当前位置: 仪器信息网 > 行业主题 > >

显微共焦角分辨仪

仪器信息网显微共焦角分辨仪专题为您提供2024年最新显微共焦角分辨仪价格报价、厂家品牌的相关信息, 包括显微共焦角分辨仪参数、型号等,不管是国产,还是进口品牌的显微共焦角分辨仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微共焦角分辨仪相关的耗材配件、试剂标物,还有显微共焦角分辨仪相关的最新资讯、资料,以及显微共焦角分辨仪相关的解决方案。

显微共焦角分辨仪相关的仪器

  • [ 产品简介 ]运用Airyscan 2技术的新一代蔡司高效型激光共聚焦显微成像系统LSM 9系列,是快速、低光毒性、多元成像方式的新一代高效型共聚焦成像系统,拥有 4–8 倍的信噪比(SNR)和90nm超高分辨率。与此同时, Airyscan 2的Multiplex 模式可以以低光毒性观察活体标本的动态过程,以较高帧速率和更高图像分辨率对具有挑战性的三维样品进行成像,全新的Dynamics Profiler为活细胞提供分子动力学新维度数据。[ 产品特点 ]&bull 快速获取更优数据,高灵敏度和信噪比&bull 分辨率最高达90nm&bull 占地面积小,节省实验室空间&bull ZEN软件高效导航,操作简单,实验数据可轻松重复&bull 光电关联显微成像:成像方式灵活,可满足不同样品,不同成像实验需求&bull Dynamics Profiler提供活细胞分子动力学新维度数据[ 应用领域 ]&bull 细胞生物学,如亚细胞结构运动分析、活细胞长时间成像&bull 发育生物学,如胚胎发育观察&bull 肿瘤学,如肿瘤细胞迁移&bull 神经生物学&bull 基因/遗传学&bull 植物学等生命科学领域研究果蝇卵巢样品,F-肌动蛋白(鬼笔环肽,品红色)和DE-钙粘蛋白(青色)染色。由德国明斯特大学Luschnig工作小组的T. Jacobs和明斯特成像网络的T. Zobel提供海拉细胞,DNA(蓝色,Hoechst 44432)、微管(黄色,微管蛋白抗体Alexa 488)以及F-肌动蛋白染色(品红,鬼笔环肽Abberior STAR Red)。由德国哥廷根马克斯・ 普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart提供。Cos-7细胞、DAPI(品红色)、微管蛋白抗体Alexa 568(蓝色)、肌动蛋白鬼笔环肽-OG488(黄色)和Tom20-Alexa 750(红色)。Lambda模式下在可见光到近红外光谱范围内成像。线性拆分技术分离各个信号。z轴序列图像最大强度投影。样品由瑞士苏黎世大学ZMB的Urs Ziegler和Jana Doehner提供。斑马鱼幼鱼血管中的血流,样品由德国莱布尼茨老龄化研究所 – 弗里茨利普曼研究所V. Hopfenmüller提供。
    留言咨询
  • HORIBA Scientific从事光学研发200年,其中拉曼光谱仪的研发与制造长达60多年,凭借法国长期以来的光学设计人才优势与全心全意为客户服务的企业理念,HORIBA Scientific不断地拉曼光谱技术的发展,2019年LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪应运而生。LabRAM Odyssey同时适用于光谱和成像,具有800mm焦长的高光谱分辨率低杂散光光谱仪保证光谱数据的准确性和重复性,一系列针对拉曼光谱成像的新技术引入,大地提升了LabRAM Odyssey的拉曼光谱成像的质量和速度,新型成像算法可以在纷繁复杂的大数据中提炼出有用的光谱信息。独特的高效率反射式共焦光路,配合连续可调共焦针孔,满足全光谱范围200-2200nm抑制杂散光,三维空间滤波,无需任何人工调节工作,全自动化共焦设计保证客户快速准确地获得高信噪比光谱和成像。LabRAM Odyssey继承了LabRAM HR Evolution的全部优点,扩展性强使得每一台LabRAM Odyssey都是一台定制化的显微拉曼光谱系统,尤其满足分析测试平台样品种类多,测试条件变化多,测试速度要求快速准确等需求。LabRAM Odyssey创新性地引入全反射概念,从物镜,耦合光路,光谱仪均采用反射镜组成,从仪器基础设计出发实现真正意义上的消色差,提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。LabRAM Odyssey具有多种特色全新技术,等待您的发掘!1多激发波长 支持深紫外到近红外全波段 自由光路耦合或光纤耦合 支持多达4路全自动切换激发波长2双共焦耦合系统 全反射式共焦光路 消色差,全光谱覆盖 三维空间滤波 全自动切换双共焦光路 内置真实存在的机械共焦针孔,非狭缝虚拟3800mm焦长光谱仪 低杂散光适合弱信号长时间曝光 消色差像散,采用超环面镜,平场校正 全光谱覆盖,光谱仪内无透镜 超高光谱分辨率,低至0.35cm-14高灵敏探测器提供多达4个探测器的耦合接口,满足稳态和瞬态光谱的测试要求超快速共焦成像&bull DuoScanTM成像技术:基于kHz振镜扫描技术,实现物镜+样品双重固定,激光光斑扫描样品表面,具有宽光谱、超快速、高稳定、时间分辨等特点。&bull SWIFTTM模块:是将LabRAM Odyssey的高光通量及优化的检测器-平台同步相结合,以实现超快速共焦拉曼成像。即使采集一个宏观尺度的高分辨成像也可在几秒内完成。&bull Repetitive SWIFTTM信噪比增强快速成像技术:实现持续改进成像信噪比,无需多次重复寻找实验条件。&bull SWIFTTM XR多窗口扩展快速成像技术:同时实现高光谱分辨率和宽光谱范围成像,采用HORIBA独有的多窗口拼接技术,自动拼接多次快速成像,实现高分辨光谱和宽光谱范围的完美统一。高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率较高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。高光谱分辨率+高重复性,使得苛刻的实验成为了可能,保证拉曼峰位频移的数据可靠性,和低的系统误差引入。从紫外到近红外全光谱检测LabRAM Odyssey是一款深紫外到近红外全光谱覆盖的消色差高分辨光谱仪,使用多激光及多探测器,检测范围可达200nm~2100nm。实现近红外区域的光致发光测试,包括带隙检测、重组机理监测和材料质量控制。不受样品和分析环境的限制HORIBA Scientific可为您提供拉曼优化研究级光学显微镜。开放式显微镜在物镜下方提供自由空间,适合放置各种大附件,如液氦冷台、催化样品池及自设计特殊样品池等。透射拉曼附件可提供样品整体分析,适合不透明/浑浊的材料,如药片含量的一致性或多晶型。SuperHead光纤探头可实现远程测量,进行原位反应监测或在线分析。超低波数模块HORIBA Scientific 的 LabRAM Odyssey 可使低波数检测低至 3.5 cm-1*。新一代的体布拉格光栅具有非常窄的谱带宽度,以确保单级拉曼光谱仪中超低波数的简单方便、快速高灵敏度检测前沿应用生命科学LabRAM Odyssey为生命科学提供了新的表征方法。如:疾病诊断、皮肤分析、细胞筛选、化妆品、微生物、蛋白质研究、药物交互作用及其它。药物拉曼光谱的高信息含量可以帮助研究人员和质控人员更深入地了解原材料及产品的性能及质量。如:活性药物成分(API)和赋形剂成像和表征、晶型鉴定、相态检测、药物逆向工程、药物一致性评价等。二维材料LabRAM Odyssey提供全部的二维材料光谱表征技术,包括拉曼光谱及成像,光致发光光谱及成像,反射光谱及成像,光电流成像,二次或多次谐波及成像,低温、高压、强磁场等端条件下二维材料的光谱及成像。半导体半导体材料的拉曼和光致发光(PL)研究可为专家提供成分组成及各成分属性的重要信息。如:压力/张力检测、合金成分、超薄覆盖层表征、刻蚀芯片结构成像、带隙分析等。技术指标光谱仪光谱仪焦长800mm光谱分辨率0.35cm-1 - 0.65cm-1重复性±0.02cm-1光谱仪设计方式非对称反射式,全光谱范围消色差校像散光谱采集模式包括单窗口信号采集(同时谱),多窗口连续信号采集(宽光谱快速无缝接谱),多窗口断续信号采集(高低阈值一次采集)和连续扫描信号采集(大范围平滑光谱)共焦共焦方式机械针孔共焦(三维空间滤波) 激光光路:固定尺寸针孔 拉曼光路:10-1000μm连续可调针孔共焦光路内置2个共焦光路,自动切换 独立优化可见光路400-700nm和消色差反射光路:200-2100nm激光光路激光光路独立优化,多支持6路自动切换滤光片切换支持4路自动切换滤光片角度调节软件控制自动低波数50cm-1(可见);150cm-1(紫外);10cm-1(可选)成像XYZ自动平台步进10nm(开环),步进50nm(闭环)闭环反馈精度50nm振镜扫描50nm步进,kHz扫描频率实时聚焦支持三种反馈模式:激光,白光和拉曼信号强度反馈表面粗糙样品成像EasyNav表面形貌ViewSharpTM自动化激发波长支持4路激发波长全自动切换,含紫外光路准直内置红光光源光路准直器自动校准软件控制自动校准其他远程自动优化,自动批处理,自动曝光,自动荧光校正等
    留言咨询
  • 一、产品概述:共焦拉曼光谱仪是一种高精度的分析仪器,结合了共焦显微技术和拉曼光谱技术,能够对材料的分子结构、成分和化学性质进行非破坏性分析。它广泛应用于化学、材料科学、生物医学等领域,特别适合于微小样品或复杂样品的研究。二、设备用途/原理:设备用途共焦拉曼光谱仪主要用于材料的化学成分分析、相分布研究、薄膜和涂层的表征,以及生物样品的分子成分检测。它能够提供高空间分辨率和高光谱分辨率的信息,有助于研究人员深入理解样品的微观特性。工作原理共焦拉曼光谱仪的工作原理基于拉曼散射现象。当激光照射到样品表面时,样品中的分子会散射光并发生频率变化,形成拉曼散射光。通过共焦光学系统,仪器能够仅选择样品的特定焦点区域进行分析,从而消除背景噪声并提高信号强度。收集到的拉曼信号经过光谱分析,能够提供关于样品分子振动模式的信息,帮助识别材料的化学成分和结构特征。三、主要技术指标:系统功能:快速获得详细的图像和分析,非常适合于微观和宏观测量,提供先进的二维和三维共聚焦成像能力。LabRAM Odyssey&trade 具有高性能和直观的简易性,广泛用于标准拉曼分析、光致发光(PL)、 针尖增强拉曼光谱 (TERS) 和其他联用分析方法。通过简单的AFM 升级,从微米尺度转向纳米光学世界。
