行期限(交货期)。本项目(否)接受联合体投标。二、获取招标文件时间:2023-11-24 00:00至2023-12-01 23:59,每天上午00:00至11:59,下午12:00至23:59(北京时间,法定节假日除外)地点:云南省公共资源交易信息网(http://ggzy.yn.gov.cn/#/homePage)方式:网上获取招标文件 凡有意参加投标者,请于文件获取截止时间前(北京时间,下同),登录“云南省公共资源交易信息网”(http://ggzy.yn.gov.cn/#/homePage),从投标方入口进入“云南省公共资源交易系统”,使用CA数字证书进行登录,在我要投标模块下【确认投标】菜单中针对要参与投标的项目确认投标。确认投标之后,点击【下载采购文件】菜单,选择参与投标的项目即可查看和下载采购文件(电子招标文件,格式为*.ZCZBJ)及其他附件等文件。未在规定时间内按上述流程获取招标文件的不得参与本项目投标。 注:如果投标人之前已经在云南省公共资源交易信息网进行过注册并办理过企业数字证书(CA),此次无需重复办理,可直接登录云南省公共资源交易信息网(网址:http://ggzy.yn.gov.cn/#/homePage)进行登记并获取招标文件。售价(元):0三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:云南中医药大学地址:云南省昆明市呈贡区雨花路1076号联系方式:刘老师 0871-659197312.采购代理机构信息名 称:云南中医药大学地址:云南省昆明市滇池度假区中天融域小区17幢1单元4楼联系方式:0871-681036623.项目联系方式项目联系人:张艳、子亚萍、吕艺帆、陈洁、杨洁轶、阮斌丽、丁红梅、王军电 话:0871-68103662
  • ​Science | 肿瘤抑制因子选择性失活驱动因素:适应性免疫系统
    肿瘤的发生是一个复杂的适应过程,涉及许多细胞功能的改变,包括细胞分化状态、端粒维持、细胞增殖控制、对营养状态改变的适应、血管生成能力的进化、细胞死亡的避免以及对蛋白质毒性和基因组胁迫的适应等等,这些改变被称为肿瘤的生长生存适应(Growth and survival adaptation,GSA)。在肿瘤发生过程中,肿瘤会通过破坏参与抗原处理和呈递的基因或上调抑制性免疫检查点基因来逃避免疫系统。目前已经通过多种方式鉴定发现了肿瘤中的驱动基因,但是这些肿瘤驱动基因是如何发挥作用的还不得而知。为了揭开这一问题的答案,美国霍华德休斯研究所Stephen J. Elledge研究组在Science发文,题为The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation,揭开了肿瘤中肿瘤抑制因子的选择性失活所依赖的主要驱动因素是适应性免疫系统这一机制。肿瘤驱动基因的鉴定主要包括两种方式,其一是通过遗传和生化的方式分析病毒致癌基因或由病毒插入激活的基因【1,2】,其二是通过鉴定家族性癌症综合征以及其他零星发生的癌症鉴定反复出现的突变【3,4】,更为现代的技术对这些基因的分析会通过转座子、RNA干扰、CRISPR基因编辑技术、cDNA过表达以及高通量测序等检定这些基因潜在的肿瘤发生驱动能力。一直以来,肿瘤的生长生存适应基因的系统功能分析一直是癌症研究的焦点,但是目前的一些遗传筛选主要是在体外培养系统之中,这些二维的体外培养系统能够揭示与肿瘤细胞增殖和生存相关的一些基因,但是对于更为复杂的肿瘤微环境中不同细胞类型以及它们之间的相互作用是无法进行揭示的。除了与肿瘤生长和适应相关的基因促使肿瘤的发生和发展之外,肿瘤燎原之火想要进攻机体还需要克服另外一个障碍那就是免疫系统。肿瘤会想办法逃过免疫系统的威胁,造成免疫监视的适应(Immune surveillance adaptation,ISA)。为了对免疫调控基因进行检测,作者们构建了一个CRISPR文库,可以靶向7500个已知或者潜在的药物靶点基因。首先,作者们使用小鼠乳腺肿瘤模型进行文库转染,在选择细胞群体倍增后或者是皮下肿瘤移植到野生型或者是严重联合免疫缺陷型小鼠之中(图1)。