当前位置: 仪器信息网 > 行业主题 > >

梯度气象监测系统

仪器信息网梯度气象监测系统专题为您提供2024年最新梯度气象监测系统价格报价、厂家品牌的相关信息, 包括梯度气象监测系统参数、型号等,不管是国产,还是进口品牌的梯度气象监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合梯度气象监测系统相关的耗材配件、试剂标物,还有梯度气象监测系统相关的最新资讯、资料,以及梯度气象监测系统相关的解决方案。

梯度气象监测系统相关的资讯

  • 应用案例 | Evolution环境监测系统应用于地下水质及环境气象监测
    根据意大利第36/2003号法令,对垃圾填埋场和废物处理厂的环境条件以及任何土壤和地下污染需要进行严格监测。尤其是地下水可能会受到渗漏液的污染,因此须要进行准确控制,持续监测水质情况。近期,在意大利南部一个大规模的垃圾填埋场区域内安装了一套大型的Evolution环境监测系统,系统由7个外围监测站点和一套中心气象站组成,7个监测站点分别对应7个监测井。在约800000平方米的区域内,这些站点通过物联网技术进行通信,并将数据发送到云端的控制系统。系统持续监控50多个环境参数,通过APP进行异常状况报警,以便快速处理。为了信息的完整性,系统除了监测水质和气象参数,还把空气质量参数也考虑进来。在此之前,系统已经多次在其他类似应用场景中成功运行,此此成功安装运行再次证明了Evolution环境监测系统的高质量。关于Evolution环境监测系统Evolution环境监测系统,采用模块化高频Evolution数据采集器,可配备wifi模块,实现本地、远传或wifi访问数据采集器查看下载数据。可原位时时监测空气温湿度、温度廓线、辐射温度、水体温度、土壤温度、热通量、土壤三参数、雨量、降水(雪等)类型、地面状态、可见度、风速风向、大气压、气体浓度(CO2/CH4/O3等)、太阳直射、总辐射、净辐射、反射、照度、水位、水质等等参数指标。可应用于气象监测、空气质量监测、地表地下水监测、机场专业监测、路面状况监测、山体滑坡监测等等领域。
  • 1800万!安徽省温室气体浓度等监测系统气象探测装备
    项目编号: ZQC-Z22028项目名称:安徽省温室气体浓度等监测系统气象探测装备预算金额:1800.0000000 万元(人民币)采购需求:采购8套温室气体(CO2/CH4/H2O)浓度监测系统、8套三维风监测系统;升级现有2套温室气体(CO2/CH4/H2O)浓度监测系统。合同履行期限:合同签订后90天内交货,交货后30天内完成安装调试并具备验收条件本项目( 不接受 )联合体投标。
  • 如何搭建校园气象环境监测系统,关键看着几点!
    如何搭建校园气象环境监测系统,关键看着几点!  当教育遇上智能化校园的变革,我们的孩子将会在什么环境中获得更好的成长?看似是一个复杂的问题,但实际上近年来有越来越多的学校关注校园智能环保这个话题。学校园气象站作为智能环境监测的一个部分,不仅部署简易,更便于教学及展示,成为许多学校步入智能化校园的初步选择。那么校园气象站如何搭建呢?  一、什么是校园气象站?  校园气象站是指以校园所在范围为监测区域,以智能环境在线监测设备为基础,通过云服务器构建数据管理平台,从而集成整体的校园环境质量在线系统。校园气象站可以进行空气质量各项指标检测(温度、湿度、噪声、PM2.5、PM10、CO2、TVOC、HCHO、CO、NO2、SO2、O3等),对各项数据实现实时可视化收录,形成专门的数据库,可实现环境治理效果的数据分析,也能与国控站环境监测数据比对,同时在环境监测展示屏幕实现寓教于乐,让孩子看得到学得到。  二、校园气象站如何建设?  校园空气检测的小型站的建设不是随随便便安装空气质量检测仪这么简单。我们不仅要知道校园所需要的监测项,更必须了解校园的布网模式,服务器搭建情况等。看似是基础的技术问题,但在后期的建设中决定了校园气象站运行稳定与否的关键。专业的团队需要在每一个中小学校园气象站的项目中,项目经理全程跟踪服务,从前期方案设计到后期安装调试均能获得专业的辅导与支持,确保校园气象站系统能够顺利建设。  三、校园气象站有哪些优势?  一方面能够帮助校园管理者更直观地了解校园环境情况,有助于让学生和老师关注环保问题。其次,便于完成空气污染与治理的数据比对,利用超标预警与历史数据分析提供数据依据,可以更有效掌握环境治理方案与效果。此外,还能够培养孩子对于智能化传感器、气象、环保领域的认识,将对于校园空气质量的研究当作一个学习的过程。  四、YT-QC9校园气象环境监测系统  符合中国气象局《地面气象观测规范》  贴心的家校互通服务丰富的科普教学应用  专属的校园生活指数趣味性科普实践园地  精/准的校园环境测量及时的防灾减灾预警  优化校园科技教育环境增强地理实际观测能力  系统基本配置:  1、监控平台一套,具有自动接收数据、数据存贮展示、数据通讯、数据统计、历史曲线绘制、超限报警等功能。  1、液晶监测记录仪1台,自动采集记录数据,每秒高可达60条,数据使用滚动存储   2、具有外部U盘存储扩展功能。  3、传感器:环境温度、湿度、风速、风向、气压、雨量传感器、蒸发量传感器、总辐射传感器、露点温度传感器、光照度传感器、二氧化碳传感器、紫外线辐射传感器、光合有效辐射传感器等各种气象要素传感器(可根据需求选配)   3.1环境温度、湿度、气压采用19防辐射罩保护,该辐射罩采用BBS塑料,强度硬,防辐射,通风度好   3.2土壤温湿度传感器采用先进的温度采样方式,功耗低于0.8mA,采用高强度铝型外壳,防水,防腐蚀,强度硬,可直接埋入土壤中   3.3风速风向传感器采用法兰连接,变送器采用先进的电路模块技术   3.4雨量传感器采用单干簧管通断,4PLUS/MM(抗干扰电阻100欧及电容0.01微法)   4、小气候观测支架1套   5、数据通讯及传感器连接电缆1套
  • 基于3D打印的浓度梯度微流控芯片用于微生物的快速药敏检测
    内容简介本研究论文聚焦微生物的快速药敏检测研究。抗生素耐药是目前全球公共卫生安全面临的一项严峻挑战。病原菌的耐药性加速进化增加了临床治疗多重耐药感染的用药难度与病人死亡率。及时得到微生物的抗生素药物敏感性结果对于临床多重耐药感染的精准诊断与用药治疗具有重要意义。这项研究中设计了基于流阻的微液滴芯片,结合应用刃天青生物指示剂可在5 h内指示微生物在不同浓度抗生素下的生长。该芯片有若干独立的截留腔室,可自动产生抗生素浓度梯度并形成独立的微液滴用于检测细菌药敏性。该芯片简化了控制操作和设备集成,相较于传统方法缩短了药敏检测时间,具有良好的应用前景。引用本文Zhang H, Yao Y, Hui Y, et al., 2022. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-des Manuf 5(1):210–219. 文章导读图1 用于细菌抗生素药物敏感性检测的浓度梯度微流控芯片的设计与应用示意图:(a)芯片的制造流程;(b)芯片内产生梯度浓度的过程。其中芯片模具是用摩方精密nanoArch S140制备。图2 不同浓度刃天青的显色荧光显色效果:(a)除去阴性对照后的相对荧光强度;(b)阳性对照和阴性对照的荧光显色图图3 三种不同浓度抗生素对大肠杆菌生长的影响查看更多:PuSL高精密3D打印 官网:https://www.bmftec.cn/links/7
  • Tiya梯度稀释仪——梯度稀释小能手,快速、准确、实用
    梯度稀释是微生物实验中的常规操作,在食品安全、生化医药,环境监测,卫生防疫,农业研究等领域都有广泛的应用需求。 微生物实验操作中最繁琐的步骤就是样品的稀释,需要实验人员的反复的加液振荡混合直到标准所需,人为的操作循环重复,也容易带来比较大的样品误差,给微生物工作者带来了太多的烦恼。您辛苦了! 不过,现在有Tiya梯度稀释仪来帮您解围了!工作原理 参照传统人工稀释操作过程,遵循国家标准,恒奥科技以专业无菌操作理念打造出了自动化梯度稀释设备。 加注稀释液--加样--原位混匀--取换枪头--连续稀释,整个过程“一键搞定”。自动识别管位,操作简捷,上样连续可选,扩展功能丰富。特点 ※ 机型体积小巧,方便安装于层流超净工作台或局部百级净化区,也可自带FFU百级净化单元,动作幅度小,减少操作中空气扰动,避免污染。 ※开机自动校准注稀释液量(9mL、4.5mL),注液准确度有保证。高精密度注射泵样品移液,取液量1mL或0.5mL可选,确保一致性。 ※自动替换枪头,液体接触管路及部件均可灭菌消毒,保证稀释过程安全无菌,符合国家标准。 ※高效率样品稀释,无样品限量,每梯度稀释平均参考时间为15s,有效缩短实验时间。专利的原位混匀技术和专利防溅出试管设计,保证混匀过程一致有效,实现混匀样品的同时也防止交叉污染。 ※信息溯源:可储存5种稀释方案,人机交换操作方便明确,自动留存样品及操作人信息,可通过USB接口导出,方便追溯。配套专利试管 玻璃材质,可重复使用;按需提供,保证实验速度。也可选配经济型一次性试管(PP),免去清洗步骤,实验准备更快捷。应用实例1. 疾控系统及三方检测用于消毒剂杀菌实验中的梯度稀释。(消毒技术规范-2002版)2. 食品微生物检测中对样品液的稀释(平皿法和MPN法)。也可应用在益生菌生产过程中的相关检测。(GB 4789.2-2016 GB 4789.3-2016 等)3. 国家药典2020版四部通则中《1108中药饮片微生物梯度检查法》规定的样品稀释过程。4. 对于较高粘样品的样品梯度稀释,有专用的多次混合和清洗枪头程序可选择。(GB/T16347-1996)5. 环境卫生检测用于各种水质的微生物污染环境实验中。(GB 5750-2006)6. 该装置亦可根据用户需求定制扩展功能,用于样品转移,配比,稀释等。
  • 智能生态气象监测系统-适合在景区的负氧离子监测站#2022已更新
    智能生态气象监测系统-适合在景区的负氧离子监测站#2022已更新ذكينظامالرصدالبيئيللأرصادالجوية-مناسبةلأنّأيونالأكسجين【品牌型号:天合环境TH-FZ5】雨后的空气人们感觉格外清新,因为水与空气大气的撞击处很容易产生负氧离子,除了雨后的空气,还有喷泉附近,河流附近,瀑布附近,人会在那里感到神清气爽就是这个原因。当负氧离子浓度高的时候对人体有害,但是若是由水与空气大气的撞击处产生的负氧离子,浓度不会达到有害的。在很多景区的瀑布旁会建设许多大屏幕一样的东西,那就是负氧离子监测站。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单
  • 助力国家双碳目标,普瑞亿科温室气体监测系统解决方案案例集锦