    留言咨询
  • Horiba 高速高分辨显微共焦拉曼光谱仪LabRAM Odyssey紫外/可见/近红外分光光度计UH5700支持从紫外区到近红外区的广范围波长区域的固体,液体样品测定。它采用全新的数据处理软件,操作起来更加简便。超快速共焦成像DuoScanT成像技术、Repetitive SWIFTM信噪比增强快速成像技术、SWIFTIM XR多窗口扩展快速成像技术、MultiPoints坐标系标记技术、NavSharpM实时自动聚焦技术、ViewSharpM三维表面形貌技术、3D Volume第二代三维表面及体成像技术高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率最高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。超强功能LabRAM Odyssey首次提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。• 低至250nm的显微拉曼成像空间分辨率• 800mm焦长光谱仪:实现0. 35cm1极致光谱分辨率• 真正针孔共焦设计:实现衍射极限的空间分辨率,横向分辨可达250nm• 超环面镜平场成像:支持多达4种光谱扫描模式,包括特色的多窗口无缝接谱模式• 高灵敏度+低杂散光:同时支持强信号的超短曝光(<1ms)和极弱信号的长时间曝光• 高分辨成像:成像步进优于50nm,最低可达10nm• 高稳定性:±0. 02cm1的系统误差规格项目内容光谱仪焦长800mm光谱分辨率0.35cm-1-0.65cm-1重复性±0.02cm-1低波数50cm-1(可见);150cm-1(紫外);
    留言咨询
  • HORIBA Scientific从事光学研发200年,其中拉曼光谱仪的研发与制造长达60多年,凭借法国长期以来的光学设计人才优势与全心全意为客户服务的企业理念,HORIBA Scientific不断地拉曼光谱技术的发展,2019年LabRAM Odyssey高速高分辨显微共焦拉曼光谱仪应运而生。LabRAM Odyssey同时适用于光谱和成像,具有800mm焦长的高光谱分辨率低杂散光光谱仪保证光谱数据的准确性和重复性,一系列针对拉曼光谱成像的新技术引入,大地提升了LabRAM Odyssey的拉曼光谱成像的质量和速度,新型成像算法可以在纷繁复杂的大数据中提炼出有用的光谱信息。独特的高效率反射式共焦光路,配合连续可调共焦针孔,满足全光谱范围200-2200nm抑制杂散光,三维空间滤波,无需任何人工调节工作,全自动化共焦设计保证客户快速准确地获得高信噪比光谱和成像。LabRAM Odyssey继承了LabRAM HR Evolution的全部优点,扩展性强使得每一台LabRAM Odyssey都是一台定制化的显微拉曼光谱系统,尤其满足分析测试平台样品种类多,测试条件变化多,测试速度要求快速准确等需求。LabRAM Odyssey创新性地引入全反射概念,从物镜,耦合光路,光谱仪均采用反射镜组成,从仪器基础设计出发实现真正意义上的消色差,提出紫外灵敏度测试指标,满足全光谱范围内的高灵敏度测试要求。LabRAM Odyssey具有多种特色全新技术,等待您的发掘!1多激发波长 支持深紫外到近红外全波段 自由光路耦合或光纤耦合 支持多达4路全自动切换激发波长2双共焦耦合系统 全反射式共焦光路 消色差,全光谱覆盖 三维空间滤波 全自动切换双共焦光路 内置真实存在的机械共焦针孔,非狭缝虚拟3800mm焦长光谱仪 低杂散光适合弱信号长时间曝光 消色差像散,采用超环面镜,平场校正 全光谱覆盖,光谱仪内无透镜 超高光谱分辨率,低至0.35cm-14高灵敏探测器提供多达4个探测器的耦合接口,满足稳态和瞬态光谱的测试要求超快速共焦成像&bull DuoScanTM成像技术:基于kHz振镜扫描技术,实现物镜+样品双重固定,激光光斑扫描样品表面,具有宽光谱、超快速、高稳定、时间分辨等特点。&bull SWIFTTM模块:是将LabRAM Odyssey的高光通量及优化的检测器-平台同步相结合,以实现超快速共焦拉曼成像。即使采集一个宏观尺度的高分辨成像也可在几秒内完成。&bull Repetitive SWIFTTM信噪比增强快速成像技术:实现持续改进成像信噪比,无需多次重复寻找实验条件。&bull SWIFTTM XR多窗口扩展快速成像技术:同时实现高光谱分辨率和宽光谱范围成像,采用HORIBA独有的多窗口拼接技术,自动拼接多次快速成像,实现高分辨光谱和宽光谱范围的完美统一。高空间分辨率真正针孔共焦技术,区别于简单的狭缝共焦,实现三维空间滤波,高杂散光抑制率,空间分辨率可达250nm独特的全反射式共焦技术,全光谱消色差,支持200-2100nm光谱测量高光谱分辨率800mm焦长的单级光谱仪,使得 LabRAM Odyssey成为市场上光谱分辨率较高的单级拉曼光谱仪。800mm的焦长使得精细样品信息,如:结晶度、多晶型、应力、氢键和其它谱带形状的特征分析变得简单化。高光谱分辨率+高重复性,使得苛刻的实验成为了可能,保证拉曼峰位频移的数据可靠性,和低的系统误差引入。从紫外到近红外全光谱检测LabRAM Odyssey是一款深紫外到近红外全光谱覆盖的消色差高分辨光谱仪,使用多激光及多探测器,检测范围可达200nm~2100nm。实现近红外区域的光致发光测试,包括带隙检测、重组机理监测和材料质量控制。不受样品和分析环境的限制HORIBA Scientific可为您提供拉曼优化研究级光学显微镜。开放式显微镜在物镜下方提供自由空间,适合放置各种大附件,如液氦冷台、催化样品池及自设计特殊样品池等。透射拉曼附件可提供样品整体分析,适合不透明/浑浊的材料,如药片含量的一致性或多晶型。SuperHead光纤探头可实现远程测量,进行原位反应监测或在线分析。超低波数模块HORIBA Scientific 的 LabRAM Odyssey 可使低波数检测低至 3.5 cm-1*。新一代的体布拉格光栅具有非常窄的谱带宽度,以确保单级拉曼光谱仪中超低波数的简单方便、快速高灵敏度检测前沿应用生命科学LabRAM Odyssey为生命科学提供了新的表征方法。如:疾病诊断、皮肤分析、细胞筛选、化妆品、微生物、蛋白质研究、药物交互作用及其它。药物拉曼光谱的高信息含量可以帮助研究人员和质控人员更深入地了解原材料及产品的性能及质量。如:活性药物成分(API)和赋形剂成像和表征、晶型鉴定、相态检测、药物逆向工程、药物一致性评价等。二维材料LabRAM Odyssey提供全部的二维材料光谱表征技术,包括拉曼光谱及成像,光致发光光谱及成像,反射光谱及成像,光电流成像,二次或多次谐波及成像,低温、高压、强磁场等端条件下二维材料的光谱及成像。半导体半导体材料的拉曼和光致发光(PL)研究可为专家提供成分组成及各成分属性的重要信息。如:压力/张力检测、合金成分、超薄覆盖层表征、刻蚀芯片结构成像、带隙分析等。技术指标光谱仪光谱仪焦长800mm光谱分辨率0.35cm-1 - 0.65cm-1重复性±0.02cm-1光谱仪设计方式非对称反射式,全光谱范围消色差校像散光谱采集模式包括单窗口信号采集(同时谱),多窗口连续信号采集(宽光谱快速无缝接谱),多窗口断续信号采集(高低阈值一次采集)和连续扫描信号采集(大范围平滑光谱)共焦共焦方式机械针孔共焦(三维空间滤波) 激光光路:固定尺寸针孔 拉曼光路:10-1000μm连续可调针孔共焦光路内置2个共焦光路,自动切换 独立优化可见光路400-700nm和消色差反射光路:200-2100nm激光光路激光光路独立优化,多支持6路自动切换滤光片切换支持4路自动切换滤光片角度调节软件控制自动低波数50cm-1(可见);150cm-1(紫外);10cm-1(可选)成像XYZ自动平台步进10nm(开环),步进50nm(闭环)闭环反馈精度50nm振镜扫描50nm步进,kHz扫描频率实时聚焦支持三种反馈模式:激光,白光和拉曼信号强度反馈表面粗糙样品成像EasyNav表面形貌ViewSharpTM自动化激发波长支持4路激发波长全自动切换,含紫外光路准直内置红光光源光路准直器自动校准软件控制自动校准其他远程自动优化,自动批处理,自动曝光,自动荧光校正等
    留言咨询
  • 显微角分辨光谱仪 400-860-5168转2332
    显微角分辨光谱仪最小 0.1° 角分辨 / 400~1700nm 超宽谱段 / 微米级样品 ARMS 显微角分辨光谱仪 支持微米级样品全自动角分辨多模式光谱测量。得益于优秀的色差、像差控制及分波段的光路设计,ARMS 可在显微尺度、400~1700nm 和 0.1° 角分辨率的能力下,同时获得角度 (k) 、频率 (ω)、光谱 (λ) 完整信息,为您在光子晶体、拓扑光子学、超构材料和光-物质强耦合等研究领域提供卓越的解决方案。ARMS 显微角分辨光谱仪 典型应用领域: Nano Photonics 随着以光子晶体、SPP 材料、超材料为代表的微纳光子材料的开发和应用,单纯光谱分析技术已无法满足完备表征该类光子材料光学性质的需求,更精细化的角分辨光谱技术应运而生。 微腔光子器件 微腔光子器件受构型影响,光学性质具有角分布特征,需在不同角度下实现光谱探测。 超表面透镜 利用超表面技术(meta-surface)设计的超表面透镜具有强大的光场调控能力,能够实现亚波长的汇聚和微米级的聚焦,需要一种新型的基于显微平台的角分辨光谱探测手段。 ARMS 显微角分辨光谱系统 在以上领域的应用得益于如下几个特点: 1 超过 60° 的角度 ARMS 优选 Olympus 大 N.A. 平场复消色差物镜,收集超过 60° 的角向辐射光谱;匹配智能算法,快速实现包括 透射 / 反射 / 辐射 (荧光) 等 9 种光谱测量模式; 2 达 5 个维度的空间选择 ARMS 内置一个可调 Aperture,可以实现 X / Y 方向开口距离调节,XY 两维平面位置平移,及平面内 θ 方向旋转,准确抓取 复杂形貌 的微区样品; 3 最小 0.5° 角分辨率 ARMS 采用特殊优化的消色差、消相差光路,能够将角度分辨率提升至 0.5°,显著提升光谱分析能力; 4 1.65 μm 近红外拓展 NEW ARMS 重新对角分辨光路系统进行构型, 在近红外波段 900~1650 nm 实现角分辨光谱测量,对推动光通讯、超表面、激光雷达等领域研究具有重要价值; 5 低温 + 磁场拓展 新一代 ARMS 也拓展了对低温和磁场环境的支持,可适配最低 2.7K 低温恒温器 和最高 5T 磁场强度 超导磁体; 6 除此之外,ARMS 还可与外部光源及 Princeton Instruments 光谱仪衔接,实现包括时间分辨、空间相干性、瞬态光谱采集等功能。 技术起源:角分辨光谱技术(Angle-resolved Spectroscopy, ARS),诞生于复旦大学,是一种 精细化 的光谱技术。基于该技术而生的角分辨光谱仪具有在 不同角度下 探测材料光谱性质的能力,突破传统光谱技术不能分辨角度的局限,是获取光子材料色散关系,实现光学性质“全面表征”的重要手段,在 微纳光子学、低维材料、发光材料 等领域具有重要应用价值。注:以上参数如有差异,以官网为准