通过该筛选,作者们筛到了一些生长调节相关的基因比如Pten,同时也鉴定发现了一些与抗原呈递以及免疫信号通路相关的因子比如B2m、Jak1等。除此之外,作者们还发现了一些熟悉的肿瘤抑制因子在适应性免疫系统存在的情况下出现富集,这引起了作者们的研究兴趣。图1 筛选免疫调控因子的工作流程图为了排除细胞种类特异性的效应,作者们又用相似的方式对结肠肿瘤细胞中进行了鉴定,随后作者们将目标集中在Gna13、Cul3以及Hdac2这三个因子之上,因为在CT26和4T1筛选中这些基因在野生型小鼠中观察到更强的表型以及它们在调节肿瘤细胞对适应性免疫系统的应答中可能存在一些未知的作用。进一步的,为了验证这些基因的作用,作者们对这些基因进行了敲除,这些基因敲除后对于肿瘤的体外增殖生长能力没有显著的影响,但是会在适应性免疫系统存在的情况下出现肿瘤的生长优势(图2),因此Gna13、Hdac2和Cul3会对适应性免疫系统存在的情况下特异性肿瘤抑制,该结果说明肿瘤细胞与免疫系统之间存在一定的相互作用。图2 Gna13基因敲除后只在适应性免疫系统存在的情况下出现肿瘤生长优势为了提高该结果对于药物靶点的指导性,作者们对一些人类肿瘤中已知突变的肿瘤抑制因子进行系统性CRISPR文库筛选。作者们对前500个预测的肿瘤抑制因子每个设计了10个sgRNAs,在三个不同的肿瘤细胞品系中进行转染,然后将肿瘤细胞移植到野生型或者适应免疫缺陷型小鼠中。当肿瘤长到目的大小时,作者们对其中的sgRNA丰度进行分析,筛选到的结果发现比如B2m或者Hdac2等肿瘤抑制因子会以一种适应性免疫系统特异性的方式促进肿瘤的生长。另外,作者们还鉴定发现了一个编码粘多糖降解相关的酶Gusb【5】,在转入Gusb的sgRNAs后只在野生型小鼠中出现阳性选择性生长,说明Gusb在调节肿瘤对适应性免疫系统中起着非常重要的作用。但是这肿瘤抑制因子是如何在适应性免疫系统特异性中的发挥作用的呢?GNA13的突变先前被报道发现发生在散发性癌症中,既可以作为癌基因又可以作为抑癌基因发挥功能,最常发生在淋巴瘤、子宫内膜肿瘤、膀胱肿瘤和肝癌中【6】。在适应性免疫系统存在的情况下,作者们发现GNA13可以作为肿瘤抑制因子发挥作用,但是具体的机制并不清楚。为此,作者们在结肠肿瘤细胞系中的构建了GNA13敲除品系,然后将这些细胞作为皮下肿瘤植入WT小鼠或在体外培养,并使用RNA-seq进行转录组分析。通过该分析,作者们发现GNA13的缺失会导致Ccl2表达的提高,进而导致CCL2分泌的增加。先前的研究表明CCL2是髓系细胞的招募因子。在敲低CCL2的情况下对肿瘤的生长并没有显著的影响,但是得在GNA13敲除的背景下敲低CCL2则会显著地削弱肿瘤的生长。另外,作者们发现过表达CCL2足以促进结肠癌肿瘤细胞的生长。因此,GNA13的肿瘤抑制功能是通过负调控CCL2的表达实现的。总的来说,该工作发现在肿瘤发生过程中,相对于严重联合免疫缺陷小鼠,适应性免疫系统中存在肿瘤抑制基因缺失的显著富集,并且这一机制是以癌症和组织特异性的方式实现的。该工作说明肿瘤中抑制因子的选择性失活所依赖的主要驱动因素是适应性免疫系统,为肿瘤的治疗以及肿瘤学的研究提供了新的见解。原文链接:https://science.org/doi/10.1126/science.abg5784
  • 7T超高场无液氦磁共振成像系统关键技术通过鉴定
    近日,由中国科学院电工研究所、北京大学、北京斯派克科技发展有限公司联合完成的“7T超高场无液氦磁共振成像系统关键技术”通过中国电工技术学会组织的成果鉴定。中国科学院院士陈维江任鉴定委员会主任,7位行业资深专家组成的鉴定委员会一致认为,该技术成果整体处于国际领先水平。7T超高场无液氦磁共振成像系统。电工研究所供图该成果由中国科学院院士、中国科学院电工研究所研究员王秋良团队完成。成果面向无液氦超高场磁共振成像重大需求,开展了超导磁体传导冷却、超导匀场线圈精准调控、梯度线圈工程优化和超高场射频线圈设计优化等一系列关键技术研究,成功研制出7T超高场无液氦磁共振成像系统,并在生物体成像检测中得到应用。成像系统核心关键技术指标已通过中国计量科学院第三方检测CNAS和APMP认证。7T超高场无液氦磁共振成像系统具有无液氦、轻型化、易维护等特点,能灵活实现系统快速转移和快速安装。同时,成像系统采用超强梯度线圈,大幅度减小了空间编码尺度,图像分辨率提升至十微米量级,满足小鼠等动物的成像检测需求,在临床前动物模型研究当中具有重要应用前景。
