当前位置: 仪器信息网 > 行业主题 > >

太赫兹近场显微镜

仪器信息网太赫兹近场显微镜专题为您提供2024年最新太赫兹近场显微镜价格报价、厂家品牌的相关信息, 包括太赫兹近场显微镜参数、型号等,不管是国产,还是进口品牌的太赫兹近场显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹近场显微镜相关的耗材配件、试剂标物,还有太赫兹近场显微镜相关的最新资讯、资料,以及太赫兹近场显微镜相关的解决方案。

太赫兹近场显微镜相关的仪器

  • 产品详情德国Neaspec太赫兹近场光学显微镜 THz-NeaSNOM-30nm光学信号空间分辨率 太赫兹波段的纳米分辨散射式近场光学显微-谱仪系统:neaspec公司推出的第三代散射式近场光学显微镜neaSNOM,采用专利的高阶解调背景压缩技术,有效 提取散射近场信号,在获得10nm空间分辨率的同时保持极高的信噪比,是目前世界上唯一成熟的s-SNOM产 品。同时其赝外差干涉式探测技术,能够获得对近场信号强度和相位的同步成像。 由于专利的全反射式光学聚焦和独一无二的双光路设计,neaSNOM是目前世界上唯一一款可以应用于太 赫兹波段的近场光学显微成像和谱仪系统。全新推出的THz-neaSNOM必将成为广大太赫兹科研工作者手中的 神兵利器。 对有机和无机材料同样适用 。封闭式外罩设计,减少气流干扰。 。预先校准的近场光路,近一步提高稳定性 。快速成像,并以10nm空间分辨率鉴别纳米材料 。同步探测近场光学信号强度、相位并成像 。可对单层石墨烯,蛋白质有效测量的高敏感度 。简单明了的光路说明和光源选择指示,培训、操作简便 产品简介:太赫兹(THz)光源波长较大,一般在300微米左右。由于衍射极限的存在,THz远场测量系统的光学空间分辨率一般被限制在150微米左右。该THz光远场测量结果的准确度经常无法满足对材料科学研究,尤其是需要纳米分辨率的微细尺度材料分布研究(例如半导体芯片中各个组成:源极,漏极,栅极)的实验。THz-NeaSNOM近场光学显微镜的出现为此难题提供了一个很好的解决方案。德国Neaspec公司与Fraunhofer IPM在Neaspec公司NeaSNOM近场光学显微镜的基础上,已经成功研发了一套易用使用且THz系统的空间分辨率达到30nm的实验设备。 THz-NeaSNOM主要技术参数与特点: 。优于30nm的空间分辨率 。常用THz光范围:0.1-3THz 。专利设计的宽波段抛面镜 。THz研究可使用商业 散射型近场光学显微镜原理视频介绍:HNeaSNOM 30nm空间分辨率 专利的背景信号压制技术:s-SNOM技术相对于传统SNOM更难实现的主要瓶颈在于,探测器通过自由光路接收散射信号时,其接收到 的光学信号中99%以上是悬臂、样品等区域散射的背景信号,只有不到1%是来自于针尖与样品之间的有效近 场信号。只有成功的将有效的近场信号提取出来,才能获得可靠稳定的近场光学测量结果。neaSNOM通过其专利的高阶信号解调技术结合干涉式探测方式,实现了对背景信号的有效压制,获得了对 散射近场信号高度可重复性、高信噪比的可靠测量。 在原理上,利用AFM探针的高频振动,远场光学信息在快速傅里叶变换后仅可获得一阶信号;相对地,近场光学信息可以获得一至四阶不同的信号。通过探测器对高阶信号的采集处理,从而实现从背景信号中对有效 近场信号的剥离。 neaSNOM拥有专利的heterodyne探测模块,可以利用参考镜进一步对剥离的近场信号进行调制,从而实现了对其强度和相位的同时采集和成像。 更广的波长范围和更高的分辨率neaSNOM对晶体管的近场成像 与传统SNOM技术受到分辨率极限的限制,而只能使用可见光或近红外光源不同,neaSNOM将可用光源拓展到中红外和太赫兹波段,并始终保持纳米级分辨率,这决定于neaSNOM的分辨率只与散射源尺寸( AFM 针尖曲率半径)有关这一独特技术特点。上图为,neaSNOM采用波长为10um的中红外光源和118um的太赫 兹光源获得的近场成像结果,其太赫兹成像的分辨率达到40nm,约为激发波长的1/3000,充分证明了 neaSNOM的高分辨能力。在中红外和太赫兹波段的纳米成像能力,使得neaSNOM具有对纳米结构进行电学,分子、晶格振动等性质 的探测能力,近一步拓展了近场光学技术的应用范围,为更多学科提供了有利的表征手段。 更大的应用拓展空间得益于优秀的双光路设计,neaSNOM在成像功能基础上具有了更大的应用拓展空间。利用预留的第二套可 用光路,neaSNOM可以实现对拉曼、荧光、光诱导和超快等领域的研究,部分研究成果已经发表在国际著 名期刊。 专业的模块化设计neaSNOM散射型近场光学显微镜采用模块化设计,将可见光、近红外、中红外照明探测单元,nano-FTIR ,透射模式等功能进行封闭模块化设计,进一步提高了整体光路的稳定性,以及操作的简便性,便于使用者更 快掌握neaSNOM系统操作,获得高质量近场光学测结果。 用户友好的软件平台neaSNOM散射型近场光学显微镜的软件平台历经数发整合,已完全兼容于windows系统并有着优秀的客户体验。最新的软件系统用户友好,操作简单,为防止使用人员的误操作,模块化的设计体系保证了仪器更 高的安全性。
    留言咨询
  • 产品详情德Neaspec真空太赫兹波段近场光学显微镜HV-THz-neaSNOM该套系统成功地继承了德国neaspec公司THz-neaSNOM的设计优势,采用专利保护的双光路设计,完全可以实现真空环境下太赫兹波段应用的样品测量。HV-THz-neaSNOM在实现30nm高空间分辨率的同时,由于采用0.1-3THz波段的时域太赫兹光源(THZ-TDS),也可以实现近场太赫兹成像和图谱的同时测量。这极大地满足真空环境中太赫兹近场光学研究的需求,可以减少大气中水对太赫兹波段的吸收影响,能更好地保持样品的洁净,为用户进一步集成真空设备提供了基础。太赫兹波有极强的穿透性,对不透明物体能完成透视成像,用来做半导体材料、生物样品等的检测是其应用趋势之一。该套真空太赫兹波段近场光学显微系统(HV-THz-neaSNOM)的集成,将在生物应用、半导体元器件和相变材料载流子等研究及领域都有着广阔的应用前景,有望为广大太赫兹科研工作者提供更多实际研究工作中的便利和支持。
    留言咨询
  • 太赫兹近场光学显微镜 - THz-NeaSNOM--30nm光学信号空间分辨率太赫兹(THz)光源波长较大,一般在300微米左右。由于衍射限的存在,THz远场测量系统的光学空间分辨率一般被限制在150微米左右。该THz光远场测量结果的准确度经常无法满足对材料科学研究,尤其是需要纳米分辨率的微细尺度材料分布研究(例如半导体芯片中各个组成:源,漏,栅)的实验。THz-NeaSNOM近场光学显微镜的出现为此难题提供了一个很好的解决方案。德国neaspec公司与Fraunhofer IPM在neaspec公司neaSNOM近场光学显微镜的基础上,已经成功研发了一套易用使用且THz系统的空间分辨率达到30nm的实验设备。产品特点/基本参数+ 优于30nm的空间分辨率+ 常用THz光范围:0.1-3THz+ 设计的宽波段抛面镜+ THz研究可使用商业化的AFM探针+ THz-TDS使用飞秒激光光源+ 简单易用,稳定性高半导体结构表征—30nm空间分辨率THz-NeaSNOM近场光学显微镜(下图左)对半导体结构的测量结果图。该结果表明硅衬底(上图左,灰色)上的SiO(一氧化硅)的尺寸大约在1.5×1 平方微米。通过分析左侧的高度数据,可以知道该一氧化硅结构仅仅只有大约22纳米厚度。虽然该层状结构非常薄,但THz-NeaSNOM近场光学显微镜(下图左)在测量高度的同时仍然能够记录该结构与衬底的近场光学信号的明显不同衬度的结果。该THz-NeaSNOM近场光学显微镜不仅在测量非常薄样品的时 候灵敏度非常高,而且通过分析近场光学信号数据(下图右)也证实了它超高的空间分辨率(~25-30nm)。 表征半导体器件 Nature 456,454(2008) 超快机制研究纳米线 Nature Photonics 8,841(2014) 部分用户好评与列表(排名不分先后)neaspec公司产品以其稳定的性能、高的空间分辨率和良好的用户体验,得到了国内外众多科学家的认可和肯定......"The neaSNOM microscope with it’s imaging and nano-FTIR mode is the most useful research instrument in years, bringing genuinely new insights."Prof. Dmitri Basov美国 加州大学University of California San DiegoDepartment of PhysicsLa Jolla, USA"We were looking for a flexible research tool capable of characterizing our energy storage materials at the nanoscale. neaSNOM proofed to be the system with the highest spatial resolution in infrared imaging and spectroscopy and brings us substantial new insights for our research”Dr. Jaroslaw Syzdek美国 劳伦斯伯克利实验室Lawrence Berkeley National LaboratoryEnvironmental Energy Technologies DivisionBerkeley, USA"The neaSNOM microscope boosted my research in plasmonic properties of noble metal nanocrystals, optical resonances of dielectric nanostructures, and plasmon polaritons of graphene-like two dimensional nanomaterials."陈焕君 教授中国 中山大学Sun Yat-sen UniversityChina"As a near-field expert I was quickly convinced that neaSNOM is the only optical AFM microscope completely satisfying the needs of demanding near-field experiments. It’s the best comercially available technology and in addition really easy to use."Prof. Thomas Taubner德国 亚琛工业大学RWTH AachenMetamaterials & Nano-OpticsAachen, Germany"As a newcomer to the near-field optics I am very grateful for the prompt and competent support provided by neaspec’s experts."Dr. Edward Yoxall英国 帝国理工大学Imperial College LondonDepartment of PhysicsLondon, United Kingdom"After many years of research and development in near-field microscopy, we finally made our dream come true to perform infrared imaging & spectroscopy at the nanoscale. With neaSNOM we can additionally realize Raman, fluorescence and non-linear nano-spectroscopy."Prof. Rainer Hillenbrand西班牙 纳米科学协同研究中心CIC nanoGUNE Research CenterCo-Founder and Scientific AdvisorSan Sebastian, Spain"A unique advantage of the neaSNOM microscope is that it can be applied to many fields of scientific research such as Chemistry, Semiconductor Technology, Polymer Science and even Life-Science."Dr. Fritz Keilmann德国 慕尼黑大学Ludwig-Maximilians Universit?t MünchenCo-Founder and Scientific-AdvisorMunich, Germany南京大学中山大学都师范大学苏州大学University of San Diego,USAUniversity of Southampton, UKCIC nanoGUNE San Sebastion, SpainLBNL Berkeley, USAFraunhofer Institut ILT Aachen, GermanyMax-Planck-Institut of Quantum Optics, Garching, GermanyUniversity of Bristol, UKRWTH Aachen, GermanyCalifornia State University Long Beach, USA… …
    留言咨询
  • THz近场显微镜 400-860-5168转2831