    留言咨询
  • 全新转盘式共聚焦超分辨显微镜IXplore SpinSR适合所有活细胞样本的共聚焦超高分辨&bull 超高分辨率,分辨率可达 120nm XY&bull 因光毒性和光漂白降低,共聚焦延时成像期间的细胞存活时间变长&bull 在 IXplore SpinSR 系统中,只需一步即可在宽场、共聚焦和超高分辨率观察之间自由切换&bull 通过奥林巴斯硅油浸入式物镜可以实现准确的 3D 重建 超高分辨率通过共聚焦技术和奥林巴斯的超高分辨率(OSR),可以120nm XY的分辨率解析清晰图像。Confocal Super Resolution图像:Hela 细胞的应力纤维:对抗体进行了染色,肌动蛋白:Phalloidin-Alexa488(绿色);肌球蛋白重链:Alexa568(红色)。图片提供方:Keiju Kamijo博士,东北药科大学医学院解剖和细胞生物学系快速成像通过转盘共聚焦快速成像和快速超高分辨率处理可实现样本的实时显示。因为3D中的光毒性和光漂白降低,共聚焦延时成像期间的细胞存活时间变长。 图像:Hela细胞中延伸微管顶部的GFP-EB3图像提供方:Kaoru Katoh博士,日本国立产业技术综合研究所生物医学研究所多模用户可在3个模式(宽场、共聚焦和超高分辨率)之间轻松切换。 宽场共聚焦超高分辨率图像:基体上半部分纤毛的Odf2染色(Alexa Fluor 488)。图像提供方:Hatsuho Kanoh、Elisa Herawati、Sachiko Tsukita博士。大阪大学前沿生物科学研究生院和医学研究生院。为三维结构成像在延时成像过程中,获得精细的三维超分辨率图像数据。 神经元的三维延时图像:小鼠原代神经元与星形胶质细胞共同培养了2周后,由EGFP标记的延时图像。可以轻松地辨别未成熟脊柱(黄色箭头)和成熟脊柱(蓝色箭头)之间的差异,并发现随着时间的推移而发生的形态变化。3D图像的采集使用了每帧500ms的曝光时间,Z轴上的步进距离为0.15um,共41层图。每两分钟采集一次图像,采集持续1小时。由FV31S-DT显示的3D图像。图像数据由Yuji lkegaya博士提供,化学药理学实验室,药物学研究生院,东京大学。清晰的图像通过奥林巴斯的反卷积算法可以获得清晰的图像。 ConfocalSuper ResolutionSuper Resolution with TruSight简单易用在不适用特异性染料的情况下获得多色成像 中期细胞的有丝分裂纺锤体对人类宫颈癌HeLa细胞进行了固定并分别用α-微管蛋白(微管,红色)和Hec1(动粒,绿色)进行了染色。使用DAPI(染色体,蓝色)对DNA进行了染色。与微管产生交互的染色体会通过染色体着丝粒上组成的动粒产生有丝分裂纺锤体。图像提供方:Masanori lkeda 和Kozo Tanaka,加龄医学研究所分子肿瘤学部门。 Hela细胞的核孔复合物Nuo153(Alexa488:绿色),Nup62(Alexa555:红色)图像提供方:Hidetaka Kosako,德岛大学藤井纪念医学科学中心
    留言咨询
  • 共聚焦超分辨显微镜 400-860-5168转6117
    中图仪器VT6000共聚焦超分辨显微镜基于光学共轭共焦原理,结合精密纵向扫描,以在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。VT6000共聚焦超分辨显微镜广泛应用于半导体制造及封装工艺检测,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能; 性能特色1、高精度、高重复性1)以转盘共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法,共同组成测量系统,保证仪器的高测量精度;2)隔震设计能够消减底面振动噪声,仪器在嘈杂的环境中稳定可靠,具有良好的测量重复性。2、一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程;4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能;6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。3、精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦等测量前工作。4、双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。应用领域VT6000共聚焦超分辨显微镜对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:在相同物镜放大的条件下,共焦显微镜所展示的图像形态细节更清晰更微细,横向分辨率更高。因而擅长微纳级粗糙轮廓的检测,能够提供色彩斑斓的真彩图像便于观察。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • Argolight 荧光质量校准片您在使用显微镜进行荧光成像 时,是否遇到过以下问题?&bull 图像亮度不均匀,却不知道具体情况如何?&bull 光路复杂,由于没有快速表征手段,器件调试困难,无从下手?&bull 经过一段时间后,图像效果下降,但无法进行对比?&bull 图像有畸变,但是无法测量?&bull 可以尝试使用Argolight 荧光质量校准片!Argolight 荧光质量校准片特殊的玻璃基板组成,内部嵌入不同的荧光图案,旨在对荧光成像系统的许多方面进行质量控制,例如:场均匀性、场畸变、横向配准精度、强度响应 、Z 堆叠过程中的载物台 漂移等。以下是荧光图像示例,不同型号的荧光质量校准片在图案上有所差别,详情请咨询。Argolight 荧光质量校准片配套专用软件 Daybook,用于生成、跟踪和导出质量控制数据。Daybook 软件有两个模块: - “分析”模块,名为“日志分析”:它允许从图案图像中分析和提取数据(地图、图形和指标),以测量荧光成像系统的重要指标。- “数据管理器”模块,名为“日记数据管理器”:它允许可视化“分析”模块生成的数据,监控结果并管理质量控制报告。显微镜荧光校准片适用于宽视野/超分辨/共聚焦配置列表型号功能体积激发波段浸液适配性损伤阈值测量功率范围荧光图案数量Argo-PowerLM V2适用于低放大倍率的显微镜/宽场显微镜75x25x6 mm250-650 nm干燥/油浸:无限制水浸:不能连续使用超过20分钟50 GWcm-2 的辐照度(峰值或平均值)10µ W to 100mW5Argo-PowerHM V2适用于高放大倍率的显微镜/共聚焦显微镜16Argo-PowerSIM V2适用于结构光 照明(SIM)显微镜/基于算法的超分辨显微 镜27Argo-LM V2适用于低放大倍率的显微镜/宽场显微镜75x25x1.5 mm无功率测量功能5Argo-HM V2适用于高放大倍率的显微镜/共聚焦显微镜16Argo-SIM V2适用于结构光照明(SIM)显微镜/基于算法的超分辨显微镜27什么显微成像技术可以用Argolight 荧光质量校准片?显微镜荧光校准片适用于宽视野/超分辨/共聚焦简易操作方法:1.寻找图案从低放大倍率物镜(例如 10 倍或 20 倍)开始。 设置 DAPI 或 GFP 通道,使载玻片的中心与物镜重合。 通过目镜调节焦距。 然后移动载玻片以观察图案并移动到感兴趣的目标。2. 调整您的设置找到一个重新定位的十字图案并在其上调整您的采集参数。 设置后,移动感兴趣的图案。3.注意你的照明功率请勿使用高于 50 GWcm-2 的辐照度(峰值或平均值)进行照明。注意:不遵守操作说明将使产品保修失效。4. 用于激光扫描共焦显微镜请勿放大图案内部,这可能会损坏图案。 扫描区域的面积不应小于图案的面积(环区域除外 - 请参阅用户指南)。5. 对于水物镜应避免连续接触水超过20分钟。 使用与水折射率相同的油作为浸液。6.记得清洁校准片每次使用后,仅使用擦镜纸和酒精。 请勿使用丙酮。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学 、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 仪器介绍显微角分辨光谱技术是一种直接观测微纳米材料中电磁模式色散关系的方法,是现在实验手段中为数不多的能直接定量测量材料的电磁模式色散关系的工具。贝拓显微角分辨光谱仪MARS1000利用显微角分辨光谱技术对光子与微纳米材料相互作用机制的深入研究,对于了解凝聚态物质基本性质、掌握微纳结构中的特殊的电磁模式的色散关系,并应用于微型化光电器件的开发,都具有重要的理论和实际意义。工作原理显微角分辨技术利用共轭面成像,包括物镜后焦平面、全内反射平面、和角分辨平面,可用细光纤作为光源在全内反射平面形成方向一致的平行光,在角分辨平面上汇聚入光纤,实现显微级别角分辨光谱分析。显微角分辨光谱仪通过在全内反射平面和角分辨平面上对光纤端面的位置进行实空间扫描,即可以实现特定角度的入射和出射,从而实现角分辨的光谱测量。应用领域● 在超透镜研究中,利用显微角分辨光谱仪的角分辨特性,控制入射光的角度,表征透镜聚焦能力● 在光子晶体相干荧光辐射中,利用微区角分辨光谱技术,研究了其中荧光的定向辐射现象● 在先进的显示材料表征中,利用显微角分辨光谱仪,在微纳尺度下,能对超表面样品进行角分辨光谱测量,验证理论计算结果● 在纳米器件的制造与结构研究中,利用显微角分辨光谱仪,在角度光谱及偏振光谱测试方向提供一种标准化、稳定、高效的测试平台仪器特点● 结合了显微镜和光谱仪的功能,可以同时进行样品的微观结构观察和光谱特性分析● 提供高分辨率的显微观察和光谱分析,可以捕捉到微小尺寸的细节,并以更高的精度解析光谱信号● 可以提供样品的光谱特性信息,包括吸收、发射、散射等光学性质● 可收集从不同角度样品的光谱数据,提高数据的可靠性和全面性技术参数
