当前位置: 仪器信息网 > 行业主题 > >

五维精密调节平台

仪器信息网五维精密调节平台专题为您提供2024年最新五维精密调节平台价格报价、厂家品牌的相关信息, 包括五维精密调节平台参数、型号等,不管是国产,还是进口品牌的五维精密调节平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五维精密调节平台相关的耗材配件、试剂标物,还有五维精密调节平台相关的最新资讯、资料,以及五维精密调节平台相关的解决方案。

五维精密调节平台相关的论坛

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 【原创】石墨炉平台管的更新

    此法针对的是石墨管内经常会出现积碳,最后变大结块,影响到样品的加入和数据的精确度和精密度。本人所用仪器是热电m6,方法是将石墨管内的平台小心取出,小心的用镊子平行夹住平台弧形的中央,再轻轻得将生成的积碳用手指拔下,(注意要小心,可能将整个平台掰断!)你会发现平台就像新的一样,没有变薄和损坏,再用镊子将平台放回到管子原处,经过验证,其精密度和准确度均能满足要求。

  • 采用压力串级控制系统实现气动马达的精密调节

    采用压力串级控制系统实现气动马达的精密调节

    [color=#ff0000]摘要:气动马达作为一种将压缩空气的压力能转换为旋转机械能的装置,其运行的关键是要进行驱动气体压力的控制。本文介绍了目前气动马达压力控制装置的技术现状,特别指出了现有技术中使用电空变换器存在的不足,介绍了电空变换器的更新换代产品——电气比例阀。本文对这两种新旧技术进行了详细比较,新一代的电气比例阀技术更能满足今后气动马达对小型化、集成化、智能化、精细化、高寿命和高可靠性等方面的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align] 气动马达也称为风动马达,是指将压缩空气的压力能转换为旋转的机械能的装置。气动马达一般作为更复杂装置或机器的旋转动力源,它的作用相当于电动机或液压马达,即输出转矩以驱动机构作旋转运动。气动马达的主要特点有: (1)使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送。操纵方便,维护检修较容易。 (2)气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。 (3)可以无级调速,只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。即通过调节气源压力或者改变气流量,也可通过同时调节两者来实现。 (4)能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小,而且不需卸负荷。 (5)工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。 从上述气动马达的特点可以看出,气动马达运行的关键是压力控制。目前气动马达常用的压力控制装置如图1所,其中主要包括电空变换器(E/P或V/P转换器)和增压器,由此构成压力的开环控制,通过电流或电压信号输入就可以进行气动马达的调节。[align=center][color=#ff0000][img=气动马达常用压力控制装置结构示意图,500,359]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217044251_5561_3221506_3.jpg!w690x496.jpg[/img][/color][/align][align=center][color=#ff0000]图1 气动马达常用压力控制装置结构[/color][/align] 如果增加传感器(如旋转编码器)和PLC控制器,由此可构成闭环控制回路,传感器检测气动马达的转速等参量,PLC控制器通过检测传感器信号并与设定值比较可进行气动马达高精度的自动控制。另外,整个控制装置还可以通过增加双向阀来实现气动马达的正反转自动控制。 在图1所示的气动马达压力控制装置中,所用的电控变换器(电气转换器)是一种比较传统的压力调节装置,目前正逐渐被电气比例阀所代替。图2所示为这两种压力调节装置的对比。[align=center][color=#ff0000][img=电气比例阀和电气转换器比较表,690,520]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301217340426_2793_3221506_3.jpg!w690x520.jpg[/img][/color][/align][align=center][color=#ff0000]图2 电气比例阀和电气转换器特性对比表[/color][/align] 从上述对比可以看出,电气比例阀采用了更新的技术,与传统的电气转换器相比具有更优异的性能,电气比例阀正在快速对电气转换器形成升级替换,特别是随着电气比例阀的价格逐渐降低,已逐渐成为电气压力控制领域内主要产品。 另外,由于电气比例阀内置了压力传感器和PID控制器,为很多压力和流量控制应用场合提供了极其丰富的拓展应用,即采用电气比例阀可很方便的与其他物理量(如温度、位移、出力等)的探测和控制组成更复杂的串级控制回路,实现更多工业应用领域中的精密控制功能。 特别是采用电气比例阀与超高精度PID控制器结合形成的串级控制回路,可实现超高精度定位、超低速度运转和细小载荷的控制。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【建设新闻】西安光机所光机精密装校超净实验室建成投入使用

    [table=660][tr][td]西安光机所光机精密装校超净实验室建成投入使用[/td][/tr][tr][td]来源:机械专家网[/td][/tr][tr][td] 内容摘要:经过几个月的紧张施工,在2010年新年即将到来之际,[color=#000000]西安光机[/color]所光机精密装校超净实验室建设工程顺利完工并通过工程竣工验收正式交付使用。  经过几个月的紧张施工,在2010年新年即将到来之际,西安光机所光机精密装校超净实验室建设工程顺利完工并通过工程竣工验收正式交付使用。随后经过一个多月的设备进场和调试,目前该超净实验室内包括三槽金工零件超声波清洗机、九槽光学元件超声波清洗机、0.5T制纯水设备、各类光学平台、精密测高仪等一大批设备已经安装调试到位,并开始为科研生产任务提供服务。   为适应创新发展工作的急需,2009年9月14日,该所正式启动了总投资达200多万元的系统工程部光机精密装校超净实验室建设工程。此项工程将建设总洁净面积达1500平方米的超净实验室,其中包括千级超净实验室500平方米,十万级超净实验室700平方米,普通洁净区300平方米。整个实验室设计温度范围为20~26度,湿度为40%~50%,噪声要求≤65分贝,洁净室照度要求>300lax。  这次改造建设完成的我所新的光机精密装校超净实验室将极大地提升了所内原有的光机装调的整体环境和平台技术水平,它不仅最大限度地满足了西安光机所正在承担研制的我国神光Ⅲ任务部分项目装调工作的需要,而且还为全所各类重大科研项目的光机精密装校工作提供了最佳的平台和场所,是我所在推进创新能力建设工作中取得的又一项成果。[color=#ec0078]摘自《机械专家网》 ,部分内容进行修改。[/color][/td][/tr][/table]

  • 直线电机双轴联动平台在锂电池激光焊接的解决方案

    直线电机双轴联动平台在锂电池激光焊接的解决方案

    为了解决日益突显的能源、环保问题,新能源行业越来越受到世界各国的关注。锂电池行业作为国家重点扶持新能源项目发展较为迅速。近两年,中央和地方各项扶持政策协同效果逐渐显现,我国的新能源汽车市场出现了超预期发展和增长,并带动了产业链上下游企业的高速增长尤其是锂电池行业, 随着新能源汽车销量的进一步提高,业内预计,2018年锂电池或将进入供应紧张的阶段,强烈的需求对锂电池的产品技术、工艺、性能提出了更高的要求,更进一步凸显了产能的不足。目前国际上大多采用先进的激光焊接技术对锂电池的电池芯及保护板进行焊接。随着制造业的不断发展,大力发展高端制造技术,如何提高激光技术在锂电池制造领域的技术水平、如何升级优化激光焊接设备的整体性能,成为目前各个厂家研究的重点。在运动平台部分,直线电机相较于滚珠丝杆有更优的动态性能,更精密的定位精度及重复定位精度,更高的稳定性,更低的维护成本。用直线电机传动平台替换滚珠丝杆运动平台已成为必然趋势。激光焊接技术特点及难点: 激光焊接是一个将正负极材料、隔膜和电解液等原材料化零为整的融合制造过程,是整个锂电池生产流程中的关键工艺。激光焊接是利用激光束优良的方向性和高功率密度等特点来进行工作的。激光焊接有以下特点:激光功率密度高,可以对高熔点、难熔金属或两种材料进行焊接 聚焦光斑小,加热速度快,作用时间短,热影响区域小,热变形可忽略;激光焊接属于非金属焊接,无机械应力和机械变形;激光焊接装置易于计算机联机,能精确定位,实现自动焊接。锂电池模组通过高效精密的激光焊接可以大大降低接触电阻,降低能耗,提高电池的安全性、可靠性和使用寿命。但激光焊接要求焊件装配精度高,且要求激光束在工件上的位置不能有显著偏移。若焊件装配精度以及激光束定位精度达不到要求,很容易造成焊接缺憾,影响焊接质量。激光焊接技术的特点以及锂电池的结构性能对激光焊接设备的运动平台提出了更高更精密的要求。双轴联动直线电机平台技术特点及难点: 直线电机的本质是把旋转电机平放展开并直接连接到驱动负载上。它能替代例如滚珠丝杠、齿条与齿轮、皮带与皮带轮和减速箱的所有机械传动部分,从而消除了齿隙以及与机械传动相关的问题。具有结构简单、调速范围宽、动态性能优良、定位精度高、安全可靠、运行噪声低、无磨损、免维护以及无限行程等优点。灵猴双轴联动直线电机平台加速度可达5g、重复定位精度可达1μm并且在深度优化结构设计的基础上采用独特自主编写控制算法,跟踪检测速度波动,并作出后续补偿,使双轴直线电机在高速度走曲线小圆弧运动条件下,速度波动在3%以下,轨迹偏差更是在微米级别。完全满足锂电池激光焊接对平台精度、加速度、速度等性能的要求。日前有某激光焊接设备厂商客户的设备运动平台采用的是丝杆模组,但在其加速度为1g、速度提到100mm/s时其设备的焊接质量将无法保证,现需求双轴联动直线电机平台以替代丝杆平台模组并明确要求提供包括圆弧转角在内的跟随误差测试报告,但该客户对直线电机运动平台并不了解,故向我公司寻求解决方案。经过与客户的数次技术交流,在完全理解掌握客户设备的特性信息后设计了初版双轴联动直线电机运动平台模组,但是其要求的运动平台的运动轨迹的圆弧转角要求较小,且其速度及精度要求较高,经过我司对双轴联动直线电机平台的结构优化,定制化编写算法控制上下两轴的耦合,经过详细的系统测试,最终满足客户的需求,升级优化了客户的激光焊接设备,使其设备的焊接速度、精度以及稳定性在同行业处于领先地位。客户要求如下:[b]直线电机需求表 [/b]客户名称:[u] 某激光焊接设备集成 [/u]运用行业:[u] 锂电池激光焊接 [/u]联系人电话:[u] [/u]电子邮箱:[u] [/u]运动轴运动方式 :□水平 √ □垂直速度规划曲线:□1/3-1/3-1/3梯形波 √ □1/2-1/2三角形波总的运动行程:[u] 上轴270mm、下轴300mm [/u]mm总的运行时间:[u] 1.8s [/u]s最大运行速度:[u] 0.5 [/u]m/s最大运行加速度:[u] 3g [/u]m/s2负载重量:[u] 30 [/u]kg精度定位精度:[u] ±5 [/u]μm重复定位精度:[u] ±1 [/u]μm分辨率:[u] 0.1 [/u]μm放大器和电源最大电流:[u] 6.3 [/u]A电压:[u] 220 [/u]VAC □50 Hz √ □60Hz使用环境环境温度:[u] 室温 [/u]℃最大允许温升:[u] 130 [/u]℃是否在无尘环境中: □是 √ □否是否允许水冷或空气冷却:□是 □否 √是否是真空环境: □是 √ □否硬件总体设计及验证系统配置: 双轴联动直线电机运动平台主要由:直线电机、检测反馈、驱动控制,防护装置四部分组成。该运动平台选用无铁芯直线电机,运动平滑无齿槽力;检测反馈由光栅或磁栅、霍尔、温控组成;此平台模组选用的是高创驱动器,防护装置由风琴防护罩、高性能拖链、光电传感器、优力胶硬限位组成,充分保护运动平台的安全可靠性。模型效果如图2所示: [img=十字滑台,554,415]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311009_01_3294819_3.jpg[/img][align=center]图1:双轴联动模组模型[/align]双轴联动直线电机主要性能参数如图3所示: [img=,327,290]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311010_01_3294819_3.jpg[/img][align=center]图2:双轴联动模组性能参数[/align]验证测试根据客户设备的运动特点及轨迹,为保证客户设备在运行过程中的稳定性及可靠性,我们多次做了过需求验证并出具了相关的验证报告,运动平台的各项参数均符合客户需求,并做了相当于设备连续运行1.5年的耐疲劳测试,各项参数均无异常。经过多次技术交流、结构优化、测试验证,灵猴双轴联动直线电机运动平台仅在两周的时间就达到了客户的要求,满足了交付条件并实时在客户现场调试安装,直到客户设备完全出货,我们还积极跟踪我司产品在客户设备终端的运行状况以及各项数据,实时为客户设备提供可靠性报告。该客户“非标私人订制”的双轴联动直线电机运动平台模组上下两轴均采用自主研发的BUM系列无铁芯直线电机,该系列直线电机具有高推力、低运动质量、无齿槽效应、无磁吸力等特点,特别是在走曲线圆弧轨迹时,可实现高速度小圆弧转角下的低速度波动。在使用了双轴联动直线电机运动平台后,使其焊接速度提高50%,提高了其圆弧转角处的焊接质量,升级优化了客户整体设备的性能,提高客户设备销量的同时也增加了直线电机模组的销量,真正实现了双赢价值。直线电机平台模组除上述应用外,还有在医疗行业应用的超薄十字蛇形运动平台模组,其整体尺寸大小仅有圆珠笔大小;在3C行业中的视觉检测以及点胶平台上的快速移动的四轴联动直线电机模组;在机床以及快速搬运行业的LPS系列单轴平台模组;可以完全直接替换丝杆的SP标准系列单轴平台模组等等。随着制造行业越来越苛刻的要求,现代先进制造装备向着高速度、高精度、快响应、大行程的趋势发展。这必然要求一个反应灵敏、高速、轻便的驱动系统,由于传统的进给方式—“旋转电机+ 滚珠丝杠”需要联轴器、丝杠等中间传递环节,造成整体系统刚性不够、弹性变形严重,又因为该“间接传动”中丝杠精度很难提高、存在反向间隙等缺点,使得传统的进给系统无法达到上述要求。相对而言,直线电机具有结构简单、安装方便、无接触、无磨损等优点,并在精度、重复定位精度、刚度、工作寿命等其他性能指标上都优于旋转电机。其主要推广与高速、高精等旋转电机无法满足要求的场合。现代直线电机技术日益成熟,其势必取代传统的“旋转电机+ 丝杠”的传动模式。

