当前位置: 仪器信息网 > 行业主题 > >

五维精密调节平台

仪器信息网五维精密调节平台专题为您提供2024年最新五维精密调节平台价格报价、厂家品牌的相关信息, 包括五维精密调节平台参数、型号等,不管是国产,还是进口品牌的五维精密调节平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五维精密调节平台相关的耗材配件、试剂标物,还有五维精密调节平台相关的最新资讯、资料,以及五维精密调节平台相关的解决方案。

五维精密调节平台相关的资讯

  • 一平台两中心,先进精密仪器创新平台来了!
    12月30日,LinkPark(滨河)产业社区及先进精密仪器共性技术研发及工程化创新服务平台启用仪式在杭州青山湖科技城隆重举行,杭州市人大常委会副主任、临安区委书记卢春强,市政府副市长柯吉欣,市政府党组成员、杭州城西科创产业集聚党工委副书记、管委会主任李玲,临安区区委常委、青山湖科技城党工委书记蔡萌等出席启用仪式,杭州市委组织部、市经信局、市科技局、临安区有关部门等领导一行参加活动。 为深入推进中国先进精密仪器产业发展,杭州谱育科技发展有限公司(聚光科技旗下自孵化子公司)携手杭州青山湖科技城,搭建“一平台两中心”——先进精密仪器共性技术研发及工程化创新服务平台、先进精密仪器创新中心、工程师协同创新中心,争取国家和省市资源,围绕产业链部署创新链,合力打造先进精密仪器全产业链的创新策源高地。先进精密仪器共性技术研发及工程化创新服务平台一平台两中心打通创新链 在仪器创新的研究、工程化、产业化链条上,工程化阶段成为创新链上的瓶颈和产业破局的关键,通过建设高水平、全链条的先进精密仪器共性技术研发及工程化创新服务平台,打通创新链、带动产业链,形成支撑仪器整机、核心零部件、试剂耗材、技术服务、高端专用仪器与系统五位一体的产业集群服务能力,打造“面向世界、引领未来、服务全国、带动全省”的先进精密仪器全产业链共性技术研发与工程化创新策源地。 带动产业链 先进精密仪器创新平台启用后,将加速区域内仪器技术创新研究成果的工程化、产业化进程,孵化培育一批生命科学、半导体、先进工业、新材料、食品药品、环境安全等领域的产业项目,加速集聚龙头企业,促进在杭州城西科创大走廊带动先进精密仪器产业集群,打造具备全球竞争力的中国“仪器谷”。 面向世界科技前沿,为我国科研院校与企业创新实验室,开发高端质谱、光学、色谱、电镜等科学仪器。 面向经济主战场,为我国新材料与先进制造业,开发高端智能品控、在线监测分析自动化系统。 面向国家重大需求,为半导体、先进工业等行业,解决“卡脖子”关键技术和高纯检测设备国产化。 面向人民生命健康,开发食药品检验、环境安全监测、生命科学分析与精准医学诊断先进解决方案。 五位一体:打造仪器整机、关键零配件、耗材与试剂、技术服务、高端专用系统集成五位一体的全产业链生态。
  • 海顿科克新应用-精密显微镜电动载片平台
    海顿科克直线传动是世界领先的直线运动产品制造商,公司最近发布了一个驱动精密显微镜窄片平台的应用,该工作平台移动的最小步长为15微米,最大推力为13N,在这个非常紧凑空间里的实现传动要求,无疑这是一个完美的机械结构,在精密的微流体或者光学仪器中经常会有这种需求。这个结构大约有22MM宽,25.2MM高,其行程最大可以达到64MM。 一个轻型的经过阳极氧化的铝合金型材做成的底座,底座两端分别安装有螺杆衬套和电机安装支架,整个结构的核心是海顿15000系列的永磁式直线步进电机,该电机已经成功应用在几千种结构应用中,该电机不需要复杂的控制设备,只需要简单的速度脉冲和方向信号。 整个结构的移动滑块是用带有自润滑效果的聚缩醛材料做成,滑块本身带有张紧弹簧,这能使滑块在运动过程中保证运动的精确性,滑块由2根涂有TFE涂层的直线滑轨做导向。滑块由KERK的螺杆驱动,螺杆由303不锈钢制成,并且由5种导程可选,分别是0.3MM,0.4MM,0.5MM,1.0MM,2.0MM,该螺杆一端固定在底座的螺杆衬套中,由于螺杆精密,所以当电机工作时,自然可以实现高精度的运动控制。 该电动载片平台结构还可以客户化定制,比如客户特定的底座,不同的行程(最高可达64MM),传感器安装,客户化的布线等等,都可以根据客户要求定制。 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • VarioBasic系列主动隔振台:为精密实验室量身定制的高性能稳定平台
    实验室中的精密仪器和敏感实验往往要求高度精确的测量与控制,微小的振动都可能对实验结果产生不可忽视的影响。因此,为什么主动隔振台会成为众多实验室不可或缺的设备,以下是几个关键原因:1. 保护精密仪器的精确度与稳定性精密科学仪器如显微镜、光谱仪、电子显微镜、原子力显微镜(AFM)及各类光学平台等,对振动极其敏感。即使是微小的地壳振动、人员走动或空调运行等日常因素引起的震动,都可能导致测量结果失真、图像模糊或数据采集错误。主动隔振台通过动态监测并抵消外界振动,为这些精密设备创造一个几乎“零振动”的工作环境,确保实验结果的准确性和可重复性。2. 提升实验研究的质量与效率在生命科学、纳米技术、材料科学等领域,很多实验需要长时间曝光、微观结构观察或进行精密测量。若无有效的隔振措施,持续的外部振动会显著增加实验失败率,延长实验周期。主动隔振台能够有效减少因振动导致的重做次数,提升实验效率,同时保障研究成果的高质量。3. 促进创新研究与复杂实验的开展随着科学研究的深入,越来越多的前沿实验要求在极端条件下进行,如量子计算、生物分子成像等,这些实验对环境的稳定性和纯净度提出了更高要求。主动隔振台不仅能隔离低频到高频的广泛振动范围,还能适应不同的负载和实验条件,为科学家探索未知领域提供稳定的技术支撑平台,推动科学进步。4. 保障研究人员的安全与健康在进行某些涉及危险物质或高压环境的实验时,任何意外的振动都可能引发安全问题。主动隔振台通过减少外部干扰,不仅保护了实验的顺利进行,也间接保障了实验室人员的安全健康,营造了一个更加安全可靠的研究环境。综上所述,主动隔振台作为现代实验室基础设施的重要组成部分,对于维护实验的精确性、促进科研效率、推动科技前沿探索以及保障实验室安全均具有非常重要的作用。在此茂默科学推荐VarioBasic系列主动隔振台。基础信息:Vario Basic 40尺寸:396x120x111mm 载重:0-300kg,0-600kg Vario Basic 60尺寸:636x130x111mm载重:0-300kg,0-600kgVario Basic 90尺寸:932x130x111mm载重:0-300kg,0-600kg主要特征: 相比于气囊式被动隔振台,主动隔振台没有低频共振,即使在低频范围内也有出色的隔振性能。 超快的稳定时间:低至0.3秒(普通被动隔振台的稳定时间为30秒至60秒)。 主动隔振台带宽0.6/1Hz至200Hz(远超被动隔振台)。 6个自由度主动隔振。 真正的主动隔振:即时产生反作用力来抵消振动。 操作简单-按钮式解决方案。 设计紧凑,安装简便。 高度的位置稳定性-1Hz时固有刚度通常是被动隔振台的20到30倍。 接电即可,无需压缩空气。 适用于将高分辨率测量设备与建筑振动隔离, 广泛的适用范围:拥有标准化产品和用户定制产品。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多隔振台相关的产品,Welcome to consult~咨询有惊喜哦!
  • 联公精密测量与东南大学联手实现科技仪器自主平台
    (从左到右分别为,联公精密测量联合创始人陈方,首席科学家马蒂亚斯,东南大学仪器科学与工程学宋爱国教授。)3月14日,为深入贯彻落实加强基础研究,实现高水平科技自立自强,建设世界科技强国的方针。《溅射技术在高精度力学传感器上的应用》技术研讨会在东南大学召开。此次技术研讨会校企合作,协同创新,实现科技仪器设备的自主可控搭建平台。由东南大学机器人传感与控制技术研究所、中国仪器仪表学会力触觉感知与交互专业委员会与IEEE机器人与自动化学会南京分会主办,联公精密测量技术(合肥)有限公司协办。在研讨会上,联公精密测量有限公司的首席科学家,马蒂亚斯与联公精密测量联合创始人陈方先生首先介绍了当前德国同行在力学传感器制造领域相对成熟的技术,东南大学首席教授宋爱国随后介绍了团队在力反馈应用技术当中所作出的进展。中国航天科技44所与江苏省计量院的专家们同时参与了会议。2022年国金证券的一份调研报告指出,中国科学仪器市场的国产化率只有5%。而现在更加火热的半导体设备的国产化率是18%。科学仪器属于国产替代难度系数最高的领域之一,业内普遍认为需要5-10年的攻克时间,而科学仪器的高端市场更是完全被外资品牌垄断,形势非常严峻,而其“卡脖子“的难点在于仪器核心的传感器以及配合高端传感器的经验算法。东南大学与联公精密测量有限公司未来会携手将一种新型的溅射技术引用到力学传感器的制造工艺当中,此项尝试可以非常有效地降低传感器使用的环境要求,对高低温,真空高压,高辐射,潮湿腐蚀等恶劣环境,针对当前的航天领域,半导体制造领域有着至关重要的作用,可以有效的避免核心零部件频繁替换所带来的不利影响。同时,联公还即将突破高精度实验室称重仪器的完全国产化。据不完全统计,从2020年开始,在中国工业市场,国产替代的旺盛已逐渐体现,而企业与高校同心协力,发挥各自的优势,可早日实现用我国自主的研究平台、仪器设备来解决重大基础研究问题的需求。
  • ​国产三坐标测量机产业走访第2站派姆特:自主创新精密测量技术,构建一体化三维测量平台
    近年来,我国高端制造业蓬勃发展,对高精度测量设备的需求持续攀升,极大地推动了以三坐标测量机为代表的精密测量仪器市场的迅猛增长。众多国内外知名品牌竞相涌入这一赛道,同时,也催生了一批崭露头角的国产新兴力量。在国产替代需求日益增长的趋势下,中国三坐标测量机企业迎来了前所未有的发展机遇。为深入了解中国三坐标测量机产业的发展态势,仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。该活动深入中国三坐标测量机代表性企业,与行业专家共同开展实地走访,探寻产业发展的最新进展和亮点,为发展新阶段赋能。走访第2站,由上海大学李明教授,仪器信息网产业研究部主任武自伟、营销服务中心经理韩永风、测量仪器编辑牛亚伟等组成的走访项目组走进派姆特科技(苏州)有限公司 (以下简称“派姆特”),派姆特华东区区域经理胡书飞、总裁助理Susan接待了走访一行人员。——企业发展进展派姆特成立于2019年,在中国、德国、日本均设有研发中心,并在苏州、西安建立了制造基地。得益于公司成立前的技术积累,派姆特在成立第一年即实现了盈利,且此后每年的收入都实现了翻倍增长。短短五年间,派姆特的团队规模已从最初的约30人发展壮大至现在的150余人。派姆特办公楼派姆特的创始人邰大勇,曾在德国马尔精密量仪和美国法如科技公司任职。他亲眼目睹了我国尺寸精密测量仪器市场几乎一度被国外品牌垄断的状况,这促使他萌生了创立一个拥有自主知识产权、受人尊重的国产高端品牌的念头。随着当前国内对供应链安全要求的日益提升,国产化替代需求旺盛,派姆特迎来了快速发展并受到了资本的青睐。2023年6月,公司获得了由中科创星独家投资的千万元级天使轮融资;同年11月,又获得了深圳高新投的第二轮融资;时隔不到一年,2024年5月,派姆特再次获得了卓远资本的第三轮融资。——产品技术与布局派姆特深耕便携式关节臂,拥有多项专利技术。其关节臂测量机涵盖6轴测量臂、7轴测量臂以及激光扫描臂,完美适应接触式与非接触式测量的多样化需求。设备内置平衡机构,采用等臂长设计,操作灵活自如,测量无死角。测量范围覆盖1.5-4.5米,可在5-45℃的全温度范围之内进行测量,内置温度传感器有效补偿温度变化带来的误差,确保测量精度位居国内顶尖水平,广泛应用于汽车、航空航天、国防军工、轨道交通、工程机械、教育等行业。胡书飞介绍道,为了向客户提供更多的测量方案,派姆特不断拓宽测量技术边界,致力于三坐标测量机的核心系统研发,包括测头、控制器和软件。去年,公司推出了FUTURE系列和PRIME系列桥式机型,以及SPACE车间型三坐标测量机。FUTURE系列采用矩形梁结构、气路分离独立控制等目前三坐标测量机的高端技术,可与进口品牌中高端计量设备相媲美。SPACE系列则专为加工现场设计,能够与机器人、自动上下料系统、机床系统等实现联机,为工业客户带来效率与质量的提升。CAM3软件作为派姆特产品矩阵的核心,是公司战略布局的重要一环。大部分三维测量硬件均需与CAM3软件配合使用,以发挥最大效能。胡书飞呼吁政府加大对软件国产化的支持力度,以便派姆特能够借此东风,打造出更加综合性的CAM3软件,以此为核心和平台,推动公司向更广阔的市场进军。目前,派姆特软件团队已超过20人,CAM3软件在上汽集团等企业中得到成功应用。派姆特的便携式测量臂由两个碳素纤维钢固定臂长和六到七个角度编码器组成。该编码器由派姆特自主研发和生产,可作为独立产品供应市场。派姆特产品矩阵市场调研数据显示,2022年全球三维尺寸测量仪器市场规模已突破100亿美元大关,预计未来将持续保持直线上升的增长态势。为了把握这一市场机遇,派姆特致力于打造一个集多场景应用、多测量精度需求的一体化三维测量平台。公司新推出的圆度仪、圆柱圆度仪和轮廓仪产品刚刚亮相市场,未来还将进一步拓展产品线,布局光笔测量仪和激光跟踪仪产品,以满足更广泛的市场需求。合影留念
  • 导电性调节的双极电化学发光传感平台解决方案