    留言咨询
  • 武汉东隆科技为德国PicoQuant的中国区独家代理,欢迎您来电垂询!单分子时间分辨共聚焦荧光显微系统MicroTime 200在许多尖端科学领域,单分子研究具有重要意义。例如分子运动的量化研究和分子交互性的研究。这些研究领域对设备仪器的灵活性和多样性提出了更高的要求。德国PicoQuant公司的Micro Time 200系统的多功能性恰好可以胜任这些工作。作为当前世界顶尖的时间分辨共聚焦荧光显微成像系统,Micro Time 200具备了针对单分子级别相关实验和分析的能力。 Micro Time 200可选配多种波长的皮秒二极管激光光源,还拥有皮秒级别的时间分辨率,支持最多4个完全独立的探测通道,可以全面支持当今生物和物理方面的单分子研究课题,如FLIM,FRET,FCS(包含自相关和互相关)以及各向异性的研究,以及同时进行AFM/FLIM或者深紫外探测。同时配备了稳定, 精确的扫描系统, 完美满足单分子应用需求。MicroTime200家族又新增了空间分辨率高达50nm的MicroTime 200受激发射减损超分辨时间分辨共聚焦荧光显微系统(STED)。该系统配套的SymPhoTime 64能够提供强大、全面的数据采集和处理功能,而且针对以上提到的实验,提供了一键式运行模块,最大程度降低了操作的复杂程度,进一步提高了实验效率,是荧光相关领域研究的绝佳选择。特点:集成激发光源, 倒置显微镜和多通道探测模块的一体化系统375nm-900nm多波段皮秒脉冲激光器最多可集成SPAD, PMT或Hybrid-PMT组成相互独立的6通道探测单元针对FCS和FLIM快速动力学研究,有时间相关单光子计数(TCSPC)和TTTR两种模式适用于2D和3D寿命成像和精确点定位的压电平移台两个额外光路输出口用于拓展应用匹配有进阶易用型数据采集、分析和可视化软件SPT64双聚焦FCS、AFM/FLIM联用和深紫外激发的独特升级可提供STED附件,用于超分辨率成像FLIMbee 振镜扫描附件,具有出色的扫描速度灵活性和优秀的空间精度可以通过使用FLIMbee振镜在X轴上进行线扫描来实现scanning FCS测量基于后口激发的“二维载流子扩散成像”套件功能:荧光寿命成像(FLIM)及深层组织FLIM荧光共振能量转换FRET 及脉冲交错激发FRET(PIE-FRET)荧光强度相关光谱(FCS)及互相关光谱(FCCS)荧光寿命相关光谱(FLCS)及互相关光谱(FLCCS)双聚焦FCS各向异性检测深紫外探测串序脉冲荧光分析(Burst Analysis)参数:激发系统光纤整合型皮秒脉冲半导体激光器(功率/重复频率可调, 最大80MHz)支持外部激光器(如钛蓝宝石激光器)375~900nm波长范围支持Solea超连续白光光源支持单通道或者多通道驱动支持266nm紫光激发显微镜OlympusIX73或IX83倒置显微镜预留左侧和背面接口,可做拓展应用(如TIRF)包含透射照明部件独特的25x25mm手动样品固定台标准样品架(用于20x20mm载玻片)可选落射荧光照明可选低温恒温器用于低温型实验可选与原子力显微镜整合物镜规格标准20x和40x物镜可选多种高端特殊物镜(水/油镜, 红外/紫外强化, 超长工作距离型等)扫描台80 μm x 80 μm规格2D压电扫描台(1nm定位精度)PIFOC 3D立体成像(行程80 μm,定位精度1nm)80 μm x 80 μm物镜扫描(1nm定位精度)可选厘米级别大范围扫描台主要光学部件最多可支持4通道的共聚焦探测模块多种规格的分光部件额外的输出接口易于更换型二向色镜支架模块用于光斑分析的CCD相机和光电二极管所有光学元件都可替换和调整探测器单光子雪崩二极管(SPAD)混合型光电倍增管(Hybrid-PMT)光电倍增管(PMT)数据采集方式基于时间相关单光子计数TCSPC 的TTTR测量模式独立4通道同步采集分析软件SymPhoTime 64
    留言咨询
  • 在材料生产检测领域中,共聚焦显微镜在陶瓷、金属、半导体、芯片等材料科学及生产检测领域中也具有广泛的应用。VT6000高分辨率工业用共聚焦显微镜用于对各种精密器件及材料表面进行微纳米级测量。它是基于光学共轭共焦原理,结合精密纵向扫描,以在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,从而进行分析的精密光学仪器,一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;功能特点1、测量模式多样单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境; 2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。VT6000高分辨率工业用共聚焦显微镜可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。 2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 模块化超分辨共聚焦显微系统-LiveCodim传统荧光显微镜受到光学衍射限的影响,高的分辨率为200 nm,因此很难观察细胞中的超微结构。LiveCodim是一款模块化超分辨共聚焦显微系统,能够适配大多数的倒置荧光显微镜,将现有的倒置显微镜升成为具备宽场、共聚焦、超分辨三大模式的成像系统。LiveCodim通过特的锥形衍射显微镜—— 一种强大的波束成形器,能够直接提供分辨率高达120 nm的实时活细胞超分辨共聚焦成像,同时无需对样品进行任何额外操作,结合其低光毒性,以及方便快捷的操作系统等优势,非常适合拍摄荧光成像。产品优势 超高性价比:模块化超分辨,节省成本,兼容大多数倒置显微镜 xy轴超高分辨率:120 nm z轴深度成像:具备z-stack成像能力,高成像深度50 μm 活细胞成像:低光毒性和光漂白性,适合活细胞成像 制样简单:样品无需特殊处理,无需特殊染料 全自动软件:全自动调节各种参数,简单易上手主要参数 xy轴分辨率: 120 nm z轴分辨率: 500 nm z轴成像深度:50 μm 成像视野:共聚焦模式下80 μm * 80 μm,超分辨模式下: 50 μm * 50 μm 成像模式:宽场、共聚焦、LiveCodim超分辨 四色成像通道:405 nm, 488 nm, 561 nm, 640 nm (根据需求可增加)测试数据1. MDCK细胞中线粒体的动态变化2. Hela胞的微管宽场,共聚焦,LiveCodim超分辨成像3. 细胞分裂中期的COS-7细胞3D多色超分辨成像4. 植物细胞成像:观测铃兰草的根茎5. 天然免疫分子TRIM5α作用机制研究天然免疫分子TRIM5α蛋白是人类基因中决定疾病的易感性和发病速度的重要因素,其抗病毒活性通常通过小泛素相关修饰物(SUMO)调节,但是具体的作用机制仍有待进一步研究。LiveCodim超分辨图像揭示了TRIM5α主要分布在肌小管的核膜上,同时与存在于核孔的细胞质丝上的RanGTPase激活蛋白RanGAP1有明显的共定位现象,和主要定位于核篮上的蛋白Nup153无明显共定位,说明TRIM5α主要定位于这类细胞的胞质面。部分发表文章[1] Fernandez, Juliette, et al. "Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating." Nature microbiology 4.11 (2019): 1840-1850.[2] Vargas, Jessica Y., et al. "The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes." The EMBO journal 38.23 (2019): e101230.[3] Maarifi, Ghizlane, et al. "RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif." Communications biology 1.1 (2018): 1-11.[4] Garita-Hernandez, Marcela, et al. "Optogenetic light sensors in human retinal organoids." Frontiers in neuroscience 12 (2018): 789.[5] Getz, Angela M., et al. "Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons." Scientific reports 7.1 (2017): 1-16.[6] Portilho, Débora M., Roger Persson, and Nathalie Arhel. "Role of non-motile microtubule-associated proteins in virus trafficking." Biomolecular concepts 7.5-6 (2016): 283-292.