  • 循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    循环肿瘤细胞(CTCs)检测分选进样系统微小正负压精密控制的解决方案

    [align=center][img=压力驱动分选进样系统,690,371]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231002395286_2664_3384_3.png!w690x371.jpg[/img][/align][color=#000099]摘要:在循环肿瘤细胞等细胞分选进样系统中,需要在一个标准大气压附近很小的正负压范围对压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#000099]一、问题的提出[/color][/size]循环肿瘤细胞(Circulating Tumor Cells,CTC)分选已被认为是癌症诊断和预后的有效工具,要求相应的检测装置能够执行所有实验过程而无需任何人工干预的自动、快速且灵敏。对于一些基于压力驱动液体流动原理的进样系统,要求通过精确控制气体的压力, 确保进样过程中流量稳定并实现自动反馈调节,并需要气压供应装置提供正压和负压以使检测装置中的泵及阀门动作。但在目前的CTC检测装置进样系统中,气压的精密控制还存在以下几方面的问题需要解决:(1)现有的气压供应装置无法提供微小的气压,常会导致泵的薄膜破损而无法使用,且现有的气压供应装置亦无法提供常压,使泵的薄膜在检测过程中无法回到平坦状态,造成细胞破损,故需要有可以提供微气压及常压至检测装置的气压供应装置。为了解决此问题,给微流道芯片提供正压、负压或常压,专利CN 216499436U“气压供应装置”中提出了一种非常复杂的概念性解决方案,标称正压气体的压力大小调节至 1~6psi,负压气体的压力大小调节至?1~6psi,正负压微调节阀可以精密至±0 .01psi。但这些指标恰恰是微压力调节阀的关键,如果没有能达到这种技术指标的调节阀,所述方案根本无法实现。(2)上海理工大学王固兵等人在2020年发表的“基于气压驱动的循环肿瘤细胞分选进样系统的设计与实现“一文中,提出了一种采用德国tecno PS120000 比例电磁阀的技术方案。但这种工业用比例阀主要是用于高压气体的压力控制,口径也较大,控制精度显然不能满足微小正负压的精密控制,而且无法外接高精度压力传感器来提升控制精度,根本无法实现文中提出的达到压力输出精度为1mbar(0.015psi)的指标,相对于1bar大气压这相当于达到0.1%的控制精度,这个指标显然不切合实际。从上述报道可以看出,细胞分选进样系统的压力控制需要在一个标准大气压附近很小的正负压范围对真空压力进行精密控制,这就对控制方法、气体流量调节阀、压力传感器和控制器提出了更高的要求。本文将针对这些技术问题,提出高精度正负压精密控制解决方案,并详细介绍控制方法和其中软硬件的功能和技术指标,由此可实现0.5%的控制精度。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在一个标准大气压附近±10psi(或±700mbar)范围内的正负压精密控制,控制精度达到0.5%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和双通道PID控制器,气压源可进行高精度的正压、负压和一个大气压的可编程输出。微小正负压精密控制的基本原理如图1所示,具体内容为:[align=center][img=气压驱动分选进样系统,690,377]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231005336655_4666_3384_3.png!w690x377.jpg[/img][/align][align=center]图1 微小正负压精密控制原理框图[/align](1)控制原理基于密闭空腔进气和出气的动态平衡法。这是一个典型闭环控制回路,2通道PID控制器采集真空压力传感器信号并与设定值进行比较,然后调节进气和抽气调节阀的开度,最终使传感器测量值与设定值相等而实现真空压力的准确控制。(2)控制回路分别配备了抽气泵(负压源)和气源(正压源),以提供足够的负压和正压能力。(3)为了覆盖负压到正压的所要求的真空压力范围(如-10psi至+10psi),配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,绝对压力传感器对应上述真空压力范围输出数值从小到大的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。采用绝对压力传感器的优势是不受当地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的微小正负压力发生器的具体结构如图2所示,主要包括高压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=气压驱动分选进样系统,690,465]https://ng1.17img.cn/bbsfiles/images/2022/06/202206231006045409_5247_3384_3.png!w690x465.jpg[/img][/align][align=center]图2 微小正负压精密控制的压力发生器结构示意图[/align]在图2所示的微小正负压控制系统中,密闭空腔上的工作压力出口连接检测仪器,密闭空腔左右安装两个NCNV系列的步进电机电动针阀,此电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。在图2所示的控制系统中使用了两个电动针阀来实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。对于循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过双通道PID控制器,一个通道用来恒定进气口处电动针阀的开度基本不变,另一个通道根据PID算法来调节排气口处的电动针阀开度。除了上述恒定进气流量调节抽气流量的控制方法之外,循环肿瘤细胞(CTCs)检测仪器进样系统中的微小正负压的控制精度,主要由压力传感器、PID控制器和电动针阀的精度决定。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。对于进样系统中的微小压力控制,往往会要求密闭容器在正负压范围内进行多次往复变化,因此采用了可存储多个编辑程序的PID控制器,设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图2所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个高压气源,减少了整个系统的造价、体积和重量,真空发生器连接高压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现循环肿瘤细胞(CTCs)检测仪器进样系统中微小正负压的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了微小正负压的自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前上海依阳实业有限公司特有的标准产品,其他的压力传感器、抽气泵、真空发生器和高压气源等也是目前市场上常见的标准产品。本文所述解决方案,同样可以适用于各种其他基于气压驱动的微流控进样系统。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 液相透射电子显微镜液体厚度调节中的真空度精密控制解决方案