    一、实验目的该方案旨在开发一种基于导电性调节的双极电化学发光(The bipolar electrode based ECL,BPE-ECL)传感平台,用于无指示剂的均相生物分析。该平台通过导电性生物传感技术与ECL报告系统的结合,实现了在无需外源电活性指示剂的情况下进行目标检测。研究以miRNA-21的检测为示范,探索该方案的可行性和应用前景。二、实验使用的仪器设备和耗材试剂1. 仪器设备超微弱发光分析仪:BPCL-2,结合光电倍增管(PMT)操作电压为-800V,用于测量ECL发光强度。电化学工作站:用于施加电位。电导率仪:用于测量溶液的电导率。电泳仪:用于聚丙烯酰胺凝胶电泳(PAGE),验证核酸杂交链式反应(HCR)。生物分子成像仪:用于电泳结果成像。2. 耗材试剂聚二甲基硅氧烷(PDMS):用于制作传感和报告池。Ru(bpy)32+和TPrA:作为ECL检测体系的核心试剂。氯金酸(HAuCl4):用于电极金属化处理。合成核酸:由Sangon Biotech提供,包括探针DNA、H1、H2及目标miRNA-21等。人乳腺癌细胞:用于miRNA-21的实际应用检测。超纯水:18.2 MΩcm,作为所有实验的溶剂。三、实验过程1. BPE传感器的制作(1). ITO玻璃板的准备:从供应商处采购电阻小于6Ω/平方的ITO玻璃板,并在其上制作导电BPE,确保传感池包含BPE的阴极和驱动电位的阳极,而报告池包含BPE的阳极和驱动电位的阴极。(2). 电沉积金:为了提高导电性,分别在BPE的阴极和驱动电位的阴极上进行金电沉积。2. 杂交链式反应(HCR)的进行(1). 反应混合:在超纯水中混合探针DNA、H1和H2,浓度分别为0.5 μM、5 μM和5 μM。(2). 目标miRNA-21的添加:将不同浓度的miRNA-21加入混合物中,37°C孵育2小时以进行HCR反应。3. 聚丙烯酰胺凝胶电泳(PAGE)验证:(1). 电泳条件:在TBE缓冲液(1×)中,恒定电压80V,室温下进行2小时电泳。(2). 成像分析:使用生物分子成像仪拍摄凝胶,以验证探针DNA、H1和H2的杂交情况。4. BPE-ECL传感检测(1). 准备工作溶液:在报告池中加入200μL含有5mM Ru(bpy)32+和5mM TPrA的PBS缓冲液(0.1 M,pH 7.0),在传感池中加入HCR孵育后的样品。(2). ECL测量:使用循环伏安法,电位范围为1.0-4.5V,扫描速率为100 mV/s,进行ECL测量。每个样品测量三次,计算标准偏差。四、实验结果与讨论1. HCR反应和导电性变化的验证(1). PAGE分析(图1A):短核酸(探针、H1、H2)在低分子量位置显示荧光带,而miRNA-21诱导的核酸聚合物在高分子量位置显示。这验证了目标miRNA-21触发了探针、H1和H2的杂交反应。(2). 导电性测量(图1B):混合短核酸后溶液的导电性显著增加,而加入miRNA-21后,导电性显著下降。这表明生成的长核酸聚合物导电性较差。(3). ECL测量(图1C):ECL强度在短核酸(22 bp)溶液中显著高于长核酸(1250 bp),进一步验证了导电性对BPE-ECL系统的重要影响。(4). ECL响应的验证(图1D):相较于无miRNA-21存在的情况(曲线g),miRNA-21存在时ECL响应显著降低(曲线h),因为miRNA-21诱导的HCR生成了导电性较差的核酸聚合物。图1. (A) PAGE分析: (a-c通道) 探针、H1、H2;(d通道) H1 + H2;(e通道) 探针 + H1 + H2;(f通道) 探针 + H1 + H2 + miRNA-21。(B) 对应PAGE相同条件下的导电性比较。(C) 5 μM短链(22 bp)和长链(1250 bp)核酸溶液的ECL响应比较。(D) BPE-ECL生物测定在无miRNA-21 (g) 和有1 pM miRNA-21 (h) 情况下的ECL响应。2. 分析条件的优化(1). 探针浓度(图2A):ECL强度差值(ΔECL)随着探针浓度的增加而增加,在浓度超过0.5 μM后达到平台期。因此,选用0.5 μM作为最佳探针浓度。(2). H1/H2浓度(图2B):随着H1/H2浓度的增加,ΔECL响应持续增强,在5 μM时达到饱和,表明5 μM为最佳H1/H2浓度。(3). 温度(图2C):ΔECL响应随着温度升高至37°C后增加,随后略有下降,表明最佳反应温度为37°C。(4). 反应时间(图2D):ΔECL响应随HCR反应时间的延长而增加,在120分钟后达到最大,选择120分钟作为最佳反应时间。图2. (A) 探针浓度,(B) H1/H2浓度([H1]:[H2] = 1:1),(C) 温度,和 (D)反应时间对ΔECL响应的影响。所有实验中的miRNA-21浓度均为1 pM。3. 传感系统的性能评估(1). 检测限与线性范围(图3):不同浓度miRNA-21的ECL响应如图3A所示。ECL强度与miRNA-21浓度的对数呈良好线性关系(图3B),线性范围为1 fM至10 nM,检测限为0.33 fM。图3. (A) 不同浓度miRNA-21的ECL响应: (a&minus i) 空白, 1 fM, 10 fM, 100 fM, 1 pM, 10 pM, 100 pM, 1 nM, 10 nM。(B) ECL强度与miRNA-21对数浓度之间的线性关系。(2). 选择性(图4A):高结构类似物(miRNA-122、miRNA-141、miRNA-155)的检测结果表明,BPE-ECL传感系统对miRNA-21具有良好的特异性。(3). 稳定性和重复性(图4B, 4C):ECL信号在八次重复测量中稳定,RSD为2.56%,三种不同浓度miRNA-21的RSD分别为3.2%、2.4%和1.4%,表明系统具有良好的稳定性和重复性。(4). 实际应用(图4D):检测不同数量MCF-7细胞裂解液中的miRNA-21,ECL信号随细胞数量增加而下降,验证了该传感平台在临床样品检测中的应用潜力。图4. (A) 不同miRNA类似物的ECL响应,miRNA-122、miRNA-141和miRNA-155浓度为10 pM,miRNA-21浓度为1 pM。 (B) BPE-ECL生物传感平台的稳定性。 (C) BPE-ECL传感器对不同浓度miRNA-21响应的重现性。 (D) 不同数量MCF-7细胞裂解液的ECL响应。五、结论本方案提出了一种基于导电性调节的BPE-ECL生物传感平台,该平台利用目标miRNA-21诱导的HCR反应生成长链核酸聚合物,导致传感池导电性降低,进而减少报告池的ECL信号输出。该平台具备传统BPE-ECL传感器的优点,通过物理分离传感和报告反应有效避免了干扰,且无需外源电活性指示剂。该方案简单、灵敏、快速,并在实际样品检测中表现出良好的应用前景。未来,该方案有望进一步应用于包括DNA、小分子、蛋白质、细胞和细菌等多种目标的定量和定性检测。*因学识有限,难免有所疏漏和谬误,恳请批评指正*资料出处:免责声明:1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵删处理!
  • 1688万!北京理工大学超精密低噪声测试平台系统、场发射环境扫描电子显微镜等采购项目
    一、项目基本情况1.项目编号:CFTC-BJ01-2311044项目名称:北京理工大学超精密低噪声测试平台系统采购预算金额:490.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述超精密低噪声测试平台系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311043项目名称:北京理工大学低温、强磁场、高压显微红外测试系统采购预算金额:306.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述低温、强磁场、高压显微红外测试系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。3.项目编号:GXTC-A1-23630980项目名称:北京理工大学场发射环境扫描电子显微镜采购预算金额:462.000000 万元(人民币)最高限价(如有):462.000000 万元(人民币)采购需求:序号货物名称主要规格单位数量交货时间交货地点是否接受进口产品投标1北京理工大学场发射环境扫描电子显微镜采购详见附件套1签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕北京理工大学西山实验区是合同履行期限:签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕 。本项目( 不接受 )联合体投标。4.项目编号:CFTC-BJO1-2311045项目名称:北京理工大学红外焦平面探测器综合测试与成像设备采购预算金额:430.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述红外焦平面探测器综合测试与成像设备教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C方式:现场获取售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:陈老师010-68912384       2.采购代理机构信息名 称:国金招标有限公司            地 址:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C            联系方式:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹010-53681306/1309(获取采购文件电话:010-53670136)            3.项目联系方式项目联系人:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹电 话:  010-53681306/1309(获取采购文件电话:010-53670136)
  • 中科科仪控股公司中科科美研制的高精密镀膜装置在先进光源技术研发与测试平台正式运行
    在庆祝中国共产党百年华诞之际,由国家发改委立项支持、中科院高能物理研究所承建的高能同步辐射光源(HEPS)首台科研设备于6月28日上午安装,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS)启动试运行。其中,中科科仪控股公司中科科美研制的直线式劳埃透镜镀膜装置及纳米聚焦镜镀膜装置也于同一天正式投入使用。直线式劳埃透镜镀制装置及纳米聚焦镜镀制装置可实现各类高能物理装置聚焦镜、单色镜、劳埃镜、纳米聚焦镜等膜层制备。在两装置研制过程中,中科科美突破了多项先进制造技术:精密加工制造技术,实现大型真空腔室及复杂运动系统精密加工与装配、减震及超洁净等严苛设计指标;大型真空系统超高真空获得技术,实现结构复杂、内部零部件放气量大的大型真空腔室系统极限真空度达到10-6Pa;高精度直线运动控制技术,实现长距离导轨运行平行度达到微米量级、运动系统速率稳定性控制在千万之一以内;复杂镀膜工艺技术,实现高精度纳米量级万层镀膜工艺,膜厚精度控制在0.1纳米以内。经相关主管部门和院所专家委员会现场测试,高精密镀膜装置结构设计合理、制造工艺先进、主要性能指标达到国际同类产品水平,填补了该领域内多项国内技术空白。直线式劳埃透镜镀制装置HEPS是国家“十三五”重大科技基础设施项目之一,该项目于2019年6月29日开工建设,建设周期6.5年。建成时,HEPS将成为中国第一台高能量同步辐射光源之一,为基础科学和工程科学领域原创性、突破性创新研究提供重要支撑平台。中科科仪控股公司中科科美凭借在真空系统集成领域深厚的专业技术积淀、强大的整体方案解决能力和一站式服务能力参与到该项目中,为国家重大科技基础设施项目实施和技术攻关贡献了力量。
  • 禅城科创平台项目“上新” 精密仪器国产化再获突破,助力中试产业发展
