当前位置: 仪器信息网 > 行业主题 > >

四位平行反应系统

仪器信息网四位平行反应系统专题为您提供2024年最新四位平行反应系统价格报价、厂家品牌的相关信息, 包括四位平行反应系统参数、型号等,不管是国产,还是进口品牌的四位平行反应系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四位平行反应系统相关的耗材配件、试剂标物,还有四位平行反应系统相关的最新资讯、资料,以及四位平行反应系统相关的解决方案。

四位平行反应系统相关的资讯

  • 国内首台中试型超声波微波协同强化反应系统与可编程微波催化合成萃取系统通过攀钢验收
    南京先欧公司仪器制造有限公司自主研发生产的国内首台中试型超声波微波协同强化反应系统与可编程微波催化合成萃取系统,近日通过了攀钢研究院各位领导和专家的验收!攀枝花钢铁研究院兼有攀钢钢铁研究院(企业科研院所)和攀枝花钢铁研究院(冶金工业部直属科研院所)双重身份,是以钢铁钒钛技术开发为主的冶金研究机构。
  • IKA新品——1/4加热块系统/反应系统火辣登场
    KIA新型加热块系统,铝合金&ldquo 饼状&rdquo 结构,导热性能良好,单个加热盘面最多可同时配置4块加热块。其中,&ldquo 饼状&rdquo 的结构可互换,单个加热盘面可进行不同的配置和组合。IKA的这一新品,适用于所有工作盘面为&phi 135mm的加热磁力搅拌器。 IKA新型加热反应系统,加热介质温度可高达180 0C,加热升温快,温度分布均匀一致,容器内部化学反应容易观察,而且可有效消除水/油浴加热锅等引起的一系列问题:例如:着火点、液体溅出和清洁困难等。 东南科仪自1992年成立以来,始终贯彻&ldquo 向中国引进世界最先进的检测仪器&rdquo 的服务宗旨,以专业、全面的技术支持和售后服务赢得了良好声誉,并拥有广泛而稳固的客户群体和分销网络,是国内极具实力的实验室基础仪器集成供应商。东南科仪作为IKA产品的中国代理商,自代理开始,一直将IKA公司的新产品率先引入中国。 以上两种新品,东南科仪现正发售,价格优惠,而且有多个型号与颜色可供选择!详情欢迎致电:020-83510088! 广州:天河北林和东华庭路4号天河商务大厦1506-07 (510610) 电话:020-83510088(十线) 传真:020-83510388 E-mail:dongnan@sinoinstrument.com 北京:海淀区交大东路60号舒至嘉园3座 (100044) 电话:010-62268660 62260833 传真:010-62238297 E-mail:beijing@sinoinstrument.com 上海:延安西路1590号增泽世贸大厦10E (200052) 电话:021-52586771 52586772 52586773 传真:021-52586778 E-mail:shanghai@sinoinstrument.com 成都:成都市高升桥路2号瑞金广场2-10F(610041) 电话:028-68222672 传真:028-68222699 E-mail:cd@sinoinstrument.com
  • 英国Radleys平行合成仪,反应釜,加热块诚招各地合作代理商
    RADLEYS的前身是1968年建立的一家专门生产玻璃的厂商,随着组合化学这门新兴科学的发展,充满活力的RADLEYS研发团队,紧随科学发展的脚步,推出了RADLEYS品牌的平行反应站。目前该公司产品已成为当今世界最*的化学家个人工具箱中必不可少的部分,其产品广泛应用于制药,化工,化学,组合化学等行业。 RADLEYS在制作高品质玻璃反应系统领域已享有超过45年的盛名,拥有一批专业的玻璃釜的设计和制造工程师,而且,RADLEYS所生产的所有客户制定化反应系统都是在与客户密切合作的基础上进行设计,所有制造的反应釜都是根据每个客户的具体要求而生产。RADLEYS同时也提供多种具有创新技术的标准化平行反应站,例如Lara全自动化控制反应釜,新型的Lara Lite反应釜以及新设计的Reactor-Ready标准反应釜。 