当前位置: 仪器信息网 > 行业主题 > >

显微共焦角分辨仪

仪器信息网显微共焦角分辨仪专题为您提供2024年最新显微共焦角分辨仪价格报价、厂家品牌的相关信息, 包括显微共焦角分辨仪参数、型号等,不管是国产,还是进口品牌的显微共焦角分辨仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微共焦角分辨仪相关的耗材配件、试剂标物,还有显微共焦角分辨仪相关的最新资讯、资料,以及显微共焦角分辨仪相关的解决方案。

显微共焦角分辨仪相关的论坛

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 【原创】普通生物显微镜可变成媲美共焦显微镜的高分辨率显微镜

    分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。

  • 共焦距显微技术及其应用

    共焦距显微技术是一种获得高分辨率图像和3D重构的宝贵工具。共焦距显微技术最重要的功能是能够从样片内部隔离和收集焦点平面,由此消除荧光样片中常见的模糊不清的“薄雾”。如何将该技术应用于医疗设备中?请看本文的介绍。共焦距显微技术是一种获得高分辨率图像和3D重构的宝贵工具。共焦距显微技术最重要的功能是能够从样片内部隔离和收集焦点平面,由此消除荧光样片中常见的模糊不清的“薄雾”。精美的细节通常被薄雾弄得模糊不清,无法用非共焦距、荧光显微技术检测到。在此应用中使用DLP技术使用户能够轻松改变观察条件,消除影响查看的不想要的振动。DLP技术的用途有两个:扫描和配置照明与检测针孔阵列。照明针孔通过以下方式创建:打“开”一个显微镜,而使周围的镜保持“关闭”状态。因此只有这一个微镜反射的光会透过光学系统。此微镜在物镜中的图像充当聚焦于物体的照明针孔。然后,在此针点碰到样片后“反射”的光会重新聚集到 DMD的同一微镜上。通常,当某个物体在荧光显微镜中成像时,产生的信号来自全厚度样本,该样本不允许大多数信号聚焦到查看器。共焦距显微技术通过位于平面像前面的共焦距“针孔”去除这种对焦不准的信息,此针孔充当空间滤波器,仅允许焦距对准部分的光成像。要使整个视野成像,可通过以覆盖整个视野的时变模式转换开关镜来配置马赛克。使用水平扫描并按每个垂直位置一个微镜几次来转换模式,就可扫描整个样片领域。然后在DMD执行扫描时使用CCD相机拍摄一个完整连续的图像。

  • 【资料】拉曼相关技术-共焦显微拉曼光谱技术

    [size=5][b]共焦显微拉曼光谱技术[/b] [/size][size=5]  显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种应用技术。与其他传统技术相比,更易于直接获得大量有价值信息,共聚焦显微拉曼光谱不仅具有常规拉曼光谱的特点,还有自己的独特优势。辅以高倍光学显微镜,具有微观、原位、多相态、稳定性好、空间分辨率高等特点,可实现逐点扫描,获得高分辨率的三维图像,近几年共聚焦显微拉曼光谱在肿瘤检测、文物考古、公安法学等领域有着广泛的应用。 [/size]