    近日,广东中科谛听科技有限公司(下称“中科谛听”)全球新品发布会在佛山国家火炬创新创业园举办。现场发布DITEE SPEAR500 MP-AES 微波等离子体光谱仪和DITEE SWORD500 ICP-OES电感耦合等离子体光谱仪两款新品,推动精密仪器自主创新国产化进程再获新突破。  这是禅城区推动科创平台项目转化的重要成果,也是该区推动中试赋能科技成果产业化落地的新项目。今年以来,禅城大力发展中试小试产业,成功引入精密仪器中试验证平台,并服务多家知名企业和机构。  打破进口垄断  3年成行业头部  中科谛听是经广东省科学院批准,由广东省科学院研发及管理团队、广东省科学院佛山产业技术研究院有限公司发起成立,是一家集科研、生产、销售、维护于一体的科技创新型企业,致力于打造精密仪器成果转化大平台,拥有国内第一代光谱仪器专家研发团队。  精密仪器涉及多种核心关键技术,一直以来国内外存在巨大差距。尤其是用于大型装备故障预警与诊断的油液光谱仪,长期依赖进口。中科谛听团队研发的油料光谱仪早在2014年便被科技部评审列为国家重大科学仪器设备开发专项拟立项项目。其转盘电极原子发射光谱仪第六代产品,一举斩获了全国机械工业设计创新大赛决赛铜奖,不仅打破进口垄断,还深受外国企业的好评。成立短短3年的中科谛听也跻身行业头部,每年营收保持40%—50%的增长。  本次发布的两款新品中,DITEE SWORD500 ICP-OES电感耦合等离子体光谱仪采用了全一级谱线罗兰圆分光系统、科研级线阵CMOS探测器、专利内置冷却系统等多项自主核心技术,实现了卓越的检测性能和稳定性,同时又具有更高的环境适应性。  DITEE SPEAR500 MP-AES 微波等离子体光谱仪更是采用高耦合效率的微波等离子体光源,实现了氮气(或用直接由空气制得的氮气)运行,告别了易燃易爆的乙炔、氦气或昂贵的氩气,具有更高的分析效率、更低的成本和更安全的保障。  继油料光谱仪之后,上述两款新品的发布是中科谛听在光谱仪器的自主创新和科研成果产业化上的又一个里程碑,也将为我国精密仪器产业高质量发展添砖加瓦。  建设中试平台  促进科技成果转化  本次新品的发布也是广东省科学院佛山产业技术研究院(下称“佛山产研院”)建设的精密仪器中试验证平台又一成果落地。  近年来,禅城坚持创新驱动,制定“1+N”科技政策,积极构建“1+4+N”全链条科技服务体系,并围绕新材料、新储能、医疗健康、智能制造、环保节能等领域布局建设了一批概念验证中心和小试中试平台,强化中试能力对产业发展的支撑作用,提升科技成果转化效率,赋能全区产业高质量发展。  其中,精密仪器领域的“佛山产业技术研究院精密仪器中试验证平台”(下称“精密仪器中试验证平台”)是广东省精密仪器战略性新兴产业仅有的(中央资助)中试平台,获得中央引导资金项目和省科学院中试平台项目支持及首批市级中试平台认定。  目前,平台已为中科谛听、仪德科学、冠能电力、广汽丰田、中山大学、暨南大学、华南师范大学等数十家企业和院校提供ODM、OEM中试服务。此外,精密仪器中试验证平台联合共建单位广东省科学院测试分析研究所(中国广州分析测试中心)、广东省科学院智能制造研究所提供检测服务与试验服务,2023年完成检测、试验报告共10万份。同时助力国际科技合作,借助中国—白俄罗斯中白原子力显微镜项目等项目,实现国际先进技术的引进、消化、吸收和转化。  除了加快科技成果转化,禅城还加强未来产业布局,推进科技招商,大力培育新质生产力。该区还积极打造佛山都市工业示范区,加快都市工业载体建设,通过供给优质产业空间,聚焦成长性好、市场占有率高、创新能力强的专精特新企业,大力发展精密电子、智能传感、电机电控、新型材料、生物医药等高技术制造业,促进科技成果迈向产业化。
  • 天开高教科创园 天津高端精密仪器产业园项目一期交付 为精密仪器成果转化落地搭台
    作为天开高教科创园津南园的承接载体之一,日前,天津高端精密仪器产业园项目一期交付,今后将为天津大学精密仪器的成果转化落地提供平台。作为全市首家以精密仪器、传感器以及工业过程控制为主导产业的专业化主题园区,天津高端精密仪器产业园一期占地52亩,能为企业提供建筑面积约500至5000平方米的三至五层双拼、独栋、多层厂房,可用于科技研发、小试中试研发组装、集合性办公等。随着众多企业入驻,园区将形成产业聚集效应,并在校企对接、研产科技转化、解决企业用工需求、市场对接撮合、股权融资、银行机构融资方面发力,为入园企业发展赋能。天津高端精密仪器产业园相关负责人介绍说:“截至目前,园区一期招商引资工作已经全部完成,累计引进企业26家,其中,国家高新技术企业10家、专精特新企业3家、雏鹰企业4家。”
  • 【参展回顾】摩方精密受邀参加中国微米纳米技术学会第五届微流控技术应用创新论坛
    2022年7月27日至29日,重庆摩方精密科技有限公司赴广州参加了为期三天的中国微米纳米技术学会第五届微流控技术应用创新论坛。论坛作为微流控技术领域的重量级盛会,已成功举办了四届,在生化分析、疾病诊断、微创外科手术、环境检测、司法鉴定和食品卫生监督等诸多行业都产生了深远的影响。本届论坛旨在总结国内外微流控技术的发展和应用的进展,探索科研发展过程中的技术瓶颈,碰撞科技创新的火花,搭建了一个以分享新技术、展示新产品、探讨新思路为主题的微流控技术应用交流平台。参与论坛的不但有国内相关行业的重量级嘉宾,还有上百位来自相关行业的杰出企业代表,摩方精密作为微纳3D打印行业的龙头企业,很荣幸受邀参加了此次论坛。7月28日上午,摩方精密技术经理彭瑛博士带来了题为《PμSL微尺度3D打印技术及其在微流控芯片中的应用》的专题报告。面投影微立体光刻(PμSL: Projection Micro Stereolithography)技术,是一种面投影光固化3D打印技术,该技术适用于制作微尺度的复杂三维结构,也因其具有高分辨率、高精度、跨尺度加工、适用材料广、加工效率高、加工成本低等诸多特点,有着目前极少能实现超高打印精度、高公差加工能力,被认为是目前最具潜力的微纳加工技术之一。因此,PμSL在微流控领域也将拥有良好的应用前景和广阔的发展空间。彭瑛博士的精彩报告引起了在场专家学者的热烈反响,得到了业内人员高度关注,也纷纷表示出进行进一步深入了解的意向。此次参会,摩方精密通过与优秀人才、企业的沟通与交流,充分展示了企业形象,体现了企业先进的发展理念、雄厚的技术实力和丰硕的科研成果。
  • 精密测量:无尽的追求
    十几年前,当数位战略科学家聚首探讨精密测量物理学科发展走向时,他们预判中国会一步步缩小和国际先进水平的差距,有一天会走在国际前沿,甚至引领发展。他们没料到的是,这一天来得如此之快,当然也没料到“卡脖子”同样来得很快。当下,世界正经历百年未有之大变局,科研环境也发生了巨大变化。所幸十几年前,在国家自然科学基金等的资助下,我国布局了一批前瞻性、引领性的基础研究。在国家自然科学基金重大研究计划——“精密测量物理”项目稳定资助下,我国不仅在精密测量领域取得了多项“世界最好”“精度最高”的成就,凝聚、培养了一支队伍,大大增强了在该领域的国际话语权和竞争力,还辐射带动了相关学科发展。“算是对我们10年‘打工’的鼓励吧。”谈及“精密测量物理”重大研究计划的研究成果对相关学科的引领带动作用,中国科学院院士,华中科技大学、中山大学教授罗俊的语调中透着实现“小目标”的轻松。实际上,这项超前布局的研究计划仅酝酿谋划就用了5年时间。此后在研10年,“聚队伍、聚智慧、聚重点、聚资源、聚突破”,项目成果全面超越预期目标。“十几年前,国家自然科学基金支持一批科研人员开展精密测量物理研究确实很有开拓性。”罗俊告诉《中国科学报》,“这项研究计划虽然圆满结题了,但精密测量永无止境,精益求精是无尽的追求。”破局,始于“香山科学会议”2008年7月,第327次香山科学会议(创立地点及会址在北京香山)破例在位于湖北省武汉市的华中科技大学召开。7位院士、50余位物理学家相聚喻家山,参加为期3天的“精密测量物理和方法”主题研讨会。“在香山科学会议之前,叶老师(中国科学院院士叶朝辉)和几位专家动念提出开展‘精密测量物理’研究,是因为我们遇到了一些问题。”罗俊回忆说,“当时我国很多学科面临怎样向前沿延伸的困境。一个严峻的现实是,我们的科研仪器基本全靠进口。别人生产的仪器卖给我们之前,实验室里该做的研究都做完了,我们一直跟在后面做,这样很难触及科学最前沿。”没有自己的仪器,跻身前沿都很难,更别说超越引领。科研仪器如此重要,但问题是,这种尖端的科研仪器谁来研制?在此背景下,叶朝辉等人提出了“精密测量物理”的概念。“我们现在对‘精密测量物理’有很多期待,赋予它很多内涵。但当时的出发点和最基本的想法就是做出一套最先进的仪器给科学家用。”罗俊说,“要挺进学科最前沿,验证物理学家的想法,进行实验研究,必须有自己的仪器设备。”香山科学会议后,叶朝辉、罗俊等人在国家自然科学基金支持下,开始推动重大研究计划立项,在数理科学部的主持下,组织双清论坛进行论证。2013年,“精密测量物理”重大研究计划获准立项。引领,辐射学科带动人才按照该重大研究计划最初的设计,研究目标分为三部分。一是精密测量工具仪器研制,以时间频率测量为代表,将光频这些和国际水平差距较大且非常基础的测量仪器“做上去”;二是在更高精度上测量物理基本常数并检验物理基本规律,这是精密测量物理的难点和重点;三是研究精密测量新体系,发展新方法和新技术,不断突破测量极限,包括突破标准量子极限等。实际上,在该重大研究计划执行的10年中,他们不仅圆满完成了三大目标,还屡屡取得突破性进展,获得多项“世界最好”“精度最高”的成就。“这项重大研究计划的特点之一是带动了整个中国精密测量物理学科的发展。”中国科学院精密测量科学与技术创新研究院研究员詹明生说,“也带动了其他一些项目,辐射和延伸到了相关领域,比如影响了中国科学院的先导科技专项,带动基于原子分子的物理研究向精密测量物理延伸。”中国科学院国家授时中心研究员张首刚认为,该重大研究计划的意义在于10年前就有了明确目标,把精密测量这项前沿基础研究和国家战略需求相结合,从而做出一系列方向性、引领性的研究工作。“通过国家自然科学基金项目牵引,这些年我国精密测量物理研究队伍不断壮大,并从基础研究向前沿基础研究推进。”张首刚说,“我们不但超额完成了该重大研究计划的各项指标,还产生了原创性的想法,取得一批‘国际首次’级的成果,并在部分领域领先国际。”“量子精密测量是精密测量物理的一个前沿方向,很多微弱信号测量,比如引力波探测、量子操控、原子分子和光物理等研究都离不开精密测量。”上海交通大学教授张卫平补充道,“这个项目将我们的学术生涯和国家战略需求完美对接起来,我觉得最大成果之一是凝聚并培养了一支队伍。”清华大学教授尤力同样认为,这是个高瞻远瞩的研究计划。“过去四五年,国际科研环境发生了巨变,出现了更多的不确定性。我们必须科学上自主、技术上独立。好在我们进行了预研,建立了这么一支队伍。”求精,追求永无止境精密测量物理对实验条件要求极高,数千米外的振动、电流波动、地球磁场,甚至空气温湿度都会影响测量精度。为避免外界扰动,30多年前,罗俊等人就将实验室建在位于喻家山的一个山洞里。在罗俊团队的引力常数测量进行到关键时期时,地方政府按规划准备在喻家山下修一条路。“修路会引发两个问题:一是山体稳定性发生变化,这些微小变化会导致实验环境不稳定;二是修路过程中及修好后,车辆经过产生的震动会影响测量精度。”了解到罗俊的担忧,华中科技大学和武汉市都非常支持实验研究。最后,武汉市调整道路规划,终止了道路修建。得益于安静的实验环境,罗俊团队测出了世界上测量精度最高的G值(引力常数)。至今,该数值仍保持着世界第一的纪录。“精密测量物理要测的通常是非常小的数值,它无限趋近于‘0’,但永远不会达到‘0’。例如,我们进行粒子、量子、多粒子纠缠等前沿研究,背景补偿(抵消环境磁场的影响)做得越好,测量结果就越准。”尤力感慨地说,“我们测一个量,总希望向小数点后再多推一位,但最终要推到什么地方、推到什么程度,没有人知道。所以精密测量物理没有止境,需要长期坚持,也需要长期支持。”“精密测量的本质是永无尽头。”罗俊说,“精密永无止境。这种无限精密、精益求精的特点造就了精密测量物理研究者不断提高精度、不断开发新技术,挑战新极限的信念。”传承,精密测量精神“我们常说十年磨一剑,从事精密测量物理研究真的需要长期积累。”华中科技大学教授胡忠坤说,“它需要10年、20年,甚至更长时间才有可能见到成效,因此研究者要耐得住寂寞,但也需要得到长期稳定的支持。”“精密测量物理有两个特点:一是高精尖,二是研究周期特别长。”山西大学教授张靖补充说。20世纪90年代初,张靖还在华中科技大学读本科,有时会到位于喻家山山洞的实验室上课。他记得当时山洞两边都是实验室,里面很安静,感觉很神秘。“精密测量物理研究不是三两个人花两三年时间就能取得成果的。罗老师选择在山洞里做实验,还带出一支队伍,一步步把精度提高再提高,确实很有魄力。”张靖说。“我们国家的科学研究已经形成了崭新的局面,上了一个历史性的新台阶。现在我们山洞的实验条件是30年前根本无法想象的,每个实验室都‘鸟枪换炮’,不知道好到哪儿去了。”罗俊说,“但当初也没觉得条件多艰苦,因为有兴趣、有追求,希望能精益求精,所以并未在意‘苦’还是‘不苦’。”“进行精密测量物理研究,总是想精益求精,把精度提高点,再提高点。”清华大学教授尤力对《中国科学报》说,“进实验室打开仪器,我们就知道北京地铁4号线列车什么时间进站、什么时间出站,地铁运转产生的磁场会严重影响原子能级……”尽管北京地铁4号线从清华大学、北京大学两所高校旁通过时采取了一系列减震措施,但轻轨列车进站减速、出站加速时电流变化产生的磁场,还是会影响1.5公里外清华大学的原子分子与光物理实验。磁场变化会引起原子能级移动,给光学测量带来不确定性,使科学家无法判断是否出现了误差。虽然研究人员已经习惯在夜深人静时做实验,但很多扰动仍无法避免。“我们做原子分子与光物理研究时,原子的磁矩就像一块小磁石,它周围的磁场扰动会让原子磁矩抖动,导致测量信号不确定。”尤力说,“环境中各种扰动、噪声、磁场等都会影响测量结果。”尤力团队曾对实验室环境进行检测,不只地铁4号线列车进出站,包括地球磁场、实验室照明电路,甚至光学实验平台上的金属器件(螺丝钉、钻头等)所带磁性都会影响测量精度。“这些磁场是‘躲不掉’的,那就想办法把它‘干掉’。”尤力说。在多次测量、分析、计算的基础上,尤力团队创造性地应用了“背景补偿”这样一个解决方案。简单地说,就是针对一些无法改变的干扰因素,比如地球磁场、实验室电流磁场等,研究人员先测出环境磁场强度,计算出平均值,然后绕制一个通电线圈,使其产生相反的磁场,用“前置反馈”的手段,将环境磁场的磁力抵消。“用‘前置反馈’补偿(抵消)背景磁场是个亮点。”中国科学院院士,华中科技大学、中山大学教授罗俊说,“虽然‘前置反馈’不是新概念,但要把它做成,需要很好地掌握背景磁场,用它解决问题简单、高效。”“我们用的物理概念并不新鲜,但它能解决实际问题。”尤力说,“我们用一块电路板就解决了问题,同很多兄弟单位分享了这项技术,能为大家做点事我很高兴。”在反馈补偿技术的“加持”下,尤力团队取得了一系列重要突破。