    太赫兹近场显微镜TeraCube利用高性能太赫兹探针,结合时域泵浦探测系统成为THz近场系统可以进行高分辨率的成像研究。TeraCube Scientific和新的TeraCube Scientific M2是全自动太赫兹近场扫描系统,可以在光学实验室中运行。这两种系统都可以在距离样品表面受控的距离内对太赫兹场分布进行时域测量。TeraSpike近场微探针通过对平面样品传输宽带太赫兹脉冲进行成像。THz近场显微镜主要特点:▅ 通过同步运动控制和实时位置检测实现连续运动扫描的高速数据采集▅ 结构或弯曲样品在恒定微探针/表面距离下自适应太赫兹表面扫描的光学样品形貌检测▅ 用于偏振相关测量的线偏振和圆偏振太赫兹发射器▅ 高性能太赫兹发射器/探测器组件,加上高动态范围锁定检测,可获得卓越的信号质量▅ 用于监测微探针尖duan和样品位置的集成ccd摄像头模块▅ 集成CCD摄像头模块,用于监测微探针尖duan和样品位置系统控制和测量自动化软件,带有易于操作的图形用户界面,安装于配套PC▅ 软件实现对准监控功能和系统检测▅ 软件辅助微探针针尖到样品表面控制▅ 用于快速光学对准的时域信号预览模式▅ 数据导出为纯文本或Matlab兼容格式▅ 激光防护和防尘系统外壳▅ 开放式可扩展实验室型系统平台THz近场显微镜技术参数:THz近场显微镜安装要求:振动阻尼光学台,1.5米x 1米x 1米的系统放置空间;3B级或以上激光实验室规范THz近场显微镜应用:▅ 太赫兹超材料研究及传感应用 ▅ 半导体晶圆检验 ▅ 薄层电阻成像▅ 石墨烯分析 ▅ 太赫兹器件特性 ▅ 微观结构分析▅ 无损检测另外,我们可以根据客户要求,结合AFM原子力显微镜技术,配置相应的散射式THz近场成像系统。关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询,我们将竭诚为您服务。
    留言咨询
  • TeraSpike THz近场探针 微区探针(TeraSpike microprobe series)品牌:Protemics型号:TeraSpike TD-800-Z (纵向场微探针)TeraSpike是新一代的微探针,用于太赫兹频率范围内电场的光电导检测。基于客户的反馈和不断增长的应用驱动的需求,我们对近场探针进行了彻底的重新设计并且开发成功。新的探针是一款多用途表面近场电场探测器,适用于太赫兹波长范围内,具有前所未有的性能,可靠并且可适应。它可以完美地集成到太赫兹时域系统,在860 nm以下光激发,这是最高性价比的解决方案,将您的系统变成功能强大的高分辨率近场太赫兹系统。 。产品特点:市场上最小的THz探针专利设计空间分辨率可达3um探测频率范围:0-4THz适用于所有基于激光的THz系统安装可兼容标准的光机械组建典型激发光强度1-15mW(1-5uJ/cm2)集成过载保护电路应用:l 太赫兹研究:超材料,等离子体,石墨烯,波导l 高分辨率太赫兹近场成像 l 非接触式薄膜电阻半导体成像l MMIC器件特性分析 l 无损检测芯片l 时域反射计(TDR)测量脉冲激发的THz超物质表面的近场图像测量激光刻蚀多晶硅晶圆的薄层导电率图像 基于飞秒激光的THz系统 THz探针典型参数?TeraSpike TD-800-Z- A-500G Max. spatial resolution 8 μm PC gap size 5 μm Dark current @ 1 V Bias 0.4 nA Photocurrent (*) 0.5 μA Excitation wavelength 700 .. 860 nm Avg. excitation power 0.1 .. 4 mW Connection type SMP
    留言咨询
  • 超宽谱太赫兹发射器 400-860-5168转2831
    超宽谱太赫兹发射器自旋电子太赫兹(THz)发射器基于一个优化的金属薄膜堆栈包括自旋电子材料。在飞秒泵浦脉冲的照射下,太赫兹脉冲产生。太赫兹带宽覆盖0.1到30太赫兹的频率,没有任何谱段间隙。发射器是完全被动的,包括集成的磁铁设计,允许简单且完全控制线性太赫兹极化。 超宽谱太赫兹发射器主要特点: ■ 无光谱间隙的超宽带太赫兹辐射 ■ 高太赫兹产生效率,被动式器件 ■ 集成磁铁,可完全轻松360°控制线性太赫兹极化 ■ 稳定性好,可长期使用 ■ 与许多光学装置兼容 ■ 太赫兹光束参数继承泵浦光束 ■ 泵浦光适用波段宽,从中红外到X射线 ■ 泵浦光和太赫兹光束的共线性使太赫兹光谱仪易于实现和直接校准超宽谱太赫兹发射器应用领域: ■ 超宽带线性太赫兹光谱■ 非线性太赫兹光谱■ 太赫兹近场显微镜■ 太赫兹扫描隧道显微镜■ X射线束层析成像■ 超快光电探测器(由泵浦脉冲包络确定的太赫兹脉冲)超宽谱太赫兹发射器指标参数:更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 超高分辨散射式近场光学显微镜-neaSNOMneaSNOM是德国neaspec公司推出的第三代散射式近场光学显微镜(简称s-SNOM),其采用了专利化的散射式核心设计技术,极大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。由于其高度的可靠性和可重复性。neaSNOM业已成为纳米光学领域热点研究方向的首选科研设备,在等离基元、纳米FTIR和太赫兹等众多研究方向得到了许多重要科研成果。最近,neaspec公司成功开发了可见至太赫兹高分辨光谱和成像综合系统,将上述sSNOM功能与纳米红外(FTIR)、针尖增强拉曼(TERS)、超快光谱(ultrafast)和太赫兹光谱(THz)进行联用,可以为广大科学工作者在等离子激元、二维材料声子极化、半导体载流子子浓度分布、生物材料红外表征、电子激发及衰减过程等的研究上提供相关支持。neaSNOM技术特点和优势:neaSNOM是目前世界上唯一成熟的s-SNOM产品专利保护的散射式近场光学测量技术—独有的极高10 nm空间分辨率专利的高阶解调背景压缩技术—在获得10nm空间分辨率的同时保持极高的信噪比专利保护的干涉式近场信号探测单元专利的赝外差干涉式探测技术—能够获得对近场信号强度和相位的同步成像专利保护的反射式光学系统—用于宽波长范围的光源:可见、红外以至太赫兹高稳定性的AFM系统,—同时优化了纳米尺度下光学测量双光束设计—极高的光学接入角:水平方向180°,垂直方向60°操作和样品准备简单—仅需要常规的AFM样品准备过程neaSNOM重要应用领域:表面等离激元石墨烯六方氮化硼光电流/太赫兹化学过程高分子/生物材料应用案例Science:石墨烯莫尔(moiré)超晶格纳米光子晶体近场光学研究光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说最多可减少三个数量级。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。纳米近场成像对钙钛矿太阳能电池的研究苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用Neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用Neaspec公司的近场光学显微镜neaSNOM,首次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。最终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。参考文献:1、Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. Advanced Material 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.2、Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.丝纤蛋白电调控构象转变及其光刻应用的纳米红外研究中科院微系统所陶虎教授带领的研究团队利用neaspec公司的近场光学显微镜(neaSNOM)高化学敏感和10 nm空间分辨的优势,在纳米尺度近分子水平研究了电调控下丝蛋白中的多形态转变。 该研究在纳米尺度实现了蛋白质结构转换的探测,结合纳米精度的电子束光刻技术能为我们在二维及三维尺度实现丝蛋白的结构控制提供有力的方法;同时该工作为开启纳米尺度的蛋白质结构研究和探究蛋白质电诱导构象变化的临界条件铺平了道路;为未来设计基于蛋白质的纳米结构提了供新的规则。参考文献:1. Nanoscale probing of electron regulated structural transitions in silk proteins by near field IR imaging and nano-spectroscopy, Nature Comm. 7:130792. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist, Adv. Sci. 2017, 1700191可调谐低损耗一维InAs纳米线的表面等离激元研究亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的最关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551范德华材料异质结构的近场纳米成像研究范德华材料拥有一整套不同的激元种类,在所有已知材料中的具有最高的自由度。德国neaspec公司提供的先进近场成像方法(s-SNOM)允许极化波在范德华层或多层异质结构中传播时被激发和可视化,从而被广泛应用到范德华材料激元的研究中,为研究人员对范德华材料体系中激元的激发、传播、调控等研究提供了有力的工具。另一方面,范德华材料系统中激元的优点是它们具有的电可调性。此外,在由不同的范德华层构成的异质结构中,不同种类的激元相互作用,从而可以在原子尺度上实现激元的完美控制。德neaspec公司提供的纳米光谱(nano-FTIR)和纳米成像成功被研究人员用于激元的调控等研究中,通过实验证实,研究人员已经成功开启了操控激元相关纳米光学现象的多种途径。范德华材料中激元的先进近场光学可视化成像研究:A、石墨烯中Dirac等离激元;B、 石墨烯纳米共振器边缘的等离激元;C、碳纳米管中的一维等离激元;D、 石墨烯-六方氮化硼moiré 超晶格体系中的超晶格等离激元;E、六方氮化硼上石墨烯的杂化等离子-声子激元;F、WSe2中的激子激元;G、 双曲六方氮化硼中的声子激元及波导传播参考文献:Basov, D. N et. al Polaritons in van der Waals materials, Science, 354, aag1992(2016). DOI: 10.1126/science.aag1992发表文章部分最新发表文章:Science (2017) doi:10.1126/science.aan2735Tuning quantum nonlocal effects in graphene plasmonicsNature Nanotechnology (2017) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Photonics (2017) doi:10.1038/nphoton.2017.65Imaging exciton–polariton transport in MoSe2 waveguidesNature Materials (2016) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Materials (2016) doi:10.1038/nmat4755Thermoelectric detection and imaging of propagating graphene plasmons国内用户最新发表文章:Nat. Commun. 8, 15561(2017)Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeamAdv. Mater. 29, 1606370 (2017)The Light-Induced Field-Effect Solar Cell Concept –Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell EfficiencyLight- Sci & Appl 6, 204 (2017)Effects of edge on graphene plasmons as revealed by infrared nanoimaging Light- Sci & Appl,中山大学accepted (2017)Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures Nanoscale 9, 208 (2017) Study of graphene plasmons in graphene–MoS2 heterostructures for optoelectronic integrated devices Nano-Micro Lett. 9,2 (2017) Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman Scattering J. Phys. D: Appl. Phys. 50, 094002 (2017) High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets ACS Sens. 2, 386 (2017) Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection Semiconductor Sci. and Tech.32,074003 (2017) PbI2 platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition
    留言咨询