  • 创新快捷的荧光检测评估方案 —以荧光(共聚焦)显微镜分辨率为例

    创新快捷的荧光检测评估方案 —以荧光(共聚焦)显微镜分辨率为例

    Confocal(激光共聚焦显微镜)现在已经司空见惯,甚至是超分辨(SIM等)也是屡见不鲜,今天我们就定性和定量两个方面分析显微成像系统的性能(以分辨率为例),从而更了解系统性能好坏,才能在选择显微镜时做到有的放矢 。[align=center][img=,445,262]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261504385121_662_3450141_3.png!w445x262.jpg[/img][/align]这次我们主要测试对象为奥林巴斯(Olympus) SpinSR超高转盘共聚焦系统,搭载超分辨模块SpinSR10,配以Photometrics 公司的Prime 95B相机。[b][color=#00af50]一、定性分析[/color][/b]利用共聚焦模块与超分辨模块分别在100倍油镜下扫描,采集成像。样品采用Argolight标准测试片Argo-SIM。此测试片中的图样由激光写入,不仅无光漂白效应,而且常见波段皆可被激发,使用方便。通过标准测试片中的“间距渐变线对”图样可以快速定性评估系统空间分辨率及信噪比。Argolight的Argo-SIM标准片中共有4组间距渐变线对,分别朝向四个方向,用以测试显微镜对不同方向的分辨率。线对间距以0 nm为起点,30 nm为步进递增至390 nm。[align=center] [/align][align=center][img=,390,266]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261505109514_806_3450141_3.png!w390x266.jpg[/img][/align][align=center]图一:用户在观看“间距渐变线对”图样(激发光488nm )[/align]实时预览状态下,我们仅用肉眼就可以看出,线对之间有无明显分开,以此大致判定系统的分辨率。线对从下往上数,如从第n根可以分开,则显微镜的分辨率大致为(n-1)*30nm左右。以下图为例:[align=center][img=,690,657]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261506487351_747_3450141_3.png!w690x657.jpg[/img][/align][align=center]图二 定量分析示意图[/align]但是,人眼判断的精确度有限。对于关注方法学的人,仅仅定性分析已不能满足需求。需要对相关结果定量分析,得出更准确的值。[b][color=#00af50] [/color][color=#00af50]二、定量分析[/color][/b]第二阶段,我们将上述采集到的图像分别送入Argolight测试片配套的图像分析软件Daybook中自动计算出分辨率结果。为了得到更为准确的结果,分析过程中截取图像不同区域,分别计算出其分辨率,平均计算得出最终分辨率数值。[align=center][img=,468,298]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261508270801_1889_3450141_3.png!w468x298.jpg[/img][/align][align=center]图三 Daybook软件对比度测量计算图[/align][align=center] [/align]分析过程中,Daybook软件首先自动识别图像中的线对,将强度曲线中的峰值和谷值分别进行标定,之后计算不同线对之间峰值和谷值得的光强对比度(见图三)。另外,软件允许用户选择对比度阈值,以此作为分辨率的判定标准。[align=center][img=,545,242]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261511582801_395_3450141_3.png!w545x242.jpg[/img][/align] [align=center] confocal成像(左) 右:超分辨模块成像(右)[/align][align=center]图四 Argo-SIM测试片中的“间距渐变线对”图样的成像(激发光488 nm)[/align][align=center] [/align][align=center][img=,523,294]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261513007694_2665_3450141_3.png!w523x294.jpg[/img][/align][align=center]五 Daybook软件测量结果截图[/align][align=center] 通过此次测试,我们清楚了解该显微镜的实际分辨率,验证了与厂家参数的契合度。同时,有赖于Argolight荧光显微镜测试方案的高效和便捷,整个测试过程耗时不超过30分钟。[/align][align=center]Argolight荧光标准评估片除了测试显微镜分辨率外,还可以测试其它性能如照明均匀度、光强光谱响应度、空间共定位、定位误差等等。可关注后续文章或致电了解更多功能。[/align][align=center](注)[/align][align=center]1、图片传送压缩问题,图片可能失真。烦请谅解![/align][align=center]2、测量最终结果涉及其他厂家相关产品,暂决定不公布相关测量准确数值,如需了解结果可咨询相关厂家。我司仅负责提供相关产品测量方案,不负责具体系统的评测。烦请谅解![/align]

  • 【原创】真实色共聚焦显微镜对比激光共聚焦显微镜的优势!

    [center]真实色共焦显微镜与激光扫描共焦显微镜主要特点对比[/center]真实色共焦显微镜与激光扫描共焦显微镜,二者在成像原理上基本是一样的,最大不同之处是照明光源不同。1、激光扫描共焦显微镜激光扫描共焦显微镜的照明光源是激光,即单色光。其实际成像过程是根据被观察物体对该单色激光的反射光的强弱来成像的。由于是单色光照明,不能分辨颜色,对于在同一试样的同一视场内,颜色不同,但对该单色激光反射光强度相同的不同组织或成分不能分辨。容易产生同相异色,同色异相的现象,不利于对微观组织和成分的正确分辨。2、真实色共焦显微镜真实色共焦显微镜的光源是氙光源,即白光。其实际成像过程是在白光照明的条件下,对物体形貌(包括颜色)进行综合的成像。 由于是多色光照明和成像,真实色共焦显微镜能够更真实的反应物体的颜色和形貌,避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这方面,其分辨率远强于激光扫描共焦显微镜 综合分析:在有颜色差异的试样的观察条件下,真实色共焦显微镜避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这种条件下,真实色共焦显微镜的分辨率高于激光扫描共焦显微镜。在单色试样的观察条件下,分辨率才接近各自的技术指标。然而,在实际观察的试样中,绝大多数不同的组织和成分都是有颜色差异的。对应于没有颜色差异或颜色差异小的试样,可以通过人为的染色(例如腐蚀处理),提高图像的分辨能力。在这一方面,激光扫描共焦显微镜是无能为力的。 另外,分辨率是在特定条件下所能达到的一项技术指标,当在实际使用中,不满足该技术条件时(实际是常常不能满足),其分辨率是达不到所给出的数值。

  • 【分享】显微镜的分辨率

    显微镜的分辨率是衡量显微镜性能的又一个重要技术参数。 分辨率又称"鉴别率","解像力";是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和数值孔径(又称:镜口率)以及介质的折射率。 显微镜的分辨率用公式表示为:d=l/NA;式中d为最小分辨距离;l为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则d值越小,分辨率就越高。 如果要提高显微镜的分辨率,即减小d值,奥秋仪器建议采取以下措施1. 降低波长l值,使用短波长光源。2.曾大介质h值和提高NA值(NA=hsinu/2)。3.增大孔径角。4.增加明暗反差。

  • 【原创】新安装激光共焦显微镜

    单位新安装了激光共焦显微镜Olympus 3100放大倍数:120x-14400x分辨率:XY 0.12um;Z 0.05um观察模式:明场,暗场,激光共焦,微分干涉。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67336]Olympus 3100 手册[/url]

  • 实时超分辨率显微成像系统特点介绍

    [url=http://www.f-lab.cn/microscopes-system/storm.html][b]实时超分辨率显微成像系统[/b][/url]突破了光学显微镜的半波长分辨率极限,提供了比宽视场,共聚焦显微镜更好分辨率。实时超分辨率显微成像系统采用尼康或奥林巴斯显微镜,Chroma 滤波片,Andor公司EMCCD相机以及独特的照明系统,为客户提供全球同步的超分辨率成像系统。[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-2.JPG[/img][b]实时超分辨率显微成像系统特点[/b]横向分辨率可达20nm,轴向分辨率可达40nm实时和线下图像重建GPU加速处理图像先进的自动聚焦硬件高分辨率X-Y-Z工作台灵活的配置[img=实时超分辨率显微成像系统]http://www.f-lab.cn/Upload/storm-1.JPG[/img]实时超分辨率显微成像系统:[url]http://www.f-lab.cn/microscopes-system/storm.html[/url]

  • 求高手指教:如何获取一系列欠焦高分辨?

