当前位置: 仪器信息网 > 行业主题 > >

小鼠气管插管平台

仪器信息网小鼠气管插管平台专题为您提供2024年最新小鼠气管插管平台价格报价、厂家品牌的相关信息, 包括小鼠气管插管平台参数、型号等,不管是国产,还是进口品牌的小鼠气管插管平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠气管插管平台相关的耗材配件、试剂标物,还有小鼠气管插管平台相关的最新资讯、资料,以及小鼠气管插管平台相关的解决方案。

小鼠气管插管平台相关的资讯

  • 北京大学李文哲博士:双光子显微成像技术应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为北京大学天然药物及仿生药物全国重点实验室李文哲博士供稿。双光子吸收的理论概念是1931年由德裔美国物理学家Maria Göppert-Mayer在她的博士论文中提出。到1960年,激光器被发明出来后双光子吸收在实验上被验证,但是直到1990年第一台双光子荧光显微镜才被美国康奈尔大学的Denk、Strickler和Webb开发出来,Denk很快就将双光子显微镜用于神经元成像。1997年,美国科学家Svoboda利用双光子显微镜测量完整老鼠大脑的锥体神经元,并记录其感官刺激诱导树突钙离子动态,自此双光子显微镜的潜能开始完全凸显。时至今日,双光子显微系统在神经科学、肿瘤学、心脑血管及药物研究等领域有了极大的发展,近年来,光遗传光刺激也更多地和双光子技术结合,广泛地应用于清醒小动物领域。双光子成像的原理和优势特点双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。图1.双光子激发原理(左)及双光子吸收现象(右)从双光子现象的原理,我们可以总结出双光子成像的特点及其相对于共聚焦成像的优势:1.光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对活体细胞和组织的光损伤小,适用于长时间的活体研究;2.穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力(图2),因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题,常规情况下,共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米;3.高分辨率:同时吸收两个光子意味只有高强度聚焦点处能被激发,由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收仅局限于焦点处的体积约为波长3次方的范围内;4.荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦针孔),这样就提高了对荧光的收集率;5.图像对比度高:由于双光子激光波长较长,瑞利散射产生的背景噪声只有单光子激发时的1/16,大大降低了散射的干扰(图2);6.避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的吸收波长一般在350-560nm范围内,采用近红外或红外波段的激光作为光源,能大大降低生物组织对激发光吸收(图2)。图2. 不同波长下的光穿透深度、光散射以及内源性物质对光的吸收情况基于以上优势,双光子显微镜自发明30年来,已成为较厚组织及活体动物显微成像中不可或缺的工具。我们平台双光子显微镜常用的应用研究如,在神经科学领域用于脑神经和脑血管成像,通过开颅对麻醉小鼠完整V层锥体神经元和更深层的海马神经元的三维结构进行深层成像,对脑血管进行高速动态实时成像;在肿瘤研究中,对于肿瘤细胞及肿瘤微环境中免疫细胞的行为进行成像;在药物研究中,对于药物在肿瘤或脏器中的靶向、释放及代谢等动力学行为进行实时可视化成像;得益于平台双光子显微镜双脉冲激光(一根700-1300nm可调激光,一根1040nm固定谱线激光)的配置,可进行双通道同时成像,特别是适用于比率型荧光生物传感器的研究,如果利用一根激光作为刺激光源,可进行边刺激边成像实验。双光子显微成像的“搭档”双光子显微镜用于活体动物的原位显微成像,为保证实验动物在成像时保持稳定且维持正常的生理状态,往往需要搭配一些辅助成像的设备或者配件。以下为我们常用的几种双光子成像辅助配件:1、可移动麻醉机进行双光子活体动物成像实验时,为保持动物处于稳定状态,需对其进行持续麻醉。吸入式麻醉起效快,麻醉效果稳定,麻醉的深度和维持时间易控制,麻醉撤离后动物复苏快,最重要的是其不会影响动物的生理指标,被认为是啮齿类动物最可靠的麻醉方式。异氟烷气体吸入式麻醉是目前国际惯用的麻醉方式,研究表明,异氟烷麻醉能维持动物的心率、血氧分压、血液pH等生理功能处于稳定状态,适合情况复杂且持续时间较长的动物实验,包括对小动物进行连续成像。因此小动物可移动麻醉机是双光子显微成像实验中必不可少的辅助设备。本平台配备的小动物可移动麻醉机适用于大鼠、小鼠、豚鼠,可保证动物在成像的同时进行可控的持续麻醉。2、小动物成像视窗由于光吸收和光散射,目前双光子成像深度≤1 mm。因此对于活体动物器官的成像一般需手术暴露成像部位。众所周知,大多数的生理和病理过程发生在较长时间内,需连续几天或更长时间内对同一只动物多次成像。因此对于双光子活体成像,待观察组织的暴露及固定技术非常重要。此外,正置双光子显微镜常用水镜,小鼠活体成像过程中会因稳定性不足发生抖动,造成样品与物镜间的水缺失,而活体动物自身的呼吸和心跳等影响因素也会造成成像焦面的丢失,一旦失焦,重新进行对焦十分耗时,大大影响成像的效率。基于以上问题,对于动物成像部位的维持与固定有非常高的要求,固定装置不能对动物有太大的损伤,既要保证能够得到清晰的图像,还要保证动物生命体征正常。目前已有多项研究通过构建和使用双光子活体成像窗口,实现对不同脏器进行固定和长期成像,其中脑部颅骨薄窗成像技术较为成熟,因其远离心脏的位置优势,前处理和固定相对较容易,结合荧光标记物已广泛应用于脑神经科学相关研究。腹部器官如肝脏、淋巴组织、肠、脾脏和肾等都很软且血管密布,由于解剖位置不同,缺乏可以固定成像窗的骨骼结构,给窗口适配器的固定增加了难度;而且腹部脏器普遍离心脏较近,拉伸距离有限,更需要较好的固定和麻醉来抵抗心跳造成的图像抖动。因此腹部器官的活体成像更具挑战性,固定适配器往往需根据具体实验自制或定制。3、气管插管工具及呼吸机对于小动物肺部成像或心脏成像,需对其进行开胸手术,为维持动物正常的生理活性,满足呼吸代谢的需求,一般借助呼吸机对其进行有节律的肺部供气。呼吸机的本质就是一种气体开关,控制系统通过对气体流路的控制而完成给实验动物肺部供气,保持实验动物生理活性的设备。而气管插管是呼吸机辅助呼吸的重要步骤,顺利的气管插管是实验成败的关键之一。气管插管(以下简称插管)是指将一特制的气管内导管经声门置入气管,进而打开小动物呼吸道,为气道通畅、通气供氧等提供最佳条件。气管插管推荐使用静脉留置针的套管,大鼠一般使用16-18G套管,小鼠一般使用22-24G套管。我们平台一般使用光纤辅助法经口插管,操作过程中先将动物固定到一个倾斜的平板上,光纤插入到气管插管中,然后利用这种带光源的气管插管在明视野条件下经口腔插入动物的气管,然后拔掉光纤,用专用的气泡接到气管插管中,吹泡检测是否气管插管到达需要的位置,如果确认插管到位,再将气管插管与呼吸机的Y型接口相连。光纤辅助法也是目前插管最快,成功率最高的方法,同时对动物的损伤小,对操作人员的技能要求低。国产双光子显微镜的现状和未来双光子显微镜目前已广泛应用于神经科学、肿瘤研究、免疫学、病毒学、化学生物学等研究领域,在基础科研和临床前研究中都有着不可替代的重要地位。一流的科研离不开一流的技术,但由于我国在显微镜行业起步较晚,当前我国高端双光子显微镜市场仍大多依赖进口,深度精密制造、光学核心部件设计及工艺严重制约产业升级,国内具备生产高端显微镜的企业屈指可数,必须承认的是国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。我们平台的高端显微镜目前全部为进口品牌,在使用过程中一旦出现核心部件的严重的故障,涉及到需要连线国外厂家维修和维权非常不顺畅,耗费大量的人力和时间成本,严重影响了科研进度,面对此困境,国产高端显微镜的自立自强迫在眉睫。令人欣喜的是,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作。目前产品已销售到以色列耶路撒冷希伯来大学、北京大学分子生物研究所、中国科学院上海生命科学研究院神经科学研究所等国内外多家高校及研究所。2017 年,北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。该成果获得了中国科技部评选的2017年度“中国科学十大进展”,同时与其他自由运动成像技术被Nature Methods杂志评为2018年度方法——“无限制行为动物成像”。2021年,该团队在Nature Methods上报道了第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的第一代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。目前该技术已产品化并销往海内外,销售额过亿。值得一提的是,2023年2月27日,该团队研制的空间站双光子显微镜随神舟十五号进入太空,航天员乘组使用空间站双光子显微镜开展在轨验证实验任务,成功获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。近五年来,国产高端显微镜科技成果产业化的飞速进步给了我们很多惊喜,也在逐渐努力打破当前被进口仪器垄断的市场格局。但由于我国显微镜行业起步较晚,发展缺乏技术沉淀,因此在核心部件设计、工艺及精密制造上仍与国外拥有百年历史的显微镜厂商有较大差距。未来,随着国内显微镜仪器行业新产品层出不穷,对光学元件组件加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术要求越来越高,只有解决了这些问题,才能将高端显微镜的知识产权和核心技术牢牢掌握在自己手里,以期真正实现高端显微镜的自主创新和国产替代。关于北京大学天然药物及仿生药物全国重点实验室生物影像平台在科技部国家重点实验室仪器专项和双一流学科建设经费的支持下,实验室建立了配套齐全、设备先进的大型仪器研究技术平台,设备总值约3.6亿元,按功能分为10个子平台,可为生物医学研究和新药研发提供全链条技术支持。其中,生物影像平台技术精专、设备一流、开放性强、是一个为科研人员提供合作研究和技术交流的多功能研究技术平台。生物影像平台拥有成熟的高内涵成像分析技术、STED/STORM/Airyscan超高分辨成像技术、共聚焦成像技术、双光子成像技术、多光谱全景组织切片成像及表型分析技术、小动物光学成像技术、多模式小动物光/超声成像技术等,同时平台集成了Imaris、Aivia、inForm、Nis-element、AutoQuant X3等多种智能图像处理分析软件,建立完备的图像分析工作站,获取大量基于图像的生物信息分析数据。平台成功建成从分子到细胞、组织、动物完整的生物成像及分析体系,已广泛应用于校内外的分子及细胞生物学研究、免疫学研究、疾病研究、原创药物研发及高通量药物筛选、新型纳米功能材料研究等领域。主持多项国家级课题和校级技术类开放课题,不断开发或拓展成像技术的应用领域,积累了丰富的生物成像研究经验。本成像平台目前的研究方向及技术服务内容有:1. 核酸、蛋白、糖类等生物分子的成像及相互作用分析;2. 细胞生物学成像及细胞器的动态相互作用超高分辨成像与分析;3. STED、STORM、Airyscan超分辨成像技术;4. FRET、FRAP、TIRF等成像技术及分析;5. FLIM、FLIM-FRET、FCS成像及定量分析;6. 信号传导通路分析及分子定位分析;7. 细胞内药效学及药物动力学可视化评价;8. 组织病理切片制备、染色、免疫组化、多色免疫荧光;9. 组织切片全景扫描、多色免疫组化荧光成像与空间组学分析;10.双光子小动物活体原位细胞动态成像;11. 小动物活体光学/超声/光声成像及活体中的药效、药物动力学评价等。
  • 1180万!海南大学采购共聚焦显微镜、高内涵系统等仪器,部分仅限国产!