  • 文献速递ㅣ动物活体成像系统在白血病耐药机制研究中的应用
    慢性髓系白血病(Chronic myeloid leukemia, CML)是一种由造血干细胞染色体t(9;22)(q34;q11)易位引起,并在分子水平上形成Bcr-Abl融合基因的骨髓增生性疾病。使用酪氨酸激酶抑制剂(Tyrosine kinase inhibitors, TKIs)可以缓解疾病,但TKIs耐药性是治疗失败或诱发急性白血病的主要问题。根据Abl激酶结构域点突变的不同,TKIs的耐药机制主要包括Bcr-Abl依赖型和非Bcr-Abl依赖型。Bcr-Abl依赖型的耐药性最常见,它会干扰小分子酪氨酸激酶抑制剂伊马替尼(Imtatinib, IM)结合和随后的激酶抑制。然而,超过50%的耐药CML患者中并没有Bcr-Abl突变。▲ 慢性髓系白血病蛋白激酶C(Protein kinases C, PKCs)在细胞周期调节、增殖、凋亡和造血干细胞分化等多种细胞过程中发挥作用,并和Bcr-Abl协调参与对恶性细胞转化至关重要的几种信号通路。实验和临床证据表明,使用PKC抑制剂可以有效地治疗CML。最近,不同的PKC亚型也被报道参与CML细胞的耐药,但是,PKC信号在CML TKIs耐药中的作用并不清楚。▲ 蛋白激酶C的晶体结构近日,贵州医科大学王季石教授课题组根据先前的研究结果:一种泛PKCs抑制剂星孢菌素(Stauroporine)在低浓度下可以有效地逆转K562R细胞(没有任何突变)的IM耐药,因此推测Bcr-Abl非依赖型IM耐药可能是由PKC亚型介导。在此基础上,鉴于白血病干细胞(Leukemia stem cells)在CML TKIs耐药中起基础性作用,研究首次在Bcr-Abl非依赖型TKI耐药的CML患者CD34+细胞中检测到9种PKCs亚型的表达。对PKC亚型异常表达所介导的机制进行深入研究时,使用博鹭腾AniView100多模式动物活体成像系统拍摄的活体成像实验结果,从体内进一步证明PKC-β的过表达与肿瘤耐药密切相关,表明靶向PKC-β过表达可能是克服CML耐药的一种新的治疗机制。相关成果已发表在期刊《Journal of Cellular Physiology》。▲抑制PKC-β可增强IM对CML细胞的体内杀伤作用(a) 博鹭腾AniView100拍摄的不同药物处理的CML小鼠模型中白血病细胞的活体示踪成像图。LY333531: PKCβ 抑制剂。(b) 流式细胞仪检测各组小鼠CD33+和CD45+细胞。(c) 直方图显示流式细胞仪检测的各组小鼠CML细胞的差异。(d) 各组小鼠的生存曲线。(e、f) 比较各组小鼠脾脏体积和重量。(g、h) Wright‘s染色检测各组小鼠外周血中CML的进展情况。统计学处理采用t检验。**表示p0.01,*表示p0.05。参考文献1、Ma D, et al. PKC‐β/Alox5 axis activation promotes Bcr‐Abl‐independent TKI‐resistance in chronic myeloid leukemia[J]. Journal of Cellular Physiology, 2021.2、Zubair M S, et al. Cembranoid Diterpenes as Antitumor: Molecular Docking Study to Several Protein Receptor Targets[C]// International Conference on Computation for Science & Technology. 2015.
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制