[7] Pagliuso, Alessandro, et al. "A role for septin 2 in Drp1‐mediated mitochondrial fission." EMBO reports 17.6 (2016): 858-873.[8] Fallet, Clement, and Gabriel Y. Sirat. "Achromatization of conical diffraction: application to the generation of a polychromatic optical vortex." Optics letters 41.4 (2016): 769-772.[9] Fallet, Clement, et al. "Accurate axial localization by conical diffraction beam shaping generating a dark-helix PSF." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.[10] Fallet, Clement, Arvid Lindberg, and Gabriel Y. Sirat. "Generating 3D depletion distribution in an achromatic single-channel monolithic system." Single Molecule Spectroscopy and Superresolution Imaging IX. Vol. 9714. International Society for Optics and Photonics, 2016.[11] Fallet, Clément, et al. "A new method to achieve tens of nm axial super-localization based on conical diffraction PSF shaping." Single Molecule Spectroscopy and Superresolution Imaging VIII. Vol. 9331. International Society for Optics and Photonics, 2015.[12] Caron, Julien, et al. "Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging." Cell adhesion & migration 8.5 (2014): 430-439.[13] Fallet, Clément, et al. "Conical diffraction as a versatile building block to implement new imaging modalities for superresolution in fluorescence microscopy." Nanoimaging and Nanospectroscopy II. Vol. 9169. International Society for Optics and Photonics, 2014.[14] Rosset, Sybille, Clement Fallet, and Gabriel Y. Sirat. "Focusing by a high numerical aperture lens of distributions generated by conical diffraction." Optics letters 39.23 (2014): 6569-6572.用户单位 法国巴斯德研究所蒙彼利埃大学
    留言咨询
  • 共焦显微光谱模块 400-860-5168转2332
    gora-Lite,模块化的共焦显微光谱 模块化 / 光纤共焦 / 多功能复用 gora-Lite 共焦显微光谱模块 基于 光纤共焦技术,将共焦显微光路集成为一个个独立的模块,可根据功能需求进行快速搭建,面向 μm 级样品,实现包括透反射、荧光、拉曼、荧光寿命、非线性等光谱功能,以及电致发光和光电流等光电特性检测。最终,带来一系列富有灵活适配性、高性价比的多功能检测方案。gora-Lite 共焦显微光谱系统方案gora-Lite 共焦显微光谱模块 在共焦显微检测领域的良好表现,得益于如下几个特点: 1 模块化 gora-Lite 是一个个集成的共焦显微光谱模块,可根据功能需要,配置其中一个或者多个模块,配合用户已有设备如显微镜、光源、探测器等器件,实现 显微光谱功能 的快速构建; 2 多功能实现 gora-Lite 共焦显微光谱模块,可通过光纤连接不同的激发光源以及探测终端,面向 μm 级样品,可实现包括透反射、荧光、拉曼、荧光寿命、非线性等光谱功能以及电致发光、光电流等 光电特性检测; 3 光纤共焦 gora-Lite 共焦显微光谱模块采用光纤共焦技术,以光纤作为空间滤波器,提供接近衍射极限的样品激发以及 高空间分辨信息接收,能够有效抑制目标区域周围的干扰信号; 4 系统稳定 gora-Lite 共焦显微光谱模块基于光纤连接构建系统,能够避免物理空间上的移动而导致的光路偏移。即使档位来回切换千次,激发光斑始终能保持在 1μm 区域内; 5 超宽谱段光谱检测 gora-Lite 共焦显微光谱模块,能够实现微区条件下,从紫外 250nm 到近红外 1700nm 的微区光谱测试。 注:以上参数如有差异,以官网为准。
    留言咨询
  • VT6000材料表征测量高分辨率超景深共聚焦显微镜基于光学共轭共焦原理,主要采用3D捕获的成像技术显微成像测量,具有较高的三维图像分辨率。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000材料表征测量高分辨率超景深共聚焦显微镜可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中。可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。应用领域VT6000材料表征测量高分辨率超景深共聚焦显微镜对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:性能特色1、高精度、高重复性1)以转盘共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法,共同组成测量系统,保证仪器的高测量精度;2)隔震设计能够消减底面振动噪声,仪器在嘈杂的环境中稳定可靠,具有良好的测量重复性。2、一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程; 4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能;6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。3、精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦等测量前工作。4、双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。功能特点1、测量模式多样单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。共聚焦显微镜可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 中图仪器VT6000超分辨率转盘共聚焦显微镜光学系统以共聚焦技术为原理,结合精密纵向扫描等对器件表面进行非接触式扫描并建立表面3D图像,是实现器件表面形貌3D测量的光学检测仪器。VT6000超分辨率转盘共聚焦显微镜光学系统应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等参数。产品功能1)3D测量功能:设备具备表征微观3D形貌的轮廓尺寸及粗糙度测量功能;2)影像测量功能:设备具备二维平面轮廓尺寸的影像测量功能,可进行长度、角度、半径等尺寸测量;3)自动拼接功能:设备具备自动拼接功能,能够实现大区域的拼接缝合测量;4)数据处理功能:设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;5)分析工具功能:设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能; 6)批量分析功能:设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;7)便捷操作功能:设备配备操纵杆,支持操纵杆进行所有位置轴的操作及速度调节、光源亮度调节、急停等;8)光源安全功能:光源设置无人值守下的自动熄灯功能,当检测到鼠标轨迹长时间未变动后会自主降低熄灭光源,防止光源高亮过热损坏,并有效延长光源使用寿命;9)镜头安全功能:设备配备压力传感器,并在镜头处进行了弹簧结构设计,确保当镜头碰撞后弹性回缩,进入急停状态,大幅减小碰撞冲击力,有效保护镜头和扫描轴,消除人为操作的安全风险。不同应用场景下的3D形貌主要应用于半导体、光学膜材、显示行业、超精密加工等诸多领域中的微观形貌和轮廓尺寸检测中,其次是对表面粗糙度、面积、体积等参数的检测中。3D形貌图片:影像测量功能界面应用案例1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000超分辨率转盘共聚焦显微镜光学系统可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他 部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。 