  • 超高分辨散射式近场光学显微镜 - neaSNOM产品简介: neaSNOM是德国neaspec公司推出的三代散射式近场光学显微镜(简称s-SNOM),其采用了散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。由于其高度的可靠性和可重复性,neaSNOM业已成为纳米光学领域热点研究方向的重要科研设备,在等离基元、纳米FTIR和太赫兹等众多研究方向得到了许多重要科研成果。近,neaspec公司成功开发了可见至太赫兹高分辨光谱和成像综合系统,将上述s-SNOM功能与纳米红外(FTIR)、针增强拉曼(TERS)、超快光谱(ultrafast)和太赫兹光谱(THz)进行联用,可以为广大科学工作者在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等的研究上提供相关支持。技术特点和优势: neaSNOM是目前上非常成熟的s-SNOM产品散射式近场光学测量技术—有的高10 nm空间分辨率高阶解调背景压缩技术—在获得10nm空间分辨率的同时保持高的信噪比干涉式近场信号探测单元的赝外差干涉式探测技术—能够获得对近场信号强度和相位的同步成像 保护的反射式光学系统 —用于宽波长范围的光源:可见、红外以至太赫兹高稳定性的AFM系统—同时优化了纳米尺度下光学测量 双光束设计 —高的光学接入角:水平方向180°,垂直方向60° 操作和样品准备简单 —仅需要常规的AFM样品准备过程 重要应用领域: 部分发表文章:Science (2017) doi:10.1126/science.aan2735Tuning quantum nonlocal effects in graphene plasmonicsNature Nanotechnology (2017) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Photonics (2017) doi:10.1038/nphoton.2017.65Imaging exciton–polariton transport in MoSe2 waveguidesNature Materials (2016) doi:10.1038/nnano.2016.185Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopyNature Materials (2016) doi:10.1038/nmat4755 Thermoelectric detection and imaging of propagating graphene plasmons国内用户发表文章:Nat. Commun. 8, 15561(2017)Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeamAdv. Mater. 29, 1606370 (2017) The Light-Induced Field-Effect Solar Cell Concept –Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell EfficiencyLight- Sci & Appl 6, 204 (2017)Effects of edge on graphene plasmons as revealed by infrared nanoimagingLight- Sci & Appl,中山大学accepted (2017)Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructuresNanoscale 9, 208 (2017)Study of graphene plasmons in graphene–MoS2 heterostructures for optoelectronic integrated devicesNano-Micro Lett. 9,2 (2017)Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman ScatteringJ. Phys. D: Appl. Phys. 50, 094002 (2017)High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheetsACS Sens. 2, 386 (2017)Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food InspectionSemiconductor Sci. and Tech.32,074003 (2017)PbI2 platelets for inverted planar organolead Halide Perovskite solar cells via ultrasonic spray deposition部分用户好评与列表(排名不分先后)neaspec公司产品以其稳定的性能、高的空间分辨率和良好的用户体验,得到了国内外众多科学家的认可和肯定......Prof. Dmitri Basov美国 加州大学 University of California San Diego"The neaSNOM microscope with it’s imaging and nano-FTIR mode is the most useful research instrument in years, bringing genuinely new insights."Dr. Jaroslaw Syzdek美国 劳伦斯伯克利实验室 Lawrence Berkeley National Laboratory "We were looking for a flexible research tool capable of characterizing our energy storage materials at the nanoscale. neaSNOM proofed to be the system with the highest spatial resolution in infrared imaging and spectroscopy and brings us substantial new insights for our research” 陈焕君 教授 中山大学Sun Yat-sen University "The neaSNOM microscope boosted my research in plasmonic properties of noble metal nanocrystals, optical resonances of dielectric nanostructures, and plasmon polaritons of graphene-like two dimensional nanomaterials."Prof. Rainer HillenbrandResearch CenterCo-Founder and Scientific Advisor"After many years of research and development in near-field microscopy, we finally made our dream come true to perform infrared imaging & spectroscopy at the nanoscale. With neaSNOM we can additionally realize Raman, fluorescence and non-linear nano-spectroscopy." Dr. Dangyuan LeiThe Hong Kong Polytechnic UniversityDepartment of Applied PhysicsHong Kong "We propose to establish a complete set of nano-FTIR and scattering-type SNOM in order to stay competitive in nanophotonics research as well as to maintain our state-of-the-art design and fabrication of novel nanomaterials. Only because of the unique technology from neaspec we were able to win this desirable university grant."Prof. Dan MittlemanBrown UniversitySchool of EngineeringUSA "The neaSNOM near-field microscope and it’s user-friendly software offer us an incredible flexibility for the realization of our unique experiments – without compromises in robustness, handling and ease-of-use."Dr. Raul FreitasCentro Nacional de Pesquisa em Energia e Materiais (CNPEM)Laboratório Nacional de Luz Síncrotron (LNLS)Brazil "The great stability and robustness of the neaSNOM are key features for serving our diverse user’s demands. The neaSCAN software is user-friendly and intuitive allowing fresh users to quickly start measuring." Prof. Dr. Rupert Huber University of Regensburg Department of Phyics Germany "The unique dual beam-path design of the neaSNOM near-field microscope makes neaspec the natural choice for ultrafast spectroscopy at the nanoscale."国内部分用户(排名不分先后):清华大学东南大学中科院物理所 中科院上海技物所香港理工大学 中山大学苏州大学 中科院大连化物所中国科学技术大学都师范大学四川大学 南开大学纳米科学中心中科院成都光电所 北京师范大学
    留言咨询
  • 扫描隧道显微镜,YMP-6113 描述扫描隧道显微镜(STM),使人类首次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,并因此获1986年诺贝尔物理学奖。YMP-6113扫描隧道显微镜采用特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动,使仪器性能更加稳定可靠。特点特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动独特的USB视频显微监控系统,可实现微探针操作与进给过程的可视化高精度压电陶瓷扫描传感器,保证扫描图像的保真性强大的图形软件与功能,支持纳米级三维立体成像和截面线显示功能操作便捷、高速扫描、高稳定性与抗干扰能力黑体辐射实验装置,YMP-6115简介黑体是一种完全的温度辐射体,其辐射能力只与本身温度有关。YMP-6115黑体辐射实验装置使用稳压溴钨灯光源模拟黑体,通过改变电源电流,获得不同色温下的黑体辐射。利用近红外光栅光谱仪测量不同色温的黑体辐射曲线,从而验证维恩位移定律、普朗克定律和斯忒藩-玻尔兹曼定律。采用开放式的结构设计,学生可以直观的观看内部光路和结构组成,帮助学生理解和掌握实验原理。同时采用铟镓砷探测器,确保在800nm-2500nm光谱范围内具有较高的信噪比和灵敏度。特点模块设的设计,方便学生掌握设计原理和测量原理;设计使用了高品质铟镓砷探测器和高性能的电路系统,使整套实验装置具有很好的信噪比和灵敏度;智能化的软件设计,每个实验模块按照实验原理和流程引导式的操作,让学生将主要精力用于实验本身,而非学习软件操作。实验内容理解和掌握光栅光谱仪的基本原理以及建立传递函数的原理和方法,并为光栅光谱仪建立传递函数。理解、掌握和验证普朗克定律理解、掌握和验证验证斯特潘-玻尔兹曼定律理解、掌握和验证验证维恩位移定律测量一般光源的辐射能量曲线(拓展)光电效应实验装置,YMP-6104系列简介YMP-6104型光电效应实验以高压汞灯作为实验光源,利用汞灯5条特征谱线(365nm、405nm、436nm、546、577nm),经过干涉滤光片后变成单色光,然后通过选择不同的光阑(2mm、4mm、8mm)后,最后转化为一束固定光斑大小的窄带单色光。这束单色光照在光电管上,在光电管的阳极与阴极之间加载直流电压后产生光电流,然后经过微电流放大器对所产生的光电流进行检测放大。通过研究不同的光照波长,光阑孔径和光强三者之间的关系,从中验证爱因斯坦的光电效应理论。特点采用一体化左轮设计滤光片-光阑采用窄带干涉滤光镜片滤出真正的单色光采用光学导轨和光学滑座,保证光路的同轴性实验方式多种多样:手动记录、USB通信、蓝牙通信和WIFI通信实验内容测量光电管在不同频率的光照下的截止电压,通过截止电压与频率的关系计算得到普朗克常数h。通过改变不同滤光片、不同光阑、不同距离,来研究光电管的伏安特性。弗兰克赫兹实验装置,YMP-6102系列简介YMP-6102弗兰克-赫兹实验证明原子内部结构存在分立的定态能级,这个事实直接证明了原子具有玻尔所设想的那种“完全确定的、互相分立的能量状态”,是对玻尔的原子量子化模型的第一个决定性的证据。直接证明了原子发生跃变时吸收和发射的能量是分立的、不连续的,证明了原子能级的存在,从而证明了玻尔理论的正确。因而获得了1925年诺贝尔物理学奖。本实验装置通过含有氩原子的四级真空电子管在旁热式灯丝的加热下产生大量的电子云,电子云通过第一栅极的筛选,然后在加速级的加速下,与氩原子发生碰撞,进行了能量交换,并且激发氩原子的能级跃迁,剩余有较大能量的电子还能冲过第二栅极反向拒斥电压而达到板极形成板极电流,该电流被微电流放大器测量得到,从而获得电流与电压的变化曲线。特点使用氩气管,无需加热;波形数6个,使用寿命超过2000小时弗兰克=赫兹管的安装方式有多个版本可供选择,使得实验更加直观可视。实验方式多种多样:手动记录、传感器采样、USB通信、蓝牙通信和WIFI通信。可升级为数字化实验实验内容记录氩原子的弗兰克-赫兹曲线计算普朗克常量h核磁共振实验装置,YMP-6105简介YMP-6105型核磁共振实验装置通过边限振荡器,将测试样品放在探测线圈中,样品和探测线圈都置于电磁场中。当边限振荡器的振荡频率接近样品的共振频率时,射频磁场能量被样品所吸收,边限振荡器停止振荡,振荡器的输出信号会突然降低,因此我们可以探测到核磁共振信号并且得到样品的g因子。特点强度可调的匀强电磁场实验共振信号清晰采用光学轨道结构,探头二维可调可拓展测量自备样品实验内容了解核磁共振的基本原理观察液体样品中氢核及固体样品中氟核共振现象利用扫场法核磁共振实验计算氢核和氟核的g因子更多精彩内容,请关注下方!