    我们实验室用的是JEM2010透射电子显微镜,(点分辨率2.3nm,信息分辨率1.4nm,球差1mm,谢尔策欠焦值为-61nm。)配有Gatan 794CCD(1k*1k)。现在想在谢尔策欠焦附近获取一系列欠焦高分辨照片,不知道如何操作,尤其是Gatan软件的设置,手动调焦获取和程序调教的方法,请各位老师帮忙指教。

  • 【求助】求助各位大虾——关于高分辨电子显微镜

    各位大虾好!兄弟有一事请各位大虾指教:我们有一个项目,相关文章用高分辨电子显微镜做的一些实验有很好的效果,兄弟也想做一下,但不知道高分辨电子显微镜的内涵、或者是具体定义是什么,请各位大虾赐教,谢谢!北京、武汉、广州、上海、济南,这些城市或周边城市中那个单位有比较好的高分辨电子显微镜对外开放,请各位大虾指引一二,不胜感激。高分辨电子显微镜的性能指标是什么?如购买一台大约需要多少钱(这样兄弟一了解某个实验室该仪器的价格大约就能知道其性能了)?有劳各位大虾了!兄弟十分感激!!!

  • “光敏定位超高光学分辨率显微镜系统”通过验收

    http://www.cas.cn/ky/kyjz/201207/W020120712608069274506.jpg验收专家现场核查设备情况 7月11日,中国科学院计划财务局组织专家在生物物理研究所对徐涛研究员负责的“光敏定位超高光学分辨率显微镜系统”仪器研制项目进行了现场验收。 验收专家组听取了研制工作报告及经费决算报告、用户报告和技术测试报告,现场核查了设备的运行情况,审核了相关文件档案及财务账目。经过提问与讨论,验收专家组一致认为该项目实现了预期的研制目标,完成了实施方案规定的各项任务,同意通过验收。 2006年9月,美国科学家Eric首次在Science杂志上提出光敏定位显微镜(PALM)的概念,使得光学显微镜能够获得与电子显微镜相匹配的分辨率。PALM的基本原理是将荧光分子附著在目标蛋白上,利用全内反射显微镜(TIRFM)技术和单分子定位技术得到细胞内荧光蛋白纳米级分辨率的精确定位。“光敏定位超高光学分辨率显微镜系统”研制项目总体设计灵活高效,结合了TIRFM、EMCCD成像系统、闭环锁焦系统等技术,提出了新的单分子定位算法,实现了三维防漂移反馈校正、细胞内单分子的三维定位和超精细结构观察,完成了一套具有国际领先水平的超高分辨光学显微成像系统,具有较高的创新性。 目前,该系统已在细胞内单分子(如微管蛋白、离子通道等)成像方面发挥了关键作用。研究人员在Nature Methods、PNAS等杂志上发表了世界领先的研究成果,可应用于细胞生物学的超高分辨荧光成像,具有广泛的应用前景。 该项目研制的仪器符合目前蛋白质科学和系统生物学对创新仪器设备和技术的有关需求,有望产生一定的经济效益。

  • 分辨阿胶真伪

    最近买了近一斤的阿胶,是东阿阿胶,一千多块。打开表面呈棕褐色,用粉碎机打粉后颜色怎么变成棕黄色了,有一股香味,是不是正常的呢,是不是正品?怎么分辨真伪呢?

  • 【求助】关于共焦显微拉曼成像的问题

    本人用JY公司的Horiba Aramis做显微拉曼成像分析,期间遇到了一些问题,在此向各位专家和高手请教:我的样品是用粘结剂将颗粒粘结并压缩制得的,因此表面不平整,在做共焦显微拉曼光谱成像时,先聚集到某一颗粒上,然后进行Mapping,请问这种情况下是否检测不到焦平面外样品的信号?但在我的检测中焦平面外的样品也出现了信号,只是强度和频移有变化,请问这种焦平面外样品的拉曼信号频移是否可信?此外,做Mapping时需要的时间比较长,样品经长时间激光照射后其峰位会出现偏移,但现在采用的激光功率已经是能得到拉曼信号的最小功率了(300mW),这个问题如何解决?谢谢各位!

  • 【讨论】空间分辨率计算(讨论)

    光学显微镜空间分辨率公司D=1.22LAMDA/N.A.,有人告诉我,这个公式不对,应该是: D=1.27*LAMDA/(f/Dl)原因是:光斑直径要与物镜后瞳匹配.有谁了解,指点一,二另:共焦显微镜的分辨率与常规显微镜的计算公式一样吗?