他们突破了标准量子极限测量非经典双数态新体系,解决了双数态确定性制备难题,该体系在原子数、原子数涨落、压缩系数以及相干性等多项重要指标上远超国际同类实验。团队通过调控量子相变过程,解决了传统动力学制备方法所存在的问题,在国际上首次确定性地制备了大粒子数双数态87Rb原子玻色爱因斯坦凝聚体。目前,该实验平台能在40秒内确定性地制备约1万个粒子组成的多体纠缠态,从非纠缠的初态到双数态凝聚体的转换效率高达(96±2)%。该双数态的量子噪声的压缩度为(13.3±0.6)dB,是国际同类实验中最好的指标。双数态的相干性更是达到了接近理想值的0.99,远优于此前国际上最好的0.9。由此,实验可以表征的纠缠粒子数也是目前能确定性制备量子纠缠数目的世界纪录。这项工作大大提高了双数态在精密测量中的实用性,首次验证了量子相变可以作为制备多体量子纠缠态的有效手段,为纠缠态的制备提供了新思路。追求极限, 刷新“钙帮”世界纪录近年来,中国科学院精密测量科学与技术创新研究院研究员高克林团队研制出不确定度为 3×10-18(相当于105亿年不差1秒)、稳定度为6.3×10-18@524000s的钙离子光频标,成为第五种不确定度指标达10-18水平的光频标、第二种稳定度达10-18量级的离子光频标,并研制出目前搬运距离最远的光钟,实现精度达到10-16的钙离子光频的溯源测量。该成果被国际时间频率咨询委员会推荐为次级秒定义。“钙离子有很多优点,比如其光频跃迁是搭建高精度光频标的理想参考,可有效抑制离子特有的微运动频移。其离子的量子态制备、激光冷却及钟跃迁探测所用的激光均可用商品化的半导体激光器发射,因此极有可能实现广泛应用。”高克林说,“但是钙离子光频标也面临两个世界级难题:一是钙离子对磁场非常敏感;二是钙离子在室温下对黑体辐射效应(环境温度)敏感。”频率标准研究对外场控制(环境中各种效应,如振动、噪声、磁场和温度等)的要求非常高,国际上许多光频标研究机构已经放弃参考钙离子搭建高精度光频标。目前,国际上仅有锶原子光频标、镱原子光频标、铝离子光频标,以及镱离子光频标的不确定度达到10-18量级。“能否直面这些国际难题,将钙离子光频标推进至更高精度是我们面临的艰巨挑战。”高克林说,“在叶朝辉、罗俊院士领导的精密测量项目专家组与频标科学家王义遒、王育竹、李天初等人的关心和支持下,我们一步步解决了这些难题,将钙离子光频标推至国际第一方阵。”为进一步提高钙离子光频标的性能,研究人员通过改进钟跃迁激光性能,建立了第二台钙离子光频标并进行比对,大幅降低了电四极频移、光频移和微运动频移,实现了不确定度达5.5×10-17、稳定度达7×10-17的钙离子光频标。2018年,团队通过“魔幻射频囚禁场”抑制了微运动频移,又通过降低黑体辐射频移、改进光频标伺服软件等措施,进一步将钙离子光频标不确定度提升至2.2×10-17。2019年,通过对两台钙离子光频标长达31天的频率比对,研究人员测得稳定度达到6.3×10-18@524000s。为降低钙离子光频标黑体辐射频移的影响,团队将离子阱置于液氮低温环境中,使黑体辐射频移对温度的敏感度降低了约两个数量级。与国际上采用的液氦系统相比,液氮系统造价低廉、操作简单。但缺点是使用中液氮会蒸发,系统运行时液氮容积变化易造成离子位置移动,从而导致荧光信号损失。为解决低温系统问题,研究人员反复迭代和纠错,并采用清华大学教授尤力团队的“前置反馈”技术,大幅降低了背景磁场噪声。最终,该团队在国际上首次实现了液氮低温钙离子光频标,不确定度达到3×10-18。2020年,该团队实现钙离子光频标系统集成、可靠和高精度运行等关键技术突破,研制出一台精度24亿年偏差不到1秒的可搬运钙离子光钟,首次将钙离子光频测量精度推进到国际最高水平,并实现从武汉到北京千公里级车载搬运。“研究钙离子的人称自己为‘钙帮’。”高克林说,“在实验关键时期,大家加班轮岗的故事很多,但没人觉得辛苦,因为热爱,所以乐在其中。”在精密测量领域实现量子优势前不久,中国科学院院士、中国科学技术大学教授潘建伟,中国科学技术大学教授陆朝阳等基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出并演示了一种新方案来实现可扩展的、无条件的、鲁棒的量子精密测量优势。相关成果发表于《物理评论快报》。“实际上,该成果是在‘精密测量物理’重大研究计划前期工作的基础上衍生出的一项新成果。”陆朝阳告诉《中国科学报》。“精密测量物理”重大研究计划有几个子研究方向,其中中国科学技术大学团队的目标更具探索性质,主要是基于单光子和纠缠光子探索精密测量的新原理、新方法。在研期间,团队基于高品质单光子和多光子纠缠突破超越标准量子极限,在国际上首次同时解决了单光子源的三个关键问题,实现国际上综合性能最优秀的单光子源。“制备单光子源是这个重大研究计划中的一项代表性工作。”陆朝阳解释说,“进行量子精密测量或量子计算时,有用的是单光子源。这就像幼儿园小朋友‘排排坐’,如果有100个小朋友,每个小朋友坐一条板凳是理想状态。但自然界的光源(灯光或阳光)是热光源,它们衰减之后只有约8%是单光子(相当于一个小朋友坐一条板凳),约90%是‘空板凳’,另有2%是两个或多个光子(一条板凳上坐多个人)。在量子技术中,‘空板凳’无法用于测量,而一条板凳坐多个人会引起测量误差。因此,科学家要在实验室通过主动量子调控制造一种非经典的量子光源。”精密物理测量往往会受一些在原理上都无法避免的“散粒噪声”的影响。因此,任何测量都存在精度极限。不过,量子光源可以打破这种物理极限。中国科学技术大学团队用制备出的新光源进行测量,发现它比之前用激光光源测量的精度提高了0.6dB,而且首次实现了强度压缩。此后,该团队又研发出“九章”系列光量子计算原型机。在“九章二号”的相关研究中,团队受到激光的启发,发明了一种受激辐射放大量子光源的新方法。在调节这种新光源的位相时,他们意外发现数据对相位特别敏感。“我们当时灵机一动,想利用这个现象做量子精密测量。”陆朝阳说。抱着试试看的想法,研究人员基于“九章二号”中自主设计的受激双模量子压缩光源,结合非线性干涉仪,提出了一种新方案来达到海森堡极限。该方案同时具有可扩展性、无条件优势、对外部光子损失鲁棒等优点。在未扣除任何实验噪声的情形下,在相位测量实验中直接观察到的单光子信息量(用于衡量测量的精度),达到了目前国际最高水平。精密物理测量领域有一个共识:如果把精度向前推进一个数量级(10倍),就有可能发现新物理、新规律。这一次,中国科学技术大学团队基于量子受激光源发展出新的量子精密测量技术,将测量精度极限提高了5.8倍。“学术界将量子计算在特定问题上的能力超越经典的超级计算机的里程碑称为‘量子计算优越性’。现在,类似的,我们又首次实现了‘量子精密测量优越性’。”陆朝阳说,“这有点像立体农业中塘中养鱼、塘泥肥田,在国家的整体布局下,量子信息的基础研究不仅开花结果,还可催生肥鱼。”
  • 国仪量子发布钻石单自旋量子精密测量谱仪新品
    量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态,从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=±1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,能在室温大气条件下运行,可以完成单分子、单细胞的微观磁共振谱学和成像。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的好搭档。公司同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针。产品参数:产品特点:实现单自旋灵敏度,纳米级分辨率的磁共振谱学方法;50皮秒时间精度,超高谱线分辨率,高保真度量子自旋态操控;智能化仪器控制和信号采集;完善的金刚石探针制备技术;可进行长时间无人值守实验。欢迎下载样本了解更多产品详情。 创新点:量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,其具有超高灵敏度与纳米级超高分辨率,可以完成单分子、单细胞的微观磁共振谱学和成像,可在室温大气条件运行,对于生物样品具有良好的兼容性。与传统顺磁共振、核磁共振相比,具有初态是量子纯态,自旋量子相干时间长,量子操控能力强大,量子塌缩测量实验结果直观等独特优势。 带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态。从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=± 1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。 钻石单自旋量子精密测量谱仪
  • 智能制造装备十二五发展路线图发布 精密仪器在列
    智能制造装备产业“十二五”发展路线图   智能制造装备是具有感知、决策、执行功能的各类制造装备的统称。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。   “十二五”期间,智能制造装备将面向国民经济重点产业的转型升级和战略性新兴产业培育发展的需求,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。经过5~10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。具体是:   一、九大关键智能基础共性技术   1.新型传感技术——高传感灵敏度、精度、可靠性和环境适应性的传感技术,采用新原理、新材料、新工艺的传感技术(如量子测量、纳米聚合物传感、光纤传感等),微弱传感信号提取与处理技术。   2.模块化、嵌入式控制系统设计技术——不同结构的模块化硬件设计技术,微内核操作系统和开放式系统软件技术、组态语言和人机界面技术,以及实现统一数据格式、统一编程环境的工程软件平台技术。   3.先进控制与优化技术——工业过程多层次性能评估技术、基于海量数据的建模技术、大规模高性能多目标优化技术,大型复杂装备系统仿真技术,高阶导数连续运动规划、电子传动等精密运动控制技术。   4.系统协同技术——大型制造工程项目复杂自动化系统整体方案设计技术以及安装调试技术,统一操作界面和工程工具的设计技术,统一事件序列和报警处理技术,一体化资产管理技术。   5.故障诊断与健康维护技术——在线或远程状态监测与故障诊断、自愈合调控与损伤智能识别以及健康维护技术,重大装备的寿命测试和剩余寿命预测技术,可靠性与寿命评估技术。   6.高可靠实时通信网络技术——嵌入式互联网技术,高可靠无线通信网络构建技术,工业通信网络信息安全技术和异构通信网络间信息无缝交换技术。   7.功能安全技术——智能装备硬件、软件的功能安全分析、设计、验证技术及方法,建立功能安全验证的测试平台,研究自动化控制系统整体功能安全评估技术。   8.特种工艺与精密制造技术——多维精密加工工艺,精密成型工艺,焊接、粘接、烧结等特殊连接工艺,微机电系统(MEMS)技术,精确可控热处理技术,精密锻造技术等。   9.识别技术——低成本、低功耗RFID芯片设计制造技术,超高频和微波天线设计技术,低温热压封装技术,超高频RFID核心模块设计制造技术,基于深度三位图像识别技术,物体缺陷识别技术。   二、八项核心智能测控装置与部件   1.新型传感器及其系统——新原理、新效应传感器,新材料传感器,微型化、智能化、低功耗传感器,集成化传感器(如单传感器阵列集成和多传感器集成)和无线传感器网络。   2.智能控制系统——现场总线分散型控制系统(FCS)、大规模联合网络控制系统、高端可编程控制系统(PLC)、面向装备的嵌入式控制系统、功能安全监控系统。   3.智能仪表——智能化温度、压力、流量、物位、热量、工业在线分析仪表、智能变频电动执行机构、智能阀门定位器和高可靠执行器。   4.精密仪器——在线质谱/激光气体/紫外光谱/紫外荧光/近红外光谱分析系统、板材加工智能板形仪、高速自动化超声无损探伤检测仪、特种环境下蠕变疲劳性能检测设备等产品。   5.工业机器人与专用机器人——焊接、涂装、搬运、装配等工业机器人及安防、危险作业、救援等专用机器人。   6.精密传动装置——高速精密重载轴承,高速精密齿轮传动装置,高速精密链传动装置,高精度高可靠性制动装置,谐波减速器,大型电液动力换档变速器,高速、高刚度、大功率电主轴,直线电机、丝杠、导轨。   7.伺服控制机构——高性能变频调速装置、数位伺服控制系统、网络分布式伺服系统等产品,提升重点领域电气传动和执行的自动化水平,提高运行稳定性。   8.液气密元件及系统——高压大流量液压元件和液压系统、高转速大功率液力偶合器调速装置、智能润滑系统、智能化阀岛、智能定位气动执行系统、高性能密封装置。   三、八类重大智能制造成套装备   1.石油石化智能成套设备——集成开发具有在线检测、优化控制、功能安全等功能的百万吨级大型乙烯和千万吨级大型炼油装置、多联产煤化工装备、合成橡胶及塑料生产装置。   2.冶金智能成套设备——集成开发具有特种参数在线检测、自适应控制、高精度运动控制等功能的金属冶炼、短流程连铸连轧、精整等成套装备。   3.智能化成形和加工成套设备——集成开发基于机器人的自动化成形、加工、装配生产线及具有加工工艺参数自动检测、控制、优化功能的大型复合材料构件成形加工生产线。   4.自动化物流成套设备——集成开发基于计算智能与生产物流分层递阶设计、具有网络智能监控、动态优化、高效敏捷的智能制造物流设备。   5.建材制造成套设备——集成开发具有物料自动配送、设备状态远程跟踪和能耗优化控制功能的水泥成套设备、高端特种玻璃成套设备。   6.智能化食品制造生产线——集成开发具有在线成分检测、质量溯源、机电光液一体化控制等功能的食品加工成套装备。   7.智能化纺织成套装备——集成开发具有卷绕张力控制、半制品的单位重量、染化料的浓度、色差等物理、化学参数的检测仪器与控制设备,可实现物料自动配送和过程控制的化纤、纺纱、织造、染整、制成品等加工成套装备。   8.智能化印刷装备——集成开发具有墨色预置遥控、自动套准、在线检测、闭环自动跟踪调节等功能的数字化高速多色单张和卷筒料平版、凹版、柔版印刷装备、数字喷墨印刷设备、计算机直接制版设备(CTP)及高速多功能智能化印后加工装备。   四、六大重点应用示范推广领域   1.电力领域——重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3MW以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。   2.节能环保领域——重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。   3.农业装备领域——重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。   4.资源开采领域——重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。   5.国防军工领域——重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。   6.基础设施建设领域——重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。