    北京普瑞亿科科技有限公司(PRI-ECO)成立于2007年,深耕温室气体科学研究与监测领域16年,承担和参与过科学技术部、中国科学院和北京市科学技术委员会等授予的温室气体分析相关的重大仪器研发专项,具有优秀的仪器研发、设计和生产能力,可以提供各种高、中、低精度的痕量和温室气体分析仪、光谱和质谱同位素分析仪、室内和室外土壤呼吸测量系统等。2022年,针对“双碳”市场需求,在遵循MRV体系的前提下,普瑞亿科升级体系至MVS(可监测-Monitoring、可核查-Verification、可支持-Support),并针对性地开发了国内首套区域碳监测核查支持系统解决方案,包含监测设备租售运维、碳核查核算支持、碳源汇科学评价、以及区域“碳中和”建议。公司产品及解决方案:1、会“飞”的分析仪——PRI-5251F 飞行版温室气体测量系统全球气候变暖给人类的生产生活带来严重威胁,减缓气候变暖、监测温室气体排放变得日益迫切,而传统的监测方法只能获取有限的数据,很难测量一些难以到达的区域,因此构建“天-空-地”一体化监测体系已然成为新形势下生态环境、农林气象等领域的重要解决方案。普瑞亿科创新研发的PRI-5251f Plus CO CO2 CH4 N2O H2O 飞行版温室气体测量系统,通过创新的微型激光传感器引擎,可以短时间内获得更高精度、准确度和宽范围的气体浓度数据,多样化的应用场景为研究人员提供更加灵活、高效、便捷的温室气体测量解决方案。PRI-5251f Plus CO CO2 CH4 N2O H2O 飞行版温室气体测量系统是一套高精度、多组分飞行版温室气体测量的全新解决方案,采用中红外激光直接吸收光谱技术(MIRLAS)。系统包含了高精度多组分温室气体分析模块、微型气象站和ELF-600六旋翼无人机系统,能同步在线测量3种主要的温室气体(CO2、N2O、CH4)、伴生气体(CO)和水汽(H2O),以及三维超声、空气温湿度、大气压等参数。系统核心的PRI-5251f Plus CO CO CO2 CH4 N2O H2O 分析仪基于创新的微型激光传感器引擎,通过中红外波段极强的光谱吸收提供更高精度、准确度和宽范围的气体浓度数据,具有ppb级的灵敏度;在尺寸、重量和低功耗与整体性能的综合优化设计上,最佳适配微型无人机载。2、PRI-5251CT:空气高效除水“新标杆”,高精度温室气体观测“必备品”“双碳”战略目标的实现,需要对区域范围内、特定排放源进行温室气体的高精度监测,并将监测分析计算结果服务于国家战略目标和国家核证自愿减排量(CCER)。包含但不限于二氧化碳、甲烷、氧化亚氮等温室气体的高精度测量和监控是评估“双碳”目标行动有效性重要的技术手段,是获取我国二氧化碳气体及其他温室气体浓度的长期变化趋势、深入开展气候变化研究的基础,有助于科学评估各地区、各行业的碳减排成效,有助于支撑我国“碳达峰、碳中和”工作的开展和相应政策的制定。通常,我们需要采用高精度温室气体监测设备连续抽取大气进行目标气体的在线测量。但是大气中的不同水平的水汽含量会很大的影响高精度温室气监测设备对目标气体测量精度和准度。针对目前基于光谱技术的高精度温室气体分析仪,世界气象组织(WMO)和生态环境部环境监测总站等组织和机构明确要求,其待检目标气中的水汽含量应低于500ppm,因此,需要通过专业设备对待测气进行高水平的干燥处理,以获得低于500ppm 或者更低水平水汽含量的待测气体。为实现高效地大气除水,普瑞亿科针对性地开发了一套PRI-5251CT 全自动低温冷阱在线除水系统,该系统特别适配温室气体高精度观测量,具有两级除水功能,可以通过交替双工模式实现待测气体的高效除水和快捷除冰,输出的水汽浓度低于0.01%。PRI-5251CT包含两个一级低温除水单元和两个超低温除水单元,通过两次除水提高冷阱除水效率和降低冷阱切换频率;优化设计的冷阱管内容积小,气体消耗量低而气体周转速率高,且标准气和样品气都过冷阱,能确保标定和测样具有统一的系统误差;包含双泵双通道主动送气单元,可以提前对下一个待测通道进行吹扫净化并制取干燥气体,实现不同冷阱之间的无缝切换;包含压力和流量平衡设计,可以消除不同通道间因电磁阀切换造成的压力波动带来的测量误差。PRI-5251CT 全自动低温冷阱在线除水系统是高精度温室气体测量更好的除水解决方案,针对性解决了目前其他品牌冷阱稳定性差等各种弊端。3、PRI-8800: 土壤呼吸温度敏感性(Q10)室内快速测量的新方法气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖成了目前科学家主要关注的内容之一。在国内“双碳”背景的目标下,如何快速、科学、高效地监测、核查和支持因为升温导致的土壤呼吸速率的增加成了科学家和政府组织的重点关注。为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,2022年普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。1)选型推荐:2)实验设计:1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。
  • 开发用于分离和纯化的聚焦梯度
    Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl; Waters Corporation, Milford, MA, U.S. 引言 用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。 试验方法 梯度开发步骤 ■ 确定制备规模的系统体积 ■ 运行搜索梯度 ■ 设计聚焦梯度 ■ 在制备柱上运行聚焦梯度 试验条件 仪器 液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、 AutoPurification&trade 流通池 色谱柱: XBridge&trade 制备型OBD&trade C18柱19 x 50 mm、5&mu m(货号186002977) 流速: 25mL/分钟 流动相A: 0.1%的甲酸水溶液 流动相B: 0.1%甲酸-乙腈溶液 波长: 260 nm 样品混合物 磺胺: 10 mg/mL 磺胺噻唑: 10 mg/mL 磺胺二甲嘧啶: 20 mg/mL* 磺胺甲二唑: 10 mg/mL 磺胺甲唑: 10 mg/mL 磺胺二甲异唑: 4 mg/mL 总浓度: 64 mg/mL(溶于二甲基亚砜) *选定用于聚焦梯度的色谱峰 结果和讨论 确定制备规模的系统体积 ■ 取下色谱柱并更换成两通。 ■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。 ■ 在254 nm下进行监测。 ■ 采集100% A的基线数据5分钟。 ■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。 ■ 测定100% A和100% B之间的吸光度差异。 ■ 计算存在50%吸光度差异时的时间。 ■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。 ■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。 设计聚焦梯度 第1步 在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步 计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。 根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。 第3步 旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。 结论 当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测
    NASA碳监测系统BlueFlux行动——Picarro助力红树林蓝碳通量的多尺度观测江苏海兰达尔 2023-06-09 12:24 发表于江苏原文链接:https://doi.org/10.1101/2022.09.27.50975301蓝碳和红树林蓝碳是气候缓解战略的关键组成部分,该战略旨在通过沿海和开放海洋碳封存以降低大气二氧化碳浓度。在全球范围内,蓝碳有助于《巴黎协定》目标的达成,将全球平均气温上升幅度控制在远低于2℃以内,并实现温室气体净零排放。从蓝碳的角度来看,红树林生态系统非常有意义,因为它们是地球上最具生产力的生态系统之一,净初级生产力(NPP)在1000~2000gCm-2yr-1。虽然它们只占地球陆地面积的一小部分,但为全球NPP贡献了约210TgCyr-1。这些碳中的大部分储存在生物中或封存在土壤沉积物中,根据最近的激光雷达和雷达测量估计,红树林的总碳储量约为5.03PgC。这些碳储量只集中在几个关键的生物地理区域,例如,有10个国家占总碳储量的70%以上,这就意味着在国家范围内,红树林碳管理可以在国家层面制定的缓解气候变化策略上发挥重要作用。02BlueFlux行动2020年,美国航空航天局碳监测系统(NASA CMS)为建立BlueFlux行动提供了支持,目的是开发原型CO2和CH4产品以了解红树林的修复和保护情况。BlueFlux野外观测行动旨在提供横跨佛罗里达南部和加勒比地区的CO2和CH4通量的综合测量,重点是红树林系统,它们的季节性动态,以及邻近的生态系统,比如广阔的锯草沼泽以及其中的树木“岛屿”。这些通量测量覆盖了从“健康”的红树林到近期受到干扰和濒死的红树林“鬼森林”,来帮助了解在损失和恢复过程中碳通量的任何方向性变化。BlueFlux将有助于量化蓝碳如何减缓气候变化,并帮助减少红树林碳循环时空成分的不确定性。BlueFlux行动的目标示意图现场地面和飞机测量的目标区域在美国境内,在佛罗里达南部的核心地区,对碳储量和通量进行测量,以了解物种、干扰、水文和气候梯度如何解释通量变化。该行动计划在2022~2024年间进行6次现场观测,测量手段包括:1)对生态系统结构、物种以及腔室通量的地面测量,2)高塔通量测量,3)飞机测量,4)卫星遥感。墨西哥湾研究区域03地面测量:土壤和植被通量的腔室测量2022年3月,BlueFlux的第一次现场行动在大沼泽地国家公园进行,分别对两个高度退化和两个完整/再生的森林场地的树木,根系和土壤CO2和CH4通量进行了测量。根据植物的形态以及土壤沉积物成分的不同使用了不同的气室,CO2和CH4浓度的测量使用Picarro G4301 GasScouter 移动气体分析仪,测量频率为1Hz。静态气室法测量生态系统成分通量的示意图以及相应气室设计的照片04地面测量:水化学为了捕捉佛罗里达大沼泽地红树林水域的水-空气温室气体交换及其变化,于2022年3月进行了一项为期3天的空间调查,方法为驾驶一艘游艇从库特湾出发,沿乔河到鲨鱼河再到塔彭湾,然后返回,同时测量pH值,水温,盐度,CO2、CH4和N2O浓度以及CO2和CH4稳定同位素。