  • 【资料】什么是共焦显微拉曼光谱仪?

    共焦拉曼指的是空间滤波的能力和控制被分析样品的体积的能力。通常主要是利用显微镜系统来实现的。 仅仅是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

  • 【新闻】德科学家突破光学显微镜分辨率极限

    2006年度德国“未来奖”于23日揭晓,凭借发明突破200纳米“阿贝极限”的光学显微镜,德国马克斯-普朗克学会生物物理化学研究所所长施特芬黑尔获得了这一荣誉。 一年一度的“未来奖”是德国最重要的科学奖。黑尔在接过德国总统克勒颁发的奖杯时表示,将把所获得的25万欧元奖金作为一个科技公司的启动资金,为将来研究更好的显微镜奠定基础。18世纪70年代,德国物理学家恩斯特阿贝发现,可见光由于其波动特性会发生衍射,因而光束不能无限聚焦。根据这个阿贝定律,可见光能聚焦的最小直径是光波波长的三分之一,也就是200纳米。一个多世纪以来,200纳米的“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限,小于这个尺寸的物体必须借助电子显微镜或隧道扫描显微镜才能观察。但黑尔等科学家却巧妙地借助脉冲激光的作用,突破了“阿贝极限”。他们发明的新型的光学显微镜能够观察20纳米左右的微小生物。据悉,这种新型光学显微镜将于明年投放市场,预计价格在80万欧元左右。