产品系列: A 平行合成仪系列: 1﹑6位平行合成仪/6位低温平行合成仪 2﹑12位平行合成仪/12位低温平行合成仪 3﹑GreenHouse/GreenHouse&trade 冷冻槽 4﹑StarFish B 反应釜系列 1﹑Reactor-Ready反应釜 2﹑Reactor-Ready Duo 3﹑Lara控制化实验室反应釜 C Tornado IS6顶置式搅拌器 D Heat-On加热块 为了更好地服务于广大客户,德祥公司诚意与国内各地代理商合作,共同为新老客户提供*的产品,及时的技术支持。德祥公司也致力于为广大业内合作伙伴提供全方位的支持,加强彼此间的合作,以高品质的服务,具有竞争力的价格为广大的仪器界友人提供更加便利的业务拓展渠道,以及相关的售前、售后支持! 欢迎有意者来电来函与我司联系: 德祥上海分公司 联系人:郭锐 电话:86-021-52610159-817 传真:021-52610122 邮箱:rui_guo@tegent.com.cn 网址:http://www.tegent.com.cn 地址:上海市静安区北京西路1068号银发大厦18F(200041)
  • ThalesNano重磅推出连续流动氢化反应系统H-Cube Mini
    2013年10月28日培安公司携手ThalesNano 公司重磅推出连续流动氢化反应系统H-Cube Mini,与此同时与新老客户圆满且愉快地进行了产品和相关技术交流。 连续流动化学即化学反应在特殊的反应器内连续不断的流动进行,微流动化学则是其反应的一种方式,是指反应的各条件(反应物、产物、副产物、催化剂、溶剂、介质)微量化,相对降低温/压等反应条件并进行更精确的调控,在反应放大和优化的过程中,具有更高的反应效率,更高的重现性和稳定性,H-Cube系统是基于此概念而研发的。 著名的流动化学专家兼ThalesNano公司CEO Richard Jones 表示:&ldquo 我们不断与客户沟通,了解其需求并为客户提供其最合适的解决方案,安全绿色环保、反应效率以及日常维护的减少是化工行业最重要的驱动因素,我们此次重磅推出的H-Cube Mini正是源自于行业客户的不断交流的成果,也是为中国市场量身定做的系统。&rdquo H-Cube Mini连续流动化学系统是氢化反应实验室的最佳选择。 连续流动化学在大批量的工业生产中已经是很成熟的技术,得到了广泛的应用。不过对于实验室规模还是一个新的技术。2008年,诺华提供给麻省理工学院(MIT)6500万美元的专项基金,用于流动化学的研究,这个基金专用于新药的最终化合物的开发。 获得R&D100大奖的H-Cube是ThalesNano公司基于流动化学技术所研发的台式氢化反应系统,它为氢化反应创造了革命性的新方法,使得在普通实验室传统方法不能灵活运用的氢化反应得以连续流动的方式安全进行。反应条件的优化更迅速,反应速度快,转化率高。避免了传统批量方法的安全性隐患。 H-Cube的出现,是化学反应的一次技术革命,其特点如下: 高效快速&mdash &mdash 仅需5分钟就能分析反应结果,在条件筛选阶段具有里程碑的意义,比传统反应快50倍,通过充分的多相混合将反应时间从天或小时减少到分钟; 安全可靠&mdash &mdash 电解水产生高纯度氢气,无需外接氢气钢瓶;无需进行催化剂过滤或对催化剂的直接操作; 方便安置&mdash &mdash 更小的尺寸,能够在任何标准的实验室通风厨内使用; 操作简单&mdash &mdash 无需培训,氢化新手亦能轻松操作H-Cube Mini; H-Cube系统选择性更好,得到用户真正想要的产物;再现性更高,保证反应的重复性,并可快速放大,完成从mg级升至kg级的合成,是您实验室的最佳信赖的选择! 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • ThalesNano公司推出可实时监测的H-Cube连续流动氢化反应系统