地表水样从约0.5米深处连续泵送到由“淋浴头”平衡器组成的船载装置,该平衡器通过闭合空气回路连接到两台气体分析仪,Picarro G2201-i和Picarro G2308。使用校准的多参数探测器每分钟测量一次地表水电导率(EC)、溶解氧(DO)、温度、pH和有色可溶性有机物(CDOM)。同时定期收集过滤的无菌离散样品,并在耶鲁大学实验室内用于分光光度计pH、溶解无机碳(DIC)和总碱度(Talk)的测量。05机载涡流协方差通量测量:CARAFE机载涡流协方差(AEC)是一种公认的用于量化痕量气体和能量的地表-大气交换的技术。当与小波变换相结合时,AEC可以表征模型相关尺度(1-100km)下通量的空间梯度,是对地面观测数据很好的一种补充。Blueflux AEC观测采用了动态航空公司驾驶的配备气象和微量气体传感器的Beechcraft King Air A90飞机,并进行了CArbon大气通量实验(CARAFE)。由Aventech公司的AIMMS-20测量系统提供10 Hz的3D风速、空气温度、飞机位置和飞机方位(俯仰/翻转/偏航)观测。该系统包括一个用于气象测量的探测器(安装在左翼下方),该探测器与高分辨率差分GPS和惯性导航系统相结合。环境空气通过安装在右翼下方的进气口进行采样,并通过(机翼中的)聚四氟乙烯管传输到机舱中的两台气体分析仪。其中Picarro G2401-m机载专用气体浓度分析仪提供0.5Hz的CO2、CH4、H2O和CO测量值,而Picarro G2311-f双模式高精度气体分析仪提供10Hz的CO2和CH4测量值。G2401-m包含用于机载操作的专用压力控制系统,因此可对气体摩尔分数进行精准测量,而G2311-f可提供AEC所需的快速时间响应。CO2和CH4的干空气摩尔分数在实验室中使用NOAA WMO的压缩标准气体进行两点校准。下图为2022年4月进行的航测飞行轨迹,这些飞行测量重点关注佛罗里达南部和东部的沿海红树林植被,同时也包括一些内陆森林和湿地。每次飞行时间在2.5~4.5小时,典型的海拔高度为地平面以上100m,偶尔会进入到混合层(200-800m),以确定垂直通量散度和修正。在100米的高度,预计通量足迹大约为5000米宽,对于5~10m s-1的典型表面风速,50%的通量在1000米内,90%在5000米内。CO2的通量范围在0~-40μmol m-2 s-1,CH4的通量范围在0~200μmol m-2 s-1。总的来说,在4月的野外航测中,锯草的甲烷通量似乎更高,红树林的二氧化碳吸收量更大,接下来的飞行测量将继续探索季节和年际变化。BlueFlux AEC航测的飞行路线06预期结果目前“蓝碳”评估的不足之一是,人们考虑了碳存储量,但往往忽略了非二氧化碳温室气体的排放,这可能会极大地影响(积极或消极)这些生态系统的总体净辐射强迫效应。红树林是潮间带生态系统,虽然这些生态系统是净自养的,但小海湾和沉积物通常是大气中CO2和CH4的来源,也可以作为N2O的源或汇。沿着潮汐高度梯度(从小海湾到森林盆地),红树林覆盖率、物种多样性和沉积物结构会发生显著变化,导致温室气体通量的空间变异性很大。红树林温室气体通量的站点间变化会进一步受到各种其他因素的驱动,包括区域气候、水文、地貌、物理化学、生物,生物地球化学和人为因素等。BlueFlux行动旨在收集红树林结构和温室气体通量多尺度测量的详细信息,利用激光雷达或雷达等手段,掌握森林结构和地形信息,捕捉土壤、水文和扰动梯度。网格化碳通量产品将为评估过去二十年温室气体通量的趋势及其空间模式提供基础,以应对不断变化的气候以及极端气候的出现。编辑人:陆文涛审核人:史恒霖
  • 索引:高标准农田气象监测系统——一款实惠物美的农业环境监测仪@2023动态已更新
    索引:高标准农田气象监测系统——一款实惠物美的农业环境监测仪@2023动态已更新型号:FT-NQ12 品牌:风途科技一、产品简介FT-NQ12农业气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度气象观测设备。该设备由气象传感器,采集器,太阳能供电系统,立杆支架,云平台五部分组成。免调试,可快速布置,广泛运用于气象、农业、林业、科学考察等领域。二、产品特点1.低功耗采集器:静态功耗小于50uA2.标配GPRS联网、支持扩展蓝牙、有线传输3.七寸安卓触屏,版本:4.4.2、四核Cortex&trade -A7,512M/4G4.支持modbus485传感器扩展5.太阳能充电管理MPPT自动功率点跟踪6.三米碳钢支架,两节螺纹旋接7.短信报警,超限后向指定的手机上发送短信8.ABS材质防护箱,耐腐蚀、抗氧化,防水等级IP66三、技术参数1.采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,2.传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V3.太阳能供电、配置铅酸电池,可选配30W 20AH/50W 20AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%4.数据上传间隔:1分钟-1000分钟可调5.屏幕尺寸:1024*600 RGB LCD6.部分传感器参数名 称 测量范围 分 辨 率 准 确 度 风 速 0~30m/s 0.01m/s ±(0.1+0.03V)m/s 风 向 0~360°(16方向) 1/16 1.0m/s) 空气温度 -40-80℃ 0.1℃ ±0.3℃(25℃) 空气湿度 0-100%RH 0.10% ±3%RH 大气压力 30-110Kpa 0.01Kpa ±0.02Kpa(相对) 雨量 ≦4mm/min 0.01mm ±0.2mm 光照 0-18.8W LUX 1lux 5% 二氧化碳 500-5000PPM 1PPM ±50PPM±读数的3% 土壤温度 -40~80℃0.01℃±0.5℃土壤湿度 0-100%0.01%±3%土壤电导率EC0-20000us/cm10us/cm±5%土壤PH(探针)3-90.1≤5%/year四、云平台1.CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2.支持多帐号、多设备登录3.支持实时数据展示与历史数据展示仪表板4.云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5.支持短信报警及阈值设置6.支持地图显示、查看设备信息。7.支持数据曲线分析8.支持数据导出表格形式9.支持数据转发,HJ-212协议,TCP转发,http协议等。10.支持数据后处理功能11.支持外置运行javascript脚本
  • 用于液滴捕获、相变监测和形态学研究的单束梯度力气溶胶光学镊的表征
    导言大气气溶胶粒子可以吸收和反射太阳辐射,被激活成云滴,参与冰核过程,并为化学反应提供反应界面。因此,气溶胶在空气污染、大气化学和气候变化中扮演着重要角色。气溶胶粒子可以有复杂的组成,包括无机、金属和矿物成分、元素碳和有机碳,以及一定量的水。气溶胶粒子还可以有不同的形态。例如由无机盐和有机成分组成的气溶胶粒子可以通过相变具有固态、部分吞噬或核-壳以及均一形态。气溶胶组成和含水量的变化导致粒子形态和相态的演变,同时改变其他物理化学性质,如pH值、极性、界面张力和光化学。分享一篇来自浙江大学裴祥宇团队的新研究成果,本文以“Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies”为题发表于期刊Atmospheric Chemistry and Physics,原文链接:https://doi.org/10.5194/acp-24-5235-2024 浙江大学裴祥宇老师为共同第一作者。希望对您的科学研究或工业生产带来一些灵感和启发。正文单粒子分析对于更好地理解颗粒转化过程及其预测环境影响至关重要。在本研究中,浙江大学的裴祥宇老师团队开发了一种气溶胶光学镊(AOT)拉曼光谱系统,用于实时研究悬浮气溶胶滴的相态和形态。该系统包括四个模块:光学捕获、反应、照明与成像以及检测。光学捕获模块使用532纳米激光器和100倍油浸物镜,在30秒内稳定捕获气溶胶滴。反应模块允许调整相对湿度(RH)并引入反应气体进入滴悬浮室,促进研究液-液相变。照明与成像模块采用高速摄像机监测被捕获的液滴,而检测模块记录拉曼散射光。裴祥宇老师团队捕获了含氯化钠(NaCl)和3-甲基戊二酸(3-MGA)的混合滴,以检查RH依赖的形态变化。当RH降低时,发生了液-液相分离(LLPS)。此外,作者引入了臭氧和蓖麻油/松节油来原位生成二次有机气溶胶(SOA)颗粒,这些颗粒与被捕获的滴碰撞并溶解在其中。为了确定被捕获滴的特性,作者使用基于Mie理论的开源程序,从拉曼光谱中观察到的回音壁模式(WGMs)中检索直径和折射率。结果发现,当RH降低时,混合滴形成了核-壳形态,由不同SOA前体生成的滴的相变对RH的依赖性不同。AOT系统是评估动态大气过程中形态和相态的现场实验平台。图1.(a) 本研究中使用的气溶胶光学镊装置示意图。(b) 滴液粒子悬浮室的设计。(c) 系统主要部件的照片,包括悬浮室、水汽发生器、激光器、摄像机和卓立汉光公司的Omni-λ5004i光谱仪。相变确定方法:当一个透明或弱吸收的球形颗粒被捕获时,它可以作为一个高质量的光学腔体,发生强烈的光学共振,从而产生增强的拉曼散射。这些共振可以在颗粒的拉曼光谱中观察到峰值,通常被称为回音壁效应(WGMs)。原则上,可以通过WGMs推断出颗粒的形态,因为折射率中的不均匀性会破坏WGMs的循环。WGMs衰减的起源在于颗粒被分离成亲水核和疏水壳时存在的径向均匀性。因此,当使用Mie散射模型拟合均匀液滴的拉曼光谱时,最佳拟合的误差会大幅增加。对提取的半径和折射率的研究显示它与均匀球体的拟合之间存在明显的差异。因此,颗粒大小和折射率发生显著变化的点可以作为核壳相分离发生的点。如下图所示,当液滴部分包裹且非球形时,光谱中的WGM峰值消失。总的来说,单个液滴在经历形态转变时拉曼光谱会发生相应的动态变化。图2. 基于光谱特征识别滴液形态的例子。(a) 捕获的水性NaCl滴的拉曼散射特征图。(b) 不同滴液形态的光谱:上子图显示了均匀水性饱和NaCl滴的典型光谱。中间子图显示了当SOA在饱和NaCl滴表面形成薄壳时的光谱。底部子图显示了当SOA继续在饱和NaCl滴表面凝聚时,WGMs峰值减弱的光谱。(c) WGM分裂时间序列的例子:红色峰值逐渐从一分为二,并且强度变弱,当SOA被加入到滴中时,表明形成了核-壳形态。在实验过程中,通常首先捕获一个均匀的滴液。随后,随着相对湿度(RH)的降低,滴液可能会经历相分离,转变成部分吞噬或核-壳形态。