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • 超高分辨显微镜及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px][b]超高分辨[/b][/size][/font][font='times new roman'][size=16px][b]显微镜及其在生物医学领域的应用[/b][/size][/font][/align][align=center][font='times new roman'][size=14px]刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],[/size][/font][font='times new roman'][sup][size=14px] [/size][/sup][/font][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,[/font][font='times new roman']100191[/font][/align][font='times new roman'][b]摘要[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman']超高分辨显微镜([/font][font='times new roman']Super-Resolution Microscopy[/font][font='times new roman'])作为一类强大的科学工具,可以突破传统光学显微镜的分辨极限,实现对微小结构的高分辨率成像,已经在生物医学领域引起了广泛的关注和应用。本文将探讨超高分辨显微镜的不同类型和原理,介绍[/font][font='times new roman']其[/font][font='times new roman']在生物医学领域的应用[/font][font='times new roman']及展望其未来发展[/font][font='times new roman']。[/font][font='times new roman'][b]Abstract[/b][/font][font='times new roman']Super Resolution Microscopy[/font][font='times new roman'], as a powerful scientific tool, can break through the resolution limit of traditional optical microscopes and achieve high-resolution imaging of small structures. It has attracted widespread attention and application in the biomedical field. This article will explore the different types and principles of Super Resolution Microscopy, introduce their applications in the biomedical field, and look forward to their future development[/font][font='times new roman'].[/font][font='times new roman'][b]关键词[/b][/font][font='times new roman']超高分辨[/font][font='times new roman']显微镜,[/font][font='times new roman']成像技术[/font][font='times new roman'],应用[/font][font='times new roman'][b]1 [/b][/font][font='times new roman'][b]引言[/b][/font][font='times new roman']显微镜的产生和发展对于生命科学研究的进步有至关重要的作用[/font][font='times new roman'],它将微观世界呈现在大家面前,包括微生物的存在、组织细胞结构及生理病理活动等。显微镜技术的不断革新将成像分辨率不断提高,但相当长一段时间内光学成像无法突破一个极限值,即[/font][font='times new roman']xy[/font][font='times new roman']轴横向分辨率约[/font][font='times new roman']200nm[/font][font='times new roman'],[/font][font='times new roman']z[/font][font='times new roman']轴纵向分辨率约[/font][font='times new roman']500nm[/font][font='times new roman'],因此小于这个尺寸的生命活动和结构[/font][font='times new roman'],如病毒、亚细胞结构等,[/font][font='times new roman']是无法清楚地观察到的[/font][font='times new roman']。[/font][font='times new roman']聚焦点的光强会根据点扩散函数([/font][font='times new roman']point spread functio[/font][font='times new roman']n[/font][font='times new roman'],[/font][font='times new roman']PSF[/font][font='times new roman'])而展开[/font][font='times new roman'],[/font][font='times new roman']对于圆形孔径,[/font][font='times new roman']PSF[/font][font='times new roman']呈现为艾里斑([/font][font='times new roman']Airy disk[/font][font='times new roman'])的模式[/font][font='times new roman']。[/font][font='times new roman']激光扫描共聚焦显微镜([/font][font='times new roman']Confocal Laser Scanning Microscopy, CLSM[/font][font='times new roman'])的分辨率取决于[/font][font='times new roman']PSF[/font][font='times new roman']的大小,如果焦点很小,则每个像素[/font][font='times new roman']点[/font][font='times new roman']获取到的信息也很小,从而得到清晰锐利的图像;反之,则结果图像变得模糊。因此,[/font][font='times new roman']CLSM[/font][font='times new roman']成像的[/font][font='times new roman']主要挑战在于实现越来越小的[/font][font='times new roman']PSF[/font][font='times new roman']以获得更好的分辨率。德国物理学家恩斯特[/font][font='times new roman'][/font][font='times new roman']阿贝([/font][font='times new roman']Ernst Abbe[/font][font='times new roman'],[/font][font='times new roman']1840-1905[/font][font='times new roman']年)在[/font][font='times new roman']19[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代首次[/font][font='times new roman']提出阿贝衍射极限,即[/font][font='times new roman']由于衍射效应,[/font][font='times new roman']PSF[/font][font='times new roman']大[/font][font='times new roman']小与[/font][font='times new roman']λ/NA[/font][font='times new roman']成正比([/font][font='times new roman']d=0.61λ/NA[/font][font='times new roman']),其中[/font][font='times new roman']λ[/font][font='times new roman']是光的波长,[/font][font='times new roman']NA[/font][font='times new roman']是物镜最重要的参数[/font][font='times new roman']——[/font][font='times new roman']数值孔径[/font][font='times new roman']。由于可见光波长范围在[/font][font='times new roman']400-760nm[/font][font='times new roman']之间,[/font][font='times new roman']NA[/font][font='times new roman']值最大在[/font][font='times new roman']1.7[/font][font='times new roman']左右,所以分辨率极限在[/font][font='times new roman']200nm[/font][font='times new roman']左右。随着物理学和测量技术的进步,突破衍射极限的显微镜不断涌现,目前公认的超高分辨显微镜主要有三类,包括[/font][font='times new roman']结构照明显微镜([/font][font='times new roman']Structured Illumination Microscopy[/font][font='times new roman'],[/font][font='times new roman']SIM[/font][font='times new roman'])[/font][font='times new roman'],受激发射减耗显微镜([/font][font='times new roman']Stimulated Emission Depletion Microscopy[/font][font='times new roman'],[/font][font='times new roman']STED[/font][font='times new roman']),和[/font][font='times new roman']单分子定位显微镜。单分子定位显微镜包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])[/font][font='times new roman']。[/font][font='times new roman']2014[/font][font='times new roman']年三位科学家[/font][font='times new roman']史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])[/font][font='times new roman']、埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和威廉[/font][font='times new roman'][/font][font='times new roman']莫纳([/font][font='times new roman']William E. Moerner[/font][font='times new roman'])因他们在超[/font][font='times new roman']高[/font][font='times new roman']分辨显微镜技术领域的贡献而获得了诺贝尔化学奖。[/font][font='times new roman'][b]2 [/b][/font][font='times new roman'][b]不同类型的超高分辨显微镜[/b][/font][font='times new roman'][b]2.1[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman'][b]结构照明显微镜([/b][/font][font='times new roman'][b]Structured Illumination Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]SIM[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']SIM[/font][font='times new roman']本质是利用两束激发光在样品上进行干涉,产生明暗交替的莫尔条纹,高空间频率的莫尔条纹会放大激发条纹与样品空间频率不一致的结构,从而将样品中的高频信息整合入收集到的图像中。