    7月7日,某招标采购网站上发布海南大学采购激光共聚焦显微镜、高内涵成像系统、流式细胞仪等仪器的项目,项目总计金额超过1180万元。其中全自动生化分析仪,二氧化碳培养箱到水浴箱要求为国产。以下为详细招标信息:招标单位:海南大学招标产品:液相色谱质谱联用仪 ,石英晶体微天平 ,切片机 ,水浴/油浴/恒温槽 ,移液器/移液枪 ,共聚焦显微镜 ,生物显微镜 ,流式细胞仪/细胞分析仪 ,动物麻醉机 ,生化分析仪 ,液氮罐 ,生物安全柜 ,CO2培养箱/二氧化碳培养箱 ,血液分析系统 招标编号:HD2022-1-027流式细胞分析仪等招标公告招标编码为【HD2022-1-027】,招标项目内容包括【流式细胞分析仪、激光扫描共聚焦显微镜、高内涵筛选系统、全自动生化分析仪、移液器、液相色谱/三重串联四极杆质谱联用系统、全自动模块式动物血液体液分析仪、电子天平、生物显微镜、二氧化碳培养箱、生物安全柜、小动物麻醉机、液氮罐、水浴锅、切片机】,投标截止到【2022-07-26 08:30】,欢迎合格的供应商前来投标。项目编号:HD2022-1-027项目名称:药学院美安实验平台设备购置一、采购需求:包号采购品目名称数量预算(万元)A激光扫描共聚焦显微镜1260B高内涵筛选系统1265流式细胞分析仪198.8C超高效液相色谱/三重串联四极杆质谱联用系统1260D全自动模块式动物血液体液分析仪170全自动生化分析仪131.5E自发行为记录分析系统127F包:171.35 万元序号采购品目名称数量预算(元)1全自动脱水机13120002石蜡包埋机11840003全自动石蜡切片机12090004倒置显微镜1990005体视显微镜1620006生物显微镜1960007二氧化碳培养箱2398008生物安全柜3395009双开门冰箱2450010灭菌锅14200011烘箱1580012显微镜17500013台式低速离心机2750014水浴锅2180015掌上离心机5160016涡旋仪2120017液氮罐2780018防爆柜1450019大容量离心机22000020培养箱12000021二氧化碳培养箱12000022生物安全柜13500023小动物麻醉机23500024小动物呼吸机22500025大小鼠耳标钳3100026大鼠脑模具2300027小鼠脑模具2300028大鼠心模具2350029小鼠心模具2350030大鼠气管插管套装2230031小鼠气管插管套装2210032小鼠固定装置650033大鼠固定装置650034兔固定装置1030035犬固定装置3400036小型无影灯11000037消毒喷雾机5100038电子天平(1g)250039电子天平(0.1g)3100040电子天平(0.001g)1400041电子台秤(10g)2200042电子体温计410043电子数显游标卡尺1100044冰箱(4度)11190045冰箱(-20度)11060046冰柜(-20度)1980047单道可调量程移液器1170048单道可调量程移液器1170049单道可调量程移液器1170050单道可调量程移液器1170051单道可调量程移液器1170052单道可调量程移液器1170053电动移液器1280054水浴箱15000包D中的全自动生化分析仪,包F中的二氧化碳培养箱到水浴箱国产,其余允许进口。本项目不接受联合体投标。合同履行期限: 非进口产品合同签订后30天内交货且安装调试完毕,进口产品合同签订后90天内交货且安装调试完毕。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:1、如投标人不是所投产品生产厂家的,属于三类医疗器械的须具有医疗器械经营许可证,属于二类医疗器械的须具有医疗器械经营备案凭证 2、所投产品属于二、三类医疗器械产品的须具有医疗器械注册证、医疗器械生产许可证(若所投产品为进口产品,则无需提供医疗器械生产许可证) 属于一类医疗器械产品的须具有产品备案登记凭证、生产企业备案登记凭证(若所投产品为进口产品,则无需提供生产企业备案登记凭证)。三、获取招标文件时间: 2022年07月06日00时00分 至 2022年07月12日23时59分(提供期限自本公告发布之日起不得少于5个工作日)(北京时间,法定节假日除外)。地点:全国公共资源交易平台(海南省)(http://zw.hainan.gov.cn/ggzy/)方式: 网上购买售价: 0元四、提交投标文件截止时间、开标时间和地点2022年07月26日08时30分(北京时间) 地点: 海南省公共资源交易服务中心(海口市国兴大道9号)202 开标室。五、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:海南大学企业信息 地 址:海南省海口市美兰区人民大道58号联系方式:赵老师0898-662790302.采购代理机构信息名 称:中科高盛咨询集团有限公司地 址:海南省海口市龙华区金贸中路1号半山花园海天阁第32层3238房联系方式:蔡广杰0898-685910773.项目联系方式项目联系人:蔡广杰电 话:0898-68591077六、采购项目需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》、《财政部印发通知进一步加大政府采购支持中小企业力度》、《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》、《关于信息安全产品实施政府采购的通知》、《关于促进残疾人就业政府采购政策的通知》、《财政部 司法部关于政府采购支持监狱企业发展有关问题的通知》、《关于政府采购支持绿色建材促进建筑品质提升试点工作的通知》、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》、《海南省财政厅关于印发《海南省绿色产品政府采购实施意见(试行)》的通知》、《海南省财政厅 海南省工业和信息化厅关于落实超常规举措加大对中小企业政府采购支持的通知》。
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
  • 岛津微焦点X射线CT助力动物实验-小鼠股骨CT观察
    现在的研究中经常需要动物实验提供数据支持,这些研究包括对骨病的研究、药物管理评价和代谢中的脂肪测量等。实验对象的动物有大、小鼠和兔子等。 X射线CT系统通常用于观察和分析小动物的骨骼,人类或小动物的牙齿。对小动物的观察包括活体动物的CT成像,猝死动物整体或切除部位的体外CT成像。 本案例介绍了利用inspeXio SMX-100CT Plus采集的小鼠股骨CT图像(体外)数据以及其三维解析结果。 图1. 岛津微焦点X射线CT inspeXio SMX-100CT Plus 对小鼠股骨的观察 使用inspeXio SMX-100CT Plus微焦点X射线CT系统(图1)进行数据采集。该设备采用密封式微焦点X射线发生源,最大输出电压为100 kV,图像亮度高,可对树脂、药物、骨骼等软材料在高放大倍数下进行三维观察。图2为小鼠股骨。红色矩形框部分是股骨,红色矩形框右侧的是胫骨。图3显示了小鼠股骨的原理图。股骨由近端、股骨本身和远端三部分组成。近端肢体与臀部骨共同构成髋关节。远端肢体与胫骨共同构成膝关节。本标本观察是股骨远端离体成像的一例。图2.小鼠股骨照片 图3 小鼠股骨的原理图 图4为骨骺的横断面图像,图5为骺端和干骺端横断面图像,图6为干骺端的横断面图像。在干骺端横断面上,圆形骨区为皮质骨,内部网状区为骨小梁。使用inspeXioSMX-100CT进行锥束扫描,一次即可获得区域内所有的横断面图像,还可以连续进行图像观察。 图4骨骺的CT图像图5骺端和干骺端的CT图像图6 干骺端CT图像 图7为MPR(多平面重构)图像,MPR显示的是在虚拟空间中堆叠的多个CT图像。 图7 小鼠股骨MPR图像 图8 小鼠股骨的三维图像 小鼠股骨分析 使用X射线CT获取图像,不仅可以进行横断面和三维观察,而且可以单独提取感兴趣区域进行观察,并测量骨的厚度。 图9 小鼠股骨三维图像 图10~14显示小鼠股骨皮质骨、骨小梁及皮质骨内血管的扫描结果,图像处理为某软件公司的TRI/3D-Bon骨结构分析软件。 图10 白色:皮质骨和骨小梁红色:皮质骨中的血管绿色:生长板软骨 图11 白色:骨小梁红色:皮质骨中的血管绿色:生长板软骨 图10、11中白色为皮质骨和骨小梁、红色部分为皮质骨中的血管、绿色部分为生长板软骨,图10中皮质骨在外观上是半透明的。 图12 骨小梁和生长板软骨图13 提取的生长板软骨图14 皮质骨和骨小梁厚度的测量 图13是提取的成长板软骨。图14是对提取的皮质骨和骨小梁测量出的厚度结果,从外观上使用不同颜色标示出各不相同的薄、厚部分。 结论 使用inspeXio SMX-100CT Plus不仅可以对小鼠股骨结构进行三维观察,而且可以通过其它分析软件提取感兴趣区域,并测量、评价皮质骨和骨小梁的厚度。 另外,针对专用软件(例如TRI/3 DBON),可利用BMD模型(骨矿定量) 将影像数据的亮度值转换为CT值,分离出皮质骨和骨小梁,获得皮质骨和骨小梁各自的BMD值。因此,在骨成像后,用BMD模型代替骨成像来建立分析曲线是可行的。(此应用只可针对特定第三方软件进行。)
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism &hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • Nature 、Cell !微量给药套管助力发表高分文献合集来啦~
    什么是微量给药套管?微量给药套管又称脑立体定位仪埋植管,通过脑立体定位手术将定制的导管埋植到动物的目标脑区,通过连接注射器可实现对特定脑区的反复定量给药。产品多种规格适用于单侧或双侧给药,一次埋植实现多次给药,减小由多次手术带来的动物脑部损伤。 截至2024年4月,瑞沃德微量给药套管已助力发表文献超过500篇。我们整理了一份高分文献合集,包含5篇发表在不同期刊的文章,这些文章均使用瑞沃德微量给药套管得到了理想的实验结果。 01内容简介两种类型的多棘投射神经元 (dSPN 和 iSPN)中的蛋白激酶 A(PKA) 活性对于正常运动至关重要。dSPN 和 iSPN 之间不平衡可能导致运动障碍。急性腺苷积累与多巴胺释放相互作用,协调 SPN 中的 PKA 活性和动物运动过程中的适当纹状体功能。研究直接检测了运动过程中体内 SPN 的 PKA 活性。多巴胺激活了 dSPN 中的 PKA,而iSPN 中的 PKA 活性表现出更大的增加。腺苷在运动过程中急剧积累。当腺苷 A2A 受体被阻断时,iSPNs PKA 活性的增加在很大程度上被消除。因此腺苷是参与此过程的另一种神经调节剂。急性腺苷积累与多巴胺释放相互作用,协调 SPN 中的 PKA 活性和动物运动过程中的适当纹状体功能。了解多巴胺和腺苷在 PKA 调节中的相互作用,可能会为治疗运动相关疾病开辟新途径。套管应用场景在特定脑区预先埋置给药套管(图a - cannula)以满足同时成像和局部用药,以 0.1 μl/min 的速率连续注入药物。通过紧邻引导插管植入的输注插管注射时长超过10 分钟。在局部输注之前和之后20分钟对动物进行强制运动。然后通过比较两种不同条件下运动诱导的 PKA 活性来确定局部输注药物的效果。 02内容简介单次全身注射后,氯胺酮持续抑制爆发放电并阻断外侧缰核 (LHb) 中的 NMDAR 长达 24 小时。NMDAR 的这种长期抑制并非由于内吞作用,而是取决于 NMDAR 中氯胺酮的使用依赖性捕获。通过激活 LHb 并在不同血浆氯胺酮浓度下打开局部 NMDAR,利用氯胺酮与 NMDAR 相互作用的动态平衡,能够缩短或延长氯胺酮体内的抗抑郁作用。套管应用场景小鼠双侧LHb脑区埋置给药套管(图d),每侧以每 2.5 分钟 0.1 μl速率注射1 微升Ketamine 或 memantine药物。在药物输注后24小时、7天或14天对小鼠进行行为测试。 03内容简介微生物组调节小鼠特定大脑区域的神经元活动,以调节典型的应激反应和社会行为。通过微生物组分析和体内选择,研究人员鉴定出粪肠球菌促进社交活动并降低社交压力后小鼠的皮质酮水平。本研究表明特定的肠道细菌可以抑制下丘脑-垂体-肾上腺(HPA)轴的激活,微生物组可以通过介导大脑应激反应的离散神经元回路影响社会行为。套管应用场景在ABX hM4Di 和 mCherry 小鼠不同脑区预先埋置给药套管。将微量给药套管植入 PVN 脑区以输送 VEH 或 CRF,比较小鼠的非社交活动。在 DG 和 BNST 脑区注射VEH、CORT 或 DEX(图r - s)。 04内容简介在唐氏综合症背景下,人血浆中的β2-微球蛋白(B2M)升高,损害认知和突触功能,B2M 的外周耗竭可改善突触缺陷。文章证明B2M通过与 GluN1-S2 环相互作用拮抗NMDA受体功能,使用竞争性肽阻断 B2M-NMDAR 相互作用可恢复 NMDAR 依赖性突触功能。通过阻断 B2M-NMDAR 相互作用可纠正突触缺陷。证明 B2M 是一种内源性 NMDAR 拮抗剂,揭示了循环 B2M 在唐氏综合症和相关认知障碍的 NMDAR 功能障碍中的病理生理学作用。套管应用场景小鼠双侧海马CA1脑区埋置微量给药套管(图A),并注射入兔抗B2M抗体或对照,连续注射4周,每周注射一次,最后一次注射后五天,对小鼠进行行为测试和电生理学研究。 05内容简介本研究发现了丘脑和初级听觉皮层(A1)的环路,该环路涉及小清蛋白中间神经元( PV-IN )和丘脑输入,在抗应激方面发挥着至关重要的作用。具体来说,该回路调节个人从长期社会压力中恢复并保持心理健康的能力。此外,内侧膝状谷氨酸能神经元的早期超极化有助于应激恢复。套管应用场景微量给药套管埋置在 A1脑区 (AP: 2.45 mm, ML: ±4.30 mm, DV: 0.70 mm),通过连接注射泵以0.2 mL/min的速率向 A1 脑区注射 BIC、D-AP5、CNQX 或生理盐水。待药物扩散后对小鼠进行行为学实验(图M-O)。 引用文献1.Ma, L., Day-Cooney, J., Benavides, O.J. et al. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 611, 762–768 (2022).2.Ma, S., Chen, M., Jiang, Y. et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 622, 802–809 (2023).3.Wu, WL., Adame, M.D., Liou, CW. et al. Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595, 409–414 (2021).4.Gao Y, Hong Y, Huang L, Zheng S. et al. β2-microglobulin functions as an endogenous NMDAR antagonist to impair synaptic function. Cell. 2023Mar 2 186(5):1026-1038.e20.5.Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, Zhu XH. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell. 2023 Mar 30 186(7):1352-1368.e18. 更多其他类型长期给药途径植入式缓释泵体积小,操作方便以精确稳定的速率持续给药可选给药种类和给药时间种类多应用于脑部、血管、腹腔等多场景给药 采血给药系统用于对实验动物静脉,动脉,胆管进行多频次、长周期的给药或采血操作降低因反复针刺给实验动物带来的感染风险可以有效减少动物应激反应,满足动物福利要求通过连接注射泵实现精确的定量给药或采血操作 应用于药理、毒理、药代动力学、代谢和成瘾等研究中长周期、多频次的采血给药操作。