    留言咨询
  • 近场近场光学显微镜 400-860-5168转1980
    仪器简介:以Zeiss显微镜为基础,近场激发光路为正置共焦显微镜加特殊设计的近场物镜头,采用悬臂梁近场光学针尖,近场光激发强度高于光纤针尖2-3个数量级,很大程度改善了近场光学显微镜信号过弱的问题,坚固的近场针尖加柔韧的悬臂梁,经典的原子力显微镜反馈模式,带来逼近和测量时的优异的安全性和稳定性; AlphaSNOM集中而且不相互干扰地提供了共焦光学、近场光学、原子力三种显微测试模式,各取三种显微模式之所长,相互比较,相互验证.
    留言咨询
  • 远红外和太赫兹偏光片POL-HDPE-CA50-OD63-T8我们提供的聚乙烯偏光片,用于远红外和太赫兹波段, 7μm到毫米波段。它们是透射式衍射光栅。 应用:1. 太赫兹显微镜;2. 晶体和聚合物薄膜的分子取向研究;3. 成像;4. 传感器和探测器;5. 傅里叶变换红外光谱;6. 太赫兹光谱研究 特征:1. 用在非常宽的波长范围,从中红外到太赫兹波段2. 基材是高密度聚乙烯( HDPE)3. 高远红外传输4. 高偏振度。 *对于方形偏振片,最大孔径,可高达110×110毫米。 尺寸和形状:聚乙烯偏光片,使用刻划光栅技术生产。通光孔径可以是圆形的,或根据客户要求的正方形或矩形。
    留言咨询
  • WITec alpha 300S独特的悬臂式扫描近场光学显微镜alpha 300S一款操作简易的扫描近场光学显微镜(SNOM),采用独特设备的中空悬臂式近场探针实现超越衍射极限的光学分辨率。alpha 300S系统也具备优越的兼容性和扩展性,可与共聚焦光学/拉面显微镜及原子力显微镜集成在同一台仪器上,仅需旋转物镜转轮即可实现不同模式切换。WITec alpha 300S是一种纯近场光学显微镜,在很多样品上都可获得一致的超高分辨率,并且拥有透射与反射式两种模式。该近场光学显微镜不同于其他的超分辨显微镜,如 STED 和 STORM,后二者往往受限于荧光染料分子的可选种类及特殊的激发光源。 alpha300S 系统采用软件可控的快速自动进针及调节等自动测试流程,操作非常简便、直观。 由于近场光学信号极其微弱,alpha300 S 近场光学显微镜配备高灵敏单光子计数的光电倍增管或雪崩二极管,并同时提供检测器快速超载保护。更重要的是,UHTS 光谱仪可与 alpha300S系统兼容,实现近场光谱与成像测量。 关键特性:突破衍射极限的空间光学分辨率(横向约 60 nm)独家专利的 SNOM 探针技术在空气与液体中均可使用包含多种原子力与光学显微镜模式非破坏性、无需标记的超高分辨成像技术,基本不需要样品制备可升级到关联的共聚焦拉曼成像和近场拉曼成像集成三种技术到一台仪器上:共聚焦显微镜, AFM 和 SNOM技术参数:1)工作模式:近场显微镜,共聚焦显微镜,原子力显微镜三种工作模式; 2)近场光学显微镜分辨率:为50nm 3) 共聚焦拉曼显微镜分辨率:200nm 4) 扫描台扫描范围:100 x 100 x 20 μm 5)探测器:光电倍增管(PMT)或雪崩二极管(APD)
    留言咨询
  • Molecular Vista 散射式扫描近场光学显微镜 ——10nm以下空间分辨可见-红外成像与光谱采集随着近些年对于纳米光子学、表面等离极化激元、二维材料以及范德华异质结构等领域的深入研究,扫描近场光学显微镜 (Scanning Near-field Optical Microscope, SNOM) 已成为研究这些领域的不可或缺的表征手段。虽然扫描近场光学显微镜在散射式模式(s-SNOM)下的空间分辨率有了很大的提升,但是在实际使用上仍然得十分繁杂。在这一背景下,美国Molecular Vista应运而生,推出了全新一代散射式扫描近场光学显微镜Vista-SNOM!有别于传统的扫描近场光学显微镜,Vista-SNOM基于专利的光诱导力显微镜(Photo-induced Force Microscope, PiFM)技术,通过检测探针与样品之间的偶极交互直接获得样品表面的场强分布,无需远场光学探测器。这不仅杜绝了远场信号的干扰,也无需像SNOM那样配置多个不同波段光学探测器。光诱导力显微镜的检测端可无缝适应紫外~射频,用户仅需考虑如何将激发光激发至样品。Vista-SNOM在光诱导力显微镜模式下实测的场强结果与模拟结果高度吻合,同时也具备了s-SNOM模式。这使得科研人员可以将PiFM场强结果与s-SNOM场强结果进行对比分析。s-SNOM 散射式扫描近场光学显微镜案例下图为金铝二聚体分别在480nm和633nm不同偏振方向激发后的场强分布,图a,b的实测场强与图c,d的理论模拟是否吻合,金铝二聚体间隔仅为5nm!摘自“Wavelength-dependent Optical Force Imaging of Bimetallic Al-Au Heterodimers, Nano Lett. 2018”上面提到拉曼信号的增强主要源于局域表面等离子体共振(LSPR)的电磁场增强,下图为基于银颗粒阵列的表面增强拉曼衬底(SERS)的场强分布,图f的FWHM结果显示光诱导力显微镜实现了3.1nm的空间分辨。摘自“Fabrication and near-field visualization of a waferscale dense plasmonic nanostructured array, RSC Adv. 2018”
    留言咨询
  • alpha300 RS – 原位关联的拉曼和扫描近场光学图像 对于拥有挑战性实验要求的用户来说,alpha300 RS将共聚焦拉曼图像及突破光学衍射极限的扫描近场光学显微镜结合在一起。Alpha 300RS在一台设备上继承了所有的Alpha 300R显微拉曼功能,Alpha 300S扫描近场光学显微镜功能和许多AFM操作模式。 Alpha 300S扫描近场光学显微镜主要特点l 所有alpha300 R (拉曼) 和alpha300 S (近场) 的性能集成到一个显微镜系统内l 优异的原位化学组分分析(拉曼)和超高分辨率表面成像(近场)的结合l 只需要转动物镜转盘即可在两种技术间轻松切换l 两种测量间无需移动样品 Alpha 300S扫描近场光学显微镜应用实例 剥离石墨烯的表面拓扑结构VS拉曼图像左图:表面拓扑结构及沿蓝线的轮廓曲线右图:石墨烯G峰沿红线的强度变化曲线 Alpha 300S扫描近场光学显微镜性能通用拉曼操作模式l 拉曼光谱成像:连续扫描的拉曼高光谱全谱成像,每个样品点都能获得完整的拉曼光谱l 平面2D和包含深度Z方向的3D成像模式l 快速和慢速时间序列l 单点及Z方向深度扫描l 光纤耦合的UHTS 系列光谱仪,专为弱光应用的拉曼光谱设计l 共聚焦荧光显微镜功能l 明场显微镜功能 近场显微镜操作模式l 扫描近场光学显微镜模式:底部激发顶部收集(远场激发近场收集)模式,顶部激发底部收集(近场激发远场收集)模式,探针收集(近场激发近场收集)模式l 共聚焦(CM)模式:透射,反射,荧光(可选)l 近场-原子力联用:Alpha 300A的所有模式均可选l 固定底部透射照明l 全内反射照明模式(可选) 原子力显微镜操作模式l 接触模式l 横向力模式l 其他可选 各类拉曼升级选项(如true surface等)l 多种激光可选择l 多种光谱仪可选择l 自动共聚焦拉曼成像l 自动多区域多点测量l 可升级超快拉曼图像模式(需配置EMCCD和Piezo样品台,可获得每秒1300张光谱的速度)l 可升级落射荧光照明l 自动聚焦功能l 显微镜观察法可选,如暗场,像差,偏光,微分干涉等 超高通光量UHTS光谱仪l 各类透射式波长优化谱仪可选 (UV, VIS or NIR),均为弱光拉曼光谱设计l 光纤耦合,70%超高光通量l 优异的成像质量,光谱峰形对称无像差 控制电脑WITec控制和数据采集,处理软件
    留言咨询
  • alpha300 RS – 原位关联的拉曼和扫描近场光学图像 对于拥有挑战性实验要求的用户来说,alpha300 RS将共聚焦拉曼图像及突破光学衍射极限的扫描近场光学显微镜结合在一起。Alpha 300RS在一台设备上继承了所有的Alpha 300R显微拉曼功能,Alpha 300S扫描近场光学显微镜功能和许多AFM操作模式。 主要特点l 所有alpha300 R (拉曼) 和alpha300 S (近场) 的性能集成到一个显微镜系统内l 优异的原位化学组分分析(拉曼)和超高分辨率表面成像(近场)的结合l 只需要转动物镜转盘即可在两种技术间轻松切换l 两种测量间无需移动样品 应用实例 剥离石墨烯的表面拓扑结构VS拉曼图像左图:表面拓扑结构及沿蓝线的轮廓曲线右图:石墨烯G峰沿红线的强度变化曲线 性能通用拉曼操作模式l 拉曼光谱成像:连续扫描的拉曼高光谱全谱成像,每个样品点都能获得完整的拉曼光谱l 平面2D和包含深度Z方向的3D成像模式l 快速和慢速时间序列l 单点及Z方向深度扫描l 光纤耦合的UHTS 系列光谱仪,专为弱光应用的拉曼光谱设计l 共聚焦荧光显微镜功能l 明场显微镜功能 近场显微镜操作模式l 扫描近场光学显微镜模式:底部激发顶部收集(远场激发近场收集)模式,顶部激发底部收集(近场激发远场收集)模式,探针收集(近场激发近场收集)模式l 共聚焦(CM)模式:透射,反射,荧光(可选)l 近场-原子力联用:Alpha 300A的所有模式均可选l 固定底部透射照明l 全内反射照明模式(可选) 原子力显微镜操作模式l 接触模式l 横向力模式l 其他可选 各类拉曼升级选项(如true surface等)l 多种激光可选择l 多种光谱仪可选择l 自动共聚焦拉曼成像l 自动多区域多点测量l 可升级超快拉曼图像模式(需配置EMCCD和Piezo样品台,可获得每秒1300张光谱的速度)l 可升级落射荧光照明l 自动聚焦功能l 显微镜观察法可选,如暗场,像差,偏光,微分干涉等 超高通光量UHTS光谱仪l 各类透射式波长优化谱仪可选 (UV, VIS or NIR),均为弱光拉曼光谱设计l 光纤耦合,70%超高光通量l 优异的成像质量,光谱峰形对称无像差 控制电脑WITec控制和数据采集,处理软件
    留言咨询