    2010年5月17日,在各自领域均处于领先地位的ThalesNano公司和梅特勒-托利多公司正式宣布了一项合作计划。ThalesNano公司的H-Cube连续流动氢化反应系统与梅特勒-托利多的ReactIR&trade 流动池集成系统的结合俨然成为流动化学的新利器。 此项不仅融合了ThalesNano公司H-Cube连续流动氢化反应系统实时在线修改反应参数、在几分钟之内便可提高产量和优化选择性,还融合ReactIR&trade 可实时监测反应的特点。整合后的H-Cube连续流动氢化反应系统可以内部监测并通知用户是否所有的中间体或原料已反应完全,并且更适用于可能产生有毒/危险的反应中间体反应,使化学反应更便捷更安全。 这款H-Cube连续流动氢化反应系统也可应用于大规模合成:当ReactIR&trade 和H &ndash Cube Midi或H &ndash Cube Maxi(连续流动氢化反应放大系统)整合后,可监测工艺或生产过程中的化学反应中催化剂的活性,催化剂活性下降或催化剂中毒后,更换新催化剂柱。这将确保高纯度的产品,避免了不必要的废料的纯化费用。 Official ThalesNano website: www.thalesnano.com Official ThalesNano contact email: flowchemistry@thalesnano.com Official website: www.pynnco.com Contact Information: 美国培安公司 地址:朝阳区吉庆里14号佳汇国际A202 Email: sales@pynnco.com, Tel:010-65528800
  • 培安公司“Thalesnano H-Cube 连续流动氢化反应系统”特价促销
    培安公司作为 ThalesNano 公司在中国大陆地区的独家授权代理,负责该公司旗下的 Cube 系列连续流动化学反应器在中国市场的推广、销售和售后服务工作,此举开创了国内流动化学的新时代,为国内微量化学领域带来革命性的进步。 为感谢新老用户选用培安公司先进技术和优质的技术与产品,并感谢广大用户过去几十年对我们工作的支持和厚爱。培安公司针对各大高校、中科院、研究所等学术研究领域,特推出5台特价 H-Cube 连续流动氢化反应系统,超乎想象的优惠条件,详情请垂涵培安公司。 H-Cube 连续流动氢化反应系统产品简介 H-Cube 连续流动氢化反应系统,利用独特的微流动技术和出色的软件控制系统可以显著的增加反应效率,提高重现性、稳定性和安全性。利用特殊设计封装的催化剂柱,替代传统高压釜系统中的催化剂,从而大大降低了催化剂使用和过滤产生的危险和劳动量。H-Cube 连续流动氢化反应系统内置氢气发生器,避免实验室使用危险的氢气钢瓶。在 Cube 系列反应器中,可以分别满足进气、排气、进液、排液、快速反应、快速加热和冷却、氢气泄漏检测、在线修改反应条件、连续灌注等要求,全系列产品适合研发、中试和生产等任务的要求。目前,该产品在全球的药化、石化、精细化工领域已经得到众多著名公司的广泛使用。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 新型能源转化反应及产物在线分析系统
    成果名称 新型能源转化反应及产物在线分析系统 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 能源是经济发展的基础和关键。我国石油、天然气资源严重紧缺,目前探明的可采储量仅为世界人均值的10%和3%,面对石油资源的日益匮乏和不可再生性,寻找一条替代石油资源制备液体燃料和基础化学品的路线已成为当前我国能源发展的重点。我国煤炭资源丰富,从煤基合成气出发制备油品和能源化学品是目前我国最为紧迫的一条能源化学转化路线。由于合成气转化具有周期长,产物分析过程繁杂等诸多问题,所以研制一台高效的反应和分析系统对于能源催化研究来说是至关重要。 2012年,北京大学化学学院马丁研究员申请的&ldquo 新型能源转化反应及产物在线分析系统&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。该课题组拟开发的能源催化转化多通道平行反应系统能够有效的缩短反应周期,快速筛选催化剂,优化反应条件,简化分析过程,提高分析精度,而且可以应用于其他高温高压的气固相反应中。在基金经费的帮助下,马丁课题组为该仪器的创制开展了一系列富有成效的工作,包括:(1)反应气体控制;(2)高质量反应炉的设计;(3)新型高压反应管的设计;(4)三路气体的色谱监测技术研究;(5)气体管路及阀门保温系统设计;(6)适用于能源转化的色谱分析方案研究;(7)仪器的自动化控制编程。通过以上创新性工作,课题组所研制的反应、分析系统达到了预定的指标,取得了良好的效果。 应用前景: 目前,该项目已经顺利结题,其仪器成果在国内属于先进水平,正在同类型研究的实验室中进行介绍推广。此外,该高通量高压多通道反应系统的建成也对其它同类型装置的研制起到推进和示范的作用。