  • 广州健康院电镜平台:看清细胞里的“小宇宙”
    “作为一种高端科学仪器,电子显微镜在细胞学研究中发挥着至关重要的作用,助力科学家们深入探索细胞这一‘小宇宙’的功能与奥秘。”中国科学院广州生物医药与健康研究院(以下简称广州健康院)分析测试中心电子显微成像技术平台(以下简称电镜平台)负责人、高级工程师李合英对《中国科学报》表示。针对广州健康院特色研究领域,电镜平台在动物组织、细胞、病毒和蛋白等大颗粒样品的处理上进行了上百次技术优化,重点支撑了细胞谱系及发育、感染与免疫、蛋白解析等方向的多项重大科研项目顺利开展。记者了解到,依托该平台开展生物样本超微结构分析,发表了国际知名刊物论文100余篇。助力细胞超微结构功能探索为了寻找预防和治疗脑梗死的药物,广州健康院研究员潘光锦团队通过研究脑缺血动物模型,确认研究药物的疗效及作用机制。在此过程中,需要对神经元的亚细胞器以及神经突触等超微结构深入到纳米级进行观察。常规的光学显微镜分辨率无法达到分辨突触前后膜的尺度,需要利用电镜技术进行确认。李合英十年如一日,系统地研究和掌握了各类生理病理性组织器官的电镜制备特点,练就了高超的电镜样品制备技术和高水平结构解析能力。她聚焦线粒体和自噬体超微结构,对神经干细胞移植后的发育情况进行观测,帮助研究团队揭开脑缺血谜题,并揭示了脑缺血神经元损伤修复的生理机制。为了追踪肠道炎症的发病机制,揭示磷酸肌醇-3-激酶3(pik3c3)突变对肠道发育的影响,李合英利用电镜超微结构成像技术,对野生型和突变品系肠道的不同发育阶段进行超微结构研究,确定了引起突变体肠道炎症表型的罪魁祸首,成功攻克了常规病理不能解决的难题。最终与研究团队一起建立了新的肠道炎症模型,为寻找临床新靶点奠定了理论基础。据了解,电镜平台自成立以来,在细胞谱系超微结构解析、病毒感染免疫机制探索、蛋白质结构解析、药物研发生物验证等研究方向开展项目研究和超微结构观察,先后揭示了神经细胞、心肌细胞、肝细胞、肾脏细胞等多种细胞类型的不同超微结构特征,为细胞超微结构的功能研究提供了重要证据,为相关疾病机理的探索提供了重要支撑。广州健康院聚焦生物医学与生命健康领域,其研究对象包括细胞、类器官、小鼠、兔子以及大动物模型猪和猴子等。“研究这些模式动物时,对其生理或病理结构的直观呈现十分重要,需要借助电子显微镜进行观测,来完成实验理论的验证,并最终指导医学应用。”李合英说。支撑多项重大科研项目开展作为“十四五”期间广东获批建设的5个大科学设施之一——人类细胞谱系大科学研究设施,有望成为探索人类生命的“导航员”。广州健康院副院长(主持工作)孙飞表示,基于已取得的干细胞及相关细胞图谱研究成果,广州健康院积极推动建设了人类细胞谱系大科学研究设施。他充分肯定电镜平台在设施预研和建设过程中的重要支撑作用,为多种谱系细胞的超微结构和形态功能鉴定提供了标准化工艺制备流程。在感染与免疫领域研究中,对病原体结构以及病原感染机制进行研究十分重要。由于病原体多为纳米级的病毒颗粒,无法在光镜下进行结构解析,必须借助电镜进行形态学鉴定和分类。呼吸疾病全国重点实验室教授陈凌表示“电镜观察对于病原体的确认必不可少”。另外,病原体对细胞的感染机制研究也需要清楚整个感染过程和包装机制,只能借助超微切片来观察细胞内部病毒与亚细胞器的相互作用。2020年新冠肺炎疫情爆发时,广州健康院联合广州海关、呼吸疾病重点实验室等单位迅速组织开展攻关研究。通过透射电镜的观察和鉴定,首次从广州患者的粪便和尿液中鉴定出具有活性的新冠病毒,为新冠肺炎的防控策略制定提供了理论依据。与此同时,李合英帮助科研人员确定病毒形态类型和来源追溯,对防疫工作的开展提供了有力支撑。细胞外囊泡是一种很有应用前景的临床液体活检工具。中国科学院院士、广州国家实验室常务副主任徐涛团队对肿瘤细胞来源的细胞外囊泡进行检测有望可以帮助诊断早期癌症,提高早期筛查的准确性。在细胞外囊泡的提取与表征研究中,李合英对样品进行制备和观察,最终确定了体外制备样品的纯度、粒径以及分散度,为临床活检应用提供了细胞外囊泡的全面评估基础。“近10年来,电镜平台支撑国家重点专项、中国科学院先导专项、省市重点研发专项等各类项目超过100项。”李合英表示,电镜平台通过大量的技术条件优化,建立了一套完善的生物样品透射电镜标准检测流程,并在此基础上进行特异性蛋白标记技术的探索,解决了生物样品纳米级超微结构检测和特异性蛋白标记的问题。助力生物医药产业高质量发展自主研发的1类新药奥雷巴替尼片(耐立克)已正式获得国家药品监督管理局的上市批准,打破了中国携T315I突变耐药患者的治疗瓶颈,解决无药可医的困境;抗结核新药TB47已经完成临床I期研究,与氯法齐明疗法结合形成“新药+老药”的组合,形成加速治愈耐药结核病的“中国疗法”,提升我国在国际结核病防控领域的影响力;自主设计研发的肿瘤相关抗原重定向开关型CAR-T细胞,为提高CAR-T的持续性以及新型CAR-T的研发提供了新思路,对实体瘤的治疗有希望取得进展……“这些新药的自主研发过程中,从病原微生物鉴定到细胞培养,再到动物模型验证都离不开电子显微成像的技术支撑,获得了关键的纳米超微结构鉴定数据。”李合英表示,特别是药物的研发与筛选体系(类器官),脂质体疫苗递送系统鉴定,新型干细胞制剂制备,疫苗的生产等方面都离不开电镜超微结构的鉴定支撑。广州健康院生物医学数据与超算中心主任、分析测试中心主任陈朝明表示,电镜平台作为一个关键的技术支撑体系,是科学实验稳定运行的基本保障,是科研创新原始突破的重要验证,对科技协同创新的质量和效率具有重要影响作用。生物医药产业是广州市重点发展的战略性新兴产业之一。陈朝明表示,电镜平台以开放共享推动企业创新,赋能粤港澳大湾区生物医药产业创新发展,累计为华南区域40余家企事业单位做出了高质量的技术支撑服务,覆盖生物体基本结构和功能解析、药物鉴定、病原体鉴定、药物研发等领域。记者了解到,该平台还支撑广州健康院先后获得国家自然科学奖二等奖2项,广东省自然科学奖7项,为提升国家战略科技力量的整体效能作出了应有贡献。
  • 伯桢生物-徕卡显微类器官智能成像开发平台战略合作签约暨2023类器官技术与成像研讨会
    2009年荷兰科学家使用徕卡显微镜拍摄了成体干细胞来源的类器官的宽场和激光共聚焦图片。2011年伯桢生物创始人团队在清华大学重现了类器官技术,十年磨一剑于2021年创立伯桢生物,利用全球领先的类器官模型构建能力推动医药创新。在类器官模型技术快速增长和广大用户的迫切需求下,徕卡显微的类器官成像解决方案和伯桢生物类器官培养方案将携手建立多维成像平台,带大家进入类器官技术的新纪元。2023年6月6日,伯桢生物与徕卡显微类器官智能成像开发平台战略合作签约仪式在苏州伯桢生物讲堂举行,诚邀您出席。2023年6月6日 13:30-16:30苏州工业园区腾飞苏州创新园塔楼B811室日程安排线上直播日程长按识别二维码预约报名伯桢徕卡类器官技术培训班预告时间:2023年6月6日 15:30-6.8日 18:00培训班以理论与实操相结合,让学员在两天内自己实现类器官培养和传代与鉴定,本次培训班为伯桢和徕卡联合举办,增加基于徕卡成像系统类器官成像体验、徕卡显微成像及人工智能分析助力类器官研究、徕卡MICA的类器官光镜观察等理论和实践课,让您体验到从养好类器官到拍好类器官的丝滑。培训班日程及报名方式了解更多:徕卡显微
  • 【Webinar预告】类器官超全研发进展和应用趋势
    2009年,Hans Clevers 等人使用来自小鼠肠道的成体干细胞培育出shouge肠道类器官,开创了类器官研究的时代。此后,类器官领域不断地开始涌现出一些优秀的研究成果,类器官技术也在迅速实现突破。在全球范围内,类器官已经成为了跨国药企的必争之地。2015年以后,强生、默克、阿斯利康、辉瑞、赛诺菲、百时美施贵宝等20余家跨国MNC通过购买产品、合作授权以及投资等形式入场,推动了类器官技术的商业化进程。类器官技术多点开花近几年来,类器官行业在多种声音中,在多重因素的扰动下,有目共睹地迎来快速发展。从美国FDA批准赛诺菲使用类器官疗效数据申请的新适用症,到行业代表性企的逆势融资,均表明类器官行业进入新的发展阶段。在这段时间里,各种不同类型的类器官也迎来了诸多进展。首先便是肠类器官,自Hans Clevers利用小鼠干细胞体外培养出shouge肠类器官模型后,诸多研究人员在这一领域实现了进一步的突破。2022年2月,Meghan M. Capeling团队利用藻酸盐和悬浮培养液对干细胞进行悬浮培养,成功构建了肠类器官,该种类器官相较于传统肠类器官间充质组织更为真实。2022年10月,Sunghee Estelle Park团队对传统类器官培养基质的空间结构进行改良,推出类器官模块化培养平台OCTOPUS,该平台在传统三维培养基础上对营养提供方式进行了优化,之后该团队还利用OCTOPUS平台构建了患者来源的炎症性肠病(IBD)类器官模型。其次是脑类器官,人脑体外模型的开发是类器官研究的热点之一,目前的脑类器官模型在形态、成熟度、实际应用方面取得了较大突破。2023年5月,Simon T. Schafer团队构建了移植人脑类器官的小鼠模型,为自闭症等神经免疫疾病提供了一个潜在的研究平台。2023年12月,郭峰团队在《Nature Electronics》杂志发文,介绍了一种由电子器件和脑类器官组成的混合计算系统。该系统具备执行语音识别、非线性方程预测等多项任务的能力。第三,肝类器官的相关研究也取得了许多进展。由于肝类器官在毒理检测和药物中毒患者器官移植领域有着良好前景,这一领域也是研究热点。2019年8月,Muhammad Nadzim Bin Ramli等发文介绍了新开发的肝脏类器官平台,该平台包含多种实质肝细胞类型和肝脏结构,能够模拟复杂肝脏疾病。2023年2月,Hans Clevers团队引入了一种新型的人类非酒精性脂肪性肝病类器官模型以及用于筛选NAFLD潜在靶点的技术平台FatTracer,能够加速靶点筛选和应用。心脏类器官的研究在近几年迎来了爆发,人类心脏是发育过程中形成的第一个功能器官,也是最难建模的器官之一。2021年,维也纳奥地利科学院的科研团队,通过人类iPSC成功培养出全球shouge体外自组织心脏类器官模型。2023年5月,来自德国慕尼黑工业大学的研究人员用干细胞成功培育出了shouge与人类早期胚胎心脏相似的“微型心脏”。2023年11 月,Sasha Mendjan团队开发出了shouge多腔心脏类器官模型,该模型包括了所有主要的心脏发育结构,这一类器官模型的建立有助于推进心脏病药物开发和毒理学研究。类器官应用前景广阔也面临诸多挑战总体而言,经过多年积累,类器官技术在近年来迎来了爆发,其应用范围也更加广阔,实际应用效果也得到了显著提升。类器官的应用领域可以大致分为医学研究(包括生理学研究和病理学研究)、药物研发(早期研究和临床研究)、精准医疗和再生医学。通过类器官对发育和疾病进行建模,研究人员可以通过类器官来模拟人类发育和疾病,从而发现潜在靶点、确定新型生物标记物。另外,将类器官用于临床试验也是当下的技术发展趋势之一,类器官试验有望提升临床试验患者招募的精准化程度,从而降低临床试验失败率,控制临床试验成本。在精准医学应用中,患者衍生的类器官也被证明为有价值的诊断工具,类器官技术能够帮助罕见基因突变患者测试药效与癌症组合疗法筛选。最后,当前器官移植存在严重的供体短缺问题和免疫排斥问题,类器官在器官修复和移植领域前景广阔。虽然类器官技术展现出了巨大的商业价值并且进展迅速,但其仍然面临诸多挑战。包括器官表型、人体系统的还原度低、标准化不足、监管还有待进一步完善等。类器官技术实现商业价值首先需要克服标准化不足的问题。目前类器官培养过程中人为参与过多,学术界难以达成统一标准,商业应用带来了阻碍。针对这些难题,2023年12月26日 19:00-21:00,医麦客将携手美谷分子,以“类器官的研发进展及标准化”为主题,对当下类器官领域的研发进展和其商业化挑战进行分享,探讨当下类器官标准化的解决方案,届时欢迎各位在线交流学习!时间:12月26日 19:00 医麦客讲堂参与方式:扫码二维码报名参会19:00-19:30耿兴超 中国食品药品检定研究院 国家药物安全评价监测中心负责人演讲主题:中国类器官和器官芯片发展现状及监管思考1. 类器官与器官芯片的区别;2. 类器官与器官芯片在新药研发中的应用现状;3. 监管机构对类器官与器官芯片技术的考量与推动。19:30-20:00严俊 深圳市人民医院胃肠外科科主任、学科带头人,深圳市卫健委普外科质控中心主任演讲主题:类器官的进展与临床应用1. 胃肠肿瘤类器官成功构建的影响因素2. 肿瘤类器官药敏体系的建立方法3. 案例分享:使用患者肿瘤类器官模型精准预测治疗方案20:00-20:30宁航 Molecular Devices 高内涵成像技术应用科学家演讲主题:类器官培养和成像分析自动化解决方案1.类器官的自动化培养 2.ai类器官分析技术 3.类器官自动化3D成像分析
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • 瑞沃德发布RWD71000全自动脑立体定位仪-大小鼠新品