  • WITec alpha 300S是一种纯近场光学显微镜,在很多样品上都可获得一致的超高分辨率,并且拥有透射与反射式两种模式。该近场光学显微镜不同于其他的超分辨显微镜,如 STED 和 STORM,后二者往往受限于荧光染料分子的可选种类及特殊的激发光源。 alpha300S 系统采用软件可控的快速自动进针及调节等自动测试流程,操作非常简便、直观。由于近场光学信号极其微弱,alpha300 S 近场光学显微镜配备高灵敏单光子计数的光电倍增管或雪崩二极管,并同时提供检测器快速超载保护。更重要的是,UHTS 光谱仪可与 alpha300S系统兼容,实现近场光谱与成像测量。关键特性:突破衍射极限的空间光学分辨率(横向约 60 nm)独家专利的 SNOM 探针技术在空气与液体中均可使用包含多种原子力与光学显微镜模式非破坏性、无需标记的超高分辨成像技术,基本不需要样品制备可升级到关联的共聚焦拉曼成像和近场拉曼成像集成三种技术到一台仪器上:共聚焦显微镜, AFM 和 SNOM
    留言咨询
  • 太赫兹源 400-860-5168转2831
    太赫兹源TeraSense系列太赫兹源(IMPATT二极管)由带有0.6 um传输区域的硅双漂移二极管表示,安装在铜散热器上。双漂二极管的层有:重掺杂(p+)-区、中等掺杂(p+)-区、中等掺杂n区和重掺杂(n+)-区。(p+)和(n+)区域允许与外部电路进行欧姆电接触。该装置依靠负电阻来产生和维持振荡。Terasense现在正在提供其升级版的太赫兹源。升级后的IMPATT二极管配备了保护隔离器,极大地提高了输出功率的稳定性。从现在起,您可以订购IMPATT二极管与开放WR法兰或可拆卸喇叭天线的选择。l在优化的频率@ 100 GHz下,太赫兹源的典型输出功率可达2 w。此外,TeraSense源具有人体工程学设计和易于使用。该公司可以选择提供带有衰减器和开关的太赫兹发生器部分。Add-on optionsHorn antennas Gain: 20-25 dBExternal modulator Base frequency: 85-100 GHz, 140 GHz Modulation frequency: 200 MHz Switching time: 2 ns Insertion loss: 1.5 dB太赫兹源产品特点:IMPATT技术100 GHz, 140 GHz, 200 GHz, 300 GHz, and 600 GHz可选保护隔离器,增强稳定性TTL调制高频调制选项(100 MHz, 1.5 ns rise/fall time)可拆卸喇叭天线紧凑尺寸,价格便宜 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • **********************近场扫描光学显微镜的基本构造******************** 进行NSOM实验,必须将点光源靠到样品表面纳米距离,然后点光源扫描样品表面,再收集探测经过样品表面的光学信号。我们使用经金属涂层处理的带孔洞椎形光纤作为NSOM探针。光经耦合进入探针,从亚光波长孔径的探针尖端发出,NSOM的分辨率就是由孔径的大小决定(最优可以达到50纳米)。点光源和样品表面的距离通常通过正常的力反馈机制(与AFM相同)控制,因此可以进行接触、敲击和非接触模式的NSOM实验。针对不同的材料和实验,通常有四种NSOM操作模式: * 透射模式成像&mdash &mdash 样品经过探针照明,光通过样品并与样品相互作用后被收集探测;* 反射模式成像&mdash &mdash 样品经过探针照明,光从样品表面反射并被收集探测;* 收集模式成像&mdash &mdash 样品经远场光源照明(从上或下面均可),探针将光信号从样品表面收集;* 照明收集模式成像&mdash &mdash 用同一根探针同时进行照明和收集探测反射光; 在近场光学领域,部分扫描模式只有通过Nanonics提供的独特玻璃光纤探针才能完成,因为我们独特的光纤探针具有很好的波导性能。 收集的光可通过多种探测器探测,如APD(Avalanche Photo Diode)、PMT(Photomultiplier Tube)、InGaAs探测器、CCD或通过光谱仪探测,通过探测器得到的信号经过数据处理得到样品材料的NSOM图像。技术参数:原子力扫描表征-接触模式(可选)-探针或者样品扫描都具有所有原子力显微镜的操作模式。近场光学成像和激发表征 -透射,反射,收集,激发模式界面差别对比表征 -反射和透射模式折射系数分析表征 -反射和透射模式热导和阻值扩散分析表征-接触AC模式-无反馈激光通过外部媒介导入半导体,使用音叉反馈在线远场共聚焦拉曼和荧光光谱成像-反射和透射模式-针尖增强拉曼散射和在超薄层面上做选择性拉曼散射,例如应变硅纳米刻蚀-纳米&ldquo 笔&rdquo 探针输送多种化学物质和气体-近场光学刻蚀和常规方式的纳米刻蚀技术比如电子氧化等,并且可-以同时使用另外一根探针做在线同步分析纳米压痕-使用兆级帕斯卡压强,通过另外一个附加探针的在线同步分析将力学探针精确定位和控制。++++++SPM 扫描头参数样品扫描器-压电扫描平台 (3D 扫描台&trade )-高度7毫米探针扫描器-四个独立控制的压电扫描平台(3D 扫描台&trade )模块-高度7毫米扫描范围 -每根单探针扫描范围30 微米 (XYZ方向)-仅样品扫描器扫描范围100微米(XYZ方向)-样品扫描器和单探针扫描器扫描范围130微米 (XYZ方向)-样品扫描器和双探针扫描器扫描范围160微米(XY方向)扫描分辨率- 0.05 纳米 (Z方向)- 0.15纳米(XY方向)- 0.02纳米(XY方向) 低电压模式粗定位-样品粗调定位: XY 马达驱动范围5mm-分辨率0.25微米-针尖粗调定位:-XY方向马达驱动-驱动范围5mm-分辨率0.25微米-Z方向马达驱动-驱动范围10mm-分辨率0.065微米反馈机制-音叉反馈(标准)-激光反射反馈(可选)常规样品尺寸-标准尺寸可达到16毫米-使用上置光学显微镜操可达到34毫米-不使用样品扫描方式可以达到55毫米-有些客户样品尺寸达到200mm也能扫描-非常规尺寸样品:例如横截面高低起伏较大的样品等一些特殊形状样品探针-独特的玻璃探针,针尖可以提供不同的形貌和参杂金属颗粒或者涂层各种形式的常规硅悬臂探针也可以使用 ++++++成像分辨率远场成像分辨率 -到达衍射限制光学成像分辨率 -非共聚焦下光学分辨率500纳米左右共聚焦成像分辨率-200纳米近场光学成像分辨率-安装时保证100纳米分辨率;50纳米分辨率也可以提供形貌成像分辨率-Z 方向噪音有效值0.05 纳米(RMS)-XY 横向分辨率:根据样品和针尖直径情况热学成像分辨率-至少100纳米阻值成像分辨率-至少25纳米++++++热学&阻值成像温度参数-300度或者更高,要考虑样品情况热学参数-独特的双根纳米铂丝嵌在绝缘玻璃探针中-热敏感度0.01 º C-测量阻值改变速率为0.38 &Omega /º C阻值特点-独特的双根纳米铂丝嵌在绝缘玻璃探针中并且可以做出不同的形状结构和涂层-超高电势分辨率-接触电阻极微小-电学稳定& 抗氧化 ++++++在线光学和电子/离子光学扫描同步完成可以完成的表征类别-远场光学,共聚焦光学,近场,微区拉曼,扫描电子显微镜(SEM)或者聚焦离子束(FIB)整合优势 -样品扫描台上下光路开阔,可以做光学或电子/离子光学特征同步扫描联用-将多形式的光学显微镜整合在一起,包括上置光学显微镜和下置光学显微镜同时整合在探针扫描平台上-整合了多种标准微区拉曼180度背反射几何形貌配置。下置光学显微镜和Nanonics独特的上下置光学显微镜可以做不同的透明和非透明样品-具有多种常规的远场光学操作模式包括相位成像和界面差别对比-可以使用上置,下置和双置光学显微镜做任何模式近场光学扫描,无需更换扫描头保证了实验结果稳定性和可重复性。探测器类别-PMT, APD 或者InGaAs 红外探测器激光光源-可提供深紫外到近红外激光电视频系统 -在线CCD 视频成像主要特点: 独特的多探针系统Nanonics原子力显微镜最多可以同时进行四探针测试,光纤探针各自独立控制,可以同时分别、独立进行如滴液、加压,电学,热学方面的测试等不同的工作。专利技术的独特扁平3D 扫描台具有专利技术的扫描台上下光路开阔,可以将上,下置光学共聚焦显微镜整合到AFM扫描平台上,在无需更换任何探头的情况下同步完成的一系列的探针扫描,光学测量,力学测量,热学电学测量等测试手段,节约了用户大量的时间和精力并保证了样品测试的连贯性。通常很多厂家仪器做不同测试的时候探头都需要更换,不能同步联用并且费时费力。Nanonics这项专利是优势技术,并且探针扫描台和样品扫描台可以独自运作,即可以探针不动,样品移动;或者样品不动,探针移动。扫描的步进位移通过压电陶瓷驱动精度极高,Nanonics原子力显微镜分别提供一个85um样品扫描台和30um探针扫描台,XY方向的扫描范围是110*110um。尤其是Z方向的大扫描范围是所有AFM厂家无法提供的。另外一个3D扫描台提供探针扫描和样品扫描两种模式,在所有AFM 电镜中是独特的设计。独特的音叉反馈机制常规的AFM反馈通过激光反射反馈,具有噪音大,调试困难,受干涉情况;尤其在液体中或者做光学测试的时候,例如近场光学,AFM-Raman测试中,容易被干涉或者干涉有效信号。音叉反馈采用常规力学反馈避免了以上所有弊病,安装简单,结构稳定。专利技术的悬臂光纤弯针 。Nanonics 原子力显微镜的玻璃探针可提供畅通的光学通道,光线能以与传统直线式近场光学元件相同的效率和偏振性传输到探针尖端。玻璃探针可以做成中空型,用于加载光纤或实现Nano-Pen功能。多种探针通用平台Nanonics 原子力显微镜系统不仅可以使用玻璃光纤探针,也可以使用传统的商业化AFM/NSOM硅探针,提供了一个通用多探针使用平台。客户也可以要求使用常规硅悬臂探针。另外Nanonics还可以根据客户不同的需要定制探针。无与伦比的Z 方向探测深度MV4000在Z方向最大可探测深度为140um,非常适合深沟状样品。独特的悬臂设计不仅能探测深沟底部的形貌,而且可以对侧面进行检测。常规的硅悬臂探针无法做深沟探测。独特的光学友好性Nanonics原子力显微镜的玻璃光纤探针可提供畅通的光学通道,可同时和正置与倒置显微镜配合使用,实现透射式、反射、照明模式、收集模式(Nanonics独有的)等多个功能。光纤探针具有良好的光学性能和光导性能,这是硅悬臂探针无法做到的。拉曼连用平台MV4000的玻璃光纤探针具有光学友好特性,可与拉曼光谱仪整合,例如常用的Reinshaw 和JY Raman系统。可实现在线AFM形貌扫描,拉曼Mapping,自动共聚焦,提高拉曼的精度。配合NSOM可以完成微区Raman,并且还可以做荧光和微区荧光扫描。由于独特的扫描平台,AFM-Raman 联用不仅可以扫描透明样品还可以扫描不透明的块状和薄膜样品,这也是在AFM-Raman 联用案例中独特的设计。独有的TERS玻璃探针Nanonics在玻璃光纤探针的尖端采用专利的独立金球技术,与其他涂层探针相比,不会因在长时间使用后,受到激光影响而脱落,更为稳定,效率更高。配合独特的扫描台设计,可以在光源位置找到最佳激光偏振位置获得最好的TERS信号源。这也是其独特功能。