[/font][font='times new roman']通过投射特殊的光照明模式如格点或条纹光栅,以一定的模式照射样品,引入空间频率信息,采集多个图像并经过复杂的数据处理之后,重建高分辨率图像。由于每个图像都采用不同的结构照明模式,包含了不同的信息,合并后的图像能够展示出比传统显微镜更多的细节[/font][font='times new roman']。[/font][font='times new roman']相比于其他超高分辨成像技术,[/font][font='times new roman']SIM[/font][font='times new roman']最大的优势就是宽场[/font][font='times new roman']成像,速度快,基本可以达到实时观察。[/font][font='times new roman']SIM[/font][font='times new roman']技术的前身可以追溯到[/font][font='times new roman']20[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代初。当时,光学学家特奥多尔[/font][font='times new roman'][/font][font='times new roman']赫普恩([/font][font='times new roman']Theodor [/font][font='times new roman']H?upl[/font][font='times new roman'])首次提出了使用周期性光栅照明来提高显微镜分辨率的想法。这奠定了[/font][font='times new roman']SIM[/font][font='times new roman']技术的基础,尽管当时还没有实际的[/font][font='times new roman']SIM[/font][font='times new roman']显微镜。[/font][font='times new roman']21[/font][font='times new roman']世纪初期,史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])和埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])等科学家分别独立开发了[/font][font='times new roman']SIM[/font][font='times new roman']的现代版本。[/font][font='times new roman']SIM[/font][font='times new roman']技术开始广泛传播,吸引了生物学家和显微镜专家的关注。它被认为是一种相对低成本的[/font][font='times new roman']超高分辨[/font][font='times new roman']率成像方法,因为它不需要昂贵的激光设备或复杂的样品准备。[/font][font='times new roman'][b]2.2 [/b][/font][font='times new roman'][b]受激发射减耗[/b][/font][font='times new roman'][b]显微镜([/b][/font][font='times new roman'][b]Stimulated Emission Depletion Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]STED[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']STED[/font][font='times new roman']技术的概念最早由斯德哥尔摩大学的斯蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])提出。他的想法是通过将激发光束与一个特殊的抑制光束结合,从而实现对荧光标记物的光抑制,[/font][font='times new roman']通过受激辐射淬灭光斑外围的荧光分子,[/font][font='times new roman']使其在空间上变得更加紧凑,[/font][font='times new roman']减少[/font][font='times new roman']PSF[/font][font='times new roman']从而提高分辨率。[/font][font='times new roman']我们也叫“甜甜圈”技术。[/font][font='times new roman']STED[/font][font='times new roman']显微镜背后基本思想就是利用非线性光学设计一个低于阿贝衍射极限的更小[/font][font='times new roman']PSF[/font][font='times new roman']。[/font][font='times new roman']分辨率与[/font][font='times new roman']STED[/font][font='times new roman']光强有关,提高[/font][font='times new roman']STED[/font][font='times new roman']光的强度可以使荧光光斑焦[/font][font='times new roman']点中心直径趋于[/font][font='times new roman']0[/font][font='times new roman'],但是实际应用中,光损伤较大,[/font][font='times new roman']STED[/font][font='times new roman']光强不可能无限增加,顾[/font][font='times new roman']其分辨率[/font][font='times new roman']最高[/font][font='times new roman']可达到[/font][font='times new roman']3[/font][font='times new roman']0[/font][font='times new roman']nm[/font][font='times new roman']左右[/font][font='times new roman']。[/font][font='times new roman']目前的[/font][font='times new roman']STED[/font][font='times new roman']只能应用于较薄的组织器官或细胞,光毒性较强,成像厚度有限不太适合活体或活细胞长时间成像。[/font][font='times new roman']STED[/font][font='times new roman']光路较为复杂,对系统稳定性要求较高。[/font][font='times new roman'][b]2.3 [/b][/font][font='times new roman'][b]单分子定位显微镜[/b][/font][font='times new roman']单分子定位显微镜[/font][font='times new roman']中荧光标记的单个分子被分别激发和检测。单分子的中心可以以极高的精度确定从而实现高分辨率,包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])。[/font][font='times new roman']PALM[/font][font='times new roman']的历史可以追溯到[/font][font='times new roman']2006[/font][font='times new roman']年,由埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和哈拉尔德[/font][font='times new roman'][/font][font='times new roman']赫斯([/font][font='times new roman']Harald Hess[/font][font='times new roman'])提出了单分子定位这一概念。在[/font][font='times new roman']PALM[/font][font='times new roman']中,样品中的分子被标记上特定的荧光染料。这些染料可以通过光激活从一个基态转变到一个激发态,此过程可通过使用激活光(通常是紫外光)来实现。同期[/font][font='times new roman']STORM[/font][font='times new roman']的成像技术也发展起来,代表科学家是华人庄小威。[/font][font='times new roman']STORM[/font][font='times new roman']的工作原理与[/font][font='times new roman']PALM[/font][font='times new roman']类似,是通过特殊的分子标记和随机活性化,实现单分子定位进而实现超高分辨率成像。具有光激活能力的标记物通常在某种光照条件下会发光,但也会在某一时刻被随机地熄灭。这种随机光熄灭是[/font][font='times new roman']PALM[/font][font='times new roman']技术的关键,因为它允许在不同时间点捕获标记物的位置。通过记录标记物的位置,可以得到它们的坐标。这一过程需要在短时间内多次拍摄样品,以获得足够多的数据点。最后,通过将多个标记物的坐标叠加在一起,可以生成高分辨率的图像。这种以成像时间换取空间分辨率的形式,使得[/font][font='times new roman']PALM[/font][font='times new roman']或[/font][font='times new roman']STORM[/font][font='times new roman']的分辨率通常能够达到数十纳米。[/font][font='times new roman'][b]3 [/b][/font][font='times new roman'][b]应用领域和未来发展[/b][/font][font='times new roman']超高分辨显微镜可以探索微观世界的无限可能性,已经彻底改变了科学研究的方式。在细胞生物学领域,它被用于研究[/font][font='times new roman']亚细胞结构,如微丝、微管、肌动蛋白等,[/font][font='times new roman']细胞器[/font][font='times new roman']如线粒体、溶酶体等,[/font][font='times new roman']分子分布和细胞膜动态、观察蛋白质的相互作用;在神经科学领域,它可用于观察神经元的亚细胞结构和突触的细节,有助于解剖和理解神经系统的结构和功能,以及神经系统相关疾病的机制;在癌症研究领域,被用于研究癌细胞的特征、蛋白质分布以及肿瘤微环境,这对于癌症的早期诊断和治疗规划非常重要;在材料科学领域,它被用于研究纳米材料的结构和性质、帮助科学家精确控制和制备纳米结构;在药物研发领域,它可用于研究药物靶标蛋白的定位和与其他分子的相互作用,这对于药物设计和筛选非常重要[/font][font='times new roman'];在微生物领域,对于研究细菌[/font][font='times new roman']结构变化至关重要,规避了电子显微镜无法进行活体成像等弊端,可以更加推进微生物学发展。[/font][font='times new roman']当然,[/font][font='times new roman']超[/font][font='times new roman']高[/font][font='times new roman']分辨成像技术[/font][font='times new roman']也有一定的挑战。超高分辨成像技术[/font][font='times new roman']通常需要高度复杂的设备和精密的校准,这使得其设备成本相对较高,[/font][font='times new roman']再加上样本制备的困难,[/font][font='times new roman']限制了其广泛应用。[/font][font='times new roman']样品准备在超高分辨成像中具有重要作用,新的标记技术和荧光探针的发展将提高成像的灵敏度和特异性[/font][font='times new roman'],[/font][font='times new roman']开发更友好、无损伤的样品准备方法,以减少对样品的干扰[/font][font='times new roman'],[/font][font='times new roman']甚至[/font][font='times new roman']包括无标记成像技术以减少样品标记的需求。开源软件和自动化工作流程将使超高分辨成像技术更易于使用和共享,促进科学研究的进展。[/font][font='times new roman']超高分辨技术通常对于三维成像和大样本的深度成像有限制,需要克服分辨率和深度之间的权衡。[/font][font='times new roman']同时超高分辨[/font][font='times new roman']成像的时间分辨率还可以继续提升[/font][font='times new roman']。