  • GTI吉泰精密邀您参加GMP合规-验证技术创新实践大会
    一、会议邀约尊敬的客户:您好!GTI吉泰精密诚挚的邀请您参加2024年7月11-12日在武汉举办的“GMP合规-验证技术创新实践大会”。 展位序号 | NO.17会议时间 | 2024年7月11-12日会议地点 | 武汉光谷生物城 二、大会背景确认与验证作为药品安全的基础要素,无论是临床药品还是商业化生产,确认与验证一直是各国GMP要求的核心内容之一,是监管部门必查点,它也是制药企业在实际操作中遭遇最多挑战、争议和技术难题的焦点。伴随着ISPE确认与验证系列指南及NMPA新版GMP指南的颁布,如何在日益严格的监管环境下,采纳最新、最严谨的验证策略,遵循最新的法规要求,并结合风险评估与最佳制药实践经验,打造高效且优化的确认与验证流程,已成为制药企业确保持续合规生产、推动学术进步的关键所在。 三、展品预览 1.气溶胶光度计MODEL3991是一款颠覆了传统设计,以技术先进、设计科学的光散乱式线性数字气溶胶光度计,是检测高效过滤器完整性或泄漏试验必须采用的最佳测试仪器。结构紧凑、携带方便、操作设置均可以8.4inch的真彩色触摸显示屏各友好界面完成,因具有气溶胶噪声抑制功能,测试数据更加稳定。仪器内置三级权限管理,可设定角色及分配使用权限;生成日志报告,同时内置热敏打印机并配有长效热敏打印纸,测试现场即可完成测试数据的实时打印。 2.气溶胶光度计MODEL3990是一款技术先进、设计科学的光散乱式线性数字气溶胶光度计,是检测高效过滤器完整性或泄漏试验必须采用的最佳测试仪器。结构紧凑、携带方便、操作设置均可在5.6inch的真彩色触摸显示屏各友好界面完成,因具有气溶胶噪声抑制功能,测试数据更加稳定。内置热敏打印机并配有长效热敏打印纸,测试现场即可完成测试数据的实时打印。扫描探头通过一根4米长的管线与3990本体相连,不仅拥有与本体完全相同的操作功能并且同步显示,还具备一维码扫描功能,扫描受试高效过滤器的一维码后,测试数据自动识别归类,数据可追溯,方便测试数据的统计分析,提高了工作效率。 3.气溶胶发生器MODEL3990-01是一款采用Laskin-Nozzle方式的气溶胶发生器,坚固耐用,便携可靠。注入气溶胶( PAO等)溶液、接入20Psi ( 0.14Mpa )洁净的压缩空气后,流量为810cfm ( 1370m3/h )时,通过调节1-6个Laskin-Nozzle,可发生浓度为100μg/L的多分散悬浮颗粒物。 4.气溶胶发生器MODEL3990-02是一款热式、大容量的气溶胶发生器。注入气溶胶溶液并开机后,内部加热元件将液态气溶胶快速转变为蒸汽状态,通过惰性气体(如N₂ 、CO₂ 等)助力,将蒸汽快速冷却生成多分散气溶胶烟雾输出。低至少于2分钟的加热时间,高浓度气溶胶输出,广泛应用于小型的空气净化单元至大型的洁净室空调净化系统的过滤器泄漏测试。 5.GTI620型风量罩是集风量测试、风速测试、微差压测试于一体的智能型测试仪器,其广泛适用于空调、管道等场所的风速风量测试,并且可以进行高精度的微差压测试。 6.面风速仪GTI620-DP Grid是一款可以同时测量风速、风量、压差的便携式测试仪器,采用16个点位同时测试,能够实时计算出平均数值并显示,该仪器可实现多种测量模式切换以满足不同应用需求,配有触摸液晶屏,方便操作,支持数据记录、存储和导出,可通过APP与计算机进行数据传输和分析,也可以连接蓝牙打印机进行实时数据打印,方便数据记录与存储。 7.GTI 115 是一款测量精度高、性能稳定、操作简单,用于非腐蚀气体的手持式微差压测试仪。适用于测量气体的正压,负压及差压,是医院,洁净室,实验室,暖通空调,壁挂炉燃气压力测试或标定压力的理想仪器。连接皮托管可测风速、风量。具有数据存储功能和导出功能,更加方便用户使用。 8.GTI 600是一款手持式叶轮风速仪,可更换大、中、小三种叶轮式传感器,广泛应用于精确测试散流器、格栅出风口和过滤器等不均匀分布的风速、温度并计算风量。 四、邀请函届时,GTI吉泰精密将携带高效过滤器检漏系统、风量罩、手持式微差压计等测试仪器亮相会议现场,并针对制药行业生产测试需求提供完备的洁净环境测试解决方案,敬请期待!
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • 中德智能制造创新园揭牌 将研发全球首台量子精密谱仪
    1月18日,合肥国家中德智能制造国际创新园揭牌仪式暨2017年度合肥高新区智能制造项目集中签约仪式在合肥市政务中心举行。创新园将成为中德两国科技创新、成果转化、产业发展合作的示范区,中德两国的科研人员将在合肥“碰撞”出“智能制造”的火花。  研发全球首台量子精密测量谱仪  此次签约的项目团队多为高、精、尖人才,其中包括中科大的量子研究团队。  “中科大杜江峰院士主要开展量子精密测量领域的研究工作,其团队在该领域的研究成果处于世界领先水平。”高新区负责人介绍,杜江峰院士承担量子精密仪器研发和制造项目,将在高新区研发全国首台脉冲式电子顺磁共振谱仪,及全球首台量子精密测量(量子探针)谱仪并实现产业化。  该负责人介绍,在本次智能制造项目集中签约仪式上,将围绕中德合作、高校院所及知名企业合作等进行12个重大项目的签约。  创新园重点发展五大产业集群  合肥国家中德智能制造国际创新园位于合肥高新区,规划面积15平方公里,南区规划面积5平方公里,功能定位为科研培训区、企业孵化区、配套服务区。北区规划面积约10平方公里,位于合肥高新区南岗科技园,功能定位为产业集中区。  创新园以智能制造产业为主,重点发展新一代信息技术、高端装备制造、节能和新能源汽车、生物医药和高端医疗器械、应急装备制造五大产业集群,建设中德智能制造国际交流与教育合作基地、中德智能制造成果转移与企业孵化基地两大创新平台和一个技术创新中心,形成一套综合性金融创新服务体系。  成为中德两国科技创新示范区  合肥国家中德智能制造国际创新园是科技部批准设立的国际合作基地,是落实中德合作的重要平台和抓手。  该负责人介绍,目前国际创新园已集聚了一批德资企业,在技术研发、人才交流等方面中德双方也建立了良好的合作关系。下一步,合肥高新区将集聚相关资源,进一步加强与德国在项目、人才、物流、交通等领域的合作,将合肥国家中德智能制造国际创新园打造成为合肥对外开放合作发展的新窗口、“中国制造2025”和“德国工业4.0”融合发展的新平台和深度结合的集中区、科技金融与高端国际人才的聚合区,最终成为中德两国科技创新、成果转化、产业发展合作的示范区。
  • 密理博推出新一代微毛细管细胞分析平台
    密理博微毛细管细胞分析平台:突破传统,新一代流式技术革命   今年初,密理博成功收购了Guava Technologies后,又对“guava 微毛细管细胞分析平台”进行了创新和升级。为了让更多的用户体会新一代流式技术带来的科技震撼,Millipore推出了中国第一个以微毛细管技术为核心的细胞分析平台。   在这个平台上,您不仅可以领略革命性的 “微毛细管技术”,也可以感受细胞分析平台内部的精密构造、精细光路和精确检测。   欢迎进入guava平台!平台网址:http://tong.dxy.cn/upload/2009/guava/welcome.html
  • 基于可调塑性的凝固态液态金属的3D柔性电子,摩方精密为科研探索提供精密技术支持
    哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。在本项研究中,由摩方精密25 μm精度的nanoArch® P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。
  • 650万!武汉大学仪器分析实验平台采购项目
    项目编号:ZB0104-202212-ZCHW0933项目名称:武汉大学仪器分析实验平台采购项目预算金额:650.0000000 万元(人民币)最高限价(如有):650.0000000 万元(人民币)采购需求:序号货物名称主要规格数量(套)是否接受进口备注1高效液相色谱仪高梯度泵(带清洗组件)2是2石墨炉原子吸收光谱仪进行常量、微量和痕量无机元素的分析测定2是3差示扫描量热仪(DSC)温度范围:-120℃~450℃2是4固体紫外分光光度计光源:氘灯、50瓦钨灯、汞灯1是5纳米粒度及电位分析仪自动,调节范围:100%-0.0003%1是6纳米颗粒跟踪分析仪检测0.4 – 5.0 cP (mPa.s)的粘度信息1是核心产品7笔记本电脑内存:不低于16G LPDDR4x 4267MHz内存40是8等温滴定量热仪亲和力测定范围 10-2 M ~ 10-12 M1是核心产品9高精密双面光刻机双面对准单面曝光1台否配套标的需要的设备、备件、耗材等合同履行期限:进口设备:收到买方信用证并办理完免税后90天;国产设备:合同签订后90日内;质保期:进口设备:验收合格后至少3年(设备分项有要求的从其要求);国产设备:验收合格后至少2年(设备分项有要求的从其要求)。本项目( 不接受 )联合体投标。
  • 费业泰:用“微米”丈量人生的密度 留下精密仪器领域“费家军”
    2007年,费业泰被授予国际测量与仪器委员会“终身贡献奖” 神舟浴火腾飞升空,蛟龙耐寒深潜入海,高度精密的仪器在热胀冷缩时会产生什么变化?如何才能保证它们正常运转?我国高新技术领域的每一项重大突破,都离不开精密仪器学科的支撑。  在我国精密仪器领域,很多知名专家自称“费家军”,因为他们有着共同的导师——我国现代精度理论及工程应用的奠基人、合肥工业大学教授费业泰。在把60年人生奉献给精密仪器事业后,今年2月26日,费业泰教授在合肥逝世,享年82岁。  60年努力,奠基我国现代精度理论及工程应用  “精度”与“误差”这对反义词,是人类科学研究中不可回避的问题。而费业泰一辈子的工作,正是不断消除误差,追求越来越高的精度。  1955年,费业泰在合肥工业大学留校任教,同年6月加入中国共产党,1959年来到新开办的精密仪器专业。那时,新中国工业建设刚刚起步,我国对精度与误差的研究几近空白,机械工业总是难逃噪音大、震动大、能耗大的“傻大粗”模式。  现在精度测量以微米为标准,而当时的标准是毫米甚至厘米,相差千倍、万倍,为了改变这一切,费业泰养成了没日没夜工作的习惯。由于精密仪器特别敏感,为了确保实验质量,多年来,费业泰在忙碌一天后,晚上仍会趁夜深人静继续待在实验室。  经过长期的研究,费业泰提出了精度误差理论,半个多世纪来,这一理论在我国社会主义现代化建设的各个领域中得到了广泛应用,并成为我国精度评定的基本方法以及精密仪器学科的理论基础。  航天器在太空中飞行,向阳与背阳的两面温度相差数百摄氏度,由于膨胀系数标准有误,用什么材料才能确保卫星正常使用,一直长期困扰我国航空业的发展。九十年代末,时任我国某型卫星研制部门负责同志找到了费业泰。  在大量实验的基础上,费业泰发现原有的检测方法和计算标准存在较大误区,于是创新膨胀系数的检测和制定方法,不仅成功解决了精密仪器的稳定问题,还依此提出了全新的热误差理论体系。  在我国精密机械领域,曾一度陷入加工设备每个部件都要高精度的误区。这不仅大大提高了成本,而效果也并不稳定。针对这一情况,费业泰在我国率先提出“最好的部件在一起不一定能有最好的性能”这一理念,找到了误差传递的规律,并利用这一规律提出了新的方法,不再要求每个部件均为高精度,而是通过不同部件之间的最优组合,保证机械设备的高精度。这一方法成为我国最新精度理论的重要内容。  60年来,费业泰承担并完成了40余项高水平科研项目,发表过320余篇论文,获得9项省部级奖励,是安徽省五一劳动奖章获得者,为我国重点科研项目解决了大量实践难题,被称为我国精度理论的开拓者。