    液相透射电子显微镜液体厚度调节中的真空度精密控制解决方案

    [size=16px][color=#339999][b][font='微软雅黑',sans-serif]摘要:为了实现[url=https://insevent.instrument.com.cn/t/5p]液相[/url]电子显微镜的更广泛和更便捷应用,需要对微芯片中的液体样本厚度进行精密调控。本文基于透射显微镜中被检液体样本内外压差对应于液体厚度这一凸起变形膨胀的基本现象,提出了通过精确控制液体池内部真空度来实现液体厚度精密调控的解决方案。真空度的高精度控制将采用动态平衡法,可在宽区间[/font]0.1~100kPa[font='微软雅黑',sans-serif]范围内的任意真空度下实现±[/font]1%[font='微软雅黑',sans-serif]的控制精度,最终实现液体样本厚度的高精度自动调节和控制。[/font][/b][/color][/size][size=16px][color=#339999][b][font='微软雅黑',sans-serif][/font][/b][/color][/size][align=center][size=16px][font='微软雅黑',sans-serif][img=真空度精密控制技术在液相透射电子显微镜液体厚度调节中的应用,550,328]https://ng1.17img.cn/bbsfiles/images/2023/02/202302201108567445_1826_3221506_3.jpg!w690x412.jpg[/img][/font][/size][/align][size=16px][font='微软雅黑',sans-serif][/font][/size][font='微软雅黑',sans-serif][size=24px][color=#339999][b]1. 问题的提出[/b][/color][/size][/font][font='微软雅黑',sans-serif][size=16px] 近年来,基于透射电子显微、微纳加工和薄膜制造技术的液相透射电子显微技术,为构建多种纳米级分辨率尺度下的微实验平台,发展新型纳米表征技术和众多领域的相关研究提供了有效途径。如图[/size][/font][size=16px]1[/size][font='微软雅黑',sans-serif][size=16px]所示,一个标准的液体池是由隔离材料支撑起两片电子透明氮化硅([/size][/font][size=16px]SiN[/size][font='微软雅黑',sans-serif][size=16px])薄膜窗口的硅微芯片,液体样品被填充在这两个窗口之间。[/size][/font][font='微软雅黑',sans-serif][/font][align=center][size=14px][b][color=#339999][img=液相透射额电子显微镜液体腔基本结构示意图,500,321]https://ng1.17img.cn/bbsfiles/images/2023/02/202302201111174803_9349_3221506_3.jpg!w690x444.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][size=16px]1 [/size][font='微软雅黑',sans-serif]液相透射额电子显微镜液体腔基本结构示意图[/font][/b][/align][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]理论上,液体厚度可以通过微芯片之间的间隔垫片来设定,但在实际观察中需要将微芯片放置在透射电子显微镜的超高真空环境中,使得膜窗口内外的压力不同,此压差会造成膜窗口凸起变形膨胀而造成液体厚度发生改变,而这种改变往往超过了好几倍。因此,除非产生气泡,这种厚度变化将严重影响观测的分辨率。另外,可以用柱子连接顶部和底部膜窗口以最小化膨胀,但这种固定厚度的液体池无法加载不同的样本进行观测,并不具有通用性和适用性。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]由此可见,液体池在透射电子显微镜超高真空环境下的凸起变形膨胀,反而是一种可利用的特性,通过这种膨胀可实现不同厚度的液体样品以使得在保证高分辨率的条件下对多种液体样本进行观测,更具有通用性和适用性,但这种液体厚度可调的前提是液体厚度可精确控制。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]因此,为了实现液相电子显微镜中液体样本厚度可调,就必须设法对液体池膜窗口内外的压差进行精密控制。本文将针对液体池内部的真空度控制提出相应的解决方案,真空度的高精度控制将采用动态平衡法,可在[/size][/font][size=16px]0.1~100kPa[/size][font='微软雅黑',sans-serif][size=16px]范围内的任意真空度下实现±[/size][/font][size=16px]1%[/size][font='微软雅黑',sans-serif][size=16px]的控制精度,由此实现液体样本厚度的精密可调和恒定控制。[/size][/font][b][size=24px][color=#339999]2. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]采用控制液体样本的真空度来调节微芯片内外压差实现液体样本厚度变化控制的方法,实际上早在文献[/size][/font][size=16px][1,2][/size][font='微软雅黑',sans-serif][size=16px]中进行过简单描述,如图[/size][/font][size=16px]2[/size][font='微软雅黑',sans-serif][size=16px]和图[/size][/font][size=16px]3[/size][font='微软雅黑',sans-serif][size=16px]所示。[/size][/font][font='微软雅黑',sans-serif][/font][align=center][size=14px][b][color=#339999][img=文献1所述的真空压力控制系统结构示意图,690,311]https://ng1.17img.cn/bbsfiles/images/2023/02/202302201111448082_9675_3221506_3.jpg!w690x311.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][size=16px]2 [/size][font='微软雅黑',sans-serif]文献[/font][size=16px]1[/size][font='微软雅黑',sans-serif]所述的真空压力控制系统结构示意图[/font][/b][/align][align=center][size=14px][b][color=#339999][/color][/b][/size][/align][align=center][size=14px][b][color=#339999][img=文献2所述的真空压力控制系统,550,570]https://ng1.17img.cn/bbsfiles/images/2023/02/202302201112014834_1301_3221506_3.jpg!w690x716.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][size=16px]3 [/size][font='微软雅黑',sans-serif]文献[/font][size=16px]2[/size][font='微软雅黑',sans-serif]所述的真空压力控制系统[/font][/b][/align][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]文献[/size][/font][size=16px][1][/size][font='微软雅黑',sans-serif][size=16px]中基本给出了采用真空度控制来实现液体厚度调节的整个装置结构示意图,但并没有给出调节厚度用的真空度控制范围。文献[/size][/font][size=16px][2][/size][font='微软雅黑',sans-serif][size=16px]虽然仅给出了示意草图和控制值装置的照片,但对应不同液体厚度的调节给出了相应的真空度范围为[/size][/font][size=16px]5~100kPa[/size][font='微软雅黑',sans-serif][size=16px]。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]我们从真空度控制的基本原理分析,文献[/size][/font][size=16px][1,2][/size][font='微软雅黑',sans-serif][size=16px]采用的是相同的控制方法,即动态平衡法,也就是通过分别调节图[/size][/font][size=16px]2[/size][font='微软雅黑',sans-serif][size=16px]所示的进气和出气流量来实现不同设定真空度的动态平衡控制。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]另外,之所以采用动态平衡法控制真空度,这主要是因为一是可以实现很高的控制精度,控制精度可以轻松达到±[/size][/font][size=16px]1%[/size][font='微软雅黑',sans-serif][size=16px]以内;二是因为这种方法非常适用于小尺寸空间内的真空度控制。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]本文所述的解决方案也是采用上述动态平衡法进行液体样本的真空度控制,不同之处在于进行了进一步的细化,给出了工程化的具体实施方案和详细描述。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]根据上述文献中所述的调节液体厚度所对应的真空度控制范围,我们首先确定出解决方案所需覆盖的真空度控制范围为[/size][/font][size=16px]0.1~100kPa[/size][font='微软雅黑',sans-serif][size=16px],这样基本可以满足液相透射电子显微镜下液体样本所有厚度调节的需要,同时真空度控制精度要求优于±[/size][/font][size=16px]1%[/size][font='微软雅黑',sans-serif][size=16px]。具体实施方案所述装置如图[/size][/font][size=16px]4[/size][font='微软雅黑',sans-serif][size=16px]所示。[/size][/font][font='微软雅黑',sans-serif][/font][align=center][size=14px][b][color=#339999][img=真空度控制装置结构示意图,600,312]https://ng1.17img.cn/bbsfiles/images/2023/02/202302201112219088_5274_3221506_3.jpg!w690x359.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][size=16px]4 [/size][font='微软雅黑',sans-serif]用于液体样本厚度调节的真空度控制系统结构示意图[/font][/b][/align][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]图[/size][/font][size=16px]4[/size][font='微软雅黑',sans-serif][size=16px]所示的液相电子显微镜中用于液体样本厚度调节的真空度控制系统主要包括真空计、电子针阀、真空泵、真空压力控制器和计算机及其软件,他们各自的功能和及其详细说明如下:[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]1[/size][font='微软雅黑',sans-serif][size=16px])真空计:用于精密测量液体样本的真空度。真空计采用测量精度较高的薄膜电容真空计,为满足全量程真空度测量需要,配备了两只不同量程的真空计。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]2[/size][font='微软雅黑',sans-serif][size=16px])电子针阀:用于精密调节进气和排气流量。电子针阀是一种步进电机驱动的高速针型阀,通过[/size][/font][size=16px]0~10V[/size][font='微软雅黑',sans-serif][size=16px]的模拟电压信号可在小于[/size][/font][size=16px]1s[/size][font='微软雅黑',sans-serif][size=16px]的时间内精密快速的调节针型阀开度以实现高精度流量调节,非常适合小尺寸空间内的真空度控制。配备了两只[/size][/font][size=16px]NCNV[/size][font='微软雅黑',sans-serif][size=16px]系列的电子针阀分别用来进行进气和排气流量的调节以最终达到真空度的高精度控制。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]3[/size][font='微软雅黑',sans-serif][size=16px])真空泵:用作真空源。作为真空源的真空泵,一般采用低污染的干式真空泵,并降低震动和噪音对整个透射电子显微镜的影响。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]4[/size][font='微软雅黑',sans-serif][size=16px])真空压力控制器:用来接收真空计测量信号,根据真空度设定值对电子针阀进行[/size][/font][size=16px]PID[/size][font='微软雅黑',sans-serif][size=16px]自动控制,使液体样品的真空度快速达到设定值并可长时间保持恒定。对于[/size][/font][size=16px]0.1~1kPa[/size][font='微软雅黑',sans-serif][size=16px]范围内的高真空度控制,控制器需采集[/size][/font][size=16px]10Torr[/size][font='微软雅黑',sans-serif][size=16px]量程的真空计[/size][/font][size=16px]1[/size][font='微软雅黑',sans-serif][size=16px]信号,同时将排气用电子针阀固定为全开状态,控制器对进气用电子针阀的开度进行自动调节。对于[/size][/font][size=16px]1~100kPa[/size][font='微软雅黑',sans-serif][size=16px]范围内的低真空度控制,控制器需采集[/size][/font][size=16px]1000Torr[/size][font='微软雅黑',sans-serif][size=16px]量程的真空计[/size][/font][size=16px]2[/size][font='微软雅黑',sans-serif][size=16px]信号,同时将进气用电子针阀固定为某个开度状态,控制器对排气用电子针阀的开度进行自动调节。为了实现这种宽量程范围内的真空度控制,配备了独立双通道的[/size][/font][size=16px]VPC2021[/size][font='微软雅黑',sans-serif][size=16px]系列高精度真空压力[/size][/font][size=16px]PID[/size][font='微软雅黑',sans-serif][size=16px]控制器,其中的两个通道分别对应两只真空计的信号采集,并组成两路独立的闭环控制回路对不同范围内的真空度进行自动控制。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]5[/size][font='微软雅黑',sans-serif][size=16px])计算机和软件:计算机用来与真空压力控制器进行通讯,计算机软件则可通过界面形式对真空压力控制器进行各种参数设定、运行控制以及过程参数的数字显示、图形显示、存储和调用。尽管单独使用真空压力控制器也可以进行真空度控制,但需要通过控制器上的按钮进行手动操作,操作比较繁复,而通过计算机软件进行控制器操作,则更直观和简便。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]为了满足液体厚度调节控制的高精度要求,上述关键部件的主要技术指标如下:[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]1[/size][font='微软雅黑',sans-serif][size=16px])真空计:薄膜电容真空计,量程分别为[/size][/font][size=16px]10Torr [/size][font='微软雅黑',sans-serif][size=16px]和[/size][/font][size=16px]1000Torr[/size][font='微软雅黑',sans-serif][size=16px],任意真空度测量值的精度为[/size][/font][size=16px]0.25%[/size][font='微软雅黑',sans-serif][size=16px]。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]2[/size][font='微软雅黑',sans-serif][size=16px])电动针阀:步进电机驱动,控制信号为模拟电压或电流信号,从全闭到全开的全程响应时间小于[/size][/font][size=16px]1s[/size][font='微软雅黑',sans-serif][size=16px],重复精度优于±[/size][/font][size=16px]0.1%[/size][font='微软雅黑',sans-serif][size=16px],阀芯具有耐腐蚀作用。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]([/size][/font][size=16px]3[/size][font='微软雅黑',sans-serif][size=16px])真空压力控制器:[/size][/font][size=16px]24[/size][font='微软雅黑',sans-serif][size=16px]位[/size][/font][size=16px]AD[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]16[/size][font='微软雅黑',sans-serif][size=16px]位[/size][/font][size=16px]DA[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]0.01%[/size][font='微软雅黑',sans-serif][size=16px]最小输出百分比,[/size][/font][size=16px]PID[/size][font='微软雅黑',sans-serif][size=16px]参数具有自整定功能,[/size][/font][size=16px]RS 485[/size][font='微软雅黑',sans-serif][size=16px]通讯和标准[/size][/font][size=16px]MODBUS[/size][font='微软雅黑',sans-serif][size=16px]通讯协议,随机配备计算机操控软件。[/size][/font][b][size=24px][color=#339999]3. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]液相透射电子显微镜已经成为实时监测液体中纳米材料过程的基本技术,由于液体和透射电子显微镜高真空之间存在的压力差,氮化硅膜窗口通常会发生弯曲,可通过调节液体池的内部真空压力来动态调节液体厚度,从而在用于高分辨率成像的中心窗区域中产生超薄液体层。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]通过本文提出的解决方案,可搭建起独立的真空度控制装置,用于对液相透射电子显微镜的微芯片液体样本进行各种厚度的自动调节和恒定控制,而且可以达到很高的控制精度。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]此外,液体池内部的高精度真空度自动控制,也为液体厚度按程序方式的动态改变提供了可能,这非常有利于克服扩散限制,达到本体溶解条件。[/size][/font][font='微软雅黑',sans-serif][size=16px][font=微软雅黑, sans-serif] [/font]总之,解决方案提供了在液相透射电子显微镜实验中测量和动态调整液体厚度的基本方法,使得新的实验设计和溶液化学的更好控制成为可能。[/size][/font][b][size=24px][color=#339999]4. [font='微软雅黑',sans-serif]参考文献[/font][/color][/size][/b][size=16px][1] Inayoshi Y, Minoda H, Arai Y, et al. Directobservation of biological molecules in liquid by environmental phase-platetransmission electron microscopy[J]. Micron, 2012, 43(11): 1091-1098.[/size][size=16px][2] Keskin S[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]Kunnas P[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]De Jonge N[/size][font='微软雅黑',sans-serif][size=16px]。[/size][/font][size=16px]Liquid-phaseelectron microscopy with controllable liquid thickness[J][/size][font='微软雅黑',sans-serif][size=16px]。[/size][/font][size=16px]Nano Letters[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]2019[/size][font='微软雅黑',sans-serif][size=16px],[/size][/font][size=16px]19[/size][font='微软雅黑',sans-serif][size=16px]([/size][/font][size=16px]7[/size][font='微软雅黑',sans-serif][size=16px]):[/size][/font][size=16px] 4608-4613.[/size][size=16px][font='微软雅黑',sans-serif][/font][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=16px] [/size]

  • 如何提高仪器的精密度?