    71000全自动脑立体定位仪是一款应用于小型啮齿动物的自动化、智能化脑立体定位仪,通过电脑软件精确控制操作臂移动(精度1um),软件内置大小鼠脑图谱能更方便、更直观的进行脑立体定位,三大自动化程序(自动开颅、组织移除和多位点注射程序)可减少人为操作带来的误差,节省手动操作时间。精确:高精度步进电机,位移分辨率1μm高效:内置自动化程序,减少人工误差简单:软件内置脑图谱,简化手术操作三大自动化程序,实验更高效自动开颅程序:设置参数,颅钻自动按照运行轨迹进行开颅,节省人为操作时间组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性1、操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm;2、一键校准功能,当长时间使用,电脑显示位置参数和定位仪读数出现偏差时,用户可以通过一键自行校准;3、定位仪移动控制功能, 4种控制方式:a、PC端软件界面箭头控制;b、PC端输入目标坐标位置后自动移动到目标坐标;c、微操平台能精密控制定位仪运动,按钮可控制持续移动,微操旋钮每旋转18°执行1μm位移;d,键盘按键控制定位仪移动。4、定位仪移动速度调节功能,a、在PC端软件界面三个轴对应位置可分别输入移动速度进行调节,其中AP轴和ML轴4种移动速度可选: 2.00 mm/s、1.00 mm/s、0.50 mm/s、0.20 mm/s;DV轴7种移动速度可选2.00 mm/s 、1.00 mm/s、0.50 mm/s、0.20 mm/s 、0.01 mm/s、0.005 mm/s、0.001 mm/s;b、在微操端可通过按键对三个轴移动速度以一定步进量进行统一调节;5、 一键设置Bregma/Lambda位点,当用户使用定位仪到达Bregma/Lambda位点时可以标记,一键设定Bregma/Lambda位点;6、定位仪坐标与脑图谱集成,脑图版本为小鼠第二版大鼠第六版,用户可选脑图版本,选定版本后显示脑图版本信息;7、探针位置与脑图显示,当用户找到并设置Bregma/Lambda点后电脑界面能够显示脑图及探针所在位置,能够实时显示移动过程;8、自动开颅程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;9、多位点程序设定,用户可手动输入或脑图谱上选择至多10个坐标,可以选择自动运行或者信号触发后启动运行,用户可以设定定位仪到达目标点位后是否输出TTL信号,用户可以设定在每个位点停留时间(输入范围:00:00:00 23:59:59);10、组织移除程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),支持2种针头规格27G、30G,6个梯度的密度系数设置1-6,AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;11、位置坐标存储功能,用户可手动输入或脑图谱上选择至多个坐标并命名,最多可存储10个位点;12. Z轴回缩功能,当用户定义Bregma/Lambda点之后,定位仪在执行X、Y方向的移动时,无论探针位于Z轴的任意位置,需要使探针先回缩至高于动物头骨表面5mm的位置,保证电机的水平方向移动不会触碰到动物的头骨;13、消隙功能选择,可尽量消除电机反向运动时,电机齿轮间缝隙引起的误差,用户可选择开启或关闭;14、错误日志自动保存功能,方便对产品进行维护;15、软件要求适配win7、win10中英文操作系统;16、报警功能,实时检测,遇到故障时停止所有部件运动,PC端弹框提示;17、能够接收或输出TTL信号,例如接收TTL信号触发全自动脑立体定位仪按设定程序自动移动,或者到达特定位置时输出TTL信号;18、微操控制,能够实现手柄按键对全自动脑立体定位仪上下左右前后六向控制持即续按键持续移动,能调节电机移动速度,有急停按钮;19、控制盒有2种电源指示灯,通电正常状态为绿灯,异常状态为红灯;控制盒有12V电源接口,USB方口与电脑通信,3个电机接口,有丝印标识区分,BNC接口处理TTL信号。创新点:简介:71000是一款自动化、智能化的脑立体定位仪,通过电脑软件精确控制步进电机,进而驱动定位仪操作臂移动。软件内置大小鼠脑图谱和三大自动化程序,可自动化运行,减少人为操作带来的误差,能更方便、更直观的进行脑立体定位。同时配备了微操,满足更灵活的操作需求。 创新点: 1、精度更高:传统机械型脑立体定位仪精度100um,数显型脑立体定位仪精度为10um,而全自动脑立体定位仪精度达到1um,满足更高实验需求; 2、内置脑图谱:用户可直接在软件上翻阅脑图谱,探针实时显示与脑图谱的相对位置,更加直观便捷; 3、三大自动化程序:自动开颅程序可预设开颅的尺寸、深度等参数,颅钻自动按照预设轨迹运行,可减少手动操作带来的损伤;组织移除程序可预设移除组织的尺寸、深度等参数,保证创口端面平整,减少神经元死亡;多位点注射程序可设置十个位点的注射,软件控制运行轨迹,精准并减少人工操作的繁琐步骤。 RWD71000全自动脑立体定位仪-大小鼠
  • 一恒仪器官网微信平台添加方式
    社会变化日新月异,微信风云变幻莫测。随着电商时代的来临,微信已经成为社交的重要媒介。一恒仪器的微信公众平台已向广大群众开放,每天为您播报最前沿的行业资讯,让您走在行业的尖端。您还在为不了解所在行业烦忧吗?您还在为仪器选型不知所措吗?赶快加入我们,让您成为行业信息的引领者,掌握一手快讯!赶快加入我们,让您解决仪器工作中的难题,帮您成为企业的佼佼者!在此,一恒仪器提前祝大家新年快乐,愿马年幸福绕,马到成功乐逍遥。恭祝您马年交好运!如何加入一恒仪器?1、打开微信[朋友们]→[添加朋友]→[搜号码]里输入微信号:yh-yiqi、yhyiqi,添加关注;2、打开微信[朋友们]→[添加朋友]→[查找微信公众账号]里输入:一恒仪器,添加关注;3、您也可以通过扫描二维码添加关注。一恒仪器官方微信公众平台:微信号:yh-yiqi 一恒仪器微官网:微信号:yhyiqi
  • 日本开发出一种用扫描电子显微镜观察活体器官的结构和“运动”的方法
    日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。克服“只测量固定样本静止图像”的困难日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。这项研究是由同一大学生命与健康科学学院生物医学科学系的新谷正敏教授、山口诚司副教授和高玉广雄副教授的研究小组进行的。研究成果刊登在《Microscopy》上。由于电子显微镜具有最大约0.5nm的高分辨率,因此适用于小规模的观察。然而,由于观察是在真空下进行的,因此需要固定要观察的样品以使水不蒸发。因此,存在传统的电子显微镜观察基本上只能测量固定样本的静止图像的缺点。作为能够对液体中的试样进行电子显微镜观察的方法,已经存在使用氮化硅等平面膜的观察方法。但是,对于观察来说,它是一个薄的观察样品,它适合非常靠近膜的可观察区域,样品与膜之间的位置关系可以设置为不损坏膜,样品不会移动,因此至于破坏平面膜,费了很多功夫,也有很多限制。另外,作为可以测定试样的运动的方法,可以举出用含有甘油或糖等非挥发性成分的溶液覆盖试样,在电子束照射下成为保护膜的方法,观察样品穿过保护膜。但这种方法中,保护膜的外面是真空,观察时保护膜也是不含水的固体膜,所以无法观察到样品在液体中的结构和运动,只能观察到样品在液体中的结构和运动。样品即使在真空中也能进行的运动是可能的。这是一种可以观察到的方法。打造具有优异电子束透过性和变形能力的“DET薄膜”此次,课题组开发了一种新的“DET膜法”。首先,我们创造了一种薄膜(DET film:Deformable and Electron Transmissive Film),它可以承受真空和大气压之间的压力差而不会破裂,并且具有优异的电子束渗透性和变形性。利用DET薄膜的电子束透过性和可变形性,DET薄膜模仿观察样品的形状,使得通过DET薄膜既可以观察宏观样品形状,也可以观察细微样品形状。...DET膜抑制和保护直接击中观察样品的电子束的量,这也是测量观察样品运动的有用特性。另外,由于DET膜可以大幅度变形,因此在同等倍率下,可以在比光学显微镜深数十倍的焦深处观察三维样品,并进行测量。成功测量小鼠提取心脏的精细结构和“运动/变形”此外,使用DET膜法,我们成功地测量了作为观察样品的小鼠切除心脏的精细结构和“运动/变形”。此外,我们还成功地测量了沉淀晶体和在液体中漂浮和移动的晶体的纳米级结构和运动。有望实现光学显微镜无法观察到的纳米级动力学的观察和测量光学显微镜的空间分辨率约为200 nm,高分辨率测量的焦深约为300 nm,因此只能观察平面。另一方面,开发的DET膜法具有很大的优势,即可以以纳米级分辨率测量观察到的样品的三维结构及其运动。此外,当将 DET膜法与固定样品的电子显微镜观察进行比较时,存在由于DET膜的存在而降低空间分辨率的缺点,但有一个很大的优点是动力学可以测量。研究小组说,用DET膜法测量的运动,不仅是观察样品自己产生的运动,也可以是对我方施加的拉扯等动作的变形。正如只看动物标本对加深对动物的理解是有限的,我们期待DET膜法的动态测量能够实现各种各样的纳米尺度动态测量。
  • 已上市及临床试验中以CHO细胞为生产平台的蛋白亚单位疫苗概述
    从18世纪天花的接种实践到通过接种牛痘预防天花,疫苗的开发与应用领域有着持续进步的丰富历史。1930年,可用于体外病毒繁殖的动物细胞培养物的引入,为20世纪下半叶针对麻疹、腮腺炎、风疹和脊髓灰质炎等疾病的减毒、灭活疫苗的成功开发奠定了基础。而随后的在酵母、细菌、昆虫和哺乳细胞中引入重组DNA技术的建立,使得新型疫苗的开发成为可能。本文将对当前上市或临床试验中的,以CHO细胞为生产平台的蛋白亚单位疫苗类型进行梳理。一CHO细胞表达系统特征CHO细胞包括从CHO-ori细胞系衍生出CHO-DXB11 (DHFR+/-) 、CHO-DG44 (-/-) 、CHO-GS、CHO-K1SV等多种细胞系,各具特定的特征,可分离稳定的转染物并获得高产量。与其他重组蛋白质生产细胞系相比,CHO细胞具有更高的生产力,流加批次培养可达到1-10 g/L。而相较于293细胞,病毒不易感染CHO细胞并在其中复制。CHO细胞对于蛋白的翻译后加工修饰与人类细胞的高度相似,如糖基化、二硫键形成以及蛋白的水解加工,但是也与人类细胞在翻译后修饰的特定模式与结构上存在微妙差异,没有工程化修饰过的CHO细胞不能合成某些人源聚糖键,比如:α-2,6-唾液酸化、二分N聚糖和α-1,3/4-岩藻糖基化,为了在CHO细胞内实现目的蛋白的糖基化,不同的团队也开发了相应的糖工程方法。CHO细胞可以进行高密度无血清悬浮培养,并将目的蛋白分泌到培养基中,因而是一个经济有效的大规模重组蛋白表达平台。CHO细胞中重组蛋白的表达可受到多种因素影响,包括:表达质粒、启动子的选择、培养条件(培养基成分、温度、溶氧)、CHO细胞系的选择和表达系统的选择等。利用CHO细胞进行重组蛋白表达包括瞬时表达和稳定表达两种方式。瞬时表达系统中含有目的基因的cDNA会随着细胞分裂而被稀释,表达周期较短。尽管瞬时表达的效率低于稳定表达,但优化策略后的蛋白产量也可高达1 g/L。而瞬时表达减少了与细胞系开发相关的时间和成本,被广泛用于临床前研究中蛋白的快速生产。CHO细胞稳转则是大规模生物制造的标准方法。二蛋白亚单位疫苗蛋白亚单位疫苗是基于病原体的一种或几种分离或选定的成分,通常是免疫显性抗原(全蛋白、蛋白结构域或多肽),可在佐剂刺激下使产生体液和/或细胞免疫。蛋白亚单位疫苗因为没有恢复到致病形式的风险,也被认为比灭活疫苗或减毒活疫苗更安全。蛋白亚单位疫苗已被批准用于多种病毒感染性疾病的预防,如:SARS-CoV-2、水痘-带状疱疹病毒、呼吸道合胞病毒和流感,剂量范围从5到180 ug。尽管新冠的蛋白亚单位疫苗应用范围没有其他类型疫苗广,但仍是目前临床前和临床候选疫苗的主要选择。蛋白亚单位疫苗的一个潜在挑战是免疫原性较低,这也凸显了识别抗原以引起强大保护性免疫的重要性。三CHO细胞生产的已批准或处于临床阶段的蛋白亚单位疫苗基于CHO细胞作为治疗性重组蛋白表达系统的优势,CHO细胞已成为蛋白亚单位疫苗生产的主要选择之一。从近40年前开始,各种基于CHO细胞的治疗药物被监管机构批准,与新的细胞系或使用较少的细胞系相比,生物制药公司、CDMO公司以及供应商可以基于CHO细胞生产平台的熟悉度大大减少了疫苗生产的时间和风险。利用CHO细胞生产蛋白亚单位疫苗的上下游工艺与生产其他重组蛋白相似。接下来我们将梳理已获批或正在临床开发的蛋白亚单位疫苗(如图1)。图1:CHO细胞生产平台的应用 (a) 已获批或临床候选药物的蛋白亚单位疫苗;呼吸道合胞病毒呼吸道合胞病毒是全球呼吸道感染的主要原因,在幼儿、老年人和慢性病患者中可引起严重疾病,2019年全球幼儿死亡人数超过100000人,在高收入国家中造成2.2万到4.7万人死亡。早期使用甲醛灭活的RSV疫苗,甲醛导致病毒抗原产生羰基集团,阻碍了抗原在细胞质中的加工,产生了低亲和力的抗体,从而导致了增强型的RSV疾病,表现为:高烧、支气管炎和呼吸困难。目前RSV表面的病毒融合 (F) 蛋白作为疫苗开发的潜在靶点,这种预融合稳定形式的设计已被证明可以产生有效的中和抗体。但也有研究表明,即使采用低剂量预融合F蛋白在动物上也可能产生增强型RSV疾病。相比之下,预融合的F蛋白在成人接种时表现出较好的结果,也导致葛兰素史克开发的RSV疫苗Arexvy疫苗 (RSVPreF3 OA) 的获批上市。该疫苗使用CHO细胞生产,由F蛋白的1-513号残基组成,通过T4纤维蛋白结构单元三聚体化。预融合形式通过将F1的Ser155和Ser290替换为半胱氨酸而实现,在不稳定的N端和结构刚性中心区域之间建立了二硫键,另外引入S190F和V207L突变以填充F1N端空隙,增加疏水相互作用。在早期临床试验展现良好的安全性,并确认其诱导产生中和抗体的能力后,和AS01E佐剂一起进入了III期临床,在17个国家25000名60岁以上成年人中评估有效性。研究结果显示,单剂该疫苗对RSV相关的下呼吸道疾病的有效性为82.6%,对严重表现的有效性为94.1%,对RSV相关急性呼吸道感染的有效性为71.7%。第二个获批的RSV疫苗是辉瑞公司的Abrysvo,是由CHO细胞生产的针对RSV A和B亚群的双价融合前F蛋白。在III期临床中,对RSV相关的下呼吸道疾病有66.7%的有效性,对严重RSV相关疾病有85.7%的有效性,且严重不良事件发生率低,安全性无明显问题。并且也作为孕妇疫苗进行评估,接种孕妇时间为妊娠第24-36周,该疫苗显示在新生儿出生后的前90天内,预防严重RSV相关呼吸道疾病有81.8%的有效性,因此获批做为预防婴儿RSV的母亲疫苗。以上两个疫苗受到了市场的广泛接受,在三个月内达到了12.35亿美元的销售额,也凸显了CHO细胞在疫苗制备中的商业潜力。水痘-带状疱疹病毒 (VZV)VZV可引起水痘,是一种与典型皮疹和轻微症状相关的高度传染性感染。初次感染后,病毒可在神经元中持续存在,多年后重新激活会引起带状疱疹;重新激活后以皮疼痛性水疱性皮疹为特征,在免疫受损的宿主中可能导致出血性病变,最主要的并发症为急性神经炎和带状疱疹后神经痛,影响50岁以上的25%-50%的患者。为了保护年长或免疫缺陷的成年人,重组VZV疫苗Shingrix于2017年由FDA获批,一年后获批EMA。Shringrix是以VZV病毒表面最普遍的gE蛋白为抗原,是中和抗体和T细胞识别的关键靶标。该疫苗由CHO细胞生产,并由于去除了C端和跨膜结构域而可以被分泌到细胞外。在抗原产生过程中,CHO细胞的培养条件优化后,使用20 L的波浪式反应器进行批培养,最终每升产量在2.44 g。在50岁以上人群中,有效性达97.2%以上。人巨细胞病毒 (HCMV)HCMV是一种感染了全球约80%人口的病原体,一旦个体免疫降低就会引发健康风险。并且也与各种癌症进展有关,其先天性感染也是出生缺陷的主要原因。即便如此,目前也没有批准上市的疫苗。