这些转变对回音壁模式(WGMs)有明显影响。当滴液转变为部分吞噬状态时,其对称结构被破坏,导致WGMs的猝灭。相比之下,当滴液呈现核-壳结构时,由于滴液的径向均匀性受到干扰,WGMs会减弱。因此,对部分吞噬或核-壳滴液应用MRSFIT可能会导致检索直径和折射率变得不可信,导致拟合误差异常高。为了解决这个问题并为核-壳滴液检索直径和折射率,作者采用了另一种名为Mie共振壳层拟合(MRSFIT)的程序,由Vennes和Preston开发。MRSFIT专门设计用来将观察到的Mie共振与使用Mie理论预测的核-壳颗粒的共振相拟合。MRFIT提供的模式分配指导了核-壳滴液的适当参数选择。捕获滴液后,可以从光谱中识别其形态,如图2所示的例子。图3. (a) 检索到的直径(Dp)和折射率(n)。(b) 测量室内前后的相对湿度(RH)。(c) 捕获的水性NaCl滴液的拉曼光谱时间序列图2和图3中的拉曼信号及数据使用卓立汉光公司的Omni-λ5004i光谱仪测量得到。由于物质特殊的结构,拉曼散射得到增强,使得峰值可在光谱中观察到,从而形成回音壁效应。而回音壁效应的改变情况在此研究中对于推断物质的形态有着非常重要的作用,因为单个液滴在经历形态转变时拉曼光谱会发生相应的动态变化,从拉曼光谱的变化中可以分析液滴的相变过程。图4.液-液相分离和NaCl/3-MGA溶液的混合。(a) 通过WGM拟合获得的滴液直径和折射率,蓝点代表滴液直径,红点代表折射率。(b) 室内相对湿度(RH)的变化,红线代表进入室内前的RH,绿线代表离开室内后的RH。(c) 时间分辨的拉曼光谱,WGMs用深红色标记。虚绿线和虚紫线分别表示液-液相分离和液-液相混合的发生。图5. α-蒎烯SOA涂覆在饱和NaCl滴液上的实验。(a) 使用均匀滴液模型检索到的滴液直径(蓝点)和折射率(红点),以及不同时间点的滴液实时图像。(b) 使用核-壳滴液模型检索到的壳层直径(蓝点)和核心直径(红点)。颜色越深,拟合误差越小。在点状绿线和点状紫线之间,蓝点代表壳层直径,而粉红点代表核心直径。(c) 流出室外的气流的相对湿度(RH)。(d) 在底部添加了柠檬烯SOA(紫色条),导致形成了核-壳形态。虚绿线和虚紫线分别表示液-液相分离和液-液相混合的发生。总结在这项研究中,作者开发并表征了一种新型的单束梯度力气溶胶AOT系统。建造了一个具有双层设计的定制滴液粒子悬浮室,提供了修改的多功能性,并实现了快速液滴捕获。作者对这个AOT系统进行了全面的特性表征和性能评估。AOT系统证明了在30秒内高效捕获微米级滴液的能力,显著提高了捕获效率。此外,室内设计的灵活性允许通过改变中间部分气孔的形状和大小来调整气流交换率和方向,以满足特定的实验要求。为了评估该悬浮室的性能,作者捕获了NaCl滴液,并使用MRFIT算法检索它们的直径和折射率。实验获得的滴液尺寸与理论值非常接近,证实了悬浮室性能。此外,作者研究了滴液的相对湿度(RH)依赖性形态,使用与3-MGA混合的NaCl滴液来测量分离相对湿度(SRH)和相变相对湿度(MRH)。作者还在原位生成并向无机滴液中添加了α-蒎烯和柠檬烯SOA。实验中滴液的第二相形成,使作者能够研究其混溶性和湿度依赖性形态。本文的发现表明,AOT系统可以有效地用于研究典型大气SOA的物理和化学性质。浙江大学裴祥宇老师简介裴祥宇,助理研究员,获哥德堡大学化学博士学位,2018至2019年于哥德堡大学从事博士后研究。长期从事大气科学、大气污染及气溶胶方面的研究。在国际有影响力的期刊发表论文30余篇。相关产品推荐本研究采用的是北京卓立汉光仪器有限公司Omni-λ5004i光谱仪,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1199_1565.html免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 梯度PCR仪一次性成交2台!
    近日,兰州大学一次性采购2台梯度PCR仪,PCR仪适用于分子生物学、医学、食品工业、司法科学、生物技术、环境科学、微生物学、临床诊断、流行病学、遗传学、基因芯片、基因检测、基因克隆、基因表达等领域以聚合酶链式反应为特征的、以检测DNA/RNA为目的的各种病原体检测及基因分析。托摩根梯度PCR仪G2000仪具有Tm值自动计算,触屏,宽范围,温度梯度,程序暂停,温度监控,屏幕指示,个人账户,曲线加载和保存,手动模式,工作曲线展示,断电保护等功能。拥有超宽梯度功能,可实现不同退火温度的精确控制,仅一次实验就能确定特定体系相应的最优退火温度,从而可在短时间内对PCR实验进行优化,提高PCR科研效率;高效可靠的热循环系统可提高升降温速率;采用低热质合金模块可降低不同区域温度差别,大大延长了元件的使用寿命。 Thmorgan咨询热线:4000-688-151。市场部2018年1月3日
  • 世界气象大会通过决议,将建立新的全球温室气体监测计划
    正在瑞士日内瓦举行的第19次世界气象大会24日通过一项决议,决定建立新的全球温室气体监测计划,以支持减少温室气体排放的紧急行动。新的全球温室气体监测计划将所有天基和地基观测系统以及建模和数据同化能力集中在一起,将填补关键的信息空白,并提供一个综合的、可操作的框架。这也将为应对气候变化的《巴黎协定》的实施提供重要信息和支持。四年一度的世界气象大会于5月22日在瑞士日内瓦开幕,世界气象组织193个成员国和地区、联合国各机构、各国气象、水文部门的高层代表出席本次世界气象大会。
  • 世界气象组织批准全球温室气体监测计划
    当地时间3月6日,世界气象组织执行理事会批准通过新的全球温室气体监测基础设施计划,以填补关键信息空白,并支持采取行动,减少温室气体排放。该机构指出,当下许多涉及温室气体的国际和国家活动主要是由研究界支持的。目前还没有关于地面和空间温室气体观测或建模产品的全面、及时的国际交流。世界气象组织将在国际合作框架内协调努力,在综合业务框架中发挥现有全部的温室气体监测能力,包括天基和地基观测系统,以及所有相关建模和数据同化能力。
  • 青藏高原综合生态气象观测系统建成 为实现碳达峰碳中和目标提供更加精准科学依据
    近日,从西藏自治区气象局获悉,经过近三年努力,“一站多用、一网多能”的青藏高原综合生态气象观测系统已初步建成。青藏生态屏障区是国家“两屏三带”生态格局中青藏高原生态屏障的空间载体,其生态脆弱、敏感。近年来,自治区气象局围绕“四个创建”“四个走在前列”,加强气候变化观测、预估、服务业务技术体制建设,强化基础观测网络、科研基地等平台建设,统筹谋划构建青藏高原大气科学研究基地,大力推进高原生态气象监测体系建设。经过近三年的努力,累计行程超过10万公里,于今年6月15日完成了6个生态站、12个冰冻圈站、19个智能自动站的建设,高原重点区综合生态气象观测系统初步建成。该系统填补了平均海拔近5000米的青藏高原羌塘自然保护区、高原多类型典型冰川、江河源头综合生态气象监测空白。据介绍,该系统采用国内先进探测技术和成熟设计方案,大量使用防冻电缆、高精度传感器等设备,几乎全部配备北斗传输系统,增设10米至50米不同高度的风塔,以及辐射、土壤水分、冻土、GNSS测量系统、通量、自动雪深探测、有效光合、涡动、温室气体(二氧化碳/甲烷)等观测设备,并在冰冻圈站首次增设径流量监测。今年还将在拉萨建立温室气体观测站,参与全国温室气体观测组网。该系统的建成,实现了常规气象观测与草原生态、通量梯度、冰川、冻土、积雪、径流量观测的有效融合,为开展青藏高原大气环境科学研究、天气气候形成机理研究提供了基础数据支撑,该系统的建成,为高原水汽通道、温室气体监测和森林生态保护、防沙治沙、水土涵养等以及实现“碳达峰、碳中和”目标提供更加精准的科学依据。
  • 中国气象科学研究院汤洁:​温室气体监测关键问题解析
    减污降碳一直是我国的重点工作。习近平在2023年全国生态环境保护大会上强调,要积极稳妥推进碳达峰碳中和,落实好碳达峰碳中和“1+N”政策体系等。最近印发的《深化碳监测评估试点工作方案》中提到,我国2022年基本完成试点工作,到2025年基本建成碳监测评估体系。随着国家“碳达峰”和“碳中和”战略的实施,温室气体的准确监测与评估将成为降碳目标的根本前提。随着一系列政策法规的出台,以及温室气体监测试点城市项目的开展,温室气体监测市场逐渐增大,国产仪器研发力度也不断加大。为了了解当前温室气体监测技术、市场现状,以及相关监测设备的研发进展等,仪器信息网围绕“温室气体监测技术与市场”主题开展约稿活动。本次我们邀请到来自中国气象科学研究院的汤洁研究员,请他介绍温室气体测量技术的发展与应用。内容如下:温室气体测量技术的发展与应用中国气象局 汤洁近十年余来,在应对气候变化带来的温室气体监测迫切需求促进下,随着高分辨率光谱探测技术的进步和应用,市场上出现了一些新的温室气体测量技术和设备,呈现迅速取代非色散红外法、色谱法等原有主流测量技术地位的趋势,其中最多见的测量仪器有:CRDS(光腔衰荡光谱法)、OA-ICOS(离轴积分增强输出光谱法)、FTIR(傅里叶变换红外光谱法)等。这三种技术均基于近/中红外的高分辨率吸收光谱的测量原理,具有精度高、时间分辨率高、响应快速稳定、使用便捷等优势特点,前两种技术的特点为近或中红外激光光源的单吸收峰窄带光谱测量,后一种则为宽带多吸收峰中红外光谱测量,两者各自在光源强度和光谱稳定性上具有相对优势。国外已推出的商用仪器总体测量性能均能满足世界气象组织(WMO)和欧洲综合碳观测系统(ICOS)的技术要求,因而在国内的许多科研业务单位已获得采购应用。但是,这些新仪器设备因其工作原理特点,在使用上需要特别注意以下2个问题,才能真正发挥这些仪器的优势特点,获得精准的测量数据。首先是水汽干扰的问题。一般认为,高分辨率光谱测量技术可以更加准确地区分不同物种的指纹光谱吸收,因而可以完全排除水汽等非目标物种的吸收峰干扰,但是实则并不尽然。根据文献报道,水汽(在近/中红外区吸收最强)对温室气体高分辨率光谱测量的干扰影响包括以下四种方式:1)稀释效应(即在计算温室气体物种的干空气混合比时,必须扣除水汽含量);2)水汽吸收峰的干扰;3)吸收峰展宽的影响;4)临近吸收峰展宽后的干扰。前两种干扰和影响的物理因素较为简单,而后两种干扰源自于分子间相互作用的结果,对光谱解析计算的影响较为复杂,尤其是对单吸收窄带光谱测量的技术而言,影响更为显著一些。这些干扰因素对于高精度温室气体测量来说是不可忽视的,目前唯一的解决办法是在进气系统中加入除水器件,将环境空气的露点温度降低到一个可接受的范围,WMO在2015年曾建议将进气露点温度控制在-30℃以下(即水汽含量低于500ppm)。除水的方法有冷阱除水、溶蚀管除水、化学除水,三种方法既可以单独使用也可以组合使用。第二个需要注意的是同位素体“盲视”(或“歧视”)问题。如,二氧化碳存在16O12C16O、16O13C16O、17O12C16O、18O12C16O等多种稳定同位素体,还包括14C等非稳定同位素体。不同同位素体的分子吸收光谱是不一样的,因此高分辨率光谱测量将不同种的同位素体作为不同的“物种”来测量,对二氧化碳而言一般是只测量16O12C16O,而对其它同位素体是完全“盲视”的。相对而言,传统的非色散红外法、色谱法技术不存在同位素体“盲视”(或“歧视”)效应,或者可忽略。由于大气二氧化碳中的碳-13同位素丰度受化石燃料排放等影响而存在季节变化和长期趋势,同位素体“盲视”效应的存在可能影响高精度温室气体测量结果,在温室气体标准制备、量值传递过程中,也需要格外重视同位素体“盲视”效应可能带来的系统性干扰和影响。除本文提及的三种高分辨率光谱温室气体测量技术外,国外还不断有新技术研发的报道,国内一些科研单位和企业也在密切跟踪国际最新技术的进展,自主研发国产测量仪器。作者衷心期待更加先进、可靠、自主创新的国产技术装备出现,为构建我国技术自主的温室气体监测网络做出贡献,提供关键的基础数据支撑,为我国“双碳”战略保驾护航。作者简介:汤洁 研究员中国气象科学研究院中国气象科学研究院研究员,硕士生导师,长期从事大气化学观测研究,2018年退休。曾作为归国留学生代表获江泽民主席接见,入选国家“百千万人才计划”第二层次人才,获国务院特殊津贴奖励,在全球大气化学计划、全国环境学会、气象学会中担任学术任职,任世界气象组织全球大气监测计划(WMO-GAW)运行专家组(OG)成员和中方国家联络人,负责瓦里关本底台的国际援助项目和业务建设,先后4次赴南、北极科考。在国内外学术刊物上发表论文百余篇,译著一篇,编写国家标准2份及气象行业标准多份。