如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 中图仪器VT6000高分辨率显微镜共聚焦光学测量系统以转盘共聚焦光学系统为基础,基于光学共轭共焦原理,结合高稳定性结构设计和3D重建算法,共同组成高精度测量系统。能在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,从而进行分析。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;功能特点1、测量模式多样VT6000高分辨率显微镜共聚焦光学测量系统单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。VT6000高分辨率显微镜共聚焦光学测量系统在材料生产检测领域中,能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,能够有效提高工作效率,更加快捷准确地完成日常任务。借助共聚焦显微镜,能有效提高工作效率,实现更准确的操作。一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程; 4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能;6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 共焦拉曼显微镜 400-860-5168转1980
    仪器简介:Examine R共焦拉曼显微镜特别适合于生命科学,地质学,纳米科学,和半导体,刑侦应用。可以做微区化学分析。 Examine R拉曼显微镜采用Olympus显微镜,匹配DeltaNu高性能拉曼光谱仪,构成一套高性能的拉曼显微镜,由于同时具有非常合理价格的优势,成为业内高性能价格比拉曼显微镜的领先者 本系统可以方便的更换532,785,1064nm激光模组和光谱探测模组,用户不会像某些厂家的产品遇到繁琐的更换激光,光栅或探测器的问题。主要特点:产品特点: 532,785,1064nm激光模组 激光功率控制 高光谱分辨率 全固化光路,超级稳定 1064nm 一次摄谱范围200-2000波数(匹配高性能制冷InGaAs CCD) 785nm一次摄谱范围200-2000波数(或100-2000波数),匹配高性能近红外灵敏制冷CCD 532nm一次摄谱范围200-3400波数,匹配高性能制冷CCD 显微镜空间分辨率达到衍射极限 自动X-Y-Z平台,实现高精度共焦拉曼影像扫描(Raman Mapping) 显微镜附带高性能影像CCD用于可视化调节 可选3D影像重构功能。 可做溶液环境下显微拉曼
    留言咨询
  • 长宜光科超高分辨激光共聚焦显微镜MEAGLE 100的专业版基础上引入了超分辨SIM模块,这一创新性的集成带来了更广泛的应用和更高的性能水平。该显微镜不仅拥有超高分辨率成像的能力,还具备出色的成像速度,使其成为科学研究和实验室工作中的不可或缺的工具。首先,MEAGLE 100以其超快速度而脱颖而出。它能够在数百帧的速度下进行成像,这意味着它能够捕捉到活细胞的各种行为动态。这一特性对于研究细胞的生理和生物化学过程非常有帮助,同时还能确保连续数小时的低漂白成像,从而为实验提供了更大的时间窗口。其次,MEAGLE 100以其超高分辨率成像功能而脱颖而出,使研究者能够观察到更微观的细胞结构和细胞器的详细特征。这一特性在细胞生物学、神经生物学和其他领域中具有重要意义,因为它们需要深入研究微观结构以获得更全面的理解。MEAGLE 100还在场景丰富性方面表现出色。它不仅适用于基础细胞成像,还可以满足活细胞行为或特征分析等多种场景应用的需求。这种灵活性对于各种研究和实验项目都非常重要,因为它可以适应不同的研究问题和任务。最后,MEAGLE 100的易用性非常高。其软件允许用户一键切换共聚焦和超分辨两种成像模式,同时还提供了图像处理和细胞分析等功能。这使得研究者能够轻松地根据其具体需求和实验设计选择合适的模式,提高了实验的效率和便捷性。长宜光科超高分辨激光共聚焦显微镜MEAGLE 100的应用领域广泛,包括细胞生物学、病理学、药理学、神经生物学、免疫学等多个交叉学科。其卓越性能和多功能性使其成为科学研究者的得力助手,有望在各种领域的研究和应用中取得重要突破。 MEAGLE 100的引入为科学家们提供了一种强大的工具,有助于推动新的发现和知识积累。
    留言咨询
  • 中图仪器VT6000研究级共焦显微镜系统基于光学共轭共焦原理,结合精密纵向扫描、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量。在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,VT6000研究级共焦显微镜系统具有较高的三维图像分辨率。一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000研究级共焦显微镜系统能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等,可广泛应用于半导体制造及封装工艺检测,对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。应用领域在半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000光伏检测仪器3D显微镜轮廓仪可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 显微共焦拉曼RTS-EX 400-860-5168转1980
    RTS系列多功能显微共焦拉曼系统,基于新一代显微共焦技术,采用先进的低噪声拉曼专用CCD探测器,高分辨率光谱仪,使易用性及灵敏度更加优越。RTS 是目前商业化设备中扩展性能超高的显微光谱系统,可根据实际需求拓展为以拉曼为主要功能并兼具PL光谱、荧光寿命、高低温光谱等测试功能的光谱工作站,是您科学研究的明智选择! 免费测试申请办法:先锋科技提供拉曼全系列解决方案,产品涵盖高端激光显微共聚焦拉曼光谱仪、紫外共振拉曼、体全息光栅拉曼光谱仪、手持式拉曼谱仪以及拉曼激光器、滤光片、CCD等相关附件。结合您的需求,给您适合的拉曼解决方案!方案一:无论任何样品,现在都可在我司官方网站申请免费样品测试!请您在样品测试需求里头明确写明如下两点:1.样品有无毒性,测试后需要如何处置废品;2.另外:如果您有明确的测试要求(例如激光器波长、拉曼光谱范围等),也请将要求列于样品测试需求中,多谢您的配合!方案二:请您直接和我司取得电话联系RTS系列多功能显微共焦拉曼系统特点:高灵敏度:系统通光效率80%,先进的低噪声科学级CCD探测器高重复性:光路设计结构稳固,无需调节,保证测试数据的准确性高稳定性:光路水平走向,极强稳定性,不需要每天做光谱校正适合多种样品:可在显微光路及宏光路之间自由切换模块化设计:满足多方面科研需求且便于系统后续功能升级易操作:软件窗口操作模式,简单易用RTS系统配置: RTS-BRTS-HiRRTS-EX激光器标配:532nm,UV-NIR激光器,连续/脉冲激光器可选显微镜Olympus BX53正置显微镜Leica DM2700 研究级正置显微镜拉曼范围(cm-1)60-5000光谱范围(nm)200-1100光谱分辨率(cm-1)210.8光谱重复性(cm-1)0.2光栅1800G/mm, 600G/mm, 150G/mm 光栅刻线数,闪耀波长可选共焦方式高通光率,狭缝-CCD共焦空间分辨率水平1um,垂直2um探测器深制冷科学技术光谱CCD拉曼专用红外增强低噪声科学级光谱CCD丰富的功能拓展:在标准配置的基础上,可以根据用户的应用,扩展不同的附件,适合各种光学测试。扩展应用包括:近红外波段,时间分辨光谱,荧光寿命,TCSPC,透射,反射光谱等。也可扩展各种样品环境,高温,低温,磁场,原位等。 扩展选项:? 激光器:可扩展多个激光器,用户自选UV-NIR激光器? 探测器:可扩展:EMCCD,ICCD,InGaAs,PMT? 样品池:高温,低温,磁场,压力? 荧光寿命及TCSPC? AFM,正置倒置显微镜连用原子力显微镜,做原位表面形貌vs拉曼mapping,TERS等? 其他定制类系统系统结构示意图
    留言咨询
  • - 仪器介绍 LRS-5型共焦显微拉曼光谱仪是一款配备有三维自动平台的研究级拉曼测试仪器,真共焦显微光路保证了快速、准确的获得最为精细的光谱图像。LRS-5型优化了光路设计,以确保其在市场上具有高的灵敏度,在兼顾空间分辨率达到衍射极限的同时又保证了仪器的高通光量。结合自主开发的软件操作系统,使拉曼测试过程更加方便快捷,更具人性化。- 产品特点800mm焦距,高空间和高光谱分辨率全自动三维平台,实现mapping快速自动扫描真共焦拉曼成像功能软件控制自动可变针孔开放式样品台,可满足不同形状、体积的样品测试超低波数检测可扩展性,与其他多种测试技术联用应用领域广泛维护成本低,使用简单- 功能扩展可选配多激光器,适用于各类样品及优化实验结果可与拉曼AFM联用及TERS(针尖增强拉曼)可选配专业拉曼数据库,快速鉴定和分析- 主要参数名称参数测量方式定性/半定量检测激光器(激发波长)532nm(633nm、785nm可扩展)光谱范围50~7000cm-1光谱分辨率优于1.5cm-1波长精度≤±1cm-1灵敏度可观察到硅的四阶峰空间分辨率x/y轴:0.01μmz轴:0.002μm(与显微镜的微调齿轮减速比相关)CCD光谱探测器尺寸26.6×3.2mm有效像素1650×200像素尺寸16×16μm共焦针孔50μm,150μm,200μm,400μm
    留言咨询