    如何提高仪器的精密度?先抱砖引玉,首先都使仪器处于最佳状态,试剂,水等肯定纯度要高,杂质很少,光谱干扰方面等要合理调节。。。。。。。。。。。。大家怎么看?

  • 【转帖】电子精密分析天平

    [center][size=4]电子精密分析天平[/size][/center]电子精密分析天平是传感技术、模拟电子技术、数字电子技术和微处理器技术发展的综合产物,具有自动校准、自动显示、去皮重、自动数据输出、自动故障寻迹、超载保护等多种功能。电子精密分析天平通常使用电磁力传感器(见称重传感器),组成一个闭环自动调节系统,准确度高,稳定性好。电子精密分析天平的工作原理:当秤盘上加上被称物时,传感器的位置检测器信号发生变化,并通过放大器反馈使传感器线圈中的电流增大,该电流在恒定磁场中产生一个反馈力与所加载荷相平衡;同时,该电流在测量电阻Rm上的电压值通过滤波器、模/数转换器送入微处理器,进行数据处理,最后由显示器自动显示出被称物质量数值。 分析天平的使用方法 仪器名称: 分析天平使用方法:分析天平是定量分析工作中不可缺少的重要仪器,充分了解仪器性能及熟练掌握其使用方法,是获得可靠分析结果的保证。分析天平的种类很多,有普通分析天平、半自动/全自动加码电光投影阻尼分析天平及电子分析天平等。下面就电子分析天平的使用方法及注意事项做一介绍。操作方法1. 检查并调整天平至水平位置。2. 事先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。3. 预热足够时间后打开天平开关,天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。4. 称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。5. 被称物质的重量是显示屏左下角出现“→”标志时,显示屏所显示的实际数值。6. 称量结束应及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。注意事项1. 天平应放置在牢固平稳水泥台或木台上,室内要求清洁、干燥及较恒定的温度,同时应避免光线直接照射到天平上。2. 称量时应从侧门取放物质,读数时应关闭箱门以免空气流动引起天平摆动。前门仅在检修或清除残留物质时使用。3. 电子分析天平若长时间不使用,则应定时通电预热,每周一次,每次预热2h,以确保仪器始终处于良好使用状态。4. 天平箱内应放置吸潮剂(如硅胶),当吸潮剂吸水变色,应立即高温烘烤更换,以确保吸湿性能。5. 挥发性、腐蚀性、强酸强碱类物质应盛于带盖称量瓶内称量,防止腐蚀天平。

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 晟鼎精密与仪器信息网结缘七周年 不得不说的故事

    晟鼎精密与仪器信息网结缘七周年  不得不说的故事

    晟鼎精密与仪器信息网结缘七周年不得不说的故事 一、缘于一开始的认可 2015年伊始,我来到晟鼎精密,彼时我的经验仅限于搜索引擎推广,付费B2B的认识仅限于阿里巴巴,对于仪器信息网处于完全陌生的状态。 说回与仪器信息网的结缘,缘自当时我的直接上司冼健威(GB/T 30693-2014国家标准参与制订者)的推荐和肯定,当时我们晟鼎的主营产品以接触角测量仪为主,公司想从表面性能检测设备开始,慢慢渗透表面性能处理方案的相关设备,从接触角测量仪,到等离子清洗机,到USC干式超声波除尘。每每聊起这些冼总都眼泛亮光,如今6年过去,事实证明这个决策支撑了晟鼎5-10年的发展根基,而晟鼎精密也是沿着这条路慢慢发展扩大。 当时仪器信息网已有15年积累,日活,日收录和搜索引擎的权重都比其他仪器平台高很多,独占鳌头之势。同时我们的各路同行,国外和国内的优质品牌在仪器信息网上都有一席之地,更拥有高校和研究院这种高质量用户群体。于是,我们毫不犹豫的申请了一年的铜牌用户。二、因为信任,所以耕耘 最初,同行各出奇招,排名稳定。晟鼎精密作为小弟还在摸索徘徊,不懂3I规则 ,与仪器信息网的蜜月期一过,我们回到默默无闻的小白位置,没有展现,没有排名,没有咨询,200个商机点三次用完,我开始怀疑起我的选择。与仪器信息网的客服沟通后,客服指点我3I排名规则,耐心解答我的疑虑:有些客户排名好与级别有关,一年7W的钻石会员与我们4980的铜牌不可同日而语,而我们不能因为会员级别低就放弃努力。于是在此后的工作中,我慢慢上传解决方案,上传资料,做用户群,优化图片 ,优化内容页,在一番努力过后,晟鼎的接触角测量仪出现在自然排名第二和第三的位置,在这此后晟鼎新上的等离子清洗机,用同样的方式也保持了很好的排名。在这里也很感激这个平台,付出与收获成正比,不至于只拼价格。016年,晟鼎精密在网络推广平台上投入了6W的推广费用,拿下600W的首单成交额,而仪器信息网占了不到10%的推广成本,也获得了几十万优成交额。并且相较于搜索引擎推广,仪器信息网的客户质量要高。2017年,与公司领导沟通后,我们选择了级别稍高的银牌会员,直到现在。https://ng1.17img.cn/bbsfiles/images/2021/06/202106091611489678_7583_3114748_3.png!w690x396.jpghttps://ng1.17img.cn/bbsfiles/images/2021/06/202106091612537616_5173_3114748_3.png!w690x326.jpg 晟鼎精密信任这个平台,也认可平台带给晟鼎的价值,不仅仅是获得优质的询盘信息,更是表面处理检测行业,仪器行业一份品牌价值的认可,在高校,研究院用户的心里,仪器信息网上能找得到的设备,默认为这个行业较高端,值得肯定的设备。这取决了平台和公司双向的努力。三、品牌+品质双赢 结识仪器信息网以来,我们晟鼎精密不管是资料数据,解决方案,典型用户,评分都比同行要高,虽然没做搜索排名,也没有超高的会员级别,但仍然能在平台上收获良好的用户反馈。作为10年以上的网络推广人员,也做过众多平台的优化工作,个人认为仪器信息网最好的一点是保持初心,不为竞价而竞价,始终重视平台的价值大于一切,平台诸多优秀的活动,专场 ,新品,解决方案,在仪器仪器享有盛名,获得很高的认可和赞誉。 未来,愿晟鼎与仪器信息网携手同行,创造更多有价值的仪器,服务更多优质的客户,实现品牌与品质双赢。

  • 电子精密天平该怎么维护

    电子 精密 天 平维护1、将天 平置于稳定的工作台上避免振动、气流及阳光照射。     2、在使用前调整水平仪气泡至中间位置。    3、电子 精密 天 平应按说明书的要求进行预热。    4、称量易挥发和具有腐蚀性的物品时,要盛放在密闭的容器中,以免腐蚀和损坏电子 天 平。    5、经常对电子 精密 天 平进行自校或定期外校,保证其处于最佳状态。    6、如果电子 精密 天 平出现故障应及时检修,不可带“病”工作。    7、操作天 平不可过载使用以免损坏天平。    8、若长期不用电子精密天平时应暂时收藏为好。

  • 力德生物科技(上海)有限公司刚刚发布了仪器销售工程师(平台好、提成高)职位,坐标,速来围观!

    [b]职位名称:[/b]仪器销售工程师(平台好、提成高)[b]职位描述/要求:[/b]职位描述:负责高端精密仪器在西北地区的销售,发展当地渠道经销商,对重要客户进行直销,达成公司下达的销售目标工作区域:负责大西北区域业务应聘要求:1.男女不限,本科以上学历,一年以上销售工作经验,热烈欢迎有资深同业经验者加入。2.较强亲和力,良好的沟通能力,敢于挑战自我3. 较强的学习能力和责任感,敢于面对困难,勇于开拓4..有良好的自我管理能力和强烈的职业追求。5. 从事过仪器分析或专业为环境、生物、制药、化学类优先。五险一金、周末双休、通讯补贴、出差补助、专业培训、员工旅游、年底双薪等以上职位一经录用将提供有竞争力的总体薪酬方案,让您后顾无忧,有意者请电邮![b]公司介绍:[/b] 力德生物科技(上海)有限公司是一家提供实验室用品的专业供应商,总部位于上海,专业的团队,精选全球最知名品牌的精密分析仪器、实验设备和消耗品服务于中国最广大的实验室工作者;并提供仪器产品一站式供应服务及实验室整体解决方案。 力德产品广泛应用于环保﹑水务﹑医疗卫生﹑商检质检﹑药检、食品、饮料﹑电子、化工企业、高校研究所等多个分析测试领域,在业内具有较强的竞争力和极好的商业声誉!真...[url=https://www.instrument.com.cn/job/user/job/position/73046]查看全部[/url]

  • 精密电阻到底有多精密

    精密电阻到底有多精密

    分享一下有关精密电阻的知识何为精密电阻,一般指精度高(万分之一以上)、温漂低(10ppm以下)及长期稳定性(年变化率小于50ppm)。从品种上讲可以有金属膜电阻、线绕电阻、金属箔电阻。但从整体指标上看,金属箔电阻明显要比其它几类电阻精密得多。第一只金属箔电阻是1962年由物理学家 FelixZandman博士发明的,在随后发展的五十多年间,金属箔电阻在要求高精度、高稳定性、高可靠性的应用方面远远超越其他电阻技术,满足了各种行业的高端应用需求,如航空航天、军用装备、精密测量、医疗设备等领域。目前世界上有三家公司掌握着这种电阻的生产技术,分别是以色列的Vishay(威世精密测量集团,包括被Vishay收购的AE)、中国的山东航天正和电子有限公司(原济宁元器件三厂)、中国的北京718友晟电子有限公司(原北京718厂)。从金属箔电阻的整体技术水平上来说,威士精密测量集团占有绝对的优势。尤其是新研发的Z-Foil金属箔电阻技术,使各项技术指标又有了大幅提高,如在-55℃~+125℃温度范围内、+25℃参考温度下,Z箔电阻具有±0.2 ppm/°C 典型TCR。 下面讲一讲其作为精密电阻的一些主要技术参数n 温度系数(TCR)l ±5 ppm/oC 典型(-55 oC to +125 oC, +25 oC ref.)n 额定功率l 1W at +125 oCn 负载寿命稳定性: ±0.005 %(50ppm) at +70 oC, 5000 小时n 精度: 0.005 % (十万分之五)n 阻值范围: 0.5Ω to 1 MΩn 静电放电负荷 (ESD) 至少25, 000 Vn 无感无容设计n 上升时间: 1 ns 无振铃n 热稳定时间 1sec (常规阻值的稳态值在10ppm以内)n 电流噪声: 0.010 μV (RMS)/Volt加载电压( - 40 dB)n 热EMF: 0.05μV/oCn 电压系数: 0.1 ppm/V