    留言咨询
  • TeraSpike THz近场探针 无偏置太赫兹脉冲产生探针(Bias-free THz pulse generation probe)品牌:Protemics型号:TeraSpike TD-1550-Y-BF(无偏置太赫兹脉冲产生探针)规格参数:TeraSpike TD-1550-Y -BF Pulse rise time 1 ps (down to 0.4 ps) Bandwidth* 0.01 .. 2.5 THz Excitation wavelength 700 .. 1600 nm (860nm recommended) Avg. excitation power 0.1 .. 4 mW Cantilever material InGaAs (n-type) Lateral tip radius 8 .. 12 μm Cantilever length 570 .. 600 μm
    留言咨询
  • 太赫兹相机-太赫兹成像相机THz camera 描述:Tera-256太赫兹相机是基于TeraSense公司开发的新一代太赫兹成像半导体探测器阵列技术研制而成的。该探测器在室温下工作,阵列可按像素的数量进行拓展。与其他工作在太赫兹范围(50GHz-0.7THz)的现有探测器相比,Terasense提供的探测器具有良好的响应性,但相比之下,它们成本低,具有均匀的像素对像素的灵敏度(像素对像素的偏差响应度小于20%),并且可以很容易地以二维阵列的形式大量生产,这得益于TeraSense技术与大规模半导体生产线的兼容性。这使得这些探测器适用于我们的太赫兹成像相机。 与其他品牌的太赫兹产品相比,Terasense太赫兹相机在其工作的波段范围内有高的稳定性和更均匀像素敏感性。与传统检测手段(X射线)相比,太赫兹检测系统有更低的辐射能量。不容易对生物和化学制剂的分子结构造成破坏,且对人体没有辐射危害。因此在无损检测和安全检查方面有巨大的应用潜力。目前,Terasense正在继续致力于为科学和工业开发灵活的太赫兹成像解决方案。 Terasense太赫兹相机是主动探测设备,需要外部太赫兹源。我们提供基于IMPATT技术的亚太赫兹波源。所有的TERA系列太赫兹成像相机都采用相同类型的探测器,具有相同的能力和空间分辨率。不同型号的太赫兹相机之间的区别在于它们的传感器阵列中的像素数量和它们的有效成像区域。除了标准太赫兹相机型号,我们提供定制的解决方案,以满足不同的配置和几何要求。工作原理: 探测器是Terasense使用传统光学光刻技术,在标准半导体周期内采用GaAs高迁移率异质结构制造成的。成像传感器是在单个晶片上制造的。这个过程确保了等离子探测器参数的高度同质性和再现性(像素到像素的偏差响应率在20%范围内)。每个探测器单元具有高达50kv/W的室温响应率,读出电路和噪声等效功率为1 nW/√HZ,频率范围为10GHz-1THz。探测机制是基于二维电子系统中等离子体振荡的激发和随后的整流。整流是在电子系统中产生的特殊缺陷上进行的。 产品特点:l 高达50KV/W的响应率l 对人体无害l 低辐射能量,实现无损检测l 支持视频模式l 可穿透大多数非金属材料l 友好的软件界面,快速上手l 可搭配原厂太赫兹源,安装简单l 结构紧凑,成本低l 配备专业的软件:Terasense Viewer ® 和 SDK 应用范围:l 安检系统l 医学成像l 食品/农产品检测l 非金属材料(塑料、陶瓷、木材等)检测l 艺术品/文物无损检测 技术参数: 总像素数:256像素(16*16)像素尺寸:1.5mm噪声等效功率:1nW工作频率:50 GHz - 0.7 THz视频帧率:50fps产品尺寸:11.5 x 11.5 x 4.2 cm
    留言咨询
  • 仪器简介:我们的创新NANONICS IMAGING LTD.一直是扫描探针显微镜(SPM)领域中将近场光学显微镜(NSOM)技术和原子力显微镜(AFM)技术完美结合的领头羊之一。公司成立于1997年,在过去的十年里我们将新的概念应用到SPM系统中从而开拓了SPM市场领域一个新的视角。 Nanonics使用悬臂近场光学探针为业内提供了近场光学成像;同时也引入了双探针技术、样品扫描AFM系统;提供近场光学(NSOM)/原子力显微镜(AFM)低温系统,Raman-AFM系统,多探针AFM系统和扫描电镜(SEM)/AFM系统。NANONICS是业界成立最久并且对此类系列产品经验最丰富的公司之一,其产品荣获过许多国际大奖。在强大的NSOM/AFM的整合操作系统推动下,今天NANONICS继续以强大的优势和全面的系统领导着市场。NANONICS凭借实力和品质,其产品涉足的领域从科研到工业,从生物学到半导体,从化学制品到无线电通讯,应用范围极其广泛。 我们的理念 提供SPM,近场光学和显微镜整合方案 Nanonics 致力于制造世界级领先的SPM仪器,我们将SPM技术和其它显微镜表征技术整合在一起。在纳米科技表征技术领域中,为用户提供一个开放并极具潜力的SPM表征技术平台。 我们的技术作为一家商业公司,我们有着自己独特的技术优势。我们能提供大量种类齐全的纳米探针。包括专利的悬臂近场光学(NSOM)探针到热学,电学探针。这些外露光学探针的运用结合具有专利保护的3D平面扫描技术为我们的系统提供了一个广阔开放的光学平台 这是我们能够将AFM技术和其它显微镜表征技术完美结合的重要原因。 我们的团队 我们拥有一支世界级的专家团队为我们提供创新技术和高性能的产品。在过去的十年里我们拥有40多名员工并且组建了SPM专家和科学家团队。 团队直接由近场光学奠基人之一的Aaron Lewis 教授带领十五名科学家为全球客户提供以SPM为平台的产品和技术支持。 我的技术服务我们致力于提供客户高性能的业内领先级产品和高附加值的技术支持。从系统安装开始,我们就区别于其它竞争对手,为你提供高素质的技术专家安装设备,提供SPM技术领域的专家指导。通过一对一的与客户沟通帮助客户使用仪器。Nanonics在业内已经有一大批客户并且客户通过使用我们的仪器发表了不少好的文章。这些客户和客户的成绩也同样见证了我们为客户提供了的完整的SPM和其他表征整合方案和技术支持。**********************近场扫描光学显微镜的基本构造******************** 进行NSOM实验,必须将点光源靠到样品表面纳米距离,然后点光源扫描样品表面,再收集探测经过样品表面的光学信号。我们使用经金属涂层处理的带孔洞椎形光纤作为NSOM探针。光经耦合进入探针,从亚光波长孔径的探针尖端发出,NSOM的分辨率就是由孔径的大小决定(最优可以达到50纳米)。点光源和样品表面的距离通常通过正常的力反馈机制(与AFM相同)控制,因此可以进行接触、敲击和非接触模式的NSOM实验。针对不同的材料和实验,通常有四种NSOM操作模式: * 透射模式成像 样品经过探针照明,光通过样品并与样品相互作用后被收集探测;* 反射模式成像 样品经过探针照明,光从样品表面反射并被收集探测;* 收集模式成像 样品经远场光源照明(从上或下面均可),探针将光信号从样品表面收集;* 照明收集模式成像 用同一根探针同时进行照明和收集探测反射光; 在近场光学领域,部分扫描模式只有通过Nanonics提供的独特玻璃光纤探针才能完成,因为我们独特的光纤探针具有很好的波导性能。 收集的光可通过多种探测器探测,如APD(Avalanche Photo Diode)、PMT(Photomultiplier Tube)、InGaAs探测器、CCD或通过光谱仪探测,通过探测器得到的信号经过数据处理得到样品材料的NSOM图像。技术参数:原子力扫描表征-接触模式(可选)-探针或者样品扫描都具有所有原子力显微镜的操作模式。近场光学成像和激发表征 -透射,反射,收集,激发模式界面差别对比表征 -反射和透射模式折射系数分析表征 -反射和透射模式热导和阻值扩散分析表征-接触AC模式-无反馈激光通过外部媒介导入半导体,使用音叉反馈在线远场共聚焦拉曼和荧光光谱成像-反射和透射模式-针尖增强拉曼散射和在超薄层面上做选择性拉曼散射,例如应变硅纳米刻蚀-纳米笔 探针输送多种化学物质和气体-近场光学刻蚀和常规方式的纳米刻蚀技术比如电子氧化等,并且可-以同时使用另外一根探针做在线同步分析纳米压痕-使用兆级帕斯卡压强,通过另外一个附加探针的在线同步分析将力学探针精确定位和控制。++++++SPM 扫描头参数样品扫描器-压电扫描平台 (3D 扫描台&trade )-高度7毫米探针扫描器-四个独立控制的压电扫描平台(3D 扫描台&trade )模块-高度7毫米扫描范围 -每根单探针扫描范围30 微米 (XYZ方向)-仅样品扫描器扫描范围100微米(XYZ方向)-样品扫描器和单探针扫描器扫描范围130微米 (XYZ方向)-样品扫描器和双探针扫描器扫描范围160微米(XY方向)扫描分辨率- 0.05 纳米 (Z方向)- 0.15纳米(XY方向)- 0.02纳米(XY方向) 低电压模式粗定位-样品粗调定位: XY 马达驱动范围5mm-分辨率0.25微米-针尖粗调定位:-XY方向马达驱动-驱动范围5mm-分辨率0.25微米-Z方向马达驱动-驱动范围10mm-分辨率0.065微米反馈机制-音叉反馈(标准)-激光反射反馈(可选)常规样品尺寸-标准尺寸可达到16毫米-使用上置光学显微镜操可达到34毫米-不使用样品扫描方式可以达到55毫米-有些客户样品尺寸达到200mm也能扫描-非常规尺寸样品:例如横截面高低起伏较大的样品等一些特殊形状样品探针-独特的玻璃探针,针尖可以提供不同的形貌和参杂金属颗粒或者涂层各种形式的常规硅悬臂探针也可以使用 ++++++成像分辨率远场成像分辨率 -到达衍射限制光学成像分辨率 -非共聚焦下光学分辨率500纳米左右共聚焦成像分辨率-200纳米近场光学成像分辨率-安装时保证100纳米分辨率;50纳米分辨率也可以提供形貌成像分辨率-Z 方向噪音有效值0.05 纳米(RMS)-XY 横向分辨率:根据样品和针尖直径情况热学成像分辨率-至少100纳米阻值成像分辨率-至少25纳米++++++热学&阻值成像温度参数-300度或者更高,要考虑样品情况热学参数-独特的双根纳米铂丝嵌在绝缘玻璃探针中-热敏感度0.01 C-测量阻值改变速率为0.38 C阻值特点-独特的双根纳米铂丝嵌在绝缘玻璃探针中并且可以做出不同的形状结构和涂层-超高电势分辨率-接触电阻极微小-电学稳定& 抗氧化 ++++++在线光学和电子/离子光学扫描同步完成可以完成的表征类别-远场光学,共聚焦光学,近场,微区拉曼,扫描电子显微镜(SEM)或者聚焦离子束(FIB)整合优势 -样品扫描台上下光路开阔,可以做光学或电子/离子光学特征同步扫描联用-将所有形式的光学显微镜整合在一起,包括上置光学显微镜和下置光学显微镜同时整合在探针扫描平台上-整合了所有标准微区拉曼180度背反射几何形貌配置。