2007年,费业泰被国际测量与仪器委员会(ICMI)授予终身贡献奖。  2010年,费业泰入选“感动工大十大人物”  潜心钻研,淡泊名利拒绝美国抛出的“橄榄枝”  《误差理论与数据处理》是费业泰的9本专著之一,他的学生、合肥工业大学仪器科学与光电工程学院院长于连栋教授介绍,该书1981年被列为国家重点教材,成为我国精密仪器学科理论的开拓之作。30多年来,该书再版7次,被全国200余所高校采用,很多年轻一代的杰出青年、长江学者,都是读着它迈进了精密仪器科学的殿堂。  “做科研不能带有一点功利心。”合肥工业大学仪器科学与光电工程学院苗恩铭教授至今牢记着费业泰的教导。  其实热误差理论,费业泰早在1980年代就已经发现并进行总结,但很长一段时间内,热误差的研究一直是领域内的“冷门”,甚至其理论的科学性也受到质疑。  如今苗恩铭率领的热误差研究团队,在全国已处于领头羊的位置,但最初这个研究之“冷”,曾让他想到放弃。  “科研不能追名逐利,什么方向热门做什么,你在科学的路上走不远。”费业泰的一再告诫,让苗恩铭坚持了下来。如今,热误差理论,已经成为精密仪器学科典型的三个学科方向之一。而热误差理论研究团队,也不断在我国重大项目中建功立业。  费业泰的老伴郭子顺还记得,1989年费业泰在美国西雅图华盛顿大学做客座教授时,他所负责的波音公司一项科研项目原计划要做9个月,但在他的努力下仅用时6个月。费业泰的出色表现引起了美国方面的兴趣,向他抛出橄榄枝,表示如果他愿意留下,就可以拿到绿卡。但费业泰毫不犹豫地拒绝了,甚至放弃了应得的3个月优厚报酬,毅然提前回国。  虽然淡薄名利,但费业泰对国内相关产业的发展一直十分关注。  “中国数控机床的落后,让老先生一直耿耿于怀。”苗恩铭说,费业泰在1980年代发现热误差后,研究了国际上近30年来数控机床精度的发展,预测未来机床如果要提高精度,必须利用其材料结构的热特性来设计。  当时费业泰找了很多国内大型企业,建议企业进行相关研发提高产品精度,但当时普通数控机床很好卖,他的建议被一一拒绝。1990年代中期,费业泰受邀到日本作学术报告,他的理论引起现场日本、德国专家的注意,并特意向他请教。2005年,日本企业生产了第一台热亲和数控机床,现在这种机床已经成为全世界最著名的数控机床之一。  “现在很多国内企业产品卖不出去,又去模仿,但只能模仿个外形,其实它的核心思想是我们这边出来的,但是当年国内却没有人相信。”苗恩铭说。  2013年,80岁的费业泰仍坚持工作  教书育人,言传身教关注每个学生前行  为了保证人才培养质量,费业泰不但对学生因材施教,还始终坚持在科研一线,用自己的言行给学生们做好榜样。  “费老师知道每个学生的特点,哪怕我们毕业了,他还会一直关注着。” 于连栋说,费老师去世后,有同学在微信群里晒出老师以前寄来的信,老人家对这位学生从专业方向到人生道路,都给出了言辞真切的建议,让人十分感动。  费业泰一生严谨,今年48岁、早已是博士生导师的胡鹏浩教授回忆起恩师的严谨时说:“怕挨训、被训怕了,但总是被训得心服口服。”  2003年的暑假期间,时任学院副院长的胡鹏浩去找费业泰汇报工作,因穿着随意让老师很不高兴。  最初胡鹏浩不以为然,他觉得不是工作日,也不在正式场合,穿着随便一些无所谓,但老师的反问让他意识到自己的不足:“老师说,如果现在学院有急事,需要你立即送一份材料到教育主管部门,你觉得你现在的穿着合适吗?这就是费老师的做事风格。”  “我参加工作后,学校安排我授课,但费老师坚持让我再等一年,用一年的时间备课。” 费业泰的学生、合肥工业大学仪器科学与光电工程学院副院长夏豪杰副教授说,费老师认为“照本宣科是没有质量的授课”,只有精心准备,才能真正传授给学生知识。  除了专业知识和严谨的科研态度,费业泰带给学生的,还有做人的道理。  2004年,胡鹏浩评上了教授,但费业泰却说其实不希望他这么早获评,随后老先生的一席话让胡鹏浩非常感动。  “他说虽然我评上教授,但知识的宽度和广度沉淀不够,可能会碍于面子,到哪都端着架子,不懂的也不好意思问,时间一长,就会越来越空。”胡鹏浩说,从那时起,他不管到哪,遇到不懂的就会直接问,  2011年夏天,77岁高龄的费业泰在北京进行完一项国家专项答辩后,急着赶回合肥,由于北京暴雨,等到23点仍然不能起飞,临时也买不到火车票。  “下着大雨,他跑到火车站,没有票又回到机场,这么大年纪,我看着很心疼,就劝他住一晚明天再走,他却坚持要当天回去。”当时随行的夏豪杰说,当天老人家等到凌晨4点,才得到登机的通知。  早上7点,费业泰带着一身疲惫抵达合肥,随后立即赶到办公室时,这时夏豪杰才发现,费业泰坚持赶回来的原因,只是答应给一位研究生修改论文。  “费教授辛勤工作60年,精于专业,一心教书育人,忠诚于人民的教育事业,是一位有理想信念、有道德情操、有扎实知识、有仁爱之心的好老师。”合肥工业大学党委副书记周军说。  2013年,80岁的费业泰仍坚持工作  2013年,费业泰与学生们在桃李园合影
  • 青岛出台“十条”支持措施推动精密仪器仪表产业集聚
    市政府办公厅近日印发《青岛市精密仪器仪表产业园发展若干政策》。青岛将以政策撬动加快推动精密仪器仪表企业向位于高新区的青岛市精密仪器仪表产业园集聚,借此提升产业链完整度和竞争力,打造北方仪器仪表产业总部基地。精密仪器仪表产业是青岛面向未来重点布局发展的新兴产业之一。青岛市精密仪器仪表产业园总占地2903.5亩。根据政策,园区将重点发展工业测控系统与装置、实验分析仪器、传感器及核心元器件三大领域,并围绕这三大领域开展延链、补链、强链。政策共涵盖十条支持措施。青岛将连续三年由市财政每年出资1亿元用于园区建设,同时从加速优质项目集聚、支持企业规模化发展、支持企业加强科技创新、鼓励产品推广应用等方面给予支持。根据政策,新入园的精密仪器仪表企业申请租用研发、办公用房或生产厂房的,可依条件连续获得5年房租补贴。对满足条件的投资企业和项目,竣工投产后按照设备投资的20%给予最高1000万元的一次性奖补。企业是产业发展的主体,企业做大做强是产业发展的根本支撑。政策提出,对园区内具有独立法人资格并纳统的精密仪器仪表制造企业,年营业收入首次达到5000万元、1亿元、3亿元的企业,分别给予不同数额的一次性奖励。对实施技术改造并达到一定标准的规模以上的制造业企业,按照企业年度设备投资不超过16%的比例给予奖补。搭建良好创新生态对新兴产业发展而言至关重要。政策支持园区领军企业联合高校院所协同创新,强化共性技术供给。支持园区企业开展技术攻关、平台建设等,按现行市级科技计划体系给予支持。对园区内加大研发投入的产业链上下游企业、研发机构,按照企业当年加计抵扣确认研发费用的8%-15%予以每年最高不超过600万元的奖励。针对产品技术集成和功能创新,对通过省级认定首台(套)技术装备及关键核心零部件的企业,按照认定年度产品销售额5%给予奖补,成套设备最高奖补150万元,单台设备(关键核心零部件)最高奖补100万元。产业发展离不开人才。政策对入驻园区企业从产业人才引进、产业人才培育以及高端人才聘用等三方面给予奖励。根据规划,到2028年,青岛市精密仪器仪表产业园目标营收规模突破300亿元,“四上”及高新技术企业数量达到180家以上,国家级、省级创新平台达到20个以上,上市企业达到8家以上。培育一批细分领域隐形冠军,打造一批供应链稳定、要素链完备、创新链活跃、“根植性”和竞争力强的现代产业集群,塑造“青岛制造”新优势。
  • 科众精密-全自动晶圆接触角测量仪,测量等离子处理镀膜后的接触角
    半导体晶圆表面的接触角测试是半导体制造中常见的一项表面质量评估方法,其重要性在以下几个方面:1、粗糙度评估:半导体晶圆表面的粗糙度会对接触角产生影响,接触角测试可以用来评估晶圆表面的粗糙度,从而评估其表面质量。表面清洁评估:半导体晶圆表面的杂质和污染物会影响接触角的测量结果,接触角测试可以用来评估晶圆表面的清洁程度。2、表面处理评估:半导体晶圆表面的各种表面处理,如刻蚀、沉积、退火等会影响接触角的测量结果,接触角测试可以用来评估这些表面处理对晶圆表面性质的影响。3、界面张力评估:在半导体制造中,各种材料的粘附和分离过程都涉及到界面张力的变化,接触角测试可以用来评估晶圆表面和各种材料之间的界面张力。综上所述,半导体晶圆表面的接触角测试可以用来评估晶圆表面的粗糙度、清洁程度、表面处理效果和界面张力等方面的性质,对半导体制造过程中的表面质量控制具有重要的意义。晶圆全自动接触角测量仪详细参数:技术参数KZS-50图片硬件外观接触角平台长12寸圆平台(6寸、8寸、12寸(通用)扩展升级整体扩展升级接触角设备尺寸670x690x730mm(长*宽*高)重量35KG样品台样品平台放置方式水平放置 样品平台工作方式三维移动样品平台样品承重0.1-10公斤仪器平台扩展可添加手动,自动倾斜平台,全自动旋转平台,温控平台,旋转平台,真空吸附平台调节范围Y轴手动行程400mm,精度0.1mmX轴手动,360°自动旋转,精度0.1mm测试范围0-180°测量精度高达0.01°测量面水平放置样品平台旋转全自动旋转平台仪器水平控制角位台可调,镜头可调,样品平台可调滴液滴液系统软件控制自动滴液,精度0.1微升,自动接液测试注射器高精密石英注射器,容量500ul针头直径0.51mm,1.6mm表面张力测试滴液移动范围X轴手动调节80mm,精度0.01mmZ轴自动调节100mm,精度0.01mm滴液系统软件控制自动滴液泵滴液模组金属丝杆滑台模组镜头/光源光源系统单波冷光源带聚光环保护罩,寿命60000小时以上光源调节软硬共控镜头可移动范围滑台可调100mm镜头远心变倍变焦定制镜头镜头倾斜度±10°,精度0.5°相机帧率/像素300fps(可选配更高帧率)/300万像索电源电源电压220V,功率60W,频率60HZ漏电装置带漏电装置保护软件部分软件算法分辨率拟合法、弧面法、θ/2、切线法、量角法、宽高法、L-Y法、圆法、椭圆法、斜椭圆法测量方式全自动、半自动、手动拟合方式 分辨率点位拟合,根据实际成像像素点完全贴合图像拍摄支持多种拍摄方式,可单张、可连续拍摄,支持视频拍摄,并一键测量。左右接触角区分支持分析方法座滴法、纤维法、动态润湿法、悬滴法、倒置悬滴法、附着滴法、插针法、3D形貌法、气泡捕获法分析方式 润湿性分析、静态分析、实时动态分析、拍照分析、视频分析、前进后退角分析保存模式Word、EXCEL、谱图、照片、视频总结1、晶圆接触角测量可以订制,适用于各种半导体制造中常用的6英寸、8英寸、12英寸等尺寸的晶圆。2、高精度测量:可以在非常小的范围内准确测量晶圆表面的接触角,具有高度的重复性和准确性。3、多功能性:晶圆接触角测量仪通常具有多种测试模式,可以测量不同类型的表面处理,如刻蚀、沉积、清洗等过程对接触角的影响,可以提供全面的表面质量评估。4、高效性:晶圆接触角测量仪可以在非常短的时间内完成多个晶圆的测量,提高了实验的效率。5、自动化程度高:晶圆接触角测量仪通常具有自动化控制和数据处理系统,可以自动完成晶圆的定位、测量和数据处理,减少了实验人员的工作量和误差。晶圆接触角测量仪是一种专门用于测量半导体晶圆表面接触角的仪器。相比传统的接触角测量仪,它具有以下优势:1、适用于大尺寸晶圆:晶圆接触角测量仪通常具有较大的测试平台,能够容纳大尺寸的晶圆,适用于半导体制造中常用的6英寸、8英寸、12英寸等尺寸的晶圆。2、高精度测量:晶圆接触角测量仪使用高精度的光学传感器和计算算法,可以在非常小的范围内准确测量晶圆表面的接触角,具有高度的重复性和准确性。多功能性:晶圆接触角测量仪通常具有多种测试模式,可以测量不同类型的表面处理,如刻蚀、沉积、清洗等过程对接触角的影响,可以提供更全面的表面质量评估。3、高效性:晶圆接触角测量仪可以在非常短的时间内完成多个晶圆的测量,提高了实验的效率。4、自动化程度高:晶圆接触角测量仪通常具有自动化控制和数据处理系统,可以自动完成晶圆的定位、测量和数据处理,减少了实验人员的工作量和误差。综上所述,晶圆接触角测量仪具有高效、高精度、多功能等优点,在半导体晶圆表面处理和质量控制中具有广泛的应用前景。
  • 超画布:可重构光学平台光学器件新突破