但有几款疫苗在临床试验中,其中有几款疫苗基于HCMV表面的gB蛋白由CHO细胞产生,与病毒入侵过程中的膜融合至关重要,并且包含中和抗体的多个识别表位,该蛋白与佐剂MF59正处于临床II期进行测试。赛诺菲的gB基因来源于HCMV Towne毒株,不含跨膜结构域和弗林切割位点。gB/MF59疫苗在移植后患者、产后妇女和健康的青春期女孩等不同受众中均获得了良好的效果,结果显示,gB结合抗体滴度增加,CD4+T细胞反应增强,HCMV病毒血症降低。葛兰素史克的另一款gB蛋白亚单位疫苗处于临床I期试验中,抗原基于AD169毒株,其修饰与赛诺菲相似。另外,来自单纯疱疹病毒1型的gD氨基酸序列融合在AD169 gB序列以促进分泌。最近葛兰素史克开发的针对HCMV的新型佐剂,由gB蛋白和五聚体抗原组成。HCMV五聚体复合物也是疫苗开发中的具有吸引力的抗原,相比于gB蛋白,能诱导更有效的抗体中和进入上皮细胞。因此,葛兰素史克使用CHO-K1和CHO-DXB11衍生的细胞克隆获得400 mg/L的五聚体复合物,并在小鼠中诱导了有效的中和免疫反应。五聚体/gB 蛋白亚单位疫苗候选药物目前正在健康成人受试者中进行评估。人类免疫缺陷病毒 (HIV)即使在发现HIV病毒40年后,HIV功能性疫苗的挑战仍然存在,主要原因包括逆转录酶中缺乏3’核酸外切酶的校对活性,使得病毒gp41和gp120可快速突变。而中和抗体靶向的抗原表位位于HIV包膜蛋白的gp可变区域,在免疫系统的筛选压力下也会导致突变体的产生。HIV env gp重组三聚体是目前作为疫苗开发最有潜力的靶点,可能会引发广泛的中和抗体。始终保持融合前构象的早期可溶性三聚体称为“SOSIP”,其中包括gp120-gp41之间的工程化二硫键 (SOS) 以及有助于维持融合前构象的螺旋断裂突变(I559P,称为IP)。最近的临床试验中的SOSIP三聚体已经进行了改进,包括CHO细胞的改进。其中某些env蛋白,尤其是HIV分支B的env蛋白容易受蛋白水解影响。为了解决这个问题,采用了工程化的C1蛋白酶缺陷的CHO细胞系,从而减少蛋白降解。三聚体4571 (BG505 DS-SOSIP.664) 是基于HIV A分支的高度稳定的与融合闭合可溶性包膜糖蛋白三聚体。该三聚体在gp120中结合了201C-433C二硫键突变以防止CD4诱导的构象变化。最近三聚体4571在I期临床试验中进行了独立评估,并在异源方案中作为加强剂量中做了评估,结果显示三聚体4571是安全的,没有引起不良反应,并能够成功诱导特异性抗体产生,主要是集中在三聚体上的无聚糖基底上的抗体。但是对于天然三聚体,通常由于免疫系统无法接触到无聚糖基底而导致其在临床试验中具有更明显的非中和反应。为了减少这种基底定向免疫,未来CHO细胞生产的蛋白亚基疫苗可以使用聚糖进行工程设计以掩盖三聚体基底结构域,减少非中和抗体的产生。严重急性呼吸系统综合症冠状病毒2 (SARS-CoV-2)为抗击COVID-19大流行研发了多种疫苗,包括:灭活病毒疫苗、基于蛋白质的疫苗、核酸疫苗以及载体疫苗。源自SARS-CoV-2刺突 (S) 蛋白的蛋白亚单位疫苗由CHO细胞产生,不同的候选药物在特定国家/地区获得紧急使用或在临床试验阶段。表1:截止2023.12临床审批的CHO细胞生产的蛋白亚单位疫苗SARS-CoV-2蛋白亚单位疫苗开发最广泛使用的策略之一是使用S蛋白的胞外结构域 (ECD) 作为抗原。Medigen Vaccine Biologics Corporation开发的MVC-COV1901疫苗基于融合前稳定的S ECD三聚体,该三聚体具有K986P和V987P突变,以及在S1/S2连接处具有弗林蛋白酶切割位点682突变 (RRARGGAS) ,以提高稳定性并增加了T4纤维蛋白三聚体化结构域。CHO细胞用于生成表达该S抗原的稳定克隆,该抗原被证明类似于人HEK293细胞表达的SARS-CoV-2 S蛋白的结构。该候选疫苗用氢氧化铝(明矾)和CpG 1018佐剂,CpG 1018是一种TLR-9激动剂,通过刺激CD4+/CD8+T淋巴细胞来增强免疫原性。II期临床试验 (NCT04695652) 表明,MVC-COV1901是安全的且耐受性良好,并且在年轻人和老年人中都能诱导高中和抗体滴度。MVC-COV1901还与牛津-阿斯利康的ChAdOx1 nCoV-19病毒载体疫苗进行了比较,其中MVC-COV1901被证明更优越,可诱导更广泛的IgG亚类和更高的抗Omicron (BA.1) 变体的中和抗体滴度。MVC-COV1901已获准在斯威士兰、巴拉圭、索马里兰和台湾使用。SARS-CoV-2 S蛋白内的受体结合域 (RBD) 是中和抗体的主要靶点。因此,它已被用于生产各种蛋白亚单位疫苗。已经探索了不同的策略来进一步增强其抗原性,例如使用单体、二聚体或多聚体形式。ZIFIVAX (ZF2001) 疫苗由安徽智飞龙康生物制药公司开发,由三剂基于RBD的疫苗和明矾佐剂组成。ZF2001是由两个拷贝的RBD (R319-K537) 形成并在CHO细胞中产生串联重复的二聚体。这种RBD二聚体与RBD单体保持相似的亲和力,而且能够有效地与人ACE2受体结合。在I期和II期临床试验中,ZF2001在人体中表现出安全特征和免疫原性。在多个国家/地区进行的III期临床试验显示,在完全接种疫苗后至少六个月内对有症状和重度至危重的COVID-19具有安全性和有效性。ZF2001疫苗已获准在中国、哥伦比亚、印度尼西亚和乌兹别克斯坦使用。CHO细胞的广泛使用和抗原表达的翻译后修饰使得CHO细胞在面临非快速反应环境中生产疫苗更为可取,尤其是CHO细胞的可操作性、安全性和稳定性。CHO细胞作为更具成本效益和高效的疫苗生产平台的潜力会越来越的到业界认可。在CHO细胞培养过程中,HyClone可以提供多种商品化CHO细胞培养基,包括:Actipro、HyCell CHO、PSL A01和PSL A02等多种基础培养基以及包括Cell boost 7a、Cell boost 7b等多种补料。参考文献:CHO cells for virus-like particle and subunit vaccine manufacturing声明:本文为作者原创首发,严禁私自转发或抄袭,如需转载请联系并注明转载来源,否则将追究法律责任
  • 岛津成像质谱显微镜应用专题丨多模式成像分析小鼠心肌梗塞
    简介作为一种成像技术,磁共振成像(MRI)广泛应用于日常临床诊疗中。为了在检查过程中增强对比度,可以使用几种不同的造影剂。由于五个或七个不成对电子具有出色的顺磁性,因此最常使用Fe3+、Mn2+或Gd3+。因游离形态的Gd3+具有毒性,此探针与氨基羧酸一起作为复合物给药。大多数钆造影剂(GBCA)是全身分布的,一些靶向特异性GBCA也正在研究中。图1 Gadofluorine P的结构Gadofluorine P是一种靶向造影剂,对富含胶原蛋白的细胞外基质(ECM)具有高亲和性,ECM在发生心肌梗塞(MI)时分泌。多模式生物成像技术能够可视化靶向造影剂的分布。使用激光剥蚀与电感耦合等离子体质谱(LA-ICP-MS)以高空间分辨率在元素水平上生成定量图像,而基质辅助激光解吸电离质谱(MALDI-MS)用于在分子水平上验证研究结果,提供更多分布信息,例如磷脂或血红素b的分布。材料和方法动物实验此项动物实验在明斯特大学医院临床放射学研究所Moritz Wildgruber教授的研究小组进行。使用诱导心肌梗塞六周的小鼠,注射照影剂Gadofluorine P后进行MRI检查。小鼠被处死后,取出心脏并快速冷冻。用冷冻切片机制备厚度为10μm的切片。标准品制备对于LA-ICP-MS分析,用明胶制备基体匹配标准品,用于外标 校正。明胶(10%w/w)添加9种不同浓度,范围为0至5000 μg/g Gd。另制备了厚度为10μm的标准品切片。样品制备对于MALDI-MS成像分析,将切片放置于氧化铟锡(ITO)涂层的载玻片上。先用升华法涂敷α-氰基-4-羟基肉桂酸(CHCA)至组织表面,然后用500μl水和50μl甲醇混合溶液喷雾于组织表面2.5分钟进行再结晶。分析条件对于LA-ICP-MS分析,使用Tygon管,将ICPMS-2030与激光剥蚀系统LSX-213 G2+(Teledyne CETAC)连接,此系统配有HelEX II池和波长为213nm的Nd-YAG激光。氦气用于剥蚀池的冲洗和传输。ICP-MS 2030配有镍采样锥和截取锥。在碰撞模式下,31P、57Fe、66Zn、158Gd和160Gd的积分时间为100ms条件下进行测量。每种标准品的标准曲线使用了10个浓度水平进行分析,并且同样的条件下分析了样品(表1)。表1 LA-ICP-MS的实验条件MALDI-MS分析使用了配有离子阱-飞行时间(IT-TOF)质谱分析仪iMScope TRIO。选择正离子模式,质量范围为m/z 700到1200。其他实验条件列于表2中。基质使用iMLayer升华20分钟。表2 MALDI-MS的实验条件结果LA-ICP-MS用基体匹配标准品进行的外标法定量分析结果显示,在高达5000μg/g的浓度范围内存在良好的线性关系,相关系数R2为0.997。采用15μm光斑尺寸时,基于158Gd的检测限(LOD)为43ng/g Gd,定量限(LOQ)为140ng/g Gd(根据Boumans[1]算出)。图2 小鼠心脏组织切片的H&E染色图2所示为连续切片的苏木精伊红染色结果,检测出心肌梗塞的区域(以黑线标出)。图3 两个连续切片的显微图像(a.和b.);经LA-ICP-MS测定的Gd定量分布(c.);Gadofluorine P的配体分布(d.);配体结构及理论峰值(青色条)、MALDI-MS测定峰值(黑线)(e.)图3所示为两个连续切片的显微图像(a.和b.)。使用LA-ICP-MS(c.),检测到健康心肌中Gd的均匀分布,平均浓度约为50μg/g。梗塞区的Gd浓度高两倍,约为110μg/g,最高值可达370μg/g。由于静脉注射造影剂的作用,心室中也存在较高浓度的Gd。这些分布可以通过MALDI-MS成像进行验证(d.)。该实验中,只能检测到Gadofluorine P的质子化配体,而不是完整的复合物(e.)。结果显示,主峰m/z 1168.39的质谱成像图与LA-ICP-MS检测的Gd分布具有良好的相关性。在心机梗塞和心室区发现了分子探针的最高强度,而健康心肌则显示出低而均匀的强度。结论 该应用表明,元素选择性(LA-ICP-MS)和分子选择性(MALDI-MS)成像技术的组合是可视化心机梗塞后小鼠心脏组织中靶向钆造影剂分布的有力工具。通过LA-ICP-MS技术实现了高空间分辨率和定量,并通过MALDI-MS在分子水平上验证了其分布。参考文献[1] P.W.J.M.Boumans, Spectrochimica Acta 1991, 46 B, 641-665.文献题目《Gadofluorine P多模式生物成像分析用于小鼠心肌梗塞研究》使用仪器岛津iMScope TRIO作者Rebecca Buchholz1、Fabian Lohofer2、Michael Sperling1,3、Moritz Wildgruber4、Uwe Karst11 明斯特大学无机和分析化学研究所 2 慕尼黑工业大学放射学研究所3 明斯特欧洲物种分析虚拟研究所(EVISA) 4 明斯特大学医院临床放射学研究所声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。本文内容非商业广告,仅供专业人士参考。
  • 安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片
    安捷伦科技公司发布适用于人、小鼠和大鼠模型的新型基因表达微阵列芯片 安捷伦公司与根特大学合作在芯片中整合入了 LNCipedia 内容2015 年 6月 10 日,北京 — 安捷伦科技公司(纽约证交所:A)近日宣布更新其新型 SurePrint 基因表达微阵列芯片用于人、小鼠和大鼠模型的信使 RNA 分析应用。此次更新改进了编码和非编码内容,为研究人员提供在常用平台上研究表达模式的最新工具。安捷伦公司与根特大学合作开发了最新款旗舰版 SurePrint G3 人基因表达 v3 微阵列芯片,其中完整包含的 LNCipedia 2.1 数据库能够对长链非编码 RNA (lncRNA) 转录物进行可靠分析。LncRNA(长度大于 200 个核苷酸的非编码 RNA)能够通过直接作用于 DNA、RNA 和蛋白质而改变基因调控,从而实现靶标特异性或系统范围内的调控。 通过 lncRNA 与癌症、心血管疾病和神经退行性疾病的关联不难看出其广范却至关重要的作用。经重新设计的安捷伦基因表达微阵列芯片是高质量的特征捕获工具,可实现目标基因或通路的有效分析,涉及从协助疾病危险分层到阐明药物作用机制的各种应用。根特大学的 Jo Vandesompele 教授说:“我们与安捷伦密切合作设计了一流的 mRNA 和 lncRNA 表达分析方法。在单次分析中对这两种类型的RNA进行的同时测定有助于从相对基因表达水平深入探究mRNA与lncRNA之间的生物学联系。 其中的关键在于实现编码和长链非编码特征的良好平衡,而LNCipedia 2.1 则是与安捷伦基因表达内容配对的最佳数据源。微阵列芯片的最终设计经优化后可快速给出大量有价值的信息。”最新的微阵列芯片采用能够实现寡核苷酸精确合成的 SurePrint 技术制造。 SurePrint 微阵列芯片的灵敏度处于业内领先水平,具有5 个数量级以上的动态范围以及 5% 的阵列间变异系数中值,且在 R20.95 时与外部 RNA 对照联盟 (External RNA Controls Consortium) 的加标 RNA 对照品相比具有出色的定量一致性。“我们的 SurePrint 基因表达微阵列芯片不仅包含 LNCipedia 的 lncRNA 等严谨的专业内容,还能够为专家级用户提供灵活的定制服务。”安捷伦基因组学高级总监 Alessandro Borsatti 博士谈道, “凭借基因表达微阵列芯片的出色性能和定量一致性以及 RNA 测序和靶向序列捕获产品,我们能够使研究人员在微阵列芯片的筛查应用与更深度的二代测序的发现性应用之间实现完美转换。”SurePrint 基因表达微阵列芯片属于 SurePrint 产品系列,该系列包括 microRNA 与比较基因组杂交微阵列芯片。 安捷伦基因组学工作流程包括用于质量控制的 2100 生物分析仪和 2200 Tapestation、用于数据采集的SureScan 扫描仪、用于数据分析的 GeneSpring 软件,以及用于进行实时聚合酶链反应的 AriaMX 系统。如需了解有关 SurePrint 基因表达微阵列芯片的更多信息,请访问 www.agilent.com/genomics/v3。关于安捷伦科技公司安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com.cn。编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 新冠RNA疫苗重大突破!北大魏文胜组首创环状RNA制备平台!