  • 单分子检测水平的定量细胞生物学检测仪器。受激发射损耗(STED)是一种强大的显微技术,可以观察到空间分辨率低于衍射极限的荧光结构。Alba-STED使用脉冲激发和脉冲耗尽方法(pSTED)结合数字频域荧光寿命成像(FastFLIM)来记录时间分辨光子,从而提高图像分辨率并分离具有相同激发波长的两个荧光标记物。关键特色 : Alba-STED for FLIM/FFS:• pSTED (Pulsed excitation and pulsed STED)• FastFLIM for time-resolved pSTED acquisition• Improved image resolution using the phasor plot• Dual-label excitation• Fast image acquisition (dwell time: 0.2 μs)• High dynamic range (signal up to 60 million counts/s) 测试实例展示 Alba-STED for FLIM/FFSConfocal (left) vs. pSTED (right) images of the actin labeled with the SiR dye in fixed glia cells, acquired by FastFLIM. Confocal (left) vs. pSTED (right) images of the actin labeled with the SiR dye in fixed glia cells, acquired by FastFLIM. Confocal images of 60nm fluorescence beads (left) pSTED images (middle) sharpening the pSTED image using a binary filter based on the phasor plots (right). Dual labels can be separated using pSTED and FastFLIM. Atto 647N and Atto 655 were used as labels they both are excited by the 640 nm laser. The two dyes are first separated usingthe phasor plots, and then assigned with two different false colors (Atto 647N - yellow, Atto 655 - purple) to produce the processed and merged pSTED image of the two labels. 参考论文:Monomeric cohesin state revealed by live-cell single-molecule spectroscopy.Liu, W., Biton, E., Pathania, A., Matityahu, A., Irudayaraj, J., Onn, I.EMBO Rep. 2019 Dec 29:e48211. doi: 10.15252/embr.201948211. [Epub ahead of print] Photon-separation to enhance the spatial resolution of pulsed STED microscopy.Tortarolo, G., Sun, Y., Teng, K.W., Ishitsuka, Y., Lanzanó, L., Selvin, P.R., Barbieri, B., Diaspro, A., Vicidomini, G.Nanoscale. 2019 Jan 9. doi: 10.1039/c8nr07485b. [Epub ahead of print] A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses.Wang, R., Brustlein, S., Mailfert, S., Fabre, R., Fallet, M., Sivankutty, S., Rigneault, H., Marguet, D.Methods. 2018 May 1 140-141:212-222. doi: 10.1016/j.ymeth.2018.02.010. Epub 2018 Feb 14. A Novel Pulsed STED Microscopy Method Using FastFLIM and the Phasor PlotsSun, Y.,Tortarolo G., Teng, K.-W., Ishitsuka, Y., Coskun, U.C., Liao, S.-C., Diaspro, A., Vicidomini, G., Selvin, P.R., Barbieri, B.Proc. SPIE 10069, Multiphoton Microscopy in the Biomedical Sciences XVII, 100691C (February 21, 2017)
    留言咨询
  • WITec的创新精神使得 alpha300 系列一直处于市场的领先地位。德国Witec公司是世界上最知名的扫描共焦拉曼显微镜(Confocal Raman Microscopy)制造商,与原子力显微镜,近场光学显微镜显微镜的完美结合,是国际探针扫描显微镜测试领域领航者。最先研发出快速成像技术(FAST RAMAN IMAGING® )并将其作为标准技术,WITec 给拉曼成像市场带来了全新的变革。之后推出的首款真正共聚焦拉曼成像系统继续建立了多方面的基准:灵敏度、速度和三维成像,以及光谱质量、空间分辨率,易用性和与其它测试手段的兼容性。快速拉曼成像(FAST RAMAN IMAGING® )是WITec每一套机械平台或压电台的扫描成像拉曼系统的标准配置。单个拉曼光谱的采谱时间可以短至125 毫秒(背照式 CCD)或 38 毫秒(前照式CCD)。配置 EMCCD时, 超快速拉曼成像(ULTRAFAST RAMAN IMAGING® )速度大大提高, 单谱积分时间降低到 0.76毫秒。共聚焦显微拉曼光谱仪Alpha300 R,可以非破坏性地获得化学信息,分辨率可达光学衍射极限(~200 nm)。这使用户可以无需特殊样品制备的情况下,在周围环境中,对同一样品的不同阶段进行观察和分析。共聚焦装置,不仅可以从样品表面收集信息,还可以观测到透明样品的内部,甚至获得三维信息。一张完整的拉曼光谱是由每个像素构成的,因此由成千上万的谱图组成。Alpha300 R获得一张谱图的时间仅在毫秒量级,因而形成完整的图像仅需几分钟。当分析谱图中细致的特征峰时,仅用一组数据即可产生各种各样的图像。这可使用户不仅观测化合物的分布,也可对诸如结晶或材料的应力性质进行分析。进一步的应用,可典型应用在高分子科学,涂层和薄膜分析,在地球科学和制药业。产品特点真正的共聚焦拉曼显微镜单点光谱采集,单点深度分析,采集时间快:单个空间点的拉曼采谱时间降到ms级别。时间序列快速与超快拉曼光谱成像 (FAST & ULTRAFAST RAMAN IMAGING® )图像叠加(配合电机或压电驱动的扫描平台)3D 成像与深度分析自动聚焦(共聚焦显微镜/共聚焦拉曼成像)电机定位平台可自动将样品移动到用户自定义的坐标上可实现原位原子力显微镜AFM与近场光学显微镜联用技术参数激光器:355nm,442nm, 488nm,514nm,532nm,633nm,785nm 等可选,功率10-150mW(根据不同激光器)光谱仪:300mm焦距,f/4;通光量 70%;600g/mm和1800g/mm光栅EMCCD: 1600x200背感光深度制冷电子倍增型光谱CCD基于Zeiss显微镜的共焦拉曼显微镜,空间分辨率可达200nm (采用532nm激光和油浸物镜PZT扫描台,扫描范围200x200x2um 扫描准确度4x4x0.5nm 线性度好于0.02%最大可装载样品直径150mm 标准测试模式:拉曼光谱,光谱vs时间,拉曼光谱影像XY, YZ 3D成像光学分辨率高:200nm(横向),500nm(垂直方向)光谱分辨率高:0.02cm-1产品应用1.材料科学2.薄膜与聚合物研究3.生命科学4.半导体研究5.晶体研究6.制药科学
    留言咨询
  • 雷尼绍公司于1992年推出RM系列激光显微拉曼光谱仪开始,在拉曼光谱领域开拓了一个新纪元。通过对产品各部件的革新,推出了配置更加灵活、使用更加简单、自动化程度更高的inVia系列激光显微拉曼光谱仪。目前,inVia已成为全球最畅销的高性能显微拉曼光谱仪。雷尼绍激光拉曼光谱仪运用雷尼绍在精密机械制造和创新工程方面的丰富经验设计而成,经久耐用,可升级、重新配置或定制,是一台性能优异的研究级显微拉曼光谱仪,能够满足您现在和未来所需。全新inVia Qontor显微拉曼光谱仪是雷尼绍最先进的显微拉曼光谱仪。其保留了inVia Reflex的所有指标及功能,在功能性和易用性层面进行了增强,并且引入了雷尼绍最新的创新技术—LiveTrack实时聚焦追踪技术。LiveTrack实时聚焦追踪技术给inVia Qontor带来的优势:粗糙、凹凸不平和弯曲的表面实时保持聚焦状态动态测试过程中,样品始终处于聚焦状态,例如,化学反应过程,样品形貌发生变化时无论白光成像还是拉曼/拉曼成像数据采集过程,样品始终处于聚焦状态无需耗时进行表面预扫描极少或不需样品制备以2D或3D形式同时显示表面形貌和拉曼图像。主要性能:高灵敏度—挑战微弱拉曼信号高分辨率—高空间分辨率,易于检测微痕量样品;高光谱分辨率,得到更加精细的拉曼信息。高重复性和高稳定性—拉曼检测结果真实可靠高自动化程度—使您专注获得实验结果,无需在调整仪器、校准仪器上耗费精力高灵活性—可升级、修改和定制,不影响性能可实现拉曼、荧光的检测强大的联用增强能力—实现AFM、SEM、CLSM等多种分析设备的联用。配置特点:研究级正置/倒置显微镜紫外-可见-近红外宽波段检测,同时装配多个激光光源高灵敏探测器,同时装配多达4个CCD探测器功能强大的拉曼软件可选附件/功能:高精度自动平台(光栅尺反馈)多种成像模块,满足不同样品的成像需求高/低温台、高压台、电化学池、细胞培养皿等多种环境监测装置光纤探头偏振拉曼附件透射拉曼附件大样品测试附件超低波数附件...............