[/font][font='times new roman']虽然[/font][font='times new roman']目前[/font][font='times new roman']SIM[/font][font='times new roman']和[/font][font='times new roman']minflux[/font][font='times new roman']更适合[/font][font='times new roman']观察[/font][font='times new roman']活细胞[/font][font='times new roman']动态过程,但时间分辨率的提高仍然是一个挑战,特别是对于极短时间尺度的现象[/font][font='times new roman'],[/font][font='times new roman']这将使科学家能够更深入地探索微观世界,并获得更多信息。[/font][font='times new roman']随着技术的不断进步,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像有望在[/font][font='times new roman']包括临床医学[/font][font='times new roman']等[/font][font='times new roman']更多领域得到广泛应用[/font][font='times new roman'],未[/font][font='times new roman']来如果能实现超高分辨的动物甚至人的[/font][font='times new roman']活体成像,减少样品固定和处理的需求,允许观察生物过程的实时发生[/font][font='times new roman']将会更有现实意义[/font][font='times new roman']。[/font][font='times new roman']并且在科学研究的需求下,[/font][font='times new roman']多模态[/font][font='times new roman']或多尺度[/font][font='times new roman']成像将[/font][font='times new roman']与[/font][font='times new roman']不同[/font][font='times new roman']的[/font][font='times new roman']超高分辨[/font][font='times new roman']技术相结合,[/font][font='times new roman']例如,结合光学成像和质谱成像[/font][font='times new roman'],[/font][font='times new roman']从分子水平到组织水平[/font][font='times new roman']提供[/font][font='times new roman']生命活动[/font][font='times new roman']更全面的信息。[/font][font='times new roman']也可以[/font][font='times new roman']发展高通量的样品处理和成像技术,以便更快速地获得大规模的数据。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像生成的数据量巨大,处理和分析这些大数据需要强大的计算资源和高效的算法。数据存储和传输也是挑战。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据可能受到噪声和伪迹的影响,这需要高级的图像处理技术来减少其影响,以获得准确的图像。数据分析通常需要复杂的算法和数学模型,需要专业知识和技能。对于某些应用,如神经科学中的活体成像,需要实时数据分析,这增加了挑战。深度学习和人工智能技术[/font][font='times new roman']有望[/font][font='times new roman']在数据分析中发挥越来越重要的作用,[/font][font='times new roman']实现[/font][font='times new roman']自动处理和解释图像数据。发展实时数据分析技术,使科学家能够在数据采集过程中获得及时反馈。开发更易用的高级图像处理工具,使非专业用户也能够进行数据分析。结合不同成像技术和数据源的信息,以提供更全面的信息。开发自动化和高通量的数据分析工作流程,以应对大规模数据的挑战。促进数据共享和开放科学,以促进合作和加速科学研究的进展。未来,随着计算能力的提高和新技术的引入,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据分析将变得更加强大和高效。这将有助于更深入地理解微观世界,并在生物学、医学、材料科学等领域推动创新和发展。[/font][font='times new roman']总的来说,尽管[/font][font='times new roman']超高分辨[/font][font='times new roman']成像面临一些挑战,但其前景充满希望。未来的发展将使这一领域更加强大,有望在科学研究和实际应用中提供更多的机会和洞察力。[/font][font='times new roman'][b]4 [/b][/font][font='times new roman'][b]结论和展望[/b][/font][font='times new roman']超高分辨显微镜的成像原理基于破解传统显微镜的分辨极限,通过结构照明、图像重建[/font][font='times new roman']和单分子成像等策略,实现对微小结构的高分辨率成像。这一技术的应用领域包括生物学、材料科学、纳米技术和医学等,有望推动科学研究的进一步发展。超高分辨显微镜已经在生物医学领域取得了显著的突破,使研究人员更深入地理解细胞和分子结构。然而,仍然存在挑战,包括样品准备和数据分析的复杂性。未来,我们可以期待更多技术的发展,以进一步提高分辨率和扩大应用领域。[/font][font='times new roman']随着技术的不断发展,我们可以期待更多超分辨显微镜技术的突破,如更高分辨率、更高灵敏度和更快成像速度。超分辨显微镜的应用也将继续扩展到新的领域,如药物研发、个性化医学和环境科学。它将为我们提供更多工具来解决生物学的重要问题,如疾病机制、药物研发和生态系统健康。总之,超分辨显微镜技术的未来展望是光明的,它将继续推动科学研究向前迈进,揭示微观世界的微小奥秘,为改善生活质量和解决全球挑战做出贡献。这个领域的不断创新将激发更多科学家的热情,共同追求更深入的科学知识和更广泛的应用。[/font][font='times new roman'][b]参考文献[/b][/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S [/font][font='times new roman']W[/font][font='times new roman'].[/font][font='times new roman']Far-field[/font][font='times new roman'] [/font][font='times new roman']optical[/font][font='times new roman'] [/font][font='times new roman']nanoscopy[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']Science[/font][font='times new roman'],[/font][font='times new roman']2007[/font][font='times new roman'],[/font][font='times new roman']316(5828)[/font][font='times new roman']:[/font][font='times new roman']1153-1158[/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S W[/font][font='times new roman'],[/font][font='times new roman']Wichmann J[/font][font='times new roman'].[/font][font='times new roman']Breaking[/font][font='times new roman'] [/font][font='times new roman']the diffraction[/font][font='times new roman'] [/font][font='times new roman']resolution[/font][font='times new roman'] [/font][font='times new roman']limit[/font][font='times new roman'] [/font][font='times new roman']by stimulated[/font][font='times new roman']-[/font][font='times new roman']emission[/font][font='times new roman']-[/font][font='times new roman']depletion fluorescence[/font][font='times new roman'] [/font][font='times new roman']microscopy[J][/font][font='times new roman'].[/font][font='times new roman']Optics[/font][font='times new roman'] [/font][font='times new roman']Letters[/font][font='times new roman'],[/font][font='times new roman']1994[/font][font='times new roman'],[/font][font='times new roman']19(11)[/font][font='times new roman']:[/font][font='times new roman']780-782[/font][font='times new roman']Dani A[/font][font='times new roman'],[/font][font='times new roman']Huang B[/font][font='times new roman'],[/font][font='times new roman']Bergan J[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']a1[/font][font='times new roman'].[/font][font='times new roman'] Super-resolution[/font][font='times new roman'] [/font][font='times new roman']imaging of chemical synapses[/font][font='times new roman'] [/font][font='times new roman']in the brain[J][/font][font='times new roman'].[/font][font='times new roman']Neuron[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']68(5)[/font][font='times new roman']:[/font][font='times new roman']843[/font][font='times new roman']—[/font][font='times new roman']856[/font][font='times new roman']PATTERSON[/font][font='times new roman'] [/font][font='times new roman']G[/font][font='times new roman'],[/font][font='times new roman']DAVIDSON[/font][font='times new roman'] [/font][font='times new roman']M[/font][font='times new roman'],[/font][font='times new roman']MANLEY[/font][font='times new roman'] [/font][font='times new roman']S[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']al[/font][font='times new roman']. [/font][font='times new roman']Superresolution[/font][font='times new roman'] imaging using single-molecule localization[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']A[/font][font='times new roman']nnual Review of Chemistry[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']1:345-367[/font]