    日前,北京大学生命科学学院魏文胜课题组在Cell杂志上在线发表题为“Circular RNA Vaccines against SARS-CoV-2 and Emerging Variants”的研究论文。魏文胜团队首先建立了体外高效制备高纯度环状RNA的技术平台,针对新型冠状病毒及其变异株,设计了编码新冠病毒刺突蛋白(Spike)受体结构域(RBD)的环状RNA疫苗。该项研究中制备的针对新冠病毒德尔塔变异株的环状RNA疫苗(circRNARBD-Delta)对多种新冠病毒变异株具有广谱保护力。新冠病毒circRNA疫苗研发示意图01首创环状RNA制备平台作为近几年兴起的突破性医学技术,mRNA疫苗的基本原理是通过脂纳米颗粒(LNP)将mRNA导入体内来表达抗原蛋白,以刺激机体产生特异性免疫反应。2019年底新冠肺炎疫情(COVID-19)暴发后,针对性的mRNA疫苗(ModernamRNA-1273 Pfizer/BioNTechBNT162b2)在多种疫苗类型中脱颖而出。mRNA疫苗的修饰及递送技术均产生于国外机构,制约了我国mRNA疫苗及其治疗技术的发展和应用,因此亟需发展新型、高效的疫苗技术。与线性的mRNA不同,环状RNA分子呈共价闭合环状结构,不含5’-Cap和3’-polyA结构;且不需要引入修饰碱基,其稳定性高于线性RNA。但是RNA的环化方法、纯化策略尚不成熟,其潜在的免疫原性对疫苗研发的影响并不清楚,诸多未知因素制约着环状RNA的研发应用。魏文胜团队首先建立了体外高效制备高纯度环状RNA的技术平台,针对新型冠状病毒及其变异株,设计了编码新冠病毒刺突蛋白(Spike)受体结构域(RBD)的环状RNA疫苗。实验证明,该疫苗可以在小鼠和恒河猴体内诱导产生高水平的新冠病毒中和抗体以及特异性T细胞免疫反应,并可以有效降低新冠病毒感染的恒河猴肺部的病毒载量,显著缓解新冠病毒感染引起的肺炎症状。CircRNA疫苗接种在小鼠和恒河猴体内提供了显著性保护02环状RNA疫苗的优势一系列的对比评估表明,与mRNA疫苗相比,circRNA疫苗具有以下特点或优势:1)circRNA具有更高的稳定性,可以在体内产生更高水平、更加持久的抗原;2)circRNA疫苗诱导机体产生的中和抗体比例更高,可以更有效地对抗病毒变异,降低疫苗潜在的抗体依赖增强症(ADE)副作用;3)circRNA疫苗诱导产生的IgG2/IgG1的比例更高,表明其主要诱导产生Th1型保护性T细胞免疫反应,可以有效降低潜在的疫苗相关性呼吸道疾病(VAERD,Vaccine-associated enhanced respiratory diseases)副作用。CircRNA疫苗的特点和优势(相比于mRNA疫苗)03有效中和奥密克戎毒株在新冠病毒奥密克戎突变株被世界卫生组织列为值得关注的变异株(Variants of Concern,VOC)后,研究团队紧急启动了针对该突变株的环状RNA疫苗研发。在获得病毒序列信息的30天内,完成了从疫苗生产、小鼠免疫到有效性评估的全流程。研究发现,基于奥密克戎变异株的环状RNA疫苗(circRNARBD-Omicron)的保护范围狭窄,其诱导产生的抗体只能够中和奥密克戎变异株。而针对德尔塔变异株设计的环状RNA疫苗(circRNARBD-Delta)则可以在小鼠体内诱导产生广谱的中和抗体,有效中和包括奥密克戎株在内的多种新冠变异株。针对新冠病毒德尔塔变异株设计的circRNARBD-Delta疫苗是一种具有广谱保护力的候选疫苗以上结果表明,针对新冠病毒德尔塔变异株设计的circRNARBD-Delta疫苗是具有广谱保护力的新冠病毒肺炎候选疫苗,该研究也为针对当前新冠变异株迅速传播的疫苗研发和接种策略提供了参考依据。同时,该项平台型技术的建立在感染性疾病、自身免疫病、罕见病以及癌症的预防或治疗中具有广泛的应用前景。北京大学魏文胜课题组博士后璩良、博士研究生伊宗裔和沈勇为论文共同第一作者。本项研究获得了众多合作实验室的鼎力支持和帮助,包括北京大学谢晓亮教授/曹云龙研究员课题组,中国医学科学院/北京协和医学院王健伟教授课题组,中国医学科学院医学生物学研究所彭小忠教授课题组,中国食品药品检定研究院王佑春课题组及黄维金课题组。该研究项目得到了国家重点研发计划、国家自然科学基金重点及面上项目、北京市科委生物医学前沿创新推进项目、北京未来基因诊断高精尖创新中心、北大-清华生命科学联合中心以及传染病防治国家科技重大专项的基金支持。破译生命密码,编辑底层蓝本他致力于前沿生物技术的研究
  • 中科院仪器共享平台再添“利器”
    记者从中国科学院高能物理所(以下简称中科院高能物理所)获悉,日前,该所核技术应用研究中心研制的小动物活体能谱显微CT,获得由中国体视学学会颁发的科技进步一等奖。随着临床前研究向着活体成像、高分辨成像、多模成像等应用发展,传统的显微CT技术已无法满足生命科学领域的研究需求。近年来,基于光子计数探测器的能谱CT已成为当前CT新技术的重要发展方向,高分辨X射线能谱CT成像技术正在快速发展。在中科院装备研制等项目的支持下,项目团队研发出国际首台小动物活体能谱显微CT设备,通过以微米级分辨及多能谱图像再现动物体内的各器官组织的精细结构,实现动物实验从离体到活体、从黑白到彩色的进步,为生物医学研究提供更为先进的实验手段和科学仪器。该设备具有较高的自由度,能够针对小型活体动物的全身实现高信噪比的能谱成像,以及针对身体局部“感兴趣区”实现高分辨率的结构成像,提供满足高对比度、高分辨率要求的断层图像。项目实施负责人、中科院高能物理所副研究员王哲告诉《中国科学报》,该设备的成功研制,将为小动物三维成像提供更有效的工具,可通过以微米级分辨及多能谱图像再现动物体内的各器官组织的精细结构,实现动物实验从离体到活体、从黑白到彩色的进步,从而为生物医学研究提供更为先进的实验手段和科学仪器。王哲介绍,目前,小动物活体能谱显微CT已进入中科院仪器共享平台,并为中国国内科研院所、高校和医院完成了一批高质量动物实验,应用于昆虫类、鱼类及鼠类动物的成像检测中,样品种类涵盖蝉、虾、螃蟹、鱼、小鼠和大鼠等动物全身,以及鼠牙、鼠骨、鼠脑、动物夹钳和触角等动物离体样品等。“未来该仪器有望能够为口腔疾病研究、骨研究、肿瘤研究、心血管疾病研究、生物材料研究和开发、新药开发等多个领域提供先进的研究工具。”王哲说。据悉,中国体视学学会是全国从事体视学、图像分析、断层层析、仿真与虚拟现实和相关科学技术研究、仪器设备研制及应用的科技工作者和单位成立的非营利性、学术性法人社会团体。中国体视学学会科学技术奖经国家科技部批准,于2011年5月由学会设立,每两年评选一次,授予在体视学科学技术领域做出突出贡献的单位和个人,促进我国体视学领域的科技进步和创新,推动体视学新理论、新技术、新方法的科学探索与实际应用。
  • Nature Communications |PiSPA平台:单细胞蛋白质组分析新工具
    近日,科创中心生物与分子智造研究院分子智造研究所所长方群教授团队再出新成果!团队开发了“点取式”单细胞蛋白质组分析(PiSPA)工作流程和基于纳升级微流控液滴操控机器人,实现了单细胞的精准捕获、前处理以及自动进样,并首次在单个哺乳动物细胞中实现了高达3000种蛋白质的超高定量深度。目前,相关研究成果以“ Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell ”为题在国际权威期刊《自然通讯》上发表。这项成果也再次向我们证明了单细胞蛋白质组学在诊疗和预防、药物开发、癌症基因组学等精准医学研究中的应用潜力。团队自研的探针式微流控液滴操纵机器人系统更强大的单细胞蛋白质组分析工具:PiSPA工作流程单细胞蛋白质组学技术是近年来生命科学领域研究的热点。因单个细胞中的蛋白质含量极微(仅约0.2 ng)且无法扩增,单细胞蛋白质组分析极具挑战性。目前传统蛋白质组分析技术仅能在每个细胞中鉴定1000种左右的蛋白质,而这在单细胞分析领域显得有些“力不从心”。此外,传统的样本前处理操作大多在微升级反应器中进行,在样品处理和转移的过程中会出现明显的样品损失,这会限制单细胞蛋白质组学的鉴定深度,难以满足生命科学研究的迫切需求。“想要突破单细胞蛋白质组学鉴定深度的障碍,有两种策略。一是在足够小的微反应器中进行样品前处理,利用微尺度效应提高反应效率;二是将所有操作整合在一起,降低样品损失,但这两种策略对技术与设备的要求都很高”,本项成果第一完成人王宇博士解释道,“我们利用微流控技术将商品化的内插管改造为阵列化的纳升级微反应器,解决了纳升级样品反应与自动进样的问题。PiSPA平台可自动完成细胞捕获、样品前处理、色谱分离、质谱检测、数据处理等操作,进一步降低了样品损失。”“点取式”单细胞蛋白质组分析流程示意图PiSPA工作流程使得高精度的液体操控、单细胞的精确处理以及先进的LC-TIMS-QTOF MS技术融为一体,重新定义了单细胞蛋白质组学分析。“在研究中,我们将该平台应用于三种哺乳动物细胞(HeLa、A549和U2OS细胞)的单细胞蛋白质组分析,以及HeLa细胞迁移过程中的细胞异质性研究中,均实现了超高深度定量分析”,王宇博士说。同时,迁移细胞的单细胞蛋白质组分析也证实了PiSPA平台具有识别细胞迁移关键分子以及有价值靶点的应用潜力。哺乳动物细胞的单细胞蛋白质组分析结果单细胞的定量深度:从3000+走向全蛋白质组测序PiSPA平台集成了基于序控液滴(SODA)技术的自动化液滴操纵机器人,能够在“点取式”操作模式下实现纳升级的细胞分选、多步样品前处理和自动进样操作。相比于其他单细胞分析方法,PiSPA平台的优势主要体现在与成像技术结合,能够灵活地选择任意单个细胞进行分析,目标细胞的捕获指向性强,具有很高的捕获准确性和成功率,并可保留目标细胞的表观和空间信息,显著增加了单细胞分析的信息维度。其次,PiSPA平台采用针对单细胞样品的“定制化”分析条件,实现了蛋白质鉴定深度的大幅提升,能够为生物医学研究提供更多有效的基础数据。这些优势对推动单细胞蛋白质组分析的实际推广应用具有重要意义。“目前的单细胞定量深度只是一个起点”,方群教授分享道,在该项研究中,可从单个哺乳动物细胞中可定量多达3000种蛋白质,约占人类基因编码蛋白质总数(约20,000种)的15%,其鉴定深度已经达到10年前单细胞转录组测序技术的相近水平。类比单细胞转录组测序技术的发展历史,可以预见当前已处于单细胞蛋白质组分析技术的爆发阶段,随着技术的快速革新,单细胞的定量鉴定深度还将得到史无前例的提升。“这意味着单细胞蛋白质组学技术已进入在广泛的生物医学研究领域中实际应用的阶段。”团队表示,未来,他们将进一步提高单细胞蛋白质组分析的鉴定深度和通量,以持续推进该技术实用化和应用拓展的水平。此外,在上述成果基础上,目前团队还在利用iChemFoundry平台的自动化机器人技术和机器视觉技术构建能够完成单细胞蛋白质组分析全部流程操作自动化的分析平台,很快会有新的成果发布,这些都将为人们了解生命活动中细胞异质性的变化带来更有力工具。
  • 获奖作品公布 | 首届“徕伯杯”3D细胞培养和类器官摄影大赛
    首届“徕伯杯”3D细胞培养和类器官摄影大赛,自2022年9月15日开幕以来,受到了国内3D细胞培养和类器官研究领域相关科研工作者的热切关注和广泛好评。在大赛前期两个月的作品征集阶段,我们收到了众多国内类器官相关交叉学科的专家和学生积极的投稿,累计收到摄影稿件72份,由徕卡显微系统和伯桢生物市场部审核筛选出的入围作品共59份。最终,经过了一个半月的网络投票与专家组评审,分别评选出一等奖1名、二等奖2名、三等奖6名、专项奖6名,以及阳光普照奖44名。现将最终获奖名单公示如下:一等奖1名作者:张慧文作品简介:小鼠肠道研究用途:小肠发育形成过程研究方法:荧光标记不同类器官细胞群 DAPI,AF488,AF555,AF647奖品:Apple Watch Series 8 + 一等奖定制奖牌&证书二等奖2名作者:叶军作品简介:肿瘤类器官研究用途和研究方法:图中所展示的是采用三阴性乳腺癌细胞构建的肿瘤类器官。作者:李志超作品简介:肿瘤类器官研究用途和研究方法:样品为肿瘤病人来源的尿路上皮癌类器官,肿瘤类器官经过多维度验证后,将用于抗肿瘤药物的筛选及肿瘤耐药机制研究。奖品:飞利浦空气炸锅 1个+ 二等奖定制奖牌&证书三等奖6名作者:孟盛雯作品简介:正常类器官研究用途:小鼠小肠类器官P3Day9研究方法:小鼠小肠类器官培养作者:马璐瑶作品简介:肿瘤类器官研究用途和研究方法:我的样品是肝脏穿刺标本的肝癌类器官,用于体外药物实验。作者:张凤枝作品简介:肿瘤类器官点击作品图片浏览更多样品类型:心脏类器官研究用途:揭示多谱系细胞形成心脏类器官过程中的细胞命运转变及潜在的基因调控机制研究方法:单细胞测序分析,流式细胞分析,免疫细胞化学染色等作者:束琳作品简介:肿瘤类器官研究用途和研究方法:结直肠癌类器官传代后摄,用于研究结直肠癌药敏情况作者:黄琰作品简介:脑类器官样品类型:91天 脑类器官研究用途:低剂量重金属镉对大脑类器官神经细胞分化的长期影响研究方法:免疫荧光染色 RNA测序 Western Blot作者:宫千淳作品简介:人肺类器官研究用途:用于冠状病毒致病机制相关研究研究方法: 利用不同种类的冠状病毒感染人肺类器官,探究宿主-病原的相互作用机制,助力新发病毒的预警预测。奖品:东芝2T移动硬盘 1个 + 三等奖定制奖牌&证书专项奖6名类器官超现实艺术性专项奖作者:戚亚东作品简介:正常类器官研究用途和研究方法:肠道类器官细胞日常培养观察专项奖作者:郑晓源作品简介:肿瘤类器官样品类型:肝癌类器官研究用途:用于药物筛选、精准医疗、生物功能验证研究方法:ATP、live/dead(钙黄绿素/PI)、crispr-cas9系统进行生物功能验证普通光源正置显微镜下杰出图像专项奖作者:崔秀杰作品简介:肿瘤类器官研究用途和研究方法:正常胃上皮类器官+胃癌类器官;肿瘤治疗药物敏感性及药物毒性研究;类器官构建及药敏实验倒置显微镜平台共聚焦专项奖作者:代艳萍作品简介:脑类器官样品类型:第63天 脑类器官研究用途:利用大脑类器官研究NANS基因在神经发育过程中的基因功能研究方法:免疫荧光染色 RNA测序 活细胞成像共聚焦显微镜下杰出图像专项奖作者:贾功雪作品简介:正常类器官研究用途和研究方法:通过体外受精获得绵羊早期胚胎进行体外培养。体视镜下杰出图像专项奖作者:孔瑞泽作品简介:正常类器官类型:心脏类器官研究用途和研究方法:由于缺乏合适的模型,人胚胎早期心脏发育以及异常机制仍不清楚,利用多能干细胞来源的类器官作为模型可解码器官发育的事件和潜在机制。奖品:小米平板5Pro12.4 1部 + 专项奖定制奖牌&证书阳光普照奖44名黎雨尘周高适蒋成凡韩成孙星朱恩吉朱佩轩阮思颖李惠如李华善王显文倪成铭唐佩兰Bing Li琳琳李明乾葛晓民井老师孙云皓张麟腾孙千惠张一帆王心烁李羽谢诗哲邢绪东吉聪聪惠贤瑞陈先生施银杰郭健颖王倩倩吴素馨梅英秀王航薛巍松何佳郭浩翔李娇吴俊辰陈真妮王庆哲韩政界庄老师奖品:徕卡定制显微镜积木玩具1套+伯桢定制钥匙扣1套恭喜以上获奖作品!同时也感谢各位创作者对细胞培养和类器官摄影之旅的实践和付出,带我们领略微观世界中的奇遇,感受生命别有的错落和精致。未来,我们将继续推出徕伯杯系列作品赏析,更有来自评审团的专业点评,内容精彩纷呈,敬请期待吧! 了解更多:徕卡显微
  • 玛纳斯县人民医院1183.34万元采购高压灭菌器,生物显微镜,过氧化氢灭菌,超净工作台,蠕动泵