  • CEPC 650 MHz超导腔加速梯度再创新高
    6月22日和7月12日,中科院高能所加速器中心沙鹏等人在先进光源技术研发与测试平台(PAPS)分别对环形正负电子对撞机(CEPC)的两只650 MHz single-cell超导腔(1#腔和2#腔)进行了低温下的垂直测试(@ 2.0 K):两只超导腔的最大加速梯度分别达到了41.0MV/m和41.6MV/m;在40MV/m的加速梯度下,两只超导腔的品质因数(Q)分别达到了1.7E10和2.5E10;此外,在测试过程中,1#腔全程没有出现场致发射现象,2#腔则在37MV/m以上的高加速梯度下发生了轻微的场致发射。测试结果表明,这两只超导腔的后处理和测试过程非常成功。 由于体积和表面积大、频率较低,国内大尺寸(频率小于1GHz)超导腔的加速梯度一直没有超过40MV/m,而国际上超过40MV/m的大尺寸超导腔也是屈指可数。因此,在高能所射频超导与低温研究中心的部署下,加速器中心高频组开展了CEPC高性能650 MHz single-cell超导腔的研发,希望可以达到CEPC的远期目标(3E10@40MV/m)。两只650 MHz single-cell超导腔的加速梯度均超过了40MV/m,这为下一步继续提高超导腔的Q值奠定了基础。 本项研究得到了先进光源研发与测试平台、国家重点研发计划、国家自然科学基金委、 王贻芳科学家工作室和高能所创新项目的资助和支持。 650 MHz single-cell超导腔垂直测试结果(1#腔,20220622;2#腔,20220712)
  • 中华环保联合会发布《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》等两项团体标准征求意见稿
    各相关单位、专家:根据《中华人民共和国标准化法》《团体标准管理规定》和《中华环保联合会团体标准管理办法(试行)》的相关规定,由中华环保联合会归口,中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国水产科学研究院南海水产研究所等企事业单位共同起草的《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》两项团体标准,经编制组会议、专家咨询、专家研讨会等对标准内容研讨论证,现已完成标准征求意见稿。为保证标准的科学性、严谨性和适用性,现公开征求意见。公示期间,请各有关单位及专家认真审阅标准文本,对两项标准提出宝贵建议和意见,并于2024年5月24日前以邮件的形式将《团体标准意见反馈表》反馈至编制组秘书处,逾期未回复按无意见处理。请登录全国团体标准信息平台(http://www.ttbz.org.cn)和联合会官网(http://www.acef.com.cn)下载标准征求意见稿及编制说明等方面信息。 联 系 人:姚雷 18800002545联系电话:010-51230020电子邮箱:13718003807@163.com传 真:010-51230020 附件:1、《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》2、《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明3、《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》4、《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明5、中华环保联合会团体标准意见反馈表 中华环保联合会2024年4月18日关于《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》等两项团体标准征求意见的函.pdf附件1 - 《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》.pdf附件2 - 《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明.pdf附件3 - 《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》.pdf附件4 - 《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程(征求意见稿)》编制说明.pdf附件5 - 中华环保联合会团体标准意见反馈表.doc
  • 深度学习助力增材制造梯度力学超材料逆向设计
    由于其特异的宏微观基元拓扑构型,力学超材料在刚度、韧性、减隔振和热膨胀等性能方面显著优于传统均质材料,受到了航空航天、生物医学、电子电路和土木工程等领域的广泛关注。生物体经过长期进化形成的各类器官,与超材料的概念相契合,即通过多层级微结构实现超常物理力学特性,同时生物器官的微结构基元还呈现出梯度渐变、长程无序等特征。目前,针对力学超材料发展的拓扑优化方法和机器学习设计方法,主要面向周期性结构,对于仿生梯度超材料的逆向设计和优化,缺乏高效率、高保真的计算分析方法。 图1深度神经多网络系统实现多属性胞元的定制总体思路框图近期,来自北京理工大学的研究者们提出了一种加速梯度力学超材料逆向设计的深度学习方法。发展了一种由对抗神经网络(GAN)、性能预测网络(PPN)和结构生成网络(SGN)组成的多重网络深度学习框架,如图1所示,可实现力学性能参数和拓扑构型的快速双向映射。基于此深度学习框架,将各向异性材料杨氏模量、剪切模量和泊松比组成的属性空间,类比于R-G-B色彩空间,进而将梯度力学超材料逆向设计转换为色彩匹配问题。利用HTL树脂3D打印(NanoArch S140,摩方精密)制备了超材料结构样件,采用数字图像相关(DIC)方法验证了逆向设计的有效性。相关成果以“A Deep Learning Approach for Reverse Design of Gradient Mechanical Metamaterials”为题发表在《International Journal of Mechanical Sciences》期刊。图2 周期性超材料的应力应变曲线和泊松比应变曲线,其中左侧插图为3D打印试件,右侧插图为有限元分析模型。(a) 正泊松比结构。(b)零泊松比结构。(c)负泊松比结构;该研究中,首先基于拓扑优化方法得到了不同杨氏模量E、泊松比υ和剪切模量G的超材料胞元,并建立对应的属性空间作为数据样本。随后,基于Keras平台搭建了具备三个卷积解码/编码网络的深度神经网络系统,用于实现结构性能评估、结构补充与结构生成。基于拓扑优化样本实现PPN网络的离线训练,同时结合随机结构训练GAN网络以补充胞元属性空间。最后,基于属性空间扩充后的样本进一步训练SGN网络,对于任意的力学参数目标,均可在0.01秒内给出胞元构型,实现了多属性胞元的快速逆向设计。针对优化设计和网络预测得到的特定属性结构进行3D打印(如图2所示),并开展DIC压缩试验表征了其模量与泊松比,验证了算法的准确性和有效性。 图3 相邻胞元结构连通性的实现:(a)单元边界的定义和连接的分类(具有不同颜色的结构表示不同的属性);(b)SGN网络调整初始设计;(c)经过网络匹配得到的最终结构。在超材料胞元快速逆向设计的基础上,创新提出了一种结构像素化方法,通过结构的E-υ-G属性与R-G-B通道一一映射,将结构属性数据库转化为像素数据库。首先基于像素匹配的方式生成满足宏观属性需求的初始设计,随后网络系统根据结构的连通性要求进一步优化胞元结构,保证宏观结构的可制造性,如图3所示。研究者们以髋关节假体为例,开展了梯度超材料结构的快速设计。如图4所示,髋关节假体在人体中主要承受非轴向载荷,如果嵌入骨骼中的部分发生弯曲,受到弯曲拉应力作用的一侧,将牵引其上附着的骨组织,诱发组织损伤。模仿实际骨骼的力学属性分布特征,采用神经网络系统在不同位置自动排列模量与泊松比梯度变化的超材料胞元(图5),从而调整了宏观结构的变形模式,使髋关节植入结构的两侧,均保持在压应力状态,解决了假体界面失效的问题。计算模型基于围绕假体的凹槽,用于模拟假体插入骨骼,固定凹槽的底端并在假体的顶部施加非对称压缩载荷。同时他们还建立了一个多材料模型,每个晶胞区域代表一种材料,材料性质与超材料模型中相同位置的晶胞的E-G-υ一致。两种模型的水平位移计算结果如图5f所示,槽左侧的位移为负,而右侧的位移为正,这表明假体两侧的界面被均匀挤压。假体与骨牢固结合,有效防止界面破坏,梯度结构具有完美的连接状态,类似于超材料模型的设计目标。超材料模型和多材料模型的计算结果高度一致,证实了他们提出的超材料设计方法的准确性,这种有效的连接策略在满足增材制造要求的同时实现了与多材料设计相同的性能。图4 人体髋关节假体的受力状态。(从外到内为皮肤、髋骨和假体。假体受到不对称轴向压缩力作用,中间的粉红色区域被选为目标设计区域。) 图5 深度神经网络系统实现梯度模量/泊松比髋关节结构设计:(a)具有生物相似结构的梯度模量分布;(b)受变形模式启发的泊松比分布;(c)叠加后的最终力学性能分布;(d)GSN网络在像素匹配后调整结构;(e)满足目标模量和泊松比设计要求的超材料髋关节结构。(f)模拟假体受载的位移云图,等效多材料模型(上)和超材料模型(下)。