  • 物联网信息平台及应用 实验室建设方案

    物联网信息平台及应用 实验室建设方案什么是“物联网信息平台及应用实验室”?它与一般的物联网实验室有什么不同? 一般物联网实验室的特点: 以物联网传感层为核心,实验设备多为大量各种类型传感器,定位于小型传感器技术实验室; 忽视“物物相联”对于网络传输的极高要求,无法构建较大型的物联网实验平台; 与物联网应用层的需求脱节,偏重于传感原理实验,无法还原实际应用需求,导致所学难以致用。 物联网信息平台及应用实验室的特点:飞瑞敖物联网信息平台及应用实验室是结合了物联网传感层、网络层与应用层的特点,进行分层设计、整合实施、扎根应用、联系教学的模块化结构的整体解决方案。 前端传感器网络包括: 温湿度传感器等各类传感器件,通信接口包括WiFi无线、Zigbee无线、2G3G或工业串口等多种格式,可用于构建传感器网络; RFID设备(带RS232接口),可用于构建仓储、物流及人员管理的实验场景; 无线通信格式转换器件(如工业串口RS232或RS485转WiFi格式),可用于构建大型且复杂通信模式下的物联网实验场景; PLC(带RS232或RS485接口)及其控制的设备,可用于模拟工业生产现场控制与通信的实验场景; 视频采集设备,可用于模拟现场人员及场景监控的实验场景。 网络层无线传输设备: 网络层设备是由我司与北京邮电大学合作研发的第三代工业无线WiFi网络核心——“光载无线交换机”。 该产品将WiFi信号的产生、处理集中于内部(中央机房),以光纤实现大范围(200到5000米)分布,通过远端天线完成信号传输。 该产品可混合传输WiFi与2G3G4G以及其他无线信号,可为使用者节省大量的无线网络建设投资。 应用层设计与组成 本方案针对实际应用的多种需求而设计,包括物流管理、环境监测、智能楼宇、工业控制、视频监控等。 本方案可开设物联网基础性公共实验和专业性实验,包括室内电磁环境测试实验、环境监测实验、物流管理实验等多种实验。 本方案还包括配套软件平台及实验指导书,从基础到深入、从原理到应用,全面体现物联网的各个环节。2. 相关的课程 http://img.cjdby.com/attachments_cd/forum/201108/10/14282326ddmzkfh6dcvd6w.gif 3. 布局及面积 布局建议:实验中心以1间或几间主要实验室组成,根据学校实际情况可搭建外围实验(或应用)场景,如图书馆书籍管理、校园环境监测等实验场景。 主要实验室面积以60-180平米为宜,是主要实验和演示区域,可供20到40名学生进行课程实验。实验室和外围实验场景应提供良好的功能展示区,以便外界参观和学习。 外围实验场景面积不限,建议在每个演示点处设立宣讲牌或海报。以上建议仅供参考,可根据学校具体情况而调整设置。http://img.cjdby.com/attachments_cd/forum/201108/10/142822j7dj2vmjvjez0k2b.jpg 1. 环境监测实验详述 环境监测实验可根据学校实际情况,对实验室、实验楼、其他校园设施(如校园湖泊、水体等)进行现场环境的模拟监测,将现场的温度、湿度、气体、光照等各类重要的环境数据信息统一监控。该实验可由学校师生自行组织实施,主要包括以下几个环节。 第一,现场数据的采集及传送。针对校园的现场环境分别配置不同的环境传感器进行信息采集。传感器采集的信息先传送到附近的无线传感器网络(WSN)节点,再由节点完成数据格式转换后传送出去。 第二,网络交互。网络交互部分主要由WSN节点、WiFi模组及天线端组成。这部分主要负责将无线传感器网络中的信息和WiFi摄像头的信息通过光载无线交换机送到连接Internet的服务器中。 第三,数据管理与专家系统。前两部分主要是通过不同的通讯形式将实际的数据传送出去。第三部分要管理所有的数据,并通过专家系统对实际情况做出判断,最终进行决策。 通过该实验,学校师生可以掌握现场环境勘测、传感器选型与架设、现场网络设计、无线数据转换与传输、基础通信技术及后台软件系统开发等多方面的知识,并提高实践演练和动手能力。2. 物流管理实验详述http://img.cjdby.com/attachments_cd/forum/201108/10/142850k7kx808k5kct85bk.jpg 目前,物流管理在各行各业的应用非常普及,从仓库码头、机场货运到日常生活中的食品安全溯源、文件档案管理等等,RFID技术的应用日趋成熟并已成为当前物联网技术的主要部分。在本方案中,主要通过RFID标签和多种频率的读卡器以及网络层通信节点设备,来协助师生搭建物流管理实验平台,模拟真实应用场景,从理论学习入手,强化实践操作能力,为广大师生提供一个物联网科研与教学等方面的基础实验与应用平台。 搭建物流管理实验场景http://img.cjdby.com/attachments_cd/forum/201108/10/142850dazee6l7jx82ftzo.jpg 上图中描述的实验场景包括图书馆书籍管理、重要物资管理、资产设备管理、停车场管理及人员管理等多个物流管理实验场景,学校可根据实际情况选择搭建不同的实验场景,并可根据教学情况为师生提供灵活搭建其他物流管理实验平台的实验机会,锻炼学生的实际动手操作能力。物联网解决方案案例:1.北京邮电大学物联网实验中心2.广东四会市城市规划局物联网应用方案3.中国电信广东电信研究院物联网实验中心4.广东省科学院自动化工程中心物联网实验中心5.广东技术师范学院物联网实验室6.南昌工程学院物联网实验室7.合肥工业大学物联网实验室……

  • 赛多利斯精密电子天平正确使用方法

    赛多利斯电子天平是精密通用型产品,此产品通常使用电磁力传感器(见称重传感器),组成一个闭环自动调节系统,稳定性好,准确度高。是传感技术、模拟电子技术、数字电子技术和微处理器技术发展的综合产物,具备自动校准、自动显示、超载保护等多种功能。  关于赛多利斯电子天平天平正确使用方法:  1、检查并调整精密天平至水平位置。  2、使用前先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。  3、预热足够时间后打开精密天平开关,精密天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。  4、称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,精密天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。  5、被称物质的重量是显示屏左下角出现“→”标志时,显示屏所显示的实际数值。  6、称量结束要及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。  7、慢慢旋动升降枢钮,开启精密天平,观察指针的摆动范围,若指针摆动偏向一边,可调节精密天平梁上零点调节螺丝。  注意:赛多利斯电子天平的精密度很高,产品的操作步骤也很严谨,我们将要称量的物质从左门放入左盘中间,按先在托盘精密天平上称得的初称质量用镊子夹取适当砝码从右门放入右盘中央,用左手慢慢半升升降枢钮(因精密天平两边质量相差太大时,全升升降枢钮可能导致吊耳脱落或损坏刀刃),视指针偏离情况由大到小添减砝码。待克组砝码试好后,再加游码调节。在加游码调节精密天平平衡过程中,右门必须关闭,这时可以将升降枢钮全部升起,等指针摆动停止后,要使标牌上所指刻度在零点或附近。 电子天平|精密天平|实验室仪器 欢迎到赛多利斯官网和仪器商城网选购实验室仪器!

  • 【原创大赛】【仪器故事】纺织品实验室怎么选择偏门设备精密扭力天平

    【原创大赛】【仪器故事】纺织品实验室怎么选择偏门设备精密扭力天平

    [b] 【仪器故事】纺织品实验室怎么选择偏门设备精密扭力天平[/b] 说起扭力天平,有些人可能不知道,也不了解,毕竟现在很多实验室都用不到了,使用起来太麻烦,而且稍不注意误差比较大,特别是随着微量天平的技术提升,十万分之一,百万分之一天平的普及,扭力天平就更少人会选择使用了。但是高精密天平动则几万到几十万,确实价格太高,对于预算不多的实验室,只能选择扭力天平,要想选择合适的扭力天平,以下四点不可缺少! 第一选择扭力天平要了解扭力天平的基本原理:取一定量样品分别放在精密扭力天平上进行称量,根据指针的微小变化,进行确定样品的实际重量 第二,就是要确定自己需要的型号,这个可以在网上查,型号和形状,量程都有关系,选择适合自己的就行了,我们常用的设备型号就是 JN-B扭力天平,精度0.01mg 第三呢。就是基本操作了,这个一般说明书上都有,或者厂家会给一个视频,这就很简单了,自己看看就会,但是想操作熟练,精确的话,确实不容易,需要手法和经验,以及自己的悟性来决定了,但是扭力天平属于什么都没有,说明书一共才两页纸的那种比较偏的设备。 第四呢,就是熟悉天平的特性:使用扭力天平,要熟悉制动旋钮的功能,必须轻轻的旋动,避免损坏制动旋钮.此仪器属于精密计量仪器,必须仔细小心的使用它,才能有效保护仪器状态[img=,478,630]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011742287442_6153_2154459_3.png!w478x630.jpg[/img] 扭力天平使用前该做哪些准备呢1..使用前,先使读数指针对准零位,然后转动制动旋钮,开启天平,观察平衡指针,在镜子上的投影线与刻度板上的校验线是否重叠在一直线上,如果平衡指针产生偏离核验线,须轻轻地拨开读数旋钮中间的保护壳,然后用小螺丝批向左旋转,调整到平衡指针与核验线重叠在一直线上。2..调零后,开始测量验证,放入砝码,控制制动旋钮,调节读数指针,调节后,旋转制动旋钮,当平衡指针和核验线重合时,验证天平状态注意:每次使用前都要要调节水准器内的气泡处于小圆圈中心,垫脚也要平稳. 最后呢,就是要知道那些是特别注意的细节,1.刚安装好的天平,必须待与实验室内环境温度一致后,方能使用.2.使用前要检查天平各零部件安装是否正确,然后调整天平的平衡位置,方可使用.3.称物和砝码应放在秤盘中心,以免开启天平后秤盘产生摆动.称物的重量不得超过天平的最大称量范围,一切称物的取放,都应在关闭制动器的情况下进行,以免天平受冲击而损坏.4.天平不使用时,应关闭制动旋钮,并使读数指针指在零位上,使游丝不长期处在工作状态,.根据天平的使用频繁程度,应定期进行清洁工作和计量性能检定.5.没有必要时,不要打开天平的后盖板,天平使用完毕后应在计量盒内放吸湿剂。

  • 【分享】第五届五次湖南精密仪器测试学会理事会在长沙举行

    第五届五次湖南精密仪器测试学会理事会在长沙举行 3月3日,湖南省精密仪器测试学会第五届四次理事会在长隆重举行。来自大专院校、科研院所、医药卫生、厂矿企业的63位理事出席了会议。会议由学会副理事长兼秘书长娄道明副巡视员主持。学会副理事长彭小奇教授代表理事会做了湖南省精密仪器测试学会2010年度工作报告,学会副理事长、财经委员会主任饶桂春研究员做了2010年度财务收支情况报告,学会副理事长、组织委员会主任方正教授通报了2010年学会组织建设情况,组织审议了新增委员名单,学会副理事长、学术委员会主任梁逸曾教授组织讨论通过了学会2011年活动计划。 2010年,湖南仪器测试学会广泛深入地进行学术交流、科学普及、技术培训、技术咨询和技术服务等活动,全年共组织召开了学术年会、专题研讨、检测技能竞赛等形式的活动11场次,参加人数达1000人次。利用行业特点,专家优势,在“3.15消费者权益日”、“6.26国际禁毒日”及“大学生暑期科普支教”、“大学生湿地环保科普行动”中开展了17场(次)的科普宣传,活动中制作版面宣传33块,散发各类宣传资料3790份。据不完全统计,听观人数达9100人(次)。发放问卷调查940份,送书300多本,放映科教电影1场次,专题调研报告8份。全年免费提供检测技术培训22场次,共1536人次。组织了31个科技服务小分队,共184名成员,在食品安全、社会公共安全、建设四化两型社会及国防建设等方面提供技术支撑和保障,全年向社会提供咨询服务197人(次),解决技术难题25个,完成技术协议148项,修复各类仪器设备622台次,恢复使用价值2586万余元。为充分发挥社团的助手作用,积极组织专家参与了湖南省“十二五”规划的制定。组织了仪器专家参与了仪器创新专项的立项、评审等工作。利用“湖南省大型测试仪器协作网”,积极推进大型仪器协作共享工作,发放共享手册近100多册,直接达成仪器协作共用40多项,完成网上在线答疑37个。

  • 实验室有天平台了,为什么还要用无管天平柜?