    详细信息 玛纳斯县方舱医院应急医疗设备紧急采购项目-项目公告 新疆维吾尔自治区-昌吉回族自治州-玛纳斯县 状态:公告 更新时间: 2022-10-03 玛纳斯县方舱医院应急医疗设备紧急采购项目-项目公告 -- 玛纳斯县方舱医院应急医疗设备紧急采购项目竞争性谈判公告 项目概况 玛纳斯县方舱医院应急医疗设备紧急采购项目的潜在供应商应在招采进宝(http://xj.zcjb.com.cn)平台获取采购文件,并于2022年10月7日10点30 分(北京时间)前提交响应文件。一、项目基本情况 1.项目编号:TBD-2022-MNSCG-12 2.项目名称:玛纳斯县方舱医院应急医疗设备紧急采购项目 3.采购方式:竞争性谈判 4.预算金额:1183.34万元 5.资金来源:疫情防控资金 6.采购内容: 第一包:预算金额:61.9万元;采购血糖仪20台、生物显微镜1台、医用超低温冷冻箱2台、便携式血气分析仪2台、超净工作台1台、高压灭菌锅1台; 第二包:预算金额:90万元;采购心电图机4台、床旁B超(3探头)2台; 第三包:预算金额:99.8万元;采购监护仪20台、中心监护系统1套;指脉氧检测仪20台、电子血压计20台; 第四包:预算金额:180万元;采购无创呼吸机2台、转运呼吸机2台、有创呼吸机2台; 第五包:预算金额:77.04万元;采购可视喉镜(插管用)4台、气管插管箱6台、除颤仪6台、复苏气囊(简易呼吸器)6台、高流量吸氧仪5台、心肺复苏机3台; 第六包:预算金额:70万元;采购CCRT2台; 第七包:预算金额:106万元;采购输液泵10台、微量注射泵(双通道)10台、普通病床600张、监护病床20张、床单位消毒机20台; 第八包:预算金额:56.6万元;采购组合衣柜(铁)50组、雾化机5台、正压头套20个、冰毯机(含2张冰毯)4台、轮式转运担架3台、移动输液架40个、电动吸引器4台、晨晚间护理车10台、多功能抢救车5台、紫外线灯车50台、治疗车20台、药品柜5台、污物车3台、病历车8台、医用竖屏显示器1台、体重秤8台、开水器10台、洗衣机2台、多层货架50组、会议桌椅2组、办公桌椅16组;坐便器50个、轮椅25个; 第九包:预算金额:42万元;采购对讲机80台、电脑40台、打印复印一体机40台、A3打印复印扫描一体机1台; 第十包:预算金额:400万元;采购车载CT1台。 (具体参数要求详见竞争性谈判文件) 7.供货时间:招标结束后10日内,CT为15日内 8.本项目不接受联合体投标二、投标人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.投标人必须是中华人民共和国境内注册的,具有独立法人资格的企业;具有良好信誉,有提供本次采购需求货物供货、服务能力的供应商。 3.第一包、第二包、第三包、第四包、第五包、第六包、第七包、第八包、第十包投标人需提供有效的《医疗器械生产许可证》或《医疗器械经营许可证》(二类医疗器械需提供医疗器械备案凭证) 4.参加采购活动前三年内,在经营活动中没有重大违法记录(受行政主管部门的处罚不能参加投标),供应商须提供 “信用中国”网站(http://www.creditchina.gov.cn/)无违法违规行为的查询纪录(提供查询结果网页截图并加盖供应商公章)。 三、落实政府采购政策需满足的资格要求: 1.《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 2.《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)。 3.《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》财库〔2017〕141号。 4.《关于进一步加大政府采购支持中小企业力度的通知》(财库[2022]19号文)。 四、获取采购文件 1.时间:2022年10月3日起至2022年10月5日,上午10:00~13:30,下午16:00~19:30。 2.地点:招采进宝(http://xj.zcjb.com.cn)平台 3.方式:请于规定时间内上传:①法定代表人授权委托书②法定代表人(或被授权人)的身份证③年检有效的企业营业执照④《医疗器械生产许可证》或《医疗器械经营许可证》(二类医疗器械需提供医疗器械备案凭证)⑤“信用中国”公示系统查询结果至招采进宝(http://xj.zcjb.com.cn)平台缴费获取招标文件。4.售价:200元/份(招标文件售后不退, 投标资格不能转让)五、响应文件提交 1.截止时间:2022年10月7日10点30分(北京时间) 2.地点:招采进宝(http://xj.zcjb.com.cn)平台六、开标时间 1.时间:2022年10月7日10点30分(北京时间) 2.地点:招采进宝(http://xj.zcjb.com.cn)平台七、公告期限 自本公告发布之日起3个工作日。八、其他补充事宜 特别提示: 1、超过200万元的货物和服务采购项目、超过400万元的工程采购项目中适宜由中小企业提供的,预留该部分采购项目预算总额的40%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 2、对于未预留份额专门面向中小企业的采购项目,以及预留份额项目中的非预留部分采购包,采购人、采购代理机构应当对符合规定的小微企业报价给予10%~20%(工程项目为6%~10%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的6%~10%作为其价格分。 3、接受大中型企业与小微企业组成联合体或者允许大中型企业向一家或者多家小微企业分包的采购项目,对于联合协议或者分包意向协议约定小微企业的合同份额占到合同总金额40%以上的,采购人、采购代理机构应当对联合体或者大中型企业的报价给予4%~6%(工程项目为2%~4%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的2%~4%作为其价格分。 4、依照财政部办公厅关于疫情防控采购便利的通知(财办库【2020】23号)精神,以及《政府采购法》第八十五条规定,属于紧急采购,建立采购“绿色通道”参照国家药品、耗材集中谈判采购模式,采取竞争性谈判方式集中采购。 九、凡对本次采购提出询问,请按以下方式联系1.采购人信息采购人:玛纳斯县人民医院地址:玛纳斯县凤凰东路26号 联系方式:张主任0994-66638052.采购代理机构采购代理机构:新疆天必达招标代理有限公司地址:石河子市 53 小区万达石府 11-112 联系方式:13199861977 3.项目联系方式 项目联系人:雷鸣 电话:13199861977 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,生物显微镜,过氧化氢灭菌,超净工作台,蠕动泵 开标时间:2022-10-07 10:30 预算金额:1183.34万元 采购单位:玛纳斯县人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:新疆天必达招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 玛纳斯县方舱医院应急医疗设备紧急采购项目-项目公告 新疆维吾尔自治区-昌吉回族自治州-玛纳斯县 状态:公告 更新时间: 2022-10-03 玛纳斯县方舱医院应急医疗设备紧急采购项目-项目公告 -- 玛纳斯县方舱医院应急医疗设备紧急采购项目竞争性谈判公告 项目概况 玛纳斯县方舱医院应急医疗设备紧急采购项目的潜在供应商应在招采进宝(http://xj.zcjb.com.cn)平台获取采购文件,并于2022年10月7日10点30 分(北京时间)前提交响应文件。一、项目基本情况 1.项目编号:TBD-2022-MNSCG-12 2.项目名称:玛纳斯县方舱医院应急医疗设备紧急采购项目 3.采购方式:竞争性谈判 4.预算金额:1183.34万元 5.资金来源:疫情防控资金 6.采购内容: 第一包:预算金额:61.9万元;采购血糖仪20台、生物显微镜1台、医用超低温冷冻箱2台、便携式血气分析仪2台、超净工作台1台、高压灭菌锅1台; 第二包:预算金额:90万元;采购心电图机4台、床旁B超(3探头)2台; 第三包:预算金额:99.8万元;采购监护仪20台、中心监护系统1套;指脉氧检测仪20台、电子血压计20台; 第四包:预算金额:180万元;采购无创呼吸机2台、转运呼吸机2台、有创呼吸机2台; 第五包:预算金额:77.04万元;采购可视喉镜(插管用)4台、气管插管箱6台、除颤仪6台、复苏气囊(简易呼吸器)6台、高流量吸氧仪5台、心肺复苏机3台; 第六包:预算金额:70万元;采购CCRT2台; 第七包:预算金额:106万元;采购输液泵10台、微量注射泵(双通道)10台、普通病床600张、监护病床20张、床单位消毒机20台; 第八包:预算金额:56.6万元;采购组合衣柜(铁)50组、雾化机5台、正压头套20个、冰毯机(含2张冰毯)4台、轮式转运担架3台、移动输液架40个、电动吸引器4台、晨晚间护理车10台、多功能抢救车5台、紫外线灯车50台、治疗车20台、药品柜5台、污物车3台、病历车8台、医用竖屏显示器1台、体重秤8台、开水器10台、洗衣机2台、多层货架50组、会议桌椅2组、办公桌椅16组;坐便器50个、轮椅25个; 第九包:预算金额:42万元;采购对讲机80台、电脑40台、打印复印一体机40台、A3打印复印扫描一体机1台; 第十包:预算金额:400万元;采购车载CT1台。 (具体参数要求详见竞争性谈判文件) 7.供货时间:招标结束后10日内,CT为15日内 8.本项目不接受联合体投标二、投标人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.投标人必须是中华人民共和国境内注册的,具有独立法人资格的企业;具有良好信誉,有提供本次采购需求货物供货、服务能力的供应商。 3.第一包、第二包、第三包、第四包、第五包、第六包、第七包、第八包、第十包投标人需提供有效的《医疗器械生产许可证》或《医疗器械经营许可证》(二类医疗器械需提供医疗器械备案凭证) 4.参加采购活动前三年内,在经营活动中没有重大违法记录(受行政主管部门的处罚不能参加投标),供应商须提供 “信用中国”网站(http://www.creditchina.gov.cn/)无违法违规行为的查询纪录(提供查询结果网页截图并加盖供应商公章)。 三、落实政府采购政策需满足的资格要求: 1.《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)。 2.《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)。 3.《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》财库〔2017〕141号。 4.《关于进一步加大政府采购支持中小企业力度的通知》(财库[2022]19号文)。 四、获取采购文件 1.时间:2022年10月3日起至2022年10月5日,上午10:00~13:30,下午16:00~19:30。 2.地点:招采进宝(http://xj.zcjb.com.cn)平台 3.方式:请于规定时间内上传:①法定代表人授权委托书②法定代表人(或被授权人)的身份证③年检有效的企业营业执照④《医疗器械生产许可证》或《医疗器械经营许可证》(二类医疗器械需提供医疗器械备案凭证)⑤“信用中国”公示系统查询结果至招采进宝(http://xj.zcjb.com.cn)平台缴费获取招标文件。4.售价:200元/份(招标文件售后不退, 投标资格不能转让)五、响应文件提交 1.截止时间:2022年10月7日10点30分(北京时间) 2.地点:招采进宝(http://xj.zcjb.com.cn)平台六、开标时间 1.时间:2022年10月7日10点30分(北京时间) 2.地点:招采进宝(http://xj.zcjb.com.cn)平台七、公告期限 自本公告发布之日起3个工作日。八、其他补充事宜 特别提示: 1、超过200万元的货物和服务采购项目、超过400万元的工程采购项目中适宜由中小企业提供的,预留该部分采购项目预算总额的40%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 2、对于未预留份额专门面向中小企业的采购项目,以及预留份额项目中的非预留部分采购包,采购人、采购代理机构应当对符合规定的小微企业报价给予10%~20%(工程项目为6%~10%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的6%~10%作为其价格分。 3、接受大中型企业与小微企业组成联合体或者允许大中型企业向一家或者多家小微企业分包的采购项目,对于联合协议或者分包意向协议约定小微企业的合同份额占到合同总金额40%以上的,采购人、采购代理机构应当对联合体或者大中型企业的报价给予4%~6%(工程项目为2%~4%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的2%~4%作为其价格分。 4、依照财政部办公厅关于疫情防控采购便利的通知(财办库【2020】23号)精神,以及《政府采购法》第八十五条规定,属于紧急采购,建立采购“绿色通道”参照国家药品、耗材集中谈判采购模式,采取竞争性谈判方式集中采购。 九、凡对本次采购提出询问,请按以下方式联系1.采购人信息采购人:玛纳斯县人民医院地址:玛纳斯县凤凰东路26号 联系方式:张主任0994-66638052.采购代理机构采购代理机构:新疆天必达招标代理有限公司地址:石河子市 53 小区万达石府 11-112 联系方式:13199861977 3.项目联系方式 项目联系人:雷鸣 电话:13199861977
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
  • 王凯研究组:共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像
    p style=" text-align: justify text-indent: 2em " 8月10日23点, i Nature Biotechnology /i 在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。 /p p style=" text-align: justify text-indent: 2em " 跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。 /p p style=" text-align: justify text-indent: 2em " 传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。 /p p style=" text-align: justify text-indent: 2em " 然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。 /p p style=" text-align: justify text-indent: 2em " 研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μm sup 3 /sup 的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。 /p p style=" text-align: justify text-indent: 2em " 团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。 /p p style=" text-align: justify text-indent: 2em " 研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。 /p p style=" text-align: justify text-indent: 2em " 研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9bfa0661-24ad-4d0d-9ccd-10db465617c7.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: justify text-indent: 2em " 图1.(上)共聚焦光场显微镜原理示意图。(下)不同于传统光场显微镜,共聚焦光场显微镜采用片状照明,选择性激发样本的一部分,在垂直照明的方向上扫描,采集到的信号被遮挡板过滤掉焦层范围之外的部分。对采集到的图像进行重构可以得到焦层内的三维信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/28e2bd6d-59f5-4ff1-8085-355f6d295cbf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: justify text-indent: 2em " 图2.(左)斑马鱼幼鱼捕食行为的一个例子。0s 为斑马鱼吞食草履虫的时刻。(右)左图斑马鱼捕食行为中,共聚焦光场显微镜记录到的两个不同脑区的神经元活动。箭头所指为过程中激活的单个神经元。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c26412e7-a408-4c67-8533-1c5a118fdb4b.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(68, 68, 68) font-family: 微软雅黑 background-color: rgb(255, 255, 255) "   /span 图3.(左)共聚焦光场显微镜拍摄得到的小鼠视皮层中的复杂血管网络。6个在不同深度拍摄的体积连接为一个深度达600 μm的三维结构。(中)100 μm到250 μm深度血管网络的平面投影,颜色代表不同血管分支中血细胞的平均流速。(右)图中箭头所指的区域中五个血管分支在一段时间内流过血细胞数量的计数。 /p