  • Biocomp密度梯度产品再传捷报
    2010年12月17号,北京五洲东方科技发展有限公司广州分公司在中山大学仪器招标项目中喜中加拿大Biocomp密度梯度制备和分离系统!   这次中标是继清华大学、上海交通大学、中科院生物物理所、中科院植物所之后,Biocomp产品再添佳绩,实现了华南地区Biocomp产品销售零突破,为Biocomp产品打开华南地区市场揭开了崭新的一页!   加拿大Biocomp公司成立于1985年,由生物医学博士David创建。Biocomp长期致力于生命科学一起的研发和生产,如全自动密度梯度设备等。Biocomp全自动密度梯度设备自David博士80年代发明依赖,即成为密度梯度准备的金标准,并申请专利。经过20年不断改进和发展,Biocomp密度梯度产品已经遍布全球,为广大科学研究提供了巨大帮助。
  • 中华环保联合会立项《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》 等五项团体标准
    各有关单位:依据《中华人民共和国标准化法》、国标委及民政部《团体标准管理规定》的文件精神,按照《中华环保联合会团体标准管理办法(试行)》的相关规定,在有关方面申报项目的基础上,我会组织专家对《沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》《河湖底泥氮磷污染评价规范》《河湖底泥有机质污染评价规范》《河湖底泥重金属污染评价规范》五项团体标准进行了立项审查。经审查,上述五项团体标准符合立项条件,现批准立项并将项目名称、主要起草单位等项目信息(见附件)在全国团体标准信息平台网站(http://www.ttbz.org.cn)予以公示。请起草单位严格按照有关规定抓紧组织实施,严把质量关,确保标准的适用性和有效性,按期完成标准的编制工作。同时,欢迎有关单位积极申报五项团体标准的起草制定工作。公示期间如有任何建议和要求,请与秘书处联系。特此公告。联 系 人:刘彬 罗春辉联系电话:010-51230041,010-51230020,13910752920邮 箱:lhhzlhzb@126.com附 件:团体标准立项公告列表团体标准立项公告列表项目名称制修订项目周期(月)主要起草单位沉积物/湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所水体营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、中国水产科学研究院南海水产研究所河湖底泥氮磷污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国环境科学研究院河湖底泥有机质污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所、中国环境科学研究院河湖底泥重金属污染评价规范制定12中国科学院南京地理与湖泊研究所、长江水利委员会水文局、生态环境部南京环境科学研究所中华环保联合会2023年7月21日关于《沉积物湿地土壤营养盐和重金属的薄膜扩散梯度(DGT)法采样与检测技术规程》 等五项团体标准立项的公告.pdf
  • Eppendorf 推出世界上首台具有防蒸发技术的梯度PCR仪
    Eppendorf 推出世界上首台具有防蒸发技术的梯度PCR仪-Mastercycler pro PCR反应中经常会遇到蒸发问题,尤其是边角上的位置。蒸发不仅使小反应体系PCR的应用受到限制,同时也使常规PCR获得可重复性的结果变得困难。Mastercycler pro-Eppendorf 最新推出的先进的梯度PCR仪,通过专利的 vapo.protect&trade 防蒸发样品保护技术可以有效地防止蒸发。 与传统的PCR 仪在热盖上使用一块金属板从上面压住耗材不同,vapo.protect&trade 热盖则使用了一种充有液体的缓冲垫,不管使用何种耗材,该缓冲垫都可以顺应耗材的形状,与其紧密的契合,从而将蒸发的可能性减至最小。而蒸发的减少使PCR各组份的浓度始终保持不变,减少非特异性产物的发生,最终获得稳定和高度可重复性的实验结果。 Mastercycler pro 梯度PCR仪是Eppendorf 在多年PCR仪制造经验基础上不断研发、不断创新的结果。它将Eppendorf PCR产品高速、静音、灵活的特性与革新的 vapo.protect&trade 防蒸发样品保护技术完美结合,开创了PCR仪高品质时代。 除了vapo.protect&trade 技术和原有PCR仪超快的升降温速率、完善的梯度功能和直观的程序编辑等优点,Mastercycler pro 梯度PCR仪在软件的设置和操作上更加灵活,有2个USB接口,可以编辑超长的PCR程序,系统记录文件、实验方法等文档可以选择PDF格式输出。此外可选配的USB加密狗,方便用户对半导体元件进行快速的自我检测,以保证实验数据的可靠。 有关Mastercycler pro 梯度PCR仪更多的信息,欢迎随时与Eppendorf中国各办事处联系, 或访问我们的网页 Mastercycler pro梯度PCR仪
  • 我国建成立体化综合气象监测网
    3月23日,中国气象局局长郑国光在2013年世界气象日致辞中指出,我国已建立地基、空基、天基相结合的立体化综合气象监测网。   郑国光表示,目前我国气象灾害的监测水平、精度、效率得到极大提升,对主要气象灾害已实现测得到、报得准、发得出、用得上。5年来,我国因气象灾害造成的死亡人数较上一个5年减少近2000人,造成的经济损失占GDP的比例由1.22%降低至0.6%。   郑国光说,我国有419个地面观测站、87个高空观测站被列入全球气象监测网,7颗风云系列气象卫星在轨运行,其观测资料为近百个国家和地区接收,在防御气象灾害、促进经济社会发展等方面发挥着巨大作用。
  • 建气象站、追踪极高海拔大气污染输送...珠峰科考创多项纪录
    5月4日中午,我国13名珠峰科考登山队员成功登顶珠穆朗玛峰。这是我国珠峰科考首次突破8000米以上海拔高度。此次珠峰科考聚焦珠峰地区的环境变化,从大气、水、生态、地表过程等方面进行全方位的考察。5个科考分队、16支科考小组的270多名科考队员参加科考任务,应用先进技术、方法和手段,围绕西风-季风协同作用、亚洲水塔变化、生态系统与生物多样性、人类活动等重大科学问题开展研究。图源:新华社成功架设全球海拔最高气象站登顶的第一项重要任务,就是架设气象站。4日中午12时46分,在珠峰海拔8830米处,科考队员成功架设一台重达50公斤的自动气象观测站,并成功传回实时数据。这是全世界海拔最高的自动气象观测站,可实现珠峰极高海拔区气象梯度自动观测和数据传输,获取的实测数据可填补珠峰极高海拔气象记录空白。据介绍,该自动气象站由太阳能电池板供电,正常情况下可使用2年,经过卫星通信等手段,传送温度、湿度、风向、风速、太阳辐射等气象信息。图源:新华社珠峰地区架设8个极高海拔梯度气象站此次科考的一项重要任务,是在珠峰北坡搭建海拔梯度气象站。今年以来,科考队已陆续在海拔5200米、7028米、7790米和8300米,架设了4个自动气象站。加上去年在海拔6500米、5800米及5400米架设的3个自动气象站,一个从海拔5200米至8300米之间的7个梯度自动气象站已建成运行。而在海拔8830米架设的这个自动气象站,是“巅峰使命”珠峰科考活动中架设的最后一个气象站,相当于海拔梯度气象站的最后一块“拼图”。图源:新华社8个气象站呈阶梯分布,立体、精准实测珠峰北坡的气温、相对湿度、风速、风向和太阳辐射等数据,并可实时远程传输。目前我们的高海拔地区相对缺少这种气象观测,常规的气象观测一般都在5000米以下,5000米以上很少。通过收集的气象数据,可以进一步研究极高海拔的气象要素变化特征,对我国建设珠峰梯度气象观测体系,对高海拔冰川和积雪变化的监测意义重大。开展系列极高海拔综合科考工作,“极目一号”Ⅲ型浮空艇升空高度有望超过9000米此次珠峰科考还开展了一系列极高海拔综合科考工作,比如极高海拔大气污染的输送和人体极高海拔适应性研究。在海拔5200米的珠峰大本营,中科院院士、北京大学环境科学与工程学院院长朱彤带领珠峰大气与人体健康科考分队,首次释放了由我国科研人员自主研发的臭氧探空气球,获取了从地面至万米高空的臭氧浓度信息,为解密青藏高原如何影响大气自净能力这一重大科学问题,积累了首批珍贵数据。坐落于珠峰北坡地区、海拔近4300米的珠峰站,是此次科考的主要营地之一。在这里,一个体格硕大的“飞艇”浮在半空,十分“抢镜”。这是我国自主研发的“极目一号”Ⅲ型浮空艇。在这次科考任务中,科考队将利用“极目一号”Ⅲ型浮空艇展开高空大气环境的综合测试。2019年,第二次青藏科考水汽传输科考分队在西藏纳木错多圈层综合观测站开展区域水循环观测研究,就曾利用“极目一号”系列浮空器综合观测地表至海拔7000米高空的大气水汽稳定同位素、大气黑碳和大气甲烷含量等大气组分,首次获得了青藏高原海拔7000米高空的大气组分变化科学数据。这为揭示亚洲水塔的水从何处来提供了关键科学数据。这一次,“极目一号”Ⅲ型浮空艇将挑战世界最高升空海拔,升空目标预计将超过珠峰峰顶。浮空艇的体积是9060立方米,是由我国自主研发的一个高空观测科学平台,主要目标是希望浮空艇升空高度能超过珠穆朗玛峰,超过9000米。
  • 文章推荐 | 使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量