    实验室有天平台了,为什么还要用无管天平柜?估计这应该是所有使用过天平的朋友的疑问。既然本文是在药物分析版面里发的,那索性就说说无管天平柜在制药领域的应用吧。为什么要用无管天平柜?大致原因可以分为以下几点:1. 法规的要求2. 健康的需求3. 数据保证接下来我们把这几点展开讲一下。第一:法规要求不知各位是否注意过,在美国职业健康法规OSHA、美国USP800、中国药典里,都有明确要求,具体如下:美国OSHA:称量过程中产生粉尘的,应最大限度地避免污染、交叉污染,建议在一个配有除尘系统的区域内进行操作,使得操作者对产品的暴露程度降至最低美国USP800:[color=#3c8a9e]第一章规定,[/color]本标准适用于所有暴露于危险药物的人员,具体活动包括危险[color=#3c8a9e]药物的储存、备药、输送和管理;[color=#3c8a9e]第五章要求,必须在[/color]专门的负压环境中进行危险药物的接收、开包和储存以及无菌药物和非无菌药物的合成。[/color][color=#3c8a9e]中国药典:第52条:制剂的原辅料称量应当在专门的负压称量室内进行;第53条:如干燥物料或产品的[color=red]取样、称量、混合、包装[/color]等应当[color=red]保持相对负压[/color],防止粉尘扩散,以避免交叉污染和便于清洁。[/color][color=#3c8a9e]综上,各位想想,现在你们的实验室天平都放在哪里?是在负压环境里吗?负压区域有多大?是否能够保证您避免暴露在粉尘或者化学气体里呢?[/color][color=#3c8a9e]我估计有些实验室连天平室可能都没有吧?这合规吗?[/color][color=#3c8a9e]也有的实验室确实在负压环境下,可能是整个实验室负压,这种方式也是不行的,后面我会讲到。[/color][color=#3c8a9e][/color][color=#3c8a9e]第二:健康需求[/color][color=#3c8a9e]有人会说,我称量的样品没毒,用不着处理。对不起,粉尘粒径0.3um,会直接吸入到肺部深处,久而久之会形成尘肺,这算轻的。[/color][color=#3c8a9e]若是吸入铅、铜、锌、锰等毒性粉尘,则会全身中毒。吸入病毒造成病原性损伤。如果局部接触粉尘,会造成接触性病变或呼吸道病变,更有致癌和感染等风险![/color][color=#3c8a9e]常在实验室工作的各位一定都知道,这不是危言耸听![/color][color=#3c8a9e][/color][color=#3c8a9e]第三:数据保证[/color][color=#3c8a9e]影响天平称量准确性有如下几个因素:振动、气流、温湿度、天平使用方法[/color][color=#3c8a9e]1. 振动:回到题目,天平台的作用是防振,振动来源于地基、楼体、近源振动(空压机等)、火车等等方面,减小振动对天平的影响,需要增大与天平接触面的质量,注意,是与天平的接触面,即天平台的质量,这里面有个很复杂的公式,简单来说是需要增大防振系统的阻尼,同时增大质量,达到减小振幅的目的。说白了就是振动被防振系统吸收了。如环境非常恶劣,需要使用石质天平台。[/color][color=#3c8a9e]美国艾科琳(AirClean)和上海君勒铂(DreamLab)的无管天平柜采用聚丙烯(PP)材质,密度非常接近大理石,整机质量在40kg以上,使天平接触面的质量增大,提升天平稳定性。[/color][color=#3c8a9e]2. 气流:刚才说到天平在整个负压的室内,是不是也可以?我的回答是no。为什么?因为室内气流是紊流,即无任何规律可循,有空调风、门窗的风、人员走动的风等,天平就像一艘小船漂在大海里,永远在进行不规律运动,怎么可能稳?这种应该是遇到的最多的情况。[/color][color=#3c8a9e][color=#3c8a9e]美国艾科琳(AirClean)和上海君勒铂(DreamLab)的无管天平柜有垂直层流和水平层流两种,将室内无序的气流变为稳定的层流后进入天平柜,在每一个点上气流的速度和方向都是均一稳定的,天平接触到层流后一定会发生偏转,但由于层流的特性,天平将稳定在某一种状态下,通过调零即可消除系统误差。[/color][/color][color=#3c8a9e]同时,无管天平柜是负压模式,一旦有漂浮出的粉尘或挥发气体,在第一时间就被hepa过滤器或活性炭过滤器吸附,行程距离短,确保不会被人体接触。[/color][color=#3c8a9e]3. 温湿度:天平建议最佳使用温度为20摄氏度,正负5摄氏度;最佳使用湿度为65%。[/color][color=#3c8a9e]4. 天平使用方法:严格按照天平使用手册进行称量!远离振动源、远离门窗、人员走廊、排/进风口!保证天平的水平度,以及无管天平柜的水平度![/color][color=#3c8a9e][/color][color=#3c8a9e]最后,怎么选择无管天平柜?[/color][color=#3c8a9e]1. 适用范围:称量粉末或液体[/color][color=#3c8a9e]2. 适用天平:最高千万分之一天平,常见的是十万分之一和百万分之一[/color][color=#3c8a9e]3. 过滤器选择:粉末样品-hepa过滤器;液体样品-键合活性炭过滤器(几乎无炭损耗,气体通过均一,处理效果优于颗粒状活性碳过滤器)[/color][color=#3c8a9e]4. 柜体选择:完整柜体,要求必须有底板,PP+PC材质最佳(耐酸碱腐蚀),柜体密封(要有独立第三方测试报告)[/color][color=#3c8a9e]5. 气流选择:总体来说水平层流优于垂直层流,从一般实际使用来说,十万分之一及以下天平可选用垂直层流,百万分之一及以上必须选用水平层流。具体哪种层流,还需要视实际环境情况而定。[/color][color=#3c8a9e]6. 风速选择:由于粉尘颗粒大小不同,风速必须可调节,且称量过程中必须保证有持续气流![/color][color=#3c8a9e][/color][color=#3c8a9e]最后,我有个视频可以让大家清楚的看到无管天平柜对天平稳定性的保证!论坛貌似上传不了,有兴趣的话可以私信找我要。[/color][color=#3c8a9e]文章写的不太好,欢迎大家拍砖指正,谢谢![/color][color=#3c8a9e][/color]

  • 【转帖】国产和进口横向加热平台石墨管的性能比较

    国产和进口横向加热平台石墨管的性能比较 王芬 钟永聪 王海燕 倪桦来源:国家城市供水水质监测网成立十周年科技论文集摘 要:通过对PE公司的THGA石墨管与国家地质实验测试中心研制的高灵敏度横向加热平台石墨管性能的比较,表明后者的石墨管的性能优良并有更大性价比,完全可以替代进口。 关键词:石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光度法、石墨管、性能、性价比。 1.引言 目前许多国内城镇给排水系统的水质监测站都配置了国外优秀品睥的石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]用于检测水中的痕量金属元素含量。在使用石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]进行检测时要消耗大量的石墨管但原装进口石墨管一般都比较昂贵,因此寻找国产石墨管.减少测定时的消耗,都是大家非常关心的问题。本文作者用美国PE公司的5100ZL石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],对PE公司的THGA石墨管与国家地质实验测试中心研制的高灵敏度横了 加热平台石墨管作了比较,结果表明国家地质实验测试中心研制的高灵敏度横向加热平台石墨管的性能可与PE公司的THGA石墨管相媲美,其性价比甚至大大优于PE公司的THQA石墨管一完全可以替代进口。 2、实验部分 2.1实验方法 本文选择原子化温度低的铅和原子化温度高的钴、镍作待测元素。测定铅、钴时,由自动进样器进样15μl: 基体改进剂5μl。测定镍时.由自动进样器进样20μl:2.2仪器及试剂 美国PE公司的5100zl石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url];带PE软件的工作站;AS-71自动进样器 铅、钴、镍空心阴极灯;PE公司的THGA石墨管(用PE tube表示);国家地质实验测试中心研制的高灵敏横向加热平台石墨管(用YY3 tube表示);99.99%氩气;大连化学物理研究所的除氧管。 国家标准物质研究中心提供的铅、钴、镍单元素标准溶液,1000ug/ml,根据需要配成使用溶液,保持1%HNO3(v/v)酸度;铅的基体改进剂(1%NH4H2PO4+0.1%HNa2HPO4);钴的基体改进剂(0.3%Mg(NO3)2);二次蒸馏水。2.3仪器的工作条件仪器的工作条件见下表1。仪器的工作条件表(表1)元素 波长(nm) 狭缝(nm) 灯电流(mA) 程序升温过程 温度℃ 升温时间(s) 保持时间(s) 铅 283.3 0.7 10 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 850 10 20 原子化阶段 1500 0 3 清除阶段 2000 1 2 钴 242.5 0.2 30 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 1400 10 10 原子化阶段 2400 0 4 清除阶段 2500 1 2 镍 232.0 0.2 25 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 1100 10 10 原子化阶段 2300 0 5 清除阶段 2500 1 2 3、结果3.1灵敏度比较分别用不同的石墨管制作待测元素的标准曲线,求得其特征质量mo(pg/0.0044A),见表2。不同石墨管的特征质量mo(pg/0.0044A)(表2)石墨管 铅 钴 镍 PE tube 33.2 27.5 23.6 YY3 tube 23.1 13.2 18.3 3.2精密度试验及石墨管性能稳定性比较 分别用不同的石墨管测定高低两个浓度的待测元素配制样10次.得出其标准偏差和相对标准偏差,见表3。海口监测站自2002年1月起开始使用YY3 tube石墨管,实践证明YY3 tube石墨管性能稳定,每支石墨管的灵敏度、精密度、寿命有很好一致性,与PE tube石墨管的一致性相当。并且每支石墨管在其寿命期的灵敏度、精密度都有很好的稳定性。在其寿命未期灵敏度、精密度明显改变以便及时换石墨管,这样可以防止石墨管在运行时断裂而损坏石墨锥。不同石墨管的精密度项目 标准偏差(SD μg/l) 相对标准偏差(%RSD) 标准偏差(SD μg/l) 相对标准偏差(%RSD) 铅 样品含量(μg/l) 5.00 25.0 PE tube 0.17 3.07 0.13 0.51 YY3 tube 0.14 2.53 0.12 0.47 钴 样品含量(μg/l) 5.00 20.0 PE tube 0.36 4.53 0.45 1.91 YY3 tube 0.37 4.65 0.46 1.95 镍 样品含量(μg/l) 10.0 30.0 PE tube 0.59 5.62 0.95 3.00 YY3 tube 0.29 2.76   2.49  3.4不同石墨管的寿命 以相同的仪器条件测水样品中铅含量,统计5支石墨管的平均寿命,见表4石墨管 PE tube YY3 tube 寿命(次数) 406 819 3.5不同石墨管的价格石墨管 PE tube YY3 tube 价格(元/支) 1393 265 4.结论 通过比较,表明国家地质实验测试中心研制的高灵敏度磺向加热平台石墨管的性能可与PE公司的THGA一手相媲美,其性价比甚至大大优于PE公司的THGA石墨管,完全可以替代进口。国家地质实验测试中心除可提供高灵敏度横向加热平台石墨管外,还提供其它类型的石墨管.各监测站可根据自已的石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光谱仪类型选择使用不同类型的石墨管。