  • 首医大朱进霞:NKCC2(离子转运体)参与胃酸分泌的实时生理证据丨NMT活体组织创新科研平台
    NMT作为生命科学底层核心技术,是建立活体创新科研平台的必备技术。2005年~2020年,NMT已扎根中国15年。2020年,中国NMT销往瑞士苏黎世大学,正式打开欧洲市场。基本信息主题: NKCC2(离子转运体)参与胃酸分泌的实时生理证据期刊:European Journal of Pharmacology影响因子:3.17研究使用平台:NMT活体组织创新科研平台标题:Na+-K+-2Cl- cotransporter 2 located in the human and murine gastricmucosa is involved in secretagogue-induced gastric acid secretion and is downregulated in lipopolysaccharide-treated mice作者:首都医科大学朱进霞、郑丽飞检测离子/分子指标H+检测样品小鼠胃黏膜活体组织中文摘要(谷歌机翻)Na+-K+-2Cl-转运蛋白(NKCC)在胃壁细胞中的表达异常高。布美他尼是一种强效的利尿剂,可阻断NKCC,通常会导致胃酸分泌减少。内毒素血症在体内引起低血脂症,其中脂多糖(LPS)起着重要作用。这项研究旨在调查NKCC2对LPS治疗的小鼠胃酸分泌及其改变的影响。非损伤微测技术(Non-invasive Micro-test Technology,NMT)和实时pH滴定结合RNA干扰被用来确定布美他尼对胃酸分泌的影响。进行了免疫化学和蛋白质印迹研究以调查LPS处理的小鼠中NKCC2表达的变化。NKCC1和NKCC2的免疫反应性主要观察到壁细胞的基底外侧和顶膜附近。用布美他尼预处理可降低小鼠胃粘膜中组胺刺激的H+流速。布美他尼的顶端而不是基底外侧的添加抑制了福司可林或组胺/3-异丁基-1-甲基黄嘌呤(IBMX)诱导的胃酸分泌。NKCC2 siRNA的体内治疗可抑制毛喉素诱导的酸分泌。在组胺刺激后,大部分NKCC2靶向胃粘膜和原代培养的壁细胞中的顶膜。LPS处理的小鼠的胃黏膜中NKCC2和囊泡相关膜蛋白2(VAMP2)的表达降低,但H+/K+-ATPase的表达没有降低。布美他尼阻断顶叶NKCC2而不是基底外侧NKCC1可抑制促分泌素诱导的胃酸分泌,在此期间可能需要NKCC2的膜运输。NKCC2和VAMP2的下调可能与LPS诱导的胃酸分泌减少有关。离子/分子流实验处理方法10 μM布美他尼、100 μM组胺、300 μM西咪替丁分别处理小鼠胃黏离子/分子流实验结果图1B所示的折线图是使用NMT技术监测小鼠胃黏膜H+流速变化的结果。加入组胺(100 μM)引起H+流速增加,从0.52±0.02增加到0.74±0.03 pmol cm-2 s-1,这被组胺H2受体拮抗剂西咪替丁(300 μM)抑制(图1C)。布美他尼(10 μM)预处理可明显抑制组胺诱导的H+流速,但对基础H+流速无影响,表明NKCC在促酸分泌中起作用。图1 不同处理下小鼠胃黏膜H+流速的变化情况其他实验结果双重染色免疫荧光结果表明,NKCC1的免疫反应性(IR)主要出现在表达H+/K+-ATPase的细胞的基底外侧膜,NKCC2 IR在小鼠和人胃粘膜中H+/K+-ATPase阳性细胞的顶端侧最为突出。在培养的大鼠胃壁细胞中也观察到NKCC2 IR。NKCC2信号也作为阳性对照在小鼠和大鼠肾脏中进行研究,发现在肾小管的顶端观察到强烈的NKCC2 IR。在静息条件下,布美他尼在腔管或浆膜的处理均未显著抑制胃酸分泌。这些结果表明,抑制顶端膜上高表达的NKCC2,可以显著抑制促分泌素诱导的胃酸分泌。
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为
    科学创新 | 白藜芦醇有效改善母体免疫激活(MIA) 诱导的小鼠自闭ASD症样行为自闭症谱系障碍(Autism spectrum disorder,ASD)是一种主要在儿童中出现的神经发育障碍性疾病,主要特征是社交功能障碍和局限、重复的行为或兴趣。妊娠期母体感染是子代发生ASD的重要原因,母体免疫激活(Maternal immune activation,MIA)引起的炎症浸润可导致胎儿神经发育障碍。根据流行病学调查,全球大约有7800万人患有ASD,而且在过去20年里,ASD患者的数量迅速增加。然而,一些用于治疗ASD的药物效果有限,而且还会引起高血糖、血脂异常、体重增加等副作用。因此,迫切需要找到更有效的治疗方法。近期,哈尔滨医科大学公共卫生学院儿少卫生与妇幼保健教研室在《Journal of Nutritional Biochemistry》发表题为“Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring”(第一作者:曾心、范琳琳;通讯作者:武丽杰、梁爽)的研究成果,基于中医药食同源的概念,验证了白藜芦醇对母体免疫激活诱导的小鼠ASD样行为的治疗作用。研究团队采用综合生物信息学方法,对药食同源的中草药和药物靶点进行了大规模筛选和分析,确定白藜芦醇和Thoc5分别是治疗母体免疫激活诱导的小鼠ASD样行为的最佳小分子成分和药物靶点,经体外实验结果显示,发现白藜芦醇能够增加Thoc5的表达。为更好的验证白藜芦醇的药用潜力,研究人员对小鼠进行了体内实验,通过 SOPTOP激光共聚焦扫描显微镜 观察Iba-1(小胶质细胞的标志物)在胎鼠大脑中的表达情况。实验结果显示,MIA胎鼠大脑中Iba-1的表达水平明显高于PBS组,但经过白藜芦醇预处理后,Iba-1在胎脑中的表达显著降低。▲免疫荧光法观察Iba-1表达情况本研究首次全面探索了药食同源草药治疗ASD的有效成分和靶点。通过体外和体内实验,成功证明了白藜芦醇能够增加Thoc5的表达,降低IL-6的水平,并抑制MIA引起的胎盘、胎脑和后代大脑皮层的炎症,改善成年后代的ASD样行为。论文信息:Zeng X, Fan L, Li M, Qin Q, Pang X, Shi S, Zheng D, Jiang Y, Wang H, Wu L, Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem. 2024 Apr 5:109638. doi:10.1016/j.jnutbio.2024.109638. Epub ahead of print. PMID: 38583499.
  • 国自然与CNS顶刊的偏爱— —“类器官”,再次登顶Nature Methods!
    类器官(Organoid)是十四五国家重点研发计划中6个重点专项之一,是国家科技部的重点关注项目。近年来相关的项目和文章也迅速升温,仅过去的2023年上半年,“Organoid”相关文章就有两千多篇,远超前几年同期水平,意味着该领域的研究热度持续上升。 国自然基金申报“内卷”趋势越来越显著,而类器官(Organoid)作为前沿热点技术之一,近年来备受申请人和评审专家们的关注。类器官相关的课题和项目在申请国自然上具有得天独厚的优势。尤其是2018年以来,类器官相关方向,连续几年被国自然申报指南列为推荐项目的研究方向。作为具有高适用度的体外模型之一,类器官从最初的体外模型补充参考的工具,逐渐开始“挑国自然大梁”。PubMed类器官相关文章数量趋势 近期,一篇以《人脑类器官中的谱系记录》(Lineage recording in human cerebral organoids)为题的类器官文献登上Nature Methods。该文献结合单细胞测序、空间转录组以及4D光片显微成像技术(长时间高分辨类器官光片显微镜),实现了人类大脑类器官的谱系记录。 近年来,人类诱导多能干细胞iPSCs衍生的类器官,为研究人体器官发育提供了模型。单细胞测序技术能够高度鉴定系统内细胞状态的描述,然而,目前还没有很好的方法直接测量细胞谱系关系。谱系偶联scRNA-seq允许在复杂组织和其他细胞分化场景中更好地注释细胞命运规范和轨迹推断。长时间高分辨类器官光片显微镜基于图像的方法,为捕捉全面的发育动态提供了一种可视化方法。因此,谱系偶联单细胞转录组学和长时间高分辨类器官光片显微镜为记录和理解iPSCs建立的类器官系统的谱系动力学提供了全面的解决方案。 长时间高分辨类器官光片显微镜-LS2是一款全新光片成像平台,可实现活细胞的长时间、高分辨、高通量、多样品同时成像,非常适合对直径达300 μm的光敏样品(如卵母细胞,胚胎和类器官)进行长期实时高时空分辨率和低光毒性的观察与成像。这一成熟的长时间实时类器官成像技术也为本实验提供了关键数据支撑。 作者建立了一个双通道细胞谱系记录系统(iTracer) 来了解脑类器官脑区域化过程中的谱系动力学。系统设置从最原始的iPSCs样本库中开始跟踪克隆,同时也允许使用诱导疤痕在不同的时间点进行谱系记录,以解决动力学与神经元命运之间建立关系尚不明确的问题。该系统既可以进行克隆分析,也可以探索细胞命运建立的时间动态,避免了多轮标记。在脑类器官发育的时间过程中进行的单细胞转录组分析证实,在单个类器官中形成了不同的脑区域,类器官中的脑区域特征与发育中的小鼠大脑空间原位地图集的对应区域非常相似。使用iTracer来探索在脑类器官模式和神经发生过程中与分子特征相结合的谱系,并表明该系统与空间转录组学兼容。 图1 iTracer Sleeping Beauty示意图并且揭示了人类大脑类器官细胞命运的克隆性 为了将分子状态、细胞谱系和位置信息联系起来,作者建立了“空间iTracer”,它使用空间转录组测序技术来测量基因表达和iTracer读取结果。数据表明,在脑类器官发育过程中,相关细胞倾向于聚集在类器官的同一区域,接收相似的图案信号,因此平均而言被限制在相同的大脑区域身份中。iTracer和空间iTracer共同揭示了脑类器官不同脑区细胞克隆的富集,这可以追溯到初始化EB 内的克隆。 图2 空间iTracer连接脑类器官的谱系、分子状态和位置信息 为了直接测量神经外胚层到神经上皮阶段发育中的类器官的谱系动力学和克隆的空间积累,作者使用4D光片显微成像技术(长时间高分辨类器官光片显微镜)建立了发育中的脑类器官的长期实时成像(图3a)。简单地说,作者生成了含有5% iPSCs的类器官,其细胞核被FUS-mEGFP荧光报告标记,将EB嵌入成像室的Matrigel中,并在神经诱导培养基中培养,类器官使用Viventis Microscopy开发的LS1 Live光片显微镜成像,使用X25物镜,每2 μm获得连续z步,共150步。采集帧率为30分钟,总共100小时(200帧)用于跟踪。并跟踪发育 65-100小时(图3b)。随着EB的生长和发育,观察到几个管腔的形成,每个管腔都可以在三维上跟踪(图3c)。 图3 脑类器官发育的长时间高分辨类器官光片显微镜4D成像 在整个记录时间内,作者使用Mastodon直接跟踪单个细胞核的谱系,这是一个允许在大型4D数据集中半自动跟踪和管理细胞核谱系的方案(图3d,e)。他可视化了源自原始细胞核的子细胞的空间分布,称之为谱系1 (L1),并生成了100小时增殖后的谱系树(图3f)。一个细胞周期的平均持续时间估计为17.3小时。作者观察到,在整个记录时间内,L1仍然局限于腔内的同一区域(图3d)。跟踪了另外三个核,其中两个核与L1 (L2-L3)在相同的管腔区域相邻,第三个核(L4)位于EB中一个截然相反的未来管腔区域(图3g)。作者量化了每个树之间的空间距离,并检查了类器官3D空间内所有子细胞的分布(图3g-i)。在65小时的过程中,初始化细胞核平均产生13个后代细胞核,它们都填充在扩大的类器官中,但在空间上仍然局限于亲本管腔,表现出有限的远离其谱系成员的迁移(图3g-i)。这些结果表明,克隆的早期空间排列随后的局部扩增导致脑区域的不同谱系组成,这证实了之前基于iTracer的类器官脑区域克隆性观察(图3j)。 脑类器官发育的长时间高分辨类器官光片成像视频(点击图片即可观看) 另外,作者还使用iTracer来确定细胞在脑类器官发育过程中何时限制了它们的命运。研究者使用谱系记录器的两个通道(在EB初始化和发育过程中诱导的疤痕中引入的条形码)以及单细胞转录组来构建命运映射的全类器官系统发育。使用iTracer以高分辨率评估不同脑类器官区域中祖细胞到神经元谱系的可变性。为了实现深层谱系采样,他们对200 μm iTracer类器官切片的两个微解剖外周区域进行了谱系偶联单细胞转录组学。 作者整合了静态序列标记和基于CRISPR 技术的动态序列标记,可用于标记起始时间点的不同干细胞,也包括基于 CRISPR 编辑系统的动态序列标记,结合带有可诱导 Cas9 蛋白基因的干细胞,即可在特定时间点产生额外的随机突变,从而得到第二层细胞谱系信息。通过使用4D光片显微成像技术(长时间高分辨类器官光片显微镜),对稀疏核标记的大脑类器官进行追踪观察。而在此基础上,通过在不同时间点引入动态序列标记,还可得到大脑类器官中不同细胞类型、特别是不同类型神经元的命运决定关键时间点,并对同一多能干细胞产生的不同后代神经元的分化情况进行比较。进而得出在分裂分化过程中,大脑类器官的细胞并未发生显著的细胞迁移,因而其后代细胞呈聚集分布,并在类似的微环境作用下,被诱导为同样类型的神经元。 未来,iTracer以及4D光片显微成像技术(长时间高分辨类器官光片显微镜)的联合应用将成为了解人类类器官系统发育障碍背后的突变影响的有力方法。参考文献:[1]. He et al., Lineage recording in human cerebral organoids. Nature Methods
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制