下置光学显微镜和Nanonics独特的上下置光学显微镜可以做不同的透明和非透明样品-具有所有常规的远场光学操作模式包括相位成像和界面差别对比-可以使用上置,下置和双置光学显微镜做任何模式近场光学扫描,无需更换扫描头保证了实验结果稳定性和可重复性。探测器类别-PMT, APD 或者InGaAs 红外探测器激光光源-可提供深紫外到近红外激光电视频系统 -在线CCD 视频成像主要特点: 独有的多探针系统Nanonics原子力显微镜最多可以同时进行四探针测试,光纤探针各自独立控制,可以同时分别、独立进行如滴液、加压,电学,热学方面的测试等不同的工作。专利技术的独特扁平3D 扫描台具有专利技术的扫描台上下光路开阔,可以将上,下置光学共聚焦显微镜整合到AFM扫描平台上,在无需更换任何探头的情况下同步完成的一系列的探针扫描,光学测量,力学测量,热学电学测量等测试手段,节约了用户大量的时间和精力并保证了样品测试的连贯性。通常很多厂家仪器做不同测试的时候探头都需要更换,不能同步联用并且费时费力。Nanonics这项专利是目前市场上的优势技术,并且探针扫描台和样品扫描台可以独自运作,即可以探针不动,样品移动;或者样品不动,探针移动,其它厂家无法提供这种独特的扫描方式。扫描的步进位移通过压电陶瓷驱动精度极高,Nanonics原子力显微镜分别提供一个85um样品扫描台和30um探针扫描台,XY方向的扫描范围是110*110um。尤其是Z方向的大扫描范围是所有AFM厂家无法提供的。另外一个3D扫描台提供探针扫描和样品扫描两种模式,在所有AFM 电镜中是独一无二的设计。独特的音叉反馈机制常规的AFM反馈通过激光反射反馈,具有噪音大,调试困难,受干涉情况;尤其在液体中或者做光学测试的时候,例如近场光学,AFM-Raman测试中,容易被干涉或者干涉有效信号。音叉反馈采用常规力学反馈避免了以上所有弊病,安装简单,结构稳定。专利技术的悬臂光纤弯针 。Nanonics 原子力显微镜的玻璃探针可提供畅通的光学通道,光线能以与传统直线式近场光学元件相同的效率和偏振性传输到探针尖端。玻璃探针可以做成中空型,用于加载光纤或实现Nano-Pen功能。多种探针通用平台Nanonics 原子力显微镜系统不仅可以使用玻璃光纤探针,也可以使用传统的商业化AFM/NSOM硅探针,提供了一个通用多探针使用平台。客户也可以要求使用常规硅悬臂探针。另外Nanonics还可以根据客户不同的需要定制探针。无与伦比的Z 方向探测深度MV4000在Z方向最大可探测深度为140um,非常适合深沟状样品。独特的悬臂设计不仅能探测深沟底部的形貌,而且可以对侧面进行检测。常规的硅悬臂探针无法做深沟探测。独特的光学友好性Nanonics原子力显微镜的玻璃光纤探针可提供畅通的光学通道,可同时和正置与倒置显微镜配合使用,实现透射式、反射、照明模式、收集模式(Nanonics独有的)等多个功能。光纤探针具有良好的光学性能和光导性能,这是硅悬臂探针无法做到的。拉曼连用平台MV4000的玻璃光纤探针具有光学友好特性,可与任何拉曼光谱仪整合,例如常用的Reinshaw 和JY Raman系统。可实现在线AFM形貌扫描,拉曼Mapping,自动共聚焦,提高拉曼的精度。配合NSOM可以完成微区Raman,并且还可以做荧光和微区荧光扫描。由于独特的扫描平台,AFM-Raman 联用不仅可以扫描透明样品还可以扫描不透明的块状和薄膜样品,这也是在AFM-Raman 联用案例中独特的设计。独有的TERS玻璃探针Nanonics在玻璃光纤探针的尖端采用专利的独立金球技术,与其他涂层探针相比,不会因在长时间使用后,受到激光影响而脱落,更为稳定,效率更高。配合独特的扫描台设计,可以在光源位置找到最佳激光偏振位置获得最好的TERS信号源。这也是其它厂家不具备的特点。
    留言咨询
  • Nanonics公司历史:Nanonics Imaging Ltd.公司在过去的20年一直是近场光学领域的佼佼者,在近场系统领域在市场上具有最丰富的经验和最多的文献发表。经过几十年的发展Nanonics研发了市场上先进的功能性SNOM系统。孔径式SNOM系统,多探针SNOM系统和无孔径散射式SNOM系统可用于UV,可见光,红外和太赫兹波段。设计和集成:最灵活的光路集成,适用于所有操作模式MV2500适用于所有光学照明和收集模式的SNOM/AFM扫描台: 上方-侧面-下方照明/收集光路: MV2500的设计提供给用户针对每个样品不同需求选择最好模式的能力。纳米级别的红外测试需求和现有样品的多样性决定了能够使用多种照明和收集模式来探测样品是非常重要的。 MV2500就可以满足多种照明和收集模式,这完善了纳米级别的红外测试。AFM扫描台:灵活的扫描功能和简单的使用成就了优秀的红外SNOM系统 MV2500的灵活性扩展了扫描探针的工作模式,提供给用户适用于任何样品的极致的控制权限和灵活性。 关键功能包括:l 探针和样品扫描:MV2500具有两个扫描台,一个用于探针扫描功能,另一个用于样品扫描功能。关键优势:n 每个扫描台的XYZ扫描范围都是85*85*85μmn 针尖和样品可以独立扫描。软件控制非常简易。n 组合式扫描范围:两个扫描台的扫描范围可以叠加用于大范围扫描。n XY和Z方向的扫描可以独立控制,如可以用样品扫描XY方向,而探针进行Z方向的反馈,针对特殊的实验设计。n 两个扫描台都可以用于快速和精确的探针或样品位置定位-这能实现针尖和激光相互作用的绝佳优化。 l 音叉(TF)反馈:n 音叉反馈不使用激光光束作为反馈方式,避免样品或光学信号与其互相干扰。n 音叉反馈是现有的最灵敏的AFM反馈方式,在空气和液体环境下都可达到优秀的AFM成像效果。音叉反馈可以用于非常柔软的样品并可具有低至pN级别的力学灵敏度。l 可定制的LabView软件和控制器:软件基于LabView系统,允许用户设计脚本控制多种光谱仪和激光器。
    留言咨询
  • Scanning Microwave Impedance Microscopy,简称为sMIM,扫描微波阻抗显微镜,让您的AFM成为专业的电学显微镜! 50nm超高分辨率,~100nm内部电学探测,导体、半导体、绝缘体的广泛适用度,为您提供电导率、介电常数、掺杂浓度纳米级高灵敏度电学表征成像的解决方案。 Scan Wave™ 可应用于多种领域材料的研究和发展:微电子材料,铁电材料,工业材料,以及石墨烯、碳纳米管,2D半导体、纳米材料等新星材料等。 独立扫描模块,包括微波信号发生器、探针干涉模块、自主专利同轴屏蔽探针、以及微波近场软件,可应用于各种AFM平台。特殊MEMS结构探针,有效避免散杂磁场的干扰 专业多功能自由切换电学显微镜测试功能体验 sMIM-C成像:介电常数、电容变化; sMIM-R成像:电导率、电阻率变化; dC/dV 振幅:载流子浓度; dC/dV 相位:载流子类型+/- ; dR/dV 振幅:相关损失系数; dR/dV 相位:相关损失系数 高精度电学测试,50nm分辨率; 工业级高灵敏度、低噪音,“Hard stuff”材料电学测试不再是难题; 可实现表面下成像、检测(100nm) 不同材料同步测量:导体、半导体、绝缘体、电介质都可以实现,不同的材料甚至分类都可以 在一次扫描中观测。 简易操作:不需要样品特别处理,不需要将样品放置在导电或电流中,人性化软件设计,操作简单。 接触和非接触模式多种扫描模式:即使在做力曲线,只要你想实现,就可以获得电学数据;
    留言咨询
  • 高速太赫兹扫描成像仪高速(5000帧/秒)、高分辨率(1.5mm)太赫兹成像扫描系统基于先进技术研制出一套高速(5000帧/秒)、高分辨率(1.5 mm)太赫兹成像扫描系统,主要用于工业检测领域应用。该系统主要包含线性太赫兹高速相机和太赫兹源(100GHz)设备,二者可同步协调工作成像速度高达5000帧每秒,紧凑的体积设计适于集成便于工业应用的需求。除此之外,该系统满足于绝大多数传送带的要求,扫描速度高达15m/s。系统里集成的超快线性传感传感器满足了大多数工业无损检测和质量控制等应用的需求。关键词:太赫兹高速相机,太赫兹源,太赫兹成像系统,高速太赫兹成像系统,太赫兹扫描系统u 该套设备的主要特点如下:成像速度高达5KHz扫描速度高达15m/s成像频率为100 GHz像素:256 x 1专用软件(TeraFast)可提供定制化方案u 该套系统涵盖的产品主要如下:A. 太赫兹高速相机(基于先进技术研制的半导体阵列芯片)参数如下:Number of pixels: 256 (256 x 1)Image acquisition rate: 5000 fps (5KHz)Piel size: 1.5 x 3 mm2Responsivity: 8000 v/wImaging area: 384 x 3 mm2Min detectable power/pixel: 100nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps) Dimensions of device: 450 x 160 x 44 mm3Sync out : TTL (+5 V)Included software: TeraFast ViewerInterface: mini-USBPower supply: 24V/20W太赫兹源(基于IMPATT 技术)参数信息:Type IType ⅡFrequency100 GHz100 GHzPower per pixel20 uw140 uwImaging system dynamic range24 d B30 d BOptical systemPTFE opticsReflection opticsTechnologyIMPATTSuper-Hero IMPATT 详情请见如下链接:Type I / Type II THz wave sources for High Speed Linear scanneru 该套高性价比的太赫兹成像扫描系统,应用领域广泛,主要覆盖药学、化妆品、木材加工、食品、快速消费品包装、建筑材料、汽车工业、农业、安检等众多领域。