  • 低压缓冲罐的真空度精密控制解决方案

    低压缓冲罐的真空度精密控制解决方案

    [align=center][color=#ff0000][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130915093546_2463_3384_3.png!w690x368.jpg[/img][/color][/align][color=#ff0000]摘要:低压缓冲罐广泛应用于各种真空工艺和设备中,本文主要针对缓冲罐在全量程内的真空度精密控制,并根据不同真空度范围和缓冲罐体积大小,提出了相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、背景介绍[/color][/size]低压缓冲罐是真空系统中常用的一种真空容器,主要通过提供真空“储存”来防止真空泵的过度循环,其基本原理是利用滞留量(体积)来提供更平稳的真空度操作。在真空工艺过程中,低压缓冲罐主要有以下两种结构形式:(1)真空度波动衰减:缓冲罐安装在真空单元之间,避免连续过程中真空度的波动传播。(2)独立操作:缓冲罐安装在单元之间以允许独立操作,例如在临时关闭期间以及连续和批处理单元之间。低压缓冲罐在独立操作形式中,一般需要具备以下功能:(1)对于小尺寸空间的工艺容器,很难实现真空度的高精度恒定或程序控制,真空度的波动和不准确很难达到工艺要求。为此在工艺容器上串接一个容积较大的低压缓冲罐,通过对缓冲罐真空度的精密控制,则可以完美解决此问题。(2)提供气液分离功能,防止工作液体直接倒灌入真空泵。(3)提供冷凝功能,避免反应容器内的部分溶剂转化为气态直接进入真空泵,由此降低真空泵的故障率和提高真空泵的使用寿命。本文主要针对缓冲罐在全量程内的真空度精密控制,提出相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[size=18px][color=#ff0000]二、解决方案[/color][/size]在低压缓冲罐真空度精密控制过程中,基本控制方法是调节缓冲罐的进气和出气流量,并通过进出气流量的动态平衡来实现缓冲罐内部气压的准确控制,即所谓的动态平衡法。但在不同真空工艺和设备中,对低压缓冲罐的真空度范围会有不同的要求,相应的动态控制模式也不尽相同。而且,不同体积大小的低压缓冲罐,为实现缓冲罐内真空度的快速准确控制,则需要不同的调节装置。以下将针对这些不同要求,提出相应的具体解决方案和相关装置细节。[color=#ff0000]2.1 低真空(高压)和高真空(低压)控制方式[/color]一般我们将低于一个大气压下(760Torr)的绝对压力称之为真空(或低压),而整个真空范围又分为低真空(10-760Torr)、高真空(0.01~10Torr)和超高真空(0.01Torr)三部分。本文将只涉及低真空和高真空这两个范围内的真空度精密控制,对于超高真空,目前还没有很好的技术手段进行精密控制,基本还都是仅靠真空泵的抽气能力来实现数量级级别的控制。低真空和高真空缓冲罐真空度的动态平衡法控制中,为达到快速和准确的控制效果,必须分别采用上游和下游两种控制模式,通过上下游这两种模式及其两种模式之间的切换,可以实现真空度全量程内的精确控制。低压缓冲罐动态平衡法真空度控制系统的整体结构如图1所示。整个缓冲罐真空度控制系统主要由进气阀、抽气阀、真空泵、真空传感器和PID控制器组成,它们各自的功能如下:[align=center][color=#ff0000][img=低压缓冲罐真空度控制,500,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130911289636_8164_3384_3.png!w690x553.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压缓冲罐真空度控制系统结构示意图[/color][/align](1)进气阀的作用是调节进气流量。在缓冲罐真空度控制过程中,进气流量一般在较小的范围内进行调节,因此进气阀一般为电动针阀。(2)抽气阀的作用是调节出气流量。在缓冲罐真空度控制过程中,进气流量一般在较大的范围内进行调节,因此进气阀的口径大小一般需根据需要进行配置,后面还会进行详细介绍。(3)真空泵的作用是提供真空源。在缓冲罐真空度控制过程中,真空泵要根据真空度要求和缓冲罐体积大小来进行选配。(4)真空传感器的作用是实时测量缓冲罐的真空度并将测量信号反馈给PID控制。在缓冲罐真空度控制过程中,要根据缓冲罐真空度量程和精度要求选配传感器,一般是低真空和高真空范围内各配一个真空计。为保证测量精度,一般会选择电容式真空计。也可以根据需要只选择一个精度较差的皮拉尼计来实现整个高低真空范围内的测量。(5)PID控制器的作用是通过接受到的真空度信号来分别调节进气阀和出气阀,使得缓冲罐内的真空度达到设定值或按照设定程序进行变化。在全量程范围内的真空度控制时,如果需要采用两只不同量程真空计进行全量程覆盖,就需要具有传感器自动切换功能的双通道PID控制器,以便在不同量程范围内的控制过程中进行自动切换。如果采用电容式真空计来实现高精度的真空度控制,相应的PID控制器则需要具有24位A/D和16位D/A的高精度。在缓冲罐的不同真空度范围内,需要采用以下不同的控制模式才能达到满意的控制精度。(1)上游控制模式:上游控制模式也叫进气调节模式,主要适用于高真空范围内的精密控制。在上游控制模式中,抽气阀门基本是全开方式全速抽气,通过调节进气流量来实现缓冲罐内高真空的精密控制。(2)下游控制模式:下游控制模式也叫出气调节模式,主要适用于低真空范围内的精密控制。在下游控制模式中,进气阀门基本是某一固定开度,即固定进气流量,通过调节抽气流量来实现缓冲罐内低真空的精密控制。另外需要特别注意的是,不论采取上述哪一种控制模式,控制精度还受到真空度传感器和PID控制精度的限制。因此,除了选择合理的上下游控制模式之外,还需要根据不同精度要求选择合理的传感器和控制器。[color=#ff0000]2.2 不同缓冲罐体积的真空度控制[/color]缓冲罐真空度精密控制中,除了涉及上述的控制模式选择之外,还涉及控制速度问题,即根据缓冲罐的容积大小和真空度控制范围来确定合理的真空度准确控制速度。这方面主要涉及以下两方面的内容和基本原则:(1)对于小容积的缓冲罐,可以选择具有小流量调节能力的进气阀、排气阀和真空泵。(2)对于较大容积的缓冲罐,可能就需要配备较大流量调节能力的进气阀、排气阀和真空泵。其中进气阀和排气阀需要配备电动球阀等大口径阀门,具体情况还需根据所控真空度范围来进行进一步的合理选择。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 物联网信息平台及M2M应用演示实验室

    物联网是国家决定大力发展的战略性新兴产业之一。从“智慧地球”到“感知中国”,物联网备受国际关注。随着物联网的迅速发展,社会各行各业对应用的需求越来越明显和迫切,作为国家科学技术发展主要力量的重点高校,建设物联网实验室并开展针对性的教学与科研,培养专业技术人才,有利于学校的学科发展和教学科研领域的提升。 对于物联网专业的学生或教师来说,物联网实验室正是紧密结合本专业教学与科研的核心实验室,能比较全面的满足学生或教师在学习和研究物联网技术方面的需求。 对于开设物联网技术这一课程的学校以及选修此课程的学生来说,物联网实验室可比较全面的展示物联网技术的应用,使学生和老师可以掌握物联网基础理论和技术以及应用方法。 对于其他相关专业的学生或教师来说,如计算机软硬件、通信、自动化、物流管理等专业的学生或教师,可以通过物联网实验室进一步深入掌握物联网技术在本专业的应用,为将来就业和科研提供良好的实验平台。 建设物联网实验室能使学生、教师、高校以及整个物联网行业共同受益,并满足社会各行各业对物联网相关人才、技术等的需求。物联网信息平台及应用演示实验室简介 以光载无线交换机为核心设备构建融合有线IP网、宽带无线局域网、光载无线技术、无线传感网络、嵌入式设备以及系统软件和应用软件于一体的物联网综合信息网络实验平台。http://www.frotech.com/uploadfile/201012/20101222102339126.jpg 实验内容覆盖计算机网络、无线局域网、光通信技术、传感网络、嵌入式技术、软件开发等课程,可完成光载无线交换机及其相关的实验和工业自动化与信息化、物流管理、环境监控等物联网应用实验,还可以作为综合性实验、毕业设计的公共平台,更可以作为相关科研项目的原型研发平台。http://www.frotech.com/uploadfile/201107/20110728112743263.jpg物联网实验室建设架构实验设备配置(1)光载无线交换机光载无线交换机的基本功能模块:AP点(4-8个)、光模块、光纤链路、远端天线、AP点配置软件。不具备的模块和功能:射频交换、3G/WiFi混合信号分布、接入设备漫游。(2)物联网设备WiFi串口设备服务器(RS232、RS485)RFID读卡器(带RS232接口)及其RFID标签(频率:135KHz、13.5MHz)温湿度传感器(带RS232接口)ZigBee无线模块(会聚节点带RS232接口)(可选)WiFi无线摄像头(分辨率320*480)PLC(带RS232或RS485接口)及其控制的设备(步进电机、交通灯等)气体传感器(带RS232接口或RS485接口)无线数据传输模块(工作频率430Mhz,带RS232接口)基本实验(1)物联网基础及应用实验项目• 实验一、光载无线交换机的组装实验(本科必修)• 实验二、光载无线交换机的测试实验(本科必修) • 实验三、模拟光端机实验(本科选修)• 实验四、模拟光纤链路实验(本科选修)• 实验五、光纤、同轴电缆混合信号分布实验(本科选修)• 实验六、分布式天线实验(本科必修) • 实验七、室内电磁环境测试实验(本科必修) • 实验八、无线接入点(AP)管理与配置实验(本科必修) • 实验九、光载无线交换机系统软件操作实验(本科必修) • 实验十、WiFi接入点(AP)故障侦测实验(本科选修)• 实验十一、室内无线定位实验(本科选修)• 实验十二、2G/3G/4G、WiFi混合光纤分布实验(本科必修)• 实验十三、嵌入式串口WiFi设备服务器的配置与操作实验(本科必修) • 实验十四、嵌入式串口WiFi设备服务器设计实验(本科选修) • 实验十五、基于光载无线技术的PLC无线控制实验(本科必修) • 实验十六、无线接入设备的移动漫游实验(本科必修) • 实验十七、基于光载无线技术的物流管理(本科必修) • 实验十八、基于光载无线技术的环境监测实验(本科必修)• 实验十九、基于光载无线技术的视频监控实验(本科选修)• 实验二十、射频交换与重构实验(本科选修)http://www.frotech.com/uploadfile/201107/20110728113103965.jpg物联网物流仓储管理实验(2)综合性实验 实验项目实验一、基于光载无线技术的PLC无线控制实验(远程控制步进电机、交通灯)实验二、基于光载无线技术的物流管理(图书管理、实验设备管理、人员管理等)实验三、基于光载无线技术的环境监测实验(温湿度、气体、水体等)实验四、嵌入式串口WiFi设备服务器设计http://www.frotech.com/uploadfile/201107/20110728113134745.jpg物联网无线传感网综合实验实验室布局及面积http://www.frotech.com/uploadfile/201107/20110712120044949.jpg 布局建议:实验中心以实验室+若干外景组成。在固定房间设立实验室,在校内区域设立如视频监控系统、环境监测系统等实验演示点。 实验室面积以60-180平米为宜,是主要实验和演示区域,可供20到40名学生进行课程实验。 实验室应提供良好的功能展示区,以便外界参观和学习。 外围实验演示点面积不限,建议在在每个演示点处设立宣讲牌或海报。 以上建议仅供参考,可根据学校具体情况而调整设置。

  • 求购:精密天平!!