    p   清华大学精密仪器系尤政课题组、材料学院刘锴课题组、物理系魏洋课题组,与美国伯克利加州大学吴军桥课题组、姚杰课题组、科斯塔斯· 格里戈罗普洛斯(Costas P. Grigoropoulos)课题组合作,在材料学国际知名期刊《先进材料》(Advanced Materials)上发表题为《非光刻和现场编程的光子超画布》(A Lithography-Free and Field-Programmable Photonic Metacanvas)的研究论文,提出了一种新型的可重构光学平台——超画布。该论文被《先进材料》杂志选为该期的内封底(Inside Back Cover)文章。 /p p   传统光学器件的技术参数与功能是固定的,这给光学器件与光学系统的实际应用带来了诸多不便。如果能够在现场调节光学器件的技术参数或功能,就可以大幅提升光学系统的工作性能。因此,可重构光学器件成为了近年来光学领域的研究焦点。 /p p   为了实现上述目的,清华大学和伯克利加州大学的研究人员创造性地提出使用相变材料二氧化钒,构建新型全固态的可重构光学平台“超画布”的方法。借助二氧化钒薄膜的相变热滞回线,研究人员可以在超画布上实现几乎任意光学元件的快速写入与无痕擦除。光学元件的写入由低功率(约1 mW)的连续激光和三维移动平台完成,整个过程中超画布的温度可以保持在90 ℃以下。光学元件的擦除依靠降低超画布的温度实现,最快仅需约1秒就可以完全擦除超画布上所有的光学元件或图案。 /p   超画布具有成本低、无需光刻、重构速度快等优点。文章中,研究人员首先基于超画布演示了能够偏折光线的可重构光学器件 接着,使用复数块超画布搭建了可重构光学系统样机,对光学现象的动态转变过程进行了观测 最后,展示了使用超画布进行物理仿真,以辅助光学器件设计工作的方法。 p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201802/insimg/3106e717-a2e6-496e-95c0-bf5c48e67080.jpg" title=" e86f87c6-4006-42ce-a787-28c6fad7719b.jpg" / /p p style=" text-align: center "   基于超画布的可重构光学器件与可重构光学系统示意图。 /p p   超画布的研究促进了光学器件与光学系统技术的发展,此成果有潜力应用到光学计算、可重构光子电路、生物医疗、全息图像等领域中。《先进材料》审稿人在评审意见中指出:“这篇文章展示了可调超表面领域的一个巨大的技术进步。” /p p   清华大学尤政教授指导的精密仪器系2017届博士毕业生董恺琛、伯克利加州大学已出站的博士后洪錫濬(Sukjoon Hong)和博士研究生邓洋为该文章的共同第一作者。该项研究得到了中国国家自然科学基金、美国国家科学基金、清华-富士康纳米科技研究中心等方面的支持。 /p p br/ /p
  • 2022年黑龙江重点研发计划:支持精密测量、超声无损等高端装备项目
    11月23日,黑龙江省科学技术厅公布2022年省重点研发计划重点领域专项拟支持项目清单。共128项,涉及数字经济、生物经济、高端装备、新材料、智能农机装备、常见多发病、国际合作等重点领域。其中,高端装备领域拟支持哈尔滨安宇迪航空工业有限公司“飞机超大尺寸复杂曲率壁板成型技术研发”、哈尔滨艾瑞排放控制技术股份有限公司“新能源插电式混合动力系统近零排放及降噪关键技术攻关及智能产业化”、哈尔滨超精密装备工程技术中心有限公司“大型高端回转装备数字化测量装配核心技术与仪器研发”、哈尔滨长川超声仪器科技有限公司“高精度轴承全息超声波无损在线自动检测装备研制”、哈尔滨新力光电技术有限公司“超精密铣削用空气静压电主轴研制”、黑龙江大学“高端电子系统板级和设备级的多余物高精密检测技术研发”等项目。2022年黑龙江省重点研发计划重点领域专项拟支持项目清单(共128项)序号所属专项项目名称项目单位项目负责人1数字经济铁路货车数字化智能化制造产线关键技术研究及示范应用中车齐齐哈尔车辆有限公司付继连2数字经济复合材料构件智能自动铺丝设备开发及应用哈尔滨玻璃钢研究院有限公司刘永纯3数字经济数字化智能网联精密机床柔性产线关键技术研究通用技术齐齐哈尔二机床有限责任公司江崇民4数字经济基于复合联动控制的空间复杂结构柔性数字化制造技术哈尔滨工大峻煊科技有限公司陆洋5数字经济面向龙江数字航道的智能无人艇观探测关键技术与系统研发哈尔滨新光光电科技股份有限公司马腾6数字经济应用于给排水的工业控制系统研发及产业化哈尔滨凯纳科技股份有限公司隋祥7数字经济数字化轨道电路技术研究黑龙江瑞兴科技股份有限公司肖彩霞8数字经济基于人工智能的轨道交通运载工具动态分析技术研究应用哈尔滨市科佳通用机电股份有限公司马凌宇9数字经济大型冲击式转轮数字化制造技术研究哈尔滨电机厂有限责任公司李景10数字经济复杂恶劣环境下高精度智能环境监测传感器网络中国电子科技集团公司第四十九研究所咸婉婷11数字经济能源装备集团企业数字化与智能化协同管控技术与平台哈尔滨电气股份有限公司曲晓峰12数字经济严寒地区超低能耗智慧建筑关键技术研究与示范黑龙江省寒地建筑科学研究院李若冰13数字经济航空零部件柔性智能数字化加工技术研究中国航发哈尔滨东安发动机有限公司王山城14数字经济数字化核能供热堆三维隔震减震技术研究哈尔滨工程大学侯钢领15数字经济面向海上平台的三维海洋数字孪生系统研发哈尔滨哈船导航技术有限公司刘厂16数字经济基于边缘计算的工业设备状态实时评估方法研究哈尔滨工业大学谭立国17数字经济基于5G被动式绿色建筑门窗材数字协同加工中心关键技术研究东北林业大学杨春梅18数字经济基于强化学习的自主智能无人系统安全控制研究哈尔滨工业大学吴立刚19数字经济传感器监测数据的紧凑表达与挖掘研究哈尔滨工业大学靳水林20数字经济基于多用户联邦知识迁移的滚动轴承智能故障诊断方法研究哈尔滨工业大学李玉庆21数字经济基于多用户联邦知识迁移的滚动轴承智能故障诊断方法研究哈尔滨工业大学武小荷22数字经济面向智慧农业的可信数据共享与溯源技术研究哈尔滨工业大学程思瑶23数字经济规模化种植与农业托管经营数字农服体系研发北大荒信息有限公司巩建光24数字经济奶牛养殖数字牧场生产关键技术研究东北农业大学戴百生25数字经济基于“天空地”遥感数据的农业智能信息服务研究哈尔滨工业大学人工智能研究院有限公司孟冉26数字经济大田作物高效生产智能精准管控系统研究黑龙江省农垦科学院任志鹏27数字经济智能拉曼共焦显微农作物营养原位检测技术研究哈尔滨工业大学王伟波28数字经济心血管病预防诊断救治与康复智能服务平台研发哈尔滨医科大学附属第二医院于波29数字经济人工智能辅助药物发现和开发关键技术研究哈尔滨工业大学李杰30数字经济危重症患者远程医疗救治支持、质控与智能决策系统哈尔滨医科大学附属第一医院杨威31数字经济基于人工智能与物联网的信息无障碍服务平台及智能终端研究哈尔滨工业大学马琳32数字经济基于中俄为核心的斯拉夫语系机器翻译技术的国际文化交流支撑系统研发哈尔滨工业大学冯骁骋33数字经济基于数字技术的寒区城市建筑碳排放监测智能云平台技术研发哈尔滨工业大学建筑设计研究院有限公司费腾34数字经济适应数字经济的企业智能办公与服务平台关键技术研发哈尔滨工业大学软件工程股份有限公司苘世明35数字经济直播电商大数据挖掘分析技术研究哈尔滨兴业宝科技有限公司白淼源36数字经济基于联邦学习的数据隐私保护技术研究哈尔滨理工大学马超37数字经济面向闭源电力工控系统的安全防护技术研究哈尔滨工业大学王莘38生物经济寒地玉米种质遗传基础分析与抗逆分子标记开发及应用东北农业大学邸宏39生物经济利用全基因组选择育种技术创制玉米优异种质资源及技术应用黑龙江省农业科学院玉米研究所扈光辉40生物经济寒地粳稻孕穗期耐冷基因的鉴定与种质创新利用中国科学院东北地理与农业生态研究所农业技术中心卜庆云41生物经济利用全基因组选择方法筛选耐盐碱水稻种质资源及配套技术研究东北农业大学邹德堂42生物经济寒地野生大豆重要性状基因挖掘与种质创新利用黑龙江省农业科学院耕作栽培研究所毕影东43生物经济利用重要性状机理解析抗线虫、耐盐碱大豆高产优质同步模式研究与示范黑龙江省农业科学院大豆研究所王家军44生物经济主要蔬菜作物分子辅助育种决策与新品系培育研究黑龙江齐山种业有限公司夏永涛45生物经济利用等离子体诱变技术选育适合北方栽培的珍稀伴生食用菌菌种及应用黑龙江黑臻生物科技有限公司马世玉46生物经济肉牛分子育种研发与遗传资源挖掘黑龙江省农业科学院畜牧研究所刘利47生物经济利用基因组选择技术进行民猪核心群精准建设及专门化品系培育黑龙江省农业科学院畜牧研究所刘娣48生物经济禽流感新型水禽疫苗研发和产业化哈尔滨国生生物科技股份有限公司柳金雄49生物经济伴侣动物疫病防控制剂创制中国农业科学院哈尔滨兽医研究所贾洪林50生物经济猪伪狂犬病变异株活疫苗的研制与产业化哈尔滨维科生物技术有限公司田志军51生物经济L-乳酸发酵生产关键技术研究与应用京粮龙江生物工程有限公司田强52生物经济超低热量甜味剂赤藓糖醇发酵生产关键技术与应用黑龙江龙凤玉米开发有限公司王洪军53生物经济高品质葡萄糖氧化酶产品开发及产业化示范黑龙江卫诺恩生物技术有限公司柏映国54生物经济玉米食品基料粉及其系列产品开发及关键生产设备创制大庆老街基农副产品有限公司王若坤55生物经济豆类膳食功能因子的精准生物富集及靶向调控技术研究及应用黑龙江九阳豆业有限公司江连洲56生物经济高值乳品生物加工和品质提升技术研发及应用东北农业大学李晓东57生物经济一种新型核酸递药系统在抗肿瘤及相关疾病的开发与应用哈药集团股份有限公司姜海涛58生物经济重组人源MG53突变体蛋白药物的临床前研究牡丹江友搏药业有限责任公司务勇圣59生物经济基于人用经验的治疗非糜烂性胃食管反流Ⅰ类新药清降和胃颗粒的研究与开发黑龙江珍宝岛药业股份有限公司李天翥60生物经济基于多组学的中医方证生物学机制研究共性技术黑龙江中医药大学王喜军61生物经济基于多组学技术的四妙勇安汤方证关联机制研究哈尔滨工业大学韩放62生物经济红曲黄芪蓝莓联合提高免疫力功能性食品研发及产业化哈尔滨医科大学孙长颢63生物经济基于多组学分析五加科复合多糖肠道菌群-免疫调节-肿瘤微环境调控机制研究及金五加泡腾片的创制哈尔滨商业大学于淼64生物经济经典名方核心药对的拟雌激素体内效应物质及关键调控靶点研究哈尔滨商业大学李文兰65生物经济三氧化二砷体内代谢产物的药效及心脏毒性作用机制研究哈尔滨医科大学附属第一医院海鑫66生物经济高品质核苷制备关键技术攻关肇东星湖生物科技有限公司任洪发67生物经济高纯度二氢槲皮素和水溶性矿物质螯合物绿色制造技术牡丹江灵泰药业股份有限公司赵春建68生物经济新型韦兰胶工业化生产工艺开发与应用研究大庆华理生物技术股份有限公司刘金峰69生物经济龙江特色挥发油微波连续提取与缓释颗粒制备关键技术东北林业大学贾涛70生物经济秸秆类生物质高效产氢关键技术研发与应用示范哈尔滨工业大学丁杰71生物经济微藻油脂的合成代谢网络及调控机制研究哈尔滨工业大学任宏宇72生物经济面向低碳绿色的城市生活污水菌藻共生MBR深度处理与膜污染控制技术研究与示范哈尔滨电气环保有限公司牛金豹73生物经济基于生物捕食的污水污泥高效处理与磷同步回收的“绿色”水厂技术研究与示范哈尔滨工业大学田禹74生物经济污水处理厂碳捕捉及碳源优化利用调控技术研发哈尔滨工业大学邱珊75生物经济污水处理厂碳捕获与定向资源回收技术及机制哈尔滨工业大学邢德峰76生物经济黑龙江省人群癌症基因组计划哈尔滨工业大学王亚东77生物经济生物大数据网络实时分析与安全监测技术研发哈尔滨工业大学赵天意78生物经济高精度生物3D打印装备与工艺哈尔滨汇恒科技有限公司卢礼华79
  • 新品发布 蓄势而来|摩方精密邀您共聚TCT Asia 2024!
    亚洲3D打印与增材制造展览会(TCT Asia),作为数字化制造领域的顶级盛会,始终秉承创新突破的理念,致力于推动3D打印、工程软件、三维扫描、后处理加工以及相关创新设备和工艺制造的前沿发展。这一盛会汇聚了全球范围内的行业专家和领军企业,共同探讨和分享数字化制造领域的最新动态和未来发展趋势。第十届TCT Asia盛大启幕,将于2024年5月7日-9日在上海国家会展中心7.1&8.1馆举办。届时,重庆摩方精密科技股份有限公司(以下简称:摩方精密)将携多款新设备、新材料及高精密3D打印解决方案重磅亮相8.1H馆8F30展位,诚邀您亲临TCT Asia现场,亲身体验到全球3D打印产业的最新动态,共同见证这场集思想交锋、智慧碰撞于一体的科技盛宴,与摩方精密一同探索数字化制造的辽阔未来![ 01 ] 开启 高精密制造的深度对话摩方精密,作为高精密增材制造领域的领导者,始终秉持原创技术的核心,以创新驱动制造。在新技术、新设备、新产品、新材料的探索之路上,摩方精密的步伐从未放缓,始终关注市场的动态,回应用户的呼声,加速向高效率、规模化、多场景生产制造的转型。通过持续的研发投入,摩方精密一系列凝聚创新智慧的新产品即将于5月7日10:00在TCT Asia摩方精密展位现场(8.1H馆 8F30)正式揭幕发布。为了让用户深入领略摩方精密微纳3D打印技术和设备,近距离体验各类产品的创新突破,摩方精密副总裁周建林先生和产品应用部总监彭瑛博士将亲自莅临现场,揭示新品背后的创新故事和研发历程,分享摩方精密的最新技术和行业洞察。更有专家学者、行业大拿等神秘嘉宾莅临现场,敬请期待![ 02 ]重塑 未来的增材制造方式摩方精密深耕科研与工业设备研发制造,不断拓展微纳3D打印技术应用场景,在医疗器械、精密电子、超材料、仿生学、微机械、生物医疗、微流控、新能源等领域持续赋能研发制造。同时,摩方精密不断深耕行业,根据客户不同需求创新研发设备,提供新技术、新方法、新模式的定制化解决方案,赋能多领域研发进程。此次TCT Asia现场,摩方精密将展示多款最新研发的设备、创新应用及新材料。其中,microArch® Dual Series作为摩方精密新一代的3D打印设备系列,搭载全新复合精度光固化3D打印技术,解决了复合式跨尺度加工的难点,同时还配备了自动水平调节系统,极大程度地提高生产效率,降低生产成本,进而增强制造业质量、效益和核心竞争力。[ 03 ]首发 新一代摩方精密设备此次TCT Asia展会开幕日,摩方精密将在展位现场举办线下产品发布会,隆重推出microArch® Dual Series的两款双精度面投影光固化3D打印设备以及搭载了全新升级自动水平调节系统的第二代设备等一系列创新产品。届时也将同步开启线上直播,点击下方关注摩方精密视频号(PuSL高精密3D打印),预约锁定5月7日10:00“PuSL高精密3D打印”直播间,一起见证摩方精密新品发布精彩时刻,更有好礼随时掉落请勿离开~在TCT Asia展会期间,摩方精密精心策划了一系列线下互动小游戏,期待您的莅临。在线下展位,您不仅能够近距离欣赏我们带来的全新产品和精湛的加工技艺,还能参与这些精心设计的互动游戏,并有机会赢取摩方精密特别准备的精美礼品。期待您的到来更多精彩活动不容错过,欢迎您莅临摩方精密8.1H馆8F30展台,我们期待您的参与!