    荷兰应用科学院(TNO, the Netherlands Organisation for Applied Scientific Research)和荷兰国家公共卫生与环境研究所(RIVM, National Institute for Public Health and the Environment)的联合研究团队发表了一篇题为“ Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods "的研究论文,已发表于《Atmospheric Measurement Techniques》。实验项目:使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量项目地点:荷兰 Ruisdael 观测站合作伙伴:荷兰应用科学院和荷兰国家公共卫生与环境研究所的联合研究团队部署仪器:HT8700大气氨激光开路分析仪项目简介:氨的干燥沉积(NH3)是荷兰大气向土壤和植被的氮沉积的最大因素,导致富营养化和生物多样性的损失。然而,学术界对于氨通量测量的数据十分有限,而且通常最多只有月度分辨率。造成这种情况的一个重要原因是在干燥条件下测量氨通量非常困难。过去,没有一种技术可以被认为是氨通量测量的黄金标准,这使得新技术的测试和判断其质量变得复杂。 这项研究展示了两种新型测量装置的相互比较结果,旨在以半小时分辨率测量氨的干沉降。在为期五周的比较期内,研究人员在荷兰 Cabauw 的 Ruisdael 观测站并排运行了两种光学开路的通量观测技术:其一是使用梯度法通量技术新型 RIVM-miniDOAS 2.2D 仪器,其二是宁波海尔欣光电科技有限公司推出的使用涡度协方差技术的HT8700大气氨激光开路分析仪。HT8700大气氨激光开路分析仪部署于荷兰的观测站RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪均为开路式光学仪器,在测量过程中直接测量氨在大气中的含量。除此之外,它们在测量原理和从测量浓度得出沉积值的方法上存在很大差异。在迎风地形均匀又没有附近障碍物时,两种不同的技术显示出非常相似的结果(r = 0.87)。观察到的通量从约80 ng NH3 m-2 s-1 的沉降到约140 ng NH3 m-2 s-1 的排放不等。无论是在绝对通量值还是实时的通量和浓度变化,两种截然不同的技术中获得了相似的结果,这证实了两种仪器都能够在至少几周的连续时间内以高时间分辨率测量氨通量。不过这个相关性也会受到其他因素影响,例如当风向受到附近障碍物干扰时。HT8700与定制化RIVM-miniDOAS 2.2D 仪器所测量的氨通量变化显示高度的一致性此外,论文中还讨论了两个系统的技术性能(例如,正常运行时间、精度)和实际局限性。miniDOAS 系统的正常运行时间达到了 100%,但在这次活动中对两台仪器进行了定期校准(占7周正常运行时间的35%)。而HT8700在下雨期间和下雨后不久数据有效性较低,并且其早期产品使用的光学镜面涂层可能会退化,导致约21%的数据缺失(针对此问题的升级版光学镜面已经交付客户使用)。虽然HT8700在恶劣天气条件下的独立运行时间有限,在适当的情况下,该系统仍然可以提供良好的结果,为未来的升级迭代版本打开了良好的前景,将能适用于业务化的实时氨通量监控应用。这些仪器所提供的崭新的高时间分辨率数据将促进对氨干沉降过程的研究,从而更好地理解氨沉降过程,并更好地对化学传输模型进行参数化。HT8700大气氨激光开路分析仪产品升级自动清洁自动清洁系统使用清洗和喷气功能来清除下镜面的灰尘,免除常规的手动清理。并采用了一种全新的镜面涂层技术,增强耐腐蚀性,以保证实地的长期观测。降雨传感如遇降雨天气,系统收集的数据为无效数据。增设降雨识别芯片,通过传感装置实时反馈至系统。并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度。确保反射能力不受低温、冷凝、降雨影响,使仪器分析结果更精准、更可靠。HT8700搭载升级版光学镜面,进行全新一轮野外测试通过这次研究,我们可以看到,RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪在测量氨沉降方面具有很高的潜力和应用价值。尽管这两种仪器在测量原理和数据处理方法上存在差异,但在一定条件下,它们都能提供准确可靠的测量结果。此外,通过不断的技术升级和改进,HT8700大气氨激光开路分析仪的性能和稳定性得到了进一步提高,为未来的氨沉降测量提供了更好的工具和手段。总之,这项研究提供了有关氨沉降测量的新思路和新方法,为未来的环境保护和生态学研究提供了新的工具和手段。我们相信,随着技术的不断进步和研究的深入,我们将能够更好地了解氨沉降过程,为保护环境、维护生态平衡和促进可持续发展做出更大的贡献。
  • 广东计划试点温室气体监测、碳汇监测
    海洋生态环境保护是一个动态持续的过程。为精准、长效保护海洋生态环境,目前广东全省已布设海水环境质量监测点位268个,海洋沉积物监测点位135个,开展海水环境质量、海洋生态系统健康状况、重点海水浴场、海漂海滩垃圾和海洋微塑料等领域监测活动。“目前,广东已基本建成涵盖大气、水、土壤、海洋、噪声、生态、污染源等要素的生态环境监测基础网络。” 广东省生态环境厅环境监测处处长林文表示,在传统监测网络基础上,下一步广东将继续拓展新兴领域监测,提升创新水平。其中包括,在深圳、湛江、韶关等市试点开展典型城市温室气体监测、典型海岸带、森林生态系统碳汇监测,研究构建符合广东省流域特征的水生态监测与评估体系。同时,开展重点管控新污染物调查监测试点,与卫生健康部门合作推进构建和完善生态环境健康风险监测、评估及溯源技术体系。选择深圳、湛江、韶关3市试点主要是考虑在中型、大型等不同规模城市及海岸带、森林等不同类型生态系统中开展碳汇监测。林文表示,下一步广东还将推进监测信息化智能化水平提升。借助5G、云计算、人工智能、无人机、遥感等新技术手段,继续优化整合生态环境质量监测、污染源监测、视频监控等感知资源,开发各类智慧应用。“其中,深圳启用的气象观测梯度塔能够搭载很多监测设备,记录不同高度的二氧化碳浓度等数据参数,是一个比较有代表性的探索。”林文表示,广东典型城市试点经验将形成总结方案提交生态环境部审核,为全国碳汇监测体系建设提供可复制、可推广的广东经验。
  • “Interscience梯度稀释螺旋接种仪有奖问答”——2013年五洲东方公司
    2013年五洲东方公司系列有奖问答二&mdash &mdash &ldquo Interscience梯度稀释螺旋接种仪有奖问答&rdquo 活动开始啦!全部回答正确者即可获得由五洲东方公司提供的精美奖品一份。熟悉实验方法的网友不要犹豫了,快来参加吧! 活动开始时间: 2013年3月。 活动奖励: 全部答全答对的网友将获得精美礼品一份。 答题规则如下: 我们会提供参考文章,您可以阅读完文章后答题。 本次试题共5题,1-5题都必须答全。 点击下载试题Interscience梯度稀释螺旋接种仪有奖问答问题.doc,填写完整后,您可以: 1)将问卷邮件至g.y_liu@ostc.com.cn。 2)将问卷邮寄至北京五洲东方公司(&ldquo 北京市海淀区北四环中路265号中汽大厦7层&rdquo ,邮编:100083,刘广宇收)。 奖品发放: 收到问卷经审核后,将发放精美奖品。 为了保证奖品能顺利发送到您的手中,请将您的所有联系方式全部填写全面。 活动咨询电话:400-011-3699 活动详情:&ldquo Interscience梯度稀释螺旋接种仪有奖问答&rdquo &mdash &mdash 2013年五洲东方公司系列有奖问答二 请关注下期有奖问答活动: 2013年五洲东方公司系列有奖问答三 所有活动信息请关注五洲东方官方网站www.ostc.com.cn首页公告栏。 感谢您的参与!
  • 中环电炉发布1600℃双温区梯度管式电炉新品
    一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀。电热元件采用表面温度1500度的优质硅碳棒及表面温度1700度的优质硅钼棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性。气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置。有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。创新点:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。 选配:彩色触摸屏; 显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。 1600℃双温区梯度管式电炉
  • 工信部印发《绿色工厂梯度培育及管理暂行办法》
    绿色工厂梯度培育及管理暂行办法第一章 总则第一条 为加快构建绿色制造和服务体系,发挥绿色工厂在制造业绿色低碳转型中的基础性和导向性作用,加快形成规范化、长效化培育机制,打造绿色制造领军力量,根据《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“十四五”工业绿色发展规划》《工业领域碳达峰实施方案》,制定本办法。第二条 本办法所称绿色工厂是指实现用地集约化、原料无害化、生产洁净化、废物资源化、能源低碳化的企业,是绿色制造核心实施单元。绿色工厂梯度培育是指从以下两个维度建立培育机制:纵向形成国家、省、市三级联动的绿色工厂培育机制;横向形成绿色工业园区、绿色供应链管理企业带动园区内、供应链上下游企业创建绿色工厂的培育机制。绿色工业园区是指将绿色低碳发展理念贯穿于园区规划、空间布局、产业链设计、能源利用、资源利用、基础设施、生态环境、运行管理等过程,全方位实现绿色低碳和循环可持续发展的工业园区,是绿色工厂和绿色基础设施集聚的平台。绿色供应链管理企业是指将绿色低碳发展理念贯穿于企业产品设计、原材料采购、生产、运输、储存、销售、使用和报废处理等全过程,实现供应链全链条绿色化水平协同提升的主导企业,是带动供应链上下游工厂实施绿色制造的关键。第三条 绿色工厂梯度培育及管理遵循企业主体、政府引导、标准引领和全面覆盖的原则,以绿色工厂培育为基础,以绿色工业园区、绿色供应链管理企业培育为支撑,优化政策环境,引导第三方机构提供专业化服务,激发企业绿色制造的内生动力,发挥绿色制造标杆示范带动作用,推动行业、区域绿色低碳转型升级。第四条 工业和信息化部负责全国绿色工厂梯度培育工作的宏观指导、统筹协调和监督管理,组织制定评价标准,遴选发布国家层面的绿色工厂、绿色工业园区、绿色供应链管理企业名单(以下简称绿色制造名单),推动出台相关配套政策。各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门(以下简称省级工业和信息化主管部门)根据本办法制定本地区的绿色工厂梯度培育管理实施细则报工业和信息化部备案,并依据本办法和实施细则负责本地区的培育、管理和推荐工作。第五条 工业和信息化部负责工业节能与绿色发展管理平台(https://green.miit.gov.cn/,以下简称管理平台)的建设和运维,将其作为开展绿色工厂梯度培育及管理的统一平台。第二章 培育要求第六条 省级工业和信息化主管部门应将本地区具备培育条件且有提升潜力的企业、工业园区列为培育对象,制定培育计划,引导和支持培育对象对照绿色工厂、绿色工业园区和绿色供应链管理企业相关标准要求,实施绿色化改造升级,持续完善绿色发展各项工作。第七条 绿色工厂培育对象应当符合下列条件:1.依法设立并具有独立法人资格或者视同法人的独立核算单位,且从事实际生产的制造型企业;2.符合本办法第十四条第一款相关标准要求。第八条 绿色工业园区培育对象应当符合下列条件:1.具有法定边界和范围、具备统一管理机构的工业园区,且以产品制造和能源供给为主要功能,工业增加值占比超过50%;2.发布园区绿色工厂培育计划,组织园区内企业开展绿色工厂创建;3.符合本办法第十四条第二款相关标准要求。