  • 重磅推出丨霍尔斯HPB Mini平行生物反应器
    一款智能高效的实验室平行生物反应器霍尔斯(HOLVES)于今年9月初推出的最新系列平行生物反应器,本周正式进入定制阶段,作为一家创新的生命科学公司,研发和生产出多款实验室科研设备,霍尔斯(HOLVES)团队表示此次新品,将为您的科研工作带来跨越式的进步。用于微生物发酵的平行高通量研究HPB Mini系列产品是一款科研型实验室平行生物反应器,是实验室实现高通量筛选的一款科研利器。非常适合条件摸索和工艺优化,提高了生物培养实验的准备效率,配置更灵活、操作更容易,运行成本低。可以广泛运用于实验室细菌发酵、细胞培养和酶生化反应。产品优势:模块化BBM搭建设计:得益于新总线技术层面的应用,产品可实现积木模块化BBM搭建设计,主控制器可控制搭建的所有BBM模块,无需更换控制器和硬件。目前可以实现BBM模块:补料泵模块、自动进气模块、尾气模块等专业模块搭建,系统可根据需求定制独家方案。 自由扩充反应堆数量: 以2组为一个单位,最多可以扩充至64组,搭配霍尔斯(HOLVES)先进的平行控制软件,可多平台同时监控数据、操控设备。 智能自动化管理: 设备融合霍尔斯(HOLVES)多项独家专利技术,实际应用在功能管理系统中,包括H-Mix®搅拌系统、Feed-Sup®补料系统、Smart-SC®智能顺控、Meta-Tri®审计追踪等在内,让设备真正实现智能自动化管理。 值得信赖的品质: 秉承霍尔斯(HOLVES)一贯的验收把关,精选国内外知名品牌部件,只为用户打造合适的系列方案。如果您对HPB Mini平行生物反应器感兴趣,可以点击此处查看咨询,也可直接联系我们!
  • 关于召开微反应流动化学工艺与微反应加氢工艺应用研讨会的通知
    微反应流动化学技术因能够解决化工危险合成反应而称其为绿色合成工艺。其具有强传热和传质特性和反应体积小,而使其具备本质安全性。并可平行放大,具备安全生产、易于控制、提高收率,减少三废的特点,为化学合成工艺带来革命性的变化。将为制药、化工行业转型升级,提升创新能力,为实现绿色发展提供有效的技术手段,目前已有部分企业成功改造升级,并带来极可观的社会效益和经济效益。 目前在我国尚属新工艺推广阶段,只有少数几家大企业应用了此项工艺,并取得了极好的效果。目前绝大多数的企业都有强烈意愿应用此工艺,但不知如何开展?也不知本企业的反应类型如何做流动化改造?近两年来,由于江浙长三角一带的做流动化改造的企业较多,相关的行业会议也多是在江浙一带举办,从未在西部地区举办,但川渝地区制药、化工企业众多,且很多企业有强烈学习意愿。为帮助相关从业人员了解和交流先进的微反应流动化学技术及设备应用,提升化工和医药工业生产的效能,中国化工企业管理协会医药化工专业委员会联合四川省分析测试服务中心定于2019年12月13日—15日在成都举办“微反应流动化学工艺与微反应流动加氢工艺应用研讨会”。届时将邀请行业专家从技术选择、工艺设计、设备选型、运行维护和应用实例进行系统交流研讨,展示和交流先进的微反应流动化学技术及设备应用,为参会代表创造更多的对接合作交流机会。请各有关单位积极派员参加,现将有关事项通知如下:会议主题微反应流动化学工艺与微反应流动加氢工艺应用研讨会会议组织主办单位:中国化工企业管理协会医药化工专业委员会 四川省分析测试服务中心协办单位:欧世盛(北京)科技有限公司时间地点时 间:2019年12月13日-15日(13日全天报到)地 点: 成都大成宾馆(成都市人民南路二段34号)会议费用会务费:1800元/人(含会议资料、茶歇、午餐、晚宴、礼品、证书等),食宿统一安排,费用自理。