    大家好,由于工作的需要,我需要一台很精密的分析天平,不要国产的.精度万分之一,量程120-210之间 需要232数据接口,如果能自动调节砝码最好,另外如果价格能在一万元以下最好,我们是课题组买的,自己用,当然是要节约一点的好.希望大家能帮忙.邮件:yushaox@mails.gscas.ac.cn另外还有一个问题:那就是RS-232到底有什么用途,好不好用?最近,我又发觉,我们对0.01mg精度也有一定程度的需要,现在我需要双量程的,价格2万以下,其它参数各上面类似.

  • 国家计量基标准平台2018工作会议圆满结束

    日前,为期4天的2018年度国家计量基标准资源共享平台(以下简称“计量基标准平台”)工作会议在山西太原圆满结束。科技部平台中心、市场监管总局计量司、中国计量科学研究院(以下简称中国计量院)相关领导,计量基标准平台办公室、参建单位相关人员共80余人参加了此次会议。  中国计量院副院长滕俊恒在讲话中指出,计量基标准平台是国家测量能力的体现,也是计量工作者的成果和智慧的展示平台。他希望各参建单位携手奋进,早日把平台打造成为了解、宣传和应用计量资源的窗口,为支撑国家经济社会发展作出更多更大贡献。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/images/news/1_31.jpg[/img]    图1:与会领导为平台工作优秀工作者颁奖[/align]  会议宣布并表彰了获得2018年度计量基标准平台优秀工作者。  国家科技基础条件平台中心运行监督处相关负责人围绕国家平台发展现状、管理办法制定背景和管理办法等方面详细介绍了国家的方针政策。  计量基标准平台办公室从资源整合、运行管理与服务、资源质量保证与规范体系、特色专题服务和宣传推广等方面总结了2017年平台共享服务工作,并介绍了2018年工作计划和已取得的部分成果。同时就大学生科技资源共享服务创新竞赛相关情况进行了详细介绍。  内蒙古、黑龙江、湖南、青岛计量院等平台参建单位分别总结介绍了本院的平台工作,并与参会代表进行了交流。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/images/news/2_19.jpg[/img]   图2:会议现场[/align]  随后,与会人员围绕计量基标准平台的信息与资源建设、资源质量保证和专题服务、运行管理和宣传推广等议题展开了热烈而深入的讨论交流。  提供计量专题服务是计量基标准平台的一大特色之一。此次会议期间,还举行了“一带一路”专题服务项目验收会。依托计量基标准平台开展的能源计量在线核查技术、大尺寸精密测量服务能力提升,大流量计量检测、高铁建设专题服务等6个“一带一路”专题服务项目通过专家验收。[align=center][img]http://www.nim.ac.cn/sites/www.nim.ac.cn/files/images/news/3_10.jpg[/img]  图3:与会人员合影[/align]  会议期间,与会人员还赴此次会议承办单位山西省计量院进行调研交流。参观了电磁楼、恒温楼和高压大厅,与工程力学、流量、热量表、防爆等实验室与科研人员进行了深入的交流。  国家计量基标准平台由中国计量院牵头,于2011年通过了科技部、财政部的联合认定。平台以促进计量基标准科技信息资源共享为主线,根据计量资源的特点和优势,在“一带一路”、能源贸易、精准扶贫、军民融合等方面开展专题服务,成效显著。

  • 光谱分析仪精密度差产生的原因

    在光谱分析仪测定过程中,精密度是重要指标之一,与光谱仪本身、方法设置、分析测试人员水平有关系,没有高精密度的方法,就无法保证数据的准确性。操作者在工作中会经常碰到测试数据波动大,常量分析ESD%大于2%等故障现象。这种现象就是数据精密度差的表现,也就是专业上所说的信号噪声大。上面阐述了等离子炬形成的条件,下面[url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]小编从环境因素、光源系统。试样引入系统和光学系统详细分析数据光谱分析仪精密度差产生的原因。  在环境因素中,环境温度没有在规定范围内时会发生谱峰偏移;排风量不稳定会使“火焰”跳跃。例如,排风口与阵风方向相对或者快速开关实验室推拉门,容易导致排风量忽大忽小。ICP光谱仪巨力振动源(如车间)、强磁场(光电直读光谱仪)接近,会导致数据不稳定。可以采取控制环境因素的办法来保证,它是保证光谱分析仪数据精密度的必要条件之一。  光谱分析仪开机后,光室温度变化应小于±1°C,若光谱分析仪温度未稳定在该值,光室内光学元素由于受温度影响,各光学元件的相对位移产生变化,导致待分析谱线位置漂移和分析数据失真。因此仪器主要应充分预热,在光室温度稳定在其仪器额定值时才可以进行测定。  在光源系统中,等离子炬温度也会影响其精密度变化,影响因素有载气流量。载气夜里、频率和输入功率和低点离电位的释放及。载气流量增大,中心部位温度下降;温度随载气气压的降低而增加;频率和输入功率的增大激发温度随之增高;引入低点离电位的释放剂的等离子体,其温度将增加。RF功率不稳定会影响数据精密度,如果RF功率有1%的漂移,元素强度值就能发生1%的变化,其原因是因为氩气不纯或者循环水温度突然发生变化造成的,可以用氩线的稳定性来检测。  在光谱仪试样引入系统中,首先要检测样品溶液是否均匀,比如容量瓶定容是否摇匀;查看仪器登记记录,检查等离子气的流量和压力、雾化气体的流速和压力及试液提升量等指标是否和上次一致,这是因为气体压力和流量的变化会影响到原子化效率和基态原子的分布导致数据精密度变差;由于仪器长时间进行检测工作,蠕动泵管弹性变差。蠕动泵管的经常挤压部位颜色变暗时,蠕动泵管则需要更换。上节所述进样系统毛细管、泵管、雾化器和中心管发生堵塞或者炬管太脏,会使雾化效率降低导致数据精密度表差,可采用延长冲洗时间,试样盒硝酸溶液(1+5)间隔进样等两种方式来解决,有机样品用煤油解决。泵夹优化不好,或者泵管泵夹松动,致使进样不均匀导致光谱强度值发生改变,可重新设置泵速,调节泵管,并且经常要给泵柱和轴承上油保持其润滑。  影响光谱分析仪的其他方面,分析谱线的选择不合适,多数靠近CID边缘20个像素的谱线强度通过较低也会导致数据精密度变差,尽管它们有的谱线没有光谱干扰,但是位于紫外区波长190nm元素谱线以下的建议少用,如果要用,应用99.999%的氩气吹扫检测器8h以上。快门故障或者狭缝积灰导致部分元素数据精密度变差,其特点是长波谱线、短波谱线要么分别变差要么同时变差。此故障可以采取延长积分时间来应急,等待维修人员维护。谱线积分时间不会增加信号的强度,但可以改善精密度与检出限。不过太长的积分时间将影响的分析速度。  对于用光电倍增管做检测器的光谱分析仪,还应该注意曝光很差也会影响数据的精密度,故障现象可以分为全部元素差和部分元素差。如果发生全部元素差的现象,操作者可以通过一次检查高压电源输出是否稳定,实验灯是否接触不了,高压插头是否没有插牢和积分箱输出控制芯片是否失效。光电倍增管座是否损坏,高压衰减器拔盘开关是否完好以及该元素的积分拨盘是否完好等方面确认故障。

  • 力德生物科技(上海)有限公司刚刚发布了销售工程师(平台好,提成高)职位,坐标,速来围观!

    [b]职位名称:[/b]销售工程师(平台好,提成高)[b]职位描述/要求:[/b]职位描述:负责公司独家总代理进口知名品牌仪器和实验设备在华东地区的销售,经销渠道的拓展,达成公司下达的销售目标工作区域:负责华东地区业务应聘要求:1.本科以上学历,一年以上销售工作经验,热烈欢迎有资深同业经验者加入。2.较强亲和力,良好的沟通能力,敢于挑战自我3. 较强的学习能力和责任感,敢于面对困难,勇于开拓4..有良好的自我管理能力和强烈的职业追求。5. 从事过仪器分析或专业为环境、生物、制药、化学类优先。五险一金、周末双休、通讯补贴、出差补助、专业培训、员工旅游、年底双薪等以上职位一经录用将提供有竞争力的总体薪酬方案,让您后顾无忧,欢迎加入![b]公司介绍:[/b] 力德生物科技(上海)有限公司是一家提供实验室用品的专业供应商,总部位于上海,专业的团队,精选全球最知名品牌的精密分析仪器、实验设备和消耗品服务于中国最广大的实验室工作者;并提供仪器产品一站式供应服务及实验室整体解决方案。 力德产品广泛应用于环保﹑水务﹑医疗卫生﹑商检质检﹑药检、食品、饮料﹑电子、化工企业、高校研究所等多个分析测试领域,在业内具有较强的竞争力和极好的商业声誉!真...[url=https://www.instrument.com.cn/job/user/job/position/70938]查看全部[/url]

  • 精密露点仪如何操作?

    精密露点仪主要适用于干燥气体微水检测,被测气体有:H2、SF6、N2、O2、Ar2、CO2、压缩空气等多种气体的水分测量,适用于电力、化工、航空、冶金、食品等行业。操作方法1、先打开电源,仪器先进行自校,自校结束进入测量状态.2、仪器自校的同时,把本仪器配套的测试管道与所要测量开关的开关接头连接好,再把开关接头与被测开关连接好。3、关闭流量调节阀,把测试管道与仪器的进气口相连,这时显示屏上显示的压力即是被测开关里的气体的压力。4、开始测量,打开流量调节阀,把调节流量在0.5升/分左右,大不要超过0.8升/分,这样就进入测量状态,测量的时间大约在8分钟左右(第一台设备)。5、测量结束时,如要打印数据只要按下打印键,并输入被测的设备编号后,按下确认键后,仪器就开始打印。后关闭流量调节阀,再将测试管道从仪器进气口上取下,后取下开关接头。6、关闭电源。把测试管道和开关接头放好,整个测量结束。[font=&]得利特(北京)科技有限公司专注于油品分析仪器的研发和销售活动,我公司产品有:酸值测定仪、微量水分测定仪、凝点倾点测定仪、体积电阻率测定仪、介电强度测定仪、介质损耗测定仪、水溶性酸测定仪、界面张力测定仪、析气性测定仪、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析仪等多种绝缘油分析仪器、燃料油分析仪器、润滑油分析仪器,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。他们家发动机油表观粘度测定仪性能比较稳定且符合GB/T6538标准。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制