第九条 绿色供应链管理企业培育对象应当符合下列条件:1.依法设立并具有独立法人资格或者视同法人的独立核算单位,是行业影响力大、经营实力雄厚、产业链完整、绿色供应链管理基础好、在产业链发挥主导作用的企业,积极创建绿色工厂;2.制定供应商绿色工厂培育计划,推动供应商开展绿色工厂创建;3.符合本办法第十四条第三款相关标准要求。第三章 创建程序第十条 企业、园区可采取自评价或委托具备评价能力的第三方机构开展评价的方式,编写评价报告后通过管理平台提交。采取第三方评价方式的,第三方机构要按照《绿色制造第三方评价工作要求》(附件1)开展工作,对所出具评价报告的真实性和准确性负责。采取自评价方式的,工作流程和报告模板可参考《绿色制造第三方评价工作要求》。第十一条 省级工业和信息化主管部门依据管理平台收到的申报材料,按照本办法和本地区绿色工厂梯度培育管理实施细则组织本地区省市层面绿色工厂创建,发布省层面绿色工厂名单。省层面绿色工厂原则上应先纳入市层面绿色工厂名单。第十二条 省级工业和信息化主管部门在充分征求当地生态环境、应急管理、市场监管等主管部门意见后,于每年7月31日前将本地区具有代表性和引领性的省层面绿色工厂通过管理平台推荐至工业和信息化部。各省绿色工厂的推荐数量将按照规模以上工业企业数量和梯度培育体系建设情况等因素综合确定。工业和信息化部组织专家对各省推荐的工厂进行评审,择优确定年度公示名单,公示时间为15日,经公示无异议的纳入国家层面绿色工厂名单并予以公告。第十三条 国家层面绿色工业园区、供应链管理企业创建流程和时间要求与国家层面绿色工厂相同。省级工业和信息化主管部门可根据实际工作需要自行组织省层面绿色工业园区、供应链管理企业创建,自行确定推荐单位是否需纳入省层面绿色工业园区、供应链管理企业名单。第十四条 工业和信息化部定期发布用于国家层面绿色工厂创建的标准清单(详见节能与综合利用司网站)。已纳入清单的行业按照相应标准进行评价,不在清单范围的行业依据《绿色工厂评价通则》(GB/T 36132)进行评价。工业重点领域优先推荐能效水平达到国家有关部门发布的标杆水平的工厂,其他行业优先推荐达到相应国家能源消耗限额标准先进值或1级水平的工厂。国家层面绿色工业园区创建依据《绿色工业园区评价要求》(附件2,后续根据实际随时修订)。推荐的园区应为省级以上且绿色工厂数量多、占比高的工业园区。工业和信息化部定期发布用于国家层面绿色供应链管理企业创建的行业指标体系(详见节能与综合利用司网站)。已发布行业指标体系的按照指标体系进行评价,未发布的行业依据《绿色供应链管理企业评价要求》(附件3,后续根据实际随时修订)进行评价。推荐的企业原则上应为国家层面绿色工厂,优先推荐汽车、机械、电子、纺织、通信制造等行业以及供应商中绿色工厂数量众多的龙头企业和汽车产品生产者责任延伸试点企业。省级工业和信息化主管部门可参考上述标准,结合本地区实际适当调整要求,确定创建省市层面所使用的标准。第十五条 近三年有下列情况的企业或园区(含园区内企业),不得申请、推荐和列入绿色制造名单:(一)未正常经营生产的(工商注销、连续停产12个月以上、被市场监督管理部门列入经营异常名单且未被移出等);(二)发生安全(含网络安全、数据安全)、质量、环境污染等事故以及偷漏税等违法违规行为的(参照“信用中国”和“国家企业信用信息公示系统”);(三)被动态调整出绿色制造名单的;(四)在国务院及有关部委相关督查工作中被发现存在严重问题的;(五)被列入工业节能监察整改名单且未按要求完成整改的;(六)企业被列为失信被执行人。第四章 动态管理第十六条 对绿色制造名单实施动态跟踪。国家、省、市层面绿色制造名单应在每年4月15日前通过管理平台填报动态管理表(附件4),上报年度绿色制造关键指标情况。第十七条 省级工业和信息化主管部门对纳入绿色制造名单的企业或园区应加强指导、监督、检查,不定期进行现场抽查复核,持续跟踪和分析创建成效,如有重大及以上生产安全和质量事故、Ⅱ级(重大)及以上突发环境污染事件的实时上报工业和信息化部。第十八条 绿色制造名单中的企业或园区存在以下情形的,在发布年度名单时予以移出并进行公告:(一)第十五条中所提到情况;(二)拒不按时填报动态管理表;(三)所提交材料或数据存在造假等问题。发生重大及以上生产安全和质量事故、Ⅱ级(重大)及以上突发环境污染事件的,及时从各层面名单移出并进行公告。第十九条 绿色制造名单中的企业或园区,如发生名称变更或因投资、并购等原因造成实际生产经营范围、生产地址、组织边界与列入时发生重大变更的,应在填报动态管理表时予以说明。所在地方工业和信息化主管部门对企业或园区提交的变更说明进行复核确认,变更后不再符合相关标准的从本层面名单中移出。对涉及到上一层面绿色制造名单的,地方工业和信息化主管部门于每年推荐名单时,将调整意见统一上报,在发布年度名单时予以公告和变更。第二十条 地方工业和信息化主管部门要对在本地区开展业务的第三方机构进行监督管理,发现问题及时上报。经查实在评价过程中存在弄虚作假或故意隐瞒评价对象问题的第三方机构在管理平台中进行通报,三年内不予采信其所出具的评价结果。工业和信息化部适时公布第三方机构开展评价工作的有关情况,引导第三方机构提升服务水平和工作质量。同一法定代表人的第三方机构每年度开展的国家层面绿色制造评价项目(包括绿色工厂、绿色工业园区、绿色供应链管理企业)总计不得超过15项。第二十一条 任何组织或个人可针对绿色制造名单单位和第三方机构相关信息真实性、准确性等方面存在的问题,向相关工业和信息化主管部门实名举报,并提供佐证材料和联系方式。对受理的举报内容,相关工业和信息化主管部门应及时进行核实,经核实确认存在所举报事项的,视情节轻重要求进行整改或按本办法第十八条要求从绿色制造名单移出,第三方机构存在所举报事项的按本办法第二十条第一款规定处理。第五章 配套机制第二十二条 工业和信息化部负责制定绿色制造相关政策,统筹推动分行业绿色工厂评价标准的制定,开发推广反映绿色工厂绿色发展水平的“企业绿码”,联合有关部门依法依规在规划布局、技术改造、专项资金申请、政府采购、试点示范、金融服务、品牌宣传等方面对绿色制造名单单位提供支持,发挥国家产融合作平台作用,引导金融资源为工业绿色发展提供精准支撑,实施绿色制造宣传推广行动,开展绿色制造培训。第二十三条 地方工业和信息化主管部门负责制定出台本地区对绿色制造的扶持和指导政策,把绿色工厂梯度培育作为推动区域制造业绿色高质量发展的主要抓手,对本地区绿色工厂梯度培育过程中遇到的问题制定针对性政策,联合有关部门依法依规积极运用财政、产业、土地、规划、金融、税收、用能等政策,持续提升绿色制造水平。第二十四条 参与绿色工厂梯度培育的第三方机构应加强自身能力建设和专业人员培养,主动向培育对象宣贯绿色制造相关理念和要求,推广先进成熟经验,深入挖掘绿色发展工作亮点和潜在改进空间,提出合理化提升建议,跟踪培育对象绿色发展过程的需求,提供绿色制造系统解决方案和持续性技术服务。第二十五条 绿色工厂、绿色工业园区、绿色供应链管理企业应积极通过公开渠道展示宣传绿色制造先进技术和典型做法,按照生态环境主管部门相关规定要求披露环境信息,发挥先进示范引领带动作用。鼓励绿色工厂编制绿色低碳发展报告,绿色工业园区制定绿色工厂支持政策,绿色供应链管理企业加大对绿色工厂的产品采购力度。第六章 附则第二十六条 本办法由工业和信息化部负责解释。第二十七条 本办法自发布之日起实施。附件:1.绿色制造第三方评价工作要求   2.绿色工业园区评价要求   3.绿色供应链管理企业评价要求   4.绿色制造名单动态管理表附件:《绿色工厂梯度培育及管理暂行办法》.pdf仪器信息网自2010年发起“科学仪器行业绿色仪器”奖项评选,旨在将中国市场上推出的,在绿色、低碳、环保以及保护人身体健康和安全等方面有突出设计的国内外仪器产品全面、公正、客观地展现给广大用户,促进科学仪器行业健康、快速发展。2024年1月3日起,仪器信息网启动“2023年度科学仪器行业绿色仪器”评选(申报通知),欢迎各仪器厂商积极申报!【申报通道】点击上方【申报通道】,登录【仪信通】,点击左侧菜单【奖项】→【绿色仪器】,即可进行申报。
  • 气象局环保部签合作协议 联合建立检测预警体系
    日前,中国气象局和环境保护部在京签署合作框架协议,以具体行动落实《大气污染防治行动计划》。此次合作旨在以重污染天气预警预报为重点,建立健全气象部门和环保部门的合作与会商机制,发挥各自优势提高应急联动响应能力 联合推进重大规划的协调和实施及重大科技攻关,共同推动环境保护和气象防灾减灾重大工程建设,为人民群众的正常生产和健康生活提供保障。   根据协议内容,两部门将按照&ldquo 优势互补、合作共赢,资源共享、分工负责,注重实效、稳步推进&rdquo 的原则,在重污染天气监测预警、核与辐射事故应急处置、应急条件下舆论宣传、城市空气质量预报、信息共享、气候变化影响评估、科技攻关、重大规划与重大工程等方面加强合作。   协议要求,当出现不利气象条件可能引发重污染天气时,两部门将启动监测预警会商机制,共同对重污染天气过程进行研判,联合发布重污染天气预警信息。同时,建立和完善核与辐射事故应急联合响应机制,加强预警发布渠道共享,强化气象卫星监测分析产品在重污染天气监测预警中的应用,在条件具备时对重污染天气采取必要的气象干预措施,为地方政府启动应急预案、切实保障公众健康和环境安全提供指导信息。   今后,两部门将加强城市空气质量预测预报合作,开展城市环境空气质量预报试点工作,强化专业人员技术交叉培训,逐步在全国范围联合开展空气质量预报。当重污染天气以及核与辐射应急事件发生后,两部门将加强舆论引导的协同和配合,建立信息通报机制,统一舆论宣传口径,共同维护社会稳定。   为进一步强化信息产品的处理与接收、传输与交换,协议要求逐步实现两部门大气成分、环境空气质量监测信息、气象观测预报信息以及气象卫星数据的共享共用。   同时,两部门将共同参加国家应对气候变化有关政策、法规和标准制定,做好应对气候变化的战略研究和基础研究 加强全球和区域气候变化对水资源利用、生物多样性、生态安全、环境保护的影响评估 联合推进科技攻关,加强城市空气质量预报技术方法的研究,强化环境与气象相关标准、技术规范制修订等方面的合作,共同开展重污染天气对生态环境等社会经济的影响评估以及与天气气候相互反馈影响机制等研究,建立重污染天气应对预警指标体系,推进放射性物质扩散预测预警方法等方面的研究。   在有关环境保护、气象重大政策研究和规划的编制及实施过程中,两部门将互相通报情况和征求意见,协调好环境保护与气象发展的关系,协同相关部门共同推进相关规划和重大工程的实施。在&ldquo 十二五&rdquo 期间,两部门将积极推进重点区域大气污染预警预测、核与辐射事故应急保障、国家突发公共事件预警信息发布系统、区域人工影响天气工程、环境和气象基础设施等工程建设。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制