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 显微镜分辨率

    正常来说,光学显微镜的分辨率都是根据 D=0.61入/na,那白光下面光学的有效分辨率大约在0.35微米,但是如果用248纳米波长的紫外光,根据公式,也没有能达到80纳米的分辨率啊?不知是什么原因,望大师指导指导!!!

  • 【求助】高温观察用激光共焦扫描显微镜的疑惑

    最近在了解高温观察用激光共焦扫描显微镜,看了很多有关采用CLSM观察的高温熔化、凝固和固态相变的观察,感觉很不错。但是我在论坛里看见采用激光扫描共焦显微镜拍摄的很多三维组织图像照片,这种激光共焦扫描显微镜和宝钢、首钢的那种高温观察用的激光扫描共焦显微镜是不是不一样啊??激光共焦扫描显微镜是不是也分好几种啊,请专家解惑,我刚刚接触,不是很了解。另外高温观察用激光共焦扫描显微镜大概多少钱啊,在哪里买呢,谢谢大家

  • 【资料】共焦激光扫瞄显微镜

    共焦激光扫瞄显微镜ZEISS所提供之英文数据,内容包含:1.影像构成原理2.电子信号处理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=32959]共焦激光扫瞄显微镜[/url]

  • 【分享】真实色共聚焦显微镜(new!)

    [size=3]1台真实色共聚焦扫描显微镜综合了以下6种设备的功能:[U]高分辨率光学显微镜SEM扫描电镜ROUGHNESS TESTER表面粗糙度仪3-D PROFILER 三维表面形貌轮廓仪STEP TESTER 台阶仪R.G.B不同波长单色激光共聚焦显微镜[/U]特点:1.真实颜色、形状同时准确的立体观察成像,避免同色异像,同像异色现象的产生;2.根据样品选择最合适R.G.B三原色进行单波长测定;3.高精度彩色图像输出1280*1024;4.图像拼接实现高放大、高分辨、大视场;5.每秒85桢的高速图像读取;6.高度差、粗糙度、三维尺寸等的直接测量。产品应用:MEMS、半导体、液晶相关产品、金属材料、化学材料、其他各种应用领域。[/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64576]真实色共聚焦显微镜材料观测图片[/url]

  • 【求助】分辨藻类的普通显微镜?

    我想买个能分辨藻类的普通显微镜,但是对显微镜一窍不通,不知怎么挑选。在淘宝网搜索显微镜,不知要选择哪一种。请教各位,帮帮忙建议一下,谢谢大家了。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制