    留言咨询
  • 太赫兹时域光谱仪-太赫兹时域光谱仪系统 描述:太赫兹时域光谱仪-太赫兹时域光谱仪系统TeraSys-AIO时域光谱系统是Rainbow Photonics基于有机晶体开发的实验室级别的太赫兹光谱成像解决方案。它在测量透射和反射系统上提供了强大的灵活性,不需要对光学器件进行重新排序即可切换。太赫兹时域光谱仪它是基于有机晶体,具有高信噪比、结构紧凑、操作灵活、易于安装等优点,并且其工作频率范围极广,覆盖了光导天线不能达到的高频区域。TeraSys-AIO配有所有光学,机械和电子元件。包括太赫兹探测器,光学延时线,泵浦源,电子配件,湿度传感器,清洗室,专用软件和笔记本电脑等,为客户提供了全套的太赫兹时域解决方案!太赫兹时域光谱仪-太赫兹时域光谱仪系统TeraSys - AiO太赫兹时域光谱仪非常适用于高达20THz太赫兹范围内的材料光谱分析,可用于半导体材料研究、材料检测、高分子生物学、纳米科学以及太赫兹成像等应用方面的研究。Rainbow Photonics附属于苏黎世联邦理工学院非线性光学实验室,于1997年成立。公司基于非线性有机晶体产生和探测THz,研发出了一系列新颖的THz光谱仪产品,频谱范围覆盖了光导天线不能达到的高频区域。典型的时域光谱仪结构原理:太赫兹时域光谱仪-太赫兹时域光谱仪系统针对不同的样品、不同的测试要求、不同的太赫兹波与样品的作用方式,可以采用透射式、反射式等不同的探测模式。其中,最常见的为透射模式。图3为其结构装置图。 太赫兹时域光谱仪-太赫兹时域光谱仪系统工作原理:太赫兹时域光谱仪是一种利用脉冲THz波进行光谱检测的装置,在测量中能够同时获得THz脉冲的振幅和相位信息,通过对时间波形进行傅里叶变换能直接得到样品的吸收系数、折射率等光学参数,具有很高的探测灵敏度和较宽的探测带宽,是一种非常有效的光谱测试手段。通过其在基础科研领域和食品药品安全领域的示范应用,可带动其在生物医学、半导体材料、工业加工、文物检测、石油勘探等领域的潜在应用。 太赫兹时域光谱仪-太赫兹时域光谱仪系统产品特点:l 频率覆盖范围广l 高信噪比l 结构紧凑,方便安装l 操作灵活l 可提供透射式和反射式两种方案l 配有功能强大的软件和数据包 太赫兹时域光谱仪-太赫兹时域光谱仪系统应用范围:l 材料检测l 高分子生物学l 化学结构分析l 安全检查l 半导体材料研究l 纳米科学l 太赫兹成像 太赫兹时域光谱仪-太赫兹时域光谱仪系统技术参数:产品尺寸(包含泵浦):550*450*280mm光谱范围: 透射 0.3-14THz 反射 0.3-8THz动态范围:透射 70dB 反射 40dB信噪比(@4THz):透射 60dB 反射 35dB扫描范围:60ps频率分辨率:100GHz可升级选项: 太赫兹成像模块 扫描范围:50*50mm 泵浦源参数:泵浦类型:高功率超快铒光纤激光器脉冲长度:20fs平均功率:200mW峰值功率:120kW中心波长:1565nm重复频率:80MHz 太赫兹时域光谱仪-太赫兹时域光谱仪系统频谱图:使用DSTMS作为太赫兹波发生和探测装置的TeraSys-AIO系统的透射和反射频谱图如下:
    留言咨询
  • 太赫兹相机新势力光电供应太赫兹相机,特点:频率范围0.05-0.7THz、响应度高、噪声低、性价比高,该系列太赫兹相机应用:光束质量分析仪、医疗诊断、安防监控、缺陷鉴定、油品质量控制。 ModelTera-256Tera-1024Tera-4096No of pixels256 (16×16)1024 (32×32)4096 (64×64)Pixel size1.5×1.5 mm1.5×1.5 mm1.5×1.5 mmResponsivity50 kV/W50 kV/W50 kV/WNoise equivalent power1 nW/Hz0.51 nW/Hz0.51 nW/Hz0.5Device size10×10×5.5 cm10×10×5.5 cm20×20×10 cmPower5V USB5V USB5V USBSoftwareTerasense Viewer 相关商品 太赫兹发生器 太赫兹探测器 太赫兹成像系统 有机太赫兹晶体
    留言咨询
  • 太赫兹成像 新势力光电供应太赫兹成像,适用于实验室太赫兹光谱和太赫兹图像的分析。该系列太赫兹成像系统包含:延迟线、太赫兹发生器、太赫兹探测器、光学元件、电子部件,可与任何通讯波段的飞秒激光器进行联用。 SpecificationsTeraKit-DTeraKit-OTeraKit-DSTHz generatorDASTOH1DSTMSFrequency range0.3-11THz0.1-3THz0.1-11THzBest phase matchable wavelength1300-1600nm1200-1460nm1300-1700nmRequirementexternal femtosecond laser souceOptionsTHz imaging with a scanning range of 100mm× 100mmTeraIMAGE including pump laser source (70fs or 80fs)相关商品太赫兹发生器/探测器 太赫兹光源 太赫兹光谱 太赫兹系统
    留言咨询
  • 太赫兹系统 新势力光电供应太赫兹系统,包含操作软件和分析数据库。该太赫兹系统具有集成化操作、全固态、免维护等特点,广泛应用于:安防检测(爆炸物、生化试剂、邮件);材料检测(材料缺陷、有机材料);光谱检测(药品)。SpecificationTeraSys 4000Frequency Range0.3-4 THzOutput Power50 nWSpectral Resolution0.01 THzPolarisation, linear100:1, verticalInput Voltage110V/240V, 50 or 60HzPower consumption60 WWarm-up time15 min.Operating ambient temperature18-30 ℃Dimensions40mm× 25mm× 18mmTeraSys 4000 太赫兹系统搭建和频谱响应,如下图:相关商品太赫兹发生器 太赫兹光源 实验级太赫兹系统 太赫兹成像系统
    留言咨询
  • 太赫兹光电导天线 400-860-5168转3512
    太赫兹光电导天线BATOP GmbH成立于2003年,是一家隶属于德国耶拿大学的私人创新型公司。BATOP从事的专业领域包括:低温分子束外延技术,介质溅射镀膜,晶圆加工和芯片安装技术。在过去几年里, BATOP 已成为一个用于被动锁模激光器的可饱和吸收体的世界领先的供应商。可饱和吸收产品集合了各式各样的不同的器件,从可饱和吸收镜(SAM&trade ),到可饱和输出镜(SOC)和用于透过应用的可饱和吸收体(SA)。迄今为止,可饱和吸收产品已经覆盖了800nm到2.6µ m的常用激光波长范围。另一个产品系列是用于太赫兹发射和探测的太赫兹光电导天线(PCA)。BATOP不仅提供单带隙天线,还包括整合了微透镜的高能大狭缝交叉天线阵列和整套的太赫兹光谱仪。 太赫兹光电导天线的激发波长为800nm到1550nm之间。BATOP借助强大的研发能力来不断提高自己的产品, 我们始终和客户在一起,最好的满足他们的需求。 PCA -光电导天线太赫兹发射机光电导天线,包括低温生长砷化镓、砷化膜覆盖着金属接触可以作为光学兴奋宽带太赫兹时域测量或光混频器发射器。通常提供一个交流电压的电气接触发射机天线测量允许锁定. 至少有两个重要的天线参数:长度和长度l g。距离的差距决定了优先发出频率. 发射机天线之间的差距可以大于金属接触激光光斑直径.PCA可用超半球硅透镜或完成一个硅衬底非球面透镜为太赫兹波提高提取效率. 太赫兹接收机PCA发射机接收机具有相同的设计。最优金属接触之间的差距约等于激光光斑直径.电流放大器连接到天线接触传递一个信号与太赫兹电场强度成正比. iPCA 同比被指定为高功率太赫兹发射机,但也可以使用敏感的大面积太赫兹接收机. 推荐使用 PCAs 光电导天线选型推荐天线类型发射探测低频段高频段低激发光强高激发光强蝴碟形天线++ ++ +--+平行形天线+ ++-+ ++-领结形天线++ ++++-天线阵列+ ++ +-+ +-+ +领结指间形天线+++++ +-螺旋形天线+ ++ ++ +-+-PCA 产品列表激发光波长 530 nm ... 860 nm激发光波长 800 nm ... 1100 nm激发光波长 1000 nm ... 1550 nm
    留言咨询
  • 总览4-N,N-二甲基氨基-4'-N'-甲基己烯唑鎓2,4,6-三甲基苯磺酸盐(4-N,N-dimethylamino-4’-N’-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate)瑞士Rainbow Photonics 公司推出DSTMS晶体用于产生太赫兹,突破传统的光电导天线产生太赫兹的模式。THz DSTMS 太赫兹电光有机晶体,THz DSTMS 太赫兹电光有机晶体产品特点高品质晶体可切割、抛光用于各种应用高非线性光学性质高电光系数在720-1650nm 波段 相位匹配可产生太赫兹波产品应用有效太赫兹产生和探测(0.3 to 16 THz)快速电光调制光学参量产生1550 nm 有效倍频通用参数物理性能熔融温度250 °C点群对称 (point group symmetry)m折射率@1550nmn1 = 2.07, n2 = 1.641900 nm时的非线性光学系数d111 = 214 ± 20 pm/Vd122 = 31 ± 4 pm/V d212 = 35 ± 4 pm/V1900 nm时的电光系数r111 = 37 ± 3 pm/V吸收光谱曲线及太赫兹转换效率曲线太赫兹发生器安装在1英寸圆盘上如下所示,无需额外费用。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制