  • 微观下雾霾形状多变 可损害精密仪器寿命
    人们都知道,雾霾会威胁人的健康,那么,雾霾究竟长啥样?长期在雾霾天气中运行的仪器设备,其工作状态和使用寿命会受到影响吗?   球状、链状 雾霾颗粒形状多变  西安交通大学微纳中心实验室里,丁明帅仔细地检查一块硅片,因为采集雾霾颗粒所需要的硅片非常小,丁明帅每一个动作都很慢。  经过几天的室外采集,硅片重新回到实验室,在光学显微镜下,丁明帅对已经很小的硅片进行了分区,“这样做有助于定位需要研究的雾霾颗粒。”  要继续观察雾霾颗粒的形状,分析雾霾颗粒的成分需要借助扫描电子显微镜才能完成。在硅片的一个分区里,一颗看起来较为“圆润”的雾霾颗粒被放大,从1千倍一直到10万倍,从一个小点渐渐变成一个球状物体,雾霾颗粒的表面也有了质感,有点像人的大脑。对其进行成分分析后,发现这颗雾霾颗粒主要成分是铁。不同成分的雾霾颗粒所呈现的形态不同,有的是链状,有的是立方体状,还有的像盛开的花朵,如果只是看到图片,你一定很难想象,这竟然就是雾霾。  可损害精密仪器工作状态和寿命  丁明帅从众多雾霾颗粒中确定了一颗球状颗粒进行力学实验。他拿出纳米力学测试仪,只有成年人手掌大小的仪器造价300余万元,将硅片放置在测试仪上,将测试仪放入扫描电子显微镜。借助扫描电子显微镜,可以看到金刚石压头逐渐接近雾霾颗粒,在电脑控制下,金刚石压头逐渐给雾霾颗粒施压,最终雾霾颗粒被压碎。  丁明帅的实验结果表明,相当一部分雾霾颗粒的压缩强度足以使大多数工业用合金产生摩擦磨损。而雾霾颗粒物超小的身躯使它们能随空气游走,很容易进入到精密设备诸如轴承、活塞等滑动部件的间隙,进而通过产生滑动磨损,损害精密仪器的工作状态和寿命。  “相关企业在生产中应立即采取相应的预防措施,比如在洁净间进行精密设备的组装、对滑动部件的间隙进行密封处理以及对那些需要吸入外界空气的引擎添加特殊过滤器等来防止或降低雾霾颗粒的危害。”微纳中心单智伟教授说。  西安市胸科医院外科主任张毅说:“当pm2.5的浓度达到一定数值,会令人体的肺部、呼吸道等器官产生炎症,雾霾作为载体,里面包含的化学物质、微生物成分会对人体的免疫系统产生伤害,特别是儿童。”
  • 从微纳3D精密打印,到医疗技术领域的颠覆式创新
    作为精密制造的重要下游应用之一,医疗领域应用3D打印由来已久。1996年,全球第一家药物3D打印公司Therics成立。2012年,3D打印开始应用到医疗器械领域,首次打印出人造肝脏组织。2015年,3D打印药物Spritam获得FDA上市批准。目前,3D打印在医疗器械领域主要应用在人体植入物和生物打印等方面。以血管支架为例,过去人们仅可在市场已有支架尺寸中选择,今天则可以选择根据患者特点定制、3D打印。定制化、个性化的精准医疗是3D精密制造的一大方向。而另一方向,则是以技术创新赋能医疗产业,合作研发改良式、颠覆式的创新产品。重庆摩方精密科技股份有限公司(后简称“摩方精密”),是全球唯一的,可将3D打印精度精确到2μm级别,兼具超高公差控制能力,并能实现工业化应用的企业。作为全球微纳3D精密打印领先者,摩方精密要进军医疗行业了?为此,动脉网独家访谈了摩方精密市场部总监邢羽翔。全球独创技术,攻克精密复杂器件的加工制造“2016年成立以来,摩方精密一直坚持走一条非常具有挑战性又非常性感的道路——以装备制造为基础逐步过渡到产品公司,以技术赋能行业发展的道路。”邢羽翔提到,“我们做的第一步是夯实我们的技术创新和基础研发。”邢羽翔介绍,“具体而言,摩方精密主攻的是3D打印下的微纳3D打印领域,主要用于解决传统技术难以攻克的精密小型产品和复杂器件的加工与制造,符合全球工业制造日益精密化、精准化和小型化趋势。”“面投影微立体光刻”(PμSL)即为摩方精密全球独创的技术,可提供目前全球唯一的最高精度达到2μm的高打印精度,且兼具工业水准的加工公差控制能力。工业化方面,摩方精密在1μm—20μm的打印精度范围内占据了全球垄断地位,并结合多种性能材料和相关后处理工艺,实现装备、材料、工艺三位一体技术,提供了一种全新的精密制造解决方案。PμSL的突破革新也为摩方精密带来了全球声量。2018、2019入选MIT STEX25;2021年凭借超高精密3D打印系统microArch S240荣获年度全球光电科技领域最高奖“棱镜奖”;2022年获得日本精密工学会制造奖,成为全球第三个获得该奖项的非日本企业。屡屡获奖背后,摩方精密的超高精密3D打印系统也不断迭代,充分满足生产商对精密复杂连接器等零部件的批量生产需求,将中国制造推向了全球市场。截至2023年11月,全球35个国家,近2000家科研机构及工业企业与摩方精密建立了合作,其中既有强生、GE医疗等在内的全球排名前10的医疗器械企业,也有全球前10的精密连接器企业。摩方精密全球分布目前,摩方精密立足重庆、布局全球,在深圳、北京、上海、厦门、珠海等多地设立办事处,在日本、美国等地设立海外分公司,已成长为200人的全球化团队,其中团队成员博士占比达10%,硕士占比达15%。邢羽翔谈到,“走过第7个年头,摩方精密正在从设备、服务、技术创新、终端应用四方面同步推进,致力于用高精密制造为技术赋能,推动医疗高精尖制造领域的发展。”为精密制造的创新型产品赋能“长期以来,精密复杂器件的加工一直是传统制造和3D打印的难点,也决定了其耗时且昂贵的特点。普通精度的3D打印技术无法满足样件设计的公差要求,小于200μm的细节难以体现。”邢羽翔强调,“而这正是我们所擅长的领域”。在医疗领域,高精尖器械的精细化、复杂化、孔道设计需求等趋势正盛。摩方精密的PμSL技术正是对标这一超高精密3D打印领域。7月30日,摩方精密与北大口腔医院合作,投资1200万元在重庆搭建起超高精度牙齿表面强化技术联合实验室。这一实验室基于摩方精密与北大口腔医院联合研发的“极薄强韧氧化锆牙齿贴面”终端产品。牙齿贴面采用陶瓷修复材料“贴”在牙齿表面,以恢复牙齿形态、改善色泽,其中,材料厚度决定了是否需要打磨原有牙釉质。联合研发的“极薄强韧氧化锆牙齿贴面”样例“利用超高精密3D打印技术,研发团队将氧化锆牙齿贴面厚度从全球300μm的机加工水平降至40μm左右,让患者不磨牙或尽量少磨牙,实现极微创,甚至可能无创牙齿表面美学重建和快速强化。”邢羽翔说。9月12日,摩方精密发布首款自研体外医疗器械终端应用“毛细血管器官芯片”。这是一款可直接用于体外、实现更高细胞培养培养密度、连续数周长期培养的体外3D培养芯片,可应用于疾病模型分析、新药开发研究、化妆品检测等的检测分析。自研“毛细血管器官芯片”样例“在内窥镜、微针贴片、混合微针、青光眼导流钉、雾化器、质谱仪等生物医疗赛道,我们都建立了大量的研发合作和创新赋能。”邢羽翔提到,摩方精密以技术为产品创新、行业发展赋能主要有三种方式:● 与行业前沿企业建立战略合作“通过与行业前沿企业建立战略合作,摩方精密抓住后端实际需求,打造联合实验室的研发平台和市场化合作,加速超高精密3D打印技术应用落地。”例如在质谱仪、牙齿贴面等赛道与企业签署战略合作,联合组建联合实验室平台,加速产品化及市场化进程。● 携手政府支持,产学研合作一体“通过与政府、高校、科研机构推广技术落地,我们也在探索更多元的合作形式,比如建立‘共享服务平台’。”高校方面,与北大南昌院建立精密增材制造技术联合实验室,拓展微纳能源应用;与北京理工大学重庆创新中心联合获批国家重点研发计划“科技型中小企业技术创新应用示范项目”等等。“共享服务平台”的理念被摩方精密广泛应用在产学研共建中。此前,摩方精密与重庆两江新区合作打造“明月湖超高精密增材研究院”的创新公共服务平台,将高精密3D打印技术以及其他高精密技术,开放性地提供给国内乃至全球的企业及院校使用,大大降低新技术使用门槛。同时,技术共享将反哺摩方精密,与多家科研院联合攻关下一代精密打印材料、工艺以及相关应用。● 自有品牌研讨活动“年内,摩方精密在全球范围内举办一系列研讨会、先进制造研讨会等多类交流活动,将自身品牌打造成为行业内的技术交流合作、共识形成、力量凝聚的平台。”摩方精密品牌研讨圆桌论坛“下一站”——技术赋能型平台公司在对于摩方精密的品牌打造、战略赋能的分析中,邢羽翔多次重复提及的一个词是“平台”。中国人民大学数字经济研究中心执行主任程华在分析“实体经济与数字经济融合”的文章中曾经提到,“赋能是平台型企业的生存方式和内在冲动。”这一逻辑并不适用于早期的摩方精密——一个技术研发驱动的前沿制造业、一类高技术壁垒的实体经济。但在分析中我们看到,摩方精密正在自发地构建一个以技术赋能行业的平台型企业。其内驱力在哪里?也许是摩方精密官网上“秉承将3D打印转变为真正的精密快速成型及直接生产制造”的愿景。邢羽翔的答案是“摩方精密希望最终过渡成为技术赋能性平台公司”。更有可能的是,作为领先全球的前沿技术,摩方精密所在的高精度3D打印赛道仍显荒芜,潜在空间广阔,但急需培育市场的“开垦者”。做“开荒者”,也做“开垦者”,最终成长为行业引领者,这一路径已在无数赛道被验证。最终,市场空间有多大,要看“开垦者”如何拓展赛道边界、如何搭建起创新与内卷并存的生态圈。来源:动脉网
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 一台设备,搞定高端精密零件研发、生产的多项三维检测
    高精度三维扫描技术已经在工业制造领域发挥着重要作用,特别是在质量检测环节,高效、高精度,可以轻松实现全尺寸的三维检测。本期,我们要分享的应用是在高端精密金属零件生产领域。高端精密金属零件在产品开发阶段到量产前,都需求检测相关尺寸,包括整个型面偏差分析,位置度、面轮廓度等GD&T公差。但是目前缺少一种可以通用的高精度检测工具,导致检测工作繁琐、复杂。- 高端精密金属零件 -高端精密金属零件研发中的传统检测方式在检测过程中,每一个零件需要一项一项测量,进行检测,过程繁琐。同时,由于精度要求高,每一项检测都需要不同的专业工具,例如,轮廓测量需要轮廓度仪。而每种检测工具的功能单一,检测过程中要不断更换工具。解决途径!“检测过程繁琐,需要的工具种类太多(很多的时间精力可能是花费在寻找工具上)”,这是目前研发人员最头疼的问题。为了改变这种现状,研发人员需要寻找一种高精度且通用性强的检测工具。OKIO 5M Plus 工业级三维扫描仪满足研发过程的多项三维检测需求Part 1高精度天远 OKIO 5M Plus 具有计量级高精度(最高精度可达0.005mm),基于天远的独特算法,OKIO 5M Plus拥有稳定的重复精度,多次测量结果一致。在新品研发过程中,需要多次反复测量一个产品,稳定的重复精度至关重要。在实际应用过程中,还使用了MSA测试,测试方法:某一个工件测量两个尺寸,同一件重复测试三遍(重复性),每个测试10件,然后还需要更换三个不同的操作人员(消除认为误差)。经过MSA测试,证明了OKIO 5M Plus 具有良好的稳定重复精度。Part 2通用性强天远 OKIO 5M Plus采用非接触式测量,对于零件的形状没有限制,同时配置多组镜头,可灵活切换扫描范围。进行一次三维扫描,需要检测的项目直接在检测软件中生成结果,不用人工一项项测量,也不需要根据不同的检测项目寻找不同的检测工具。- 三维扫描以及数据 -多个不同检测项目,一次三维扫描,即可在软件中得到相应测量结果。天远 OKIO 5M Plus 工业级三维扫描仪凭借其高精度(计量级精度以及稳定的重复精度)、通用性,解决了高端精密金属零件研发过程中的检测难题,加快研发进程。同时,其也可以在产品完工后进行全尺寸三维检测,并为客户提供完整的检测报告,顺利交付。天远 OKIO 5M Plus 工业级三维扫描仪OKIO 5M Plus采用窄带蓝光光源,高分辨率工业镜头确保了精细的扫描效果,以及光顺的数据质量;设备提供三组高分辨率工业镜头,可根据型号不同而更换,精度稳定且操作简单;OKIO 5M Plus适用于精细零件的三维扫描,进行全尺寸检测以及逆向设计等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制