    留言咨询
  • 超分辨率显微镜 400-860-5168转2045
    简介: 随机光学重建显微(STORM)技术通过探测显微标本内的各荧光团的精确定位信息重建超分辨率荧光影像。 N-STORM利用NIKON的强大Ti-E倒置式显微镜应用3维高精度多通道分子定位和重建,从而实现了比传统显微镜 高10倍(横向约20nm)的超高分辨率。此强大技术能够观察到纳米级分子相互作用,开启研究的全新境界。 主要特点: &bull 比传统光学显微镜高10倍的超高分辨率(横向约20nm) N-STORM利用显微镜样本内部数以千计的离散荧光体分子,实现2D或3D高精度定位信息,展现无比壮观 的超高分辨率图像,与传统光学显微镜相比,空间分辨率可提高10倍。 &bull N-STORM还能提供比标准光学分辨率高10倍的纵向分辨率(约50nm) 除了侧向超高分辨率之外,N-STORM更运用专有技术,令轴向分辨率也同样提高十倍,有效提供纳米 级3D信息 &bull 使用各种荧光探针的多色成像 通过将各种&ldquo 活化&rdquo 探针和&ldquo 报告&rdquo 探针组合在一起,实现了多色超分辨率成像。从而能够对多个蛋白质 的共定位分析和相互作用进行重要的分子级研究。
    留言咨询
  • RAMOS E/M系列激光共聚焦显微拉曼光谱仪性能强大,产品线丰富,不同的型号对应不同的分辨率,所有产品均可实现2D和3D快速拉曼成像,客户可根据自己的实际需求选择对应产品。RAMOS E200内置光谱仪,结构紧凑,便于移动。RAMOS M350, M520, M750通过光纤与光谱仪相连,可配备两个探测器,RAMOS M750光谱仪焦长高达750mm,极大提高了系统的分辨率,系统可配备中阶梯光栅,光谱分辨率高达0.25 cm -1。 系统特点功能强大,可实现多种测量方式拉曼光谱与拉曼成像荧光光谱与荧光成像透射光与反射光(明场与暗场)成像激光共聚焦显微镜偏光显微镜与相差显微镜2D和3D扫描成像,成像范围大,速度快,精度高成像精度高,扫描步进20nm成像速度快,3μs每像素,30万像素每秒成像范围大,振镜扫描范围640μm x 640μm,结合电动位移台可实现更大范围成像 多通道测量模式,可同时测量拉曼,荧光,激光共聚焦成像 双通道同步测量,单次扫描可同时得到激光共聚焦成像图谱与拉曼散射光谱成像图谱,低噪声,高灵敏度,光谱分辨率可达0.25cm-1超高灵敏度和信噪比,如下图所示,激光功率6mW的情况下,积分时间100秒内即可获取硅的四阶峰,大大优于同类设备。超高光谱分辨率,低至0.25cm-1,精度高,光谱测量范围广,搭配高灵敏度背照射CCD,量子效率高达95%拉曼测量范围宽,可选低波数拉曼滤波器,测量范围5 cm-1到8000cm-1可配备低波数陷波滤波器(Notch filter)拉曼滤波器,截止频率5 cm-1,同时测量斯托克斯拉曼与反斯托克斯拉曼。系统采用针孔(Pinhole)共聚焦,去除非焦面杂散光影响,提高3D成像质量。 多功能,易于扩展,偏振拉曼,荧光寿命成像FLIM,AFM联用等 可选配件自动位移平台,配合振镜实现超大范围扫描高温热态和低温恒温器,真空或高压腔。光纤探头进行原位拉曼测量 详细参数RAMOS E200RAMOS M350RAMOS M520RAMOS M750成像方式3D (XYZ) 共聚焦激光成像与拉曼成像扫描方式XY方向振镜扫描/自动位移平台(可选)Z方向压电位移扫描速度3秒每百万像素(3 μs/像素)空间分辨率XY: 440 nm, Z: 620 nm拉曼测量范围50–8500cm-150 – 9700 cm-1激光器内置473 nm 或者 532 nm 激光器,可选其他波长激光器,455 nm, 633 nm, 785 nm等激光功率控制连续自动调节拉曼滤波器50 cm-1光谱仪内置外置焦长200 mm350 mm520 mm750 mm光谱分辨率1 cm-11.60 cm-10.25 cm -10.44 cm -1探测器2048х122,半导体制冷2048х122,双级制冷,量子效率95%应用示例:石墨烯拉曼光谱与拉曼成像 石墨烯AFM与拉曼成像 样品硅的拉曼成像 多晶硅的3D拉曼成像 锂电池负极材料的拉曼成像 碳纳米管的拉曼成像 药片的拉曼成像
    留言咨询
  • 超分辨共聚焦模块 400-860-5168转2831
    超分辨共聚焦模块LIVE-SR基于具有在线处理的光学解调结构化照明技术,与转盘共聚焦相结合,能够以高速和低光毒性实现超分辨率成像,使其成为高分辨率活细胞成像的理想解决方案。此外,由于光调制的性质,没有产生线或图案伪影,采集的图像可以获得超分辨率图像。超分辨共聚焦模块产品特点:● 3D分辨率提高至 ~100nm ● 活体成像的低光毒性● 获得光学改进的中间图像 ● 可同时多色成像● 采集速度高达1000fps超分辨率 ● 可批量处理(多通道、z堆栈、多位置)● 实时动态/聚焦模式 ● 易于结合FRAP/PA和光消融功能● 电动旁路模式 ● 可进行深度成像● 不需要特定的荧光团 *传统转盘共聚焦显微镜配置和未配置LIVE-SR模块荧光强度分布对比(100nm荧光小球)超分辨共聚焦模块应用图例: * 详细配置要求,以及光片显微模块,可咨询上海昊量光电设备有限公司工程师。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 激光共焦显微镜 400-860-5168转0769
    仪器简介:北京德华上海公司提供相关全能型纳米表面形貌、三维轮廓测量、粗糙度平面度等多款样机演示、客户做样并根据样品效果使具体配置达到最佳性价比,欢迎咨询沟通及技术交流;相关简介:http://oecsh.cn/oecsh/2010-04-11/1270945380d344.html技术参数:德国CFP激光共聚焦显微镜测量行程Z:1000µ m测量距离:4mm可测量抛光镜头测量频率:max.1000Hz敏感及软质材料分辨率Z:20nm适于反光不同的点分辨率XY:1µ m低反射率快速测量测量角度:approx.90° ± 25° *1测量光源:semiconductorlaser,660nm,class2*2主要特点:可测量抛光光学镜头测量敏感及软质材料适于反光率不同的反光点低反射率的材料也可快速测量
    留言咨询
  • 光学像素的重新分配可实现转盘共聚焦超分辨率成像SoRa超分辨率转盘可助CSU-W1实现超分辨成像功能。相对于宽场成像,XY方向分辨率提升2倍同时增强分辨率与共聚焦层切能力提供普通共聚焦成像和SoRa超分辨成像两种成像模式XY分辨率可达120nm在提高放大倍率和使用微透镜进行光学处理后,可获得超过光学极限约1.4倍的分辨率,所得图像在进一步通过反卷积处理后,可实现约2倍的分辨率提升。宽场荧光SoRaSoRa DCV宽场荧光图像和1.4倍分辨率增强的SoRa原始图像以及2倍分辨率增强的反卷积(DCV)SoRa图像对比。光学像素重新分配非常适合快速成像无需特殊的图像计算或样品制备,即可在任何样品上以光学方式获取超分辨率图像。图像的拍摄仅受限于样品的信噪比和曝光时间,这也使得高速超分辨率成像成为可能。以适当的放大倍率对发射光针孔进行微透镜处理,可以抵消通过非无限小的发射光针孔时的同轴照明点扩散函数和共聚焦有效点扩散函数(照明和探测点扩散函数的乘积)的不匹配。 通过微透镜处理,单个点在针孔上的发射角减小了2倍,等效于无限小理想针孔,但是不会影响信号的亮度参考文献:T.Azuma and T.Kei “Super-resolution spinning-disk confocal microscopy using optical photon reassignment” Opt.Express 23, 15003-15011 (2015).宽场荧光SD 50µmSoRaSoRa DCV 宽场荧光图像,针孔尺寸为50um的转盘共聚焦图像,SoRa原始图像以及反卷积SoRa图像的对比。CSU-W1 SoRa:将共聚焦和超分辨率成像合二为一系统包含两个可通过软件轻松切换的转盘:一个支持光学层切的超分辨率转盘和一个标准的共聚焦成像转盘。这意味着CSU-W1 SoRa是一个同时拥有转盘式共聚焦和超分辨率成像的系统。共聚焦图像SoRa DCV规格CSU-W1 SoRaCSU‐W1CSU‐X1共聚焦扫描方式微透镜增强型 Nipkow disk 和在发射光针孔处增加了微透镜的SoRa转盘微透镜增强型 Nipkow disk最高转盘速度4,000 转/分钟5,000 或 10,000 转/分钟外部同步方式通过TTL输入信号同步扫描速度转盘单元一个50um或25um的共聚焦转盘,一个SoRa超分辨率转盘,全电动控制50um或25um(最多两个),全电动控制50um透镜切换光路1x, 2.8x, 以及 4x 中继放大透镜n/a明场成像n/a可选配电动控制明场光路视场61x57um @ 100x (SoRa 模式)71x67um@ 60x (SoRa 模式)最大 17x16mm10x7mm激发光波长405-640nm405nm-785nm405nm-647nm激光接入方式单模光纤激发光闸内建机械光闸二向色镜3孔位电动切换3孔位电动切换或1孔位手动切换荧光滤镜转轮10孔位6或12孔位外部控制接口RS‐232C显微镜接口直接与显微镜耦合通过C‐Mount耦合相机接口适配器C‐mount 1x (放大倍率可选以匹配不同尺寸的传感器)操作环境15‐35°C, 20‐75% 相对湿度15‐40°C, 20‐75% 相对湿度电源输入电源: 100‐240 VAC +/‐ 10%, 50/60 Hz兼容的显微镜Ti2系列, Ti系列Ti2系列, Ti系列, Ni系列, FN1系列
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制