会议内容(一)微反应流动化学技术的研究和应用现状:1、微反应流动化学技术研究与应用化进程;2、微反应流动化学系统的放大和集成技术的研究;3、微反应流动化学技术在化工过程强化的实际应用及例证;4、微反应流动化学技术在医药行业的研究应用;5、微反应流动化学技术在农药行业的研究应用;6、微反应流动化学技术在染颜料行业的研究应用;7、微反应流动化学技术在纳米材料合成等领域的研究应用;8、微反应流动化学技术应用行业热点问题;(二)微反应系统及微通道研究的热点与难点:1、微反应系统中的系统自动控制技术应用;2、微反应系统中催化剂的壁载或填充技术应用;3、微反应系统的微反应器防腐技术应用;4、微通道内流动与强化换热特性研究;5、微通道反应器制环酯草醚中间体的应用研究;6、微通道萃取器在产品生产以及降低废水中COD的应用;(三)、微反应技术与微反应器的行业应用与研究:1、微反应器在医药行业的研究应用;2、微反应器在农药行业的研究应用;3、微反应器在纳米材料合成等领域的研究应用;4、医药行业微反应工艺系统的优化设计研究;5、纳米材料合成等领域微反应工艺系统优化设计;6、染颜料行业微反应工艺系统的优化设计研究;7、农药行业微反应工艺系统的优化设计研究;8、绿色化工过程中微化工技术的实际应用;(四)微换热器研究与工艺优化中的验证及工艺开发应用:1、微换热器的研究现状和应用;2、微尺度下的传热特性;3、微换热器的结构优化研究;4、微换热器的可靠性与应用优点;5、微换热器的验证及工艺开发等;(五)流动化学技术的行业应用与研究:1、连续流动反应器的优势与前景;2、连续流动化学实现绿色化工、绿色制药的有效解决方案;3、渗透汽化技术的发展状况及在化工、制药领域的使用情况;4、连续流动化学在药物合成中的应用;5、流动化学的连续工艺技术;6、流动合成系统在制药、化工等有机合成领域应用;7、连续流动反应器在化工制药工艺安全案例;演讲嘉宾拟邀请嘉宾(不分排名先后):陈光文 中国科学院大连化学物理研究所研究员;郭 凯 南京工业大学生物与制药工程学院院长、教授;夏春年 浙江工业大学药学院教授;张志华 广东省微化工工程技术研究中心主任;孙铁民 沈阳药科大学制药学院教授;张吉松 清华大学化学工程联合国家重点实验室研究员;鄢冬茂 沈阳化工研究院新材料所总监所长助理;程 荡 复旦大学微通道应用技术联合实验室执行负责人;万 力 华东理工大学化工学院副教授;金英泽 欧世盛(北京)科技有限公司CEO;(其他相关专家报告继续预约中,敬请持续关注!)论文征集 本次大会将面向全国征集与主题相关的学术报告、论文、案例成果,印刷会刊(论文集)作为会议资料,请拟提交论文的人员在12月8日前将论文发至99416838@qq.com信箱。要求论文字数不超过5000字,文件格式为word文档。参会人员1、医药、农药、染颜料等精细化工行业相关企业技术负责人。2、纳米材料合成等领域相关企业技术负责人。3、设备、技术供应商。4、政府、协会、检测机构、研究所及高等院校等。联系方式联系人:张静 手 机:400-178-1078邮 箱:99416838@qq.com 联系人:李亭
  • L-600型平行化学合成反应仪
    组合化学(combinatorialchemistry)是近十几年来刚刚兴起的一门新学科。经过短短的十余年特别是近六七年的发展,组合化学已渗透到药物、有机、材料、分析等化学的诸多领域,随着自动化水平的提高,组合化学已成为目前化学领域最活跃的领域之一。 组合化学在有机领域最引人注目的成就,是对传统药物化学合成的冲击。药物的开发是一个耗时耗费的过程,药物的研制历程之所以耗时耗费,很重要的原因是:先导化合物的发现与优化速度缓慢。组合化学能够大大加快化合物库的合成及筛选速度,从而大大加快了新药的研制速度,经过十几年的发展,组合化学方法已成为新药研制的必由之路,它的出现被誉为近年来药物合成领域的最显著的进步之一。组合化学库的合成方法主要为:混合-裂分法、平行合成法、混合试剂合成法。 平行化学合成反应仪,就是专门为组合化学平行合成法而专门设计的,会给科研工作者的实验工作带来极大的便利。 1、24个样品管可在相同条件下进行合成反应、回流萃取反应、惰性气体条件反应、在位蒸馏浓缩反应。 2、反应温度条件为从-10℃----+150℃任意设定,控制精度为± 1℃。 3、程序控温模式: ■加热恒温控制。 ■12段程序加热定时控制。 ■12段程序恒温定时控制。 4、反应平台回旋震动功能:0---500转/分回旋震动,触摸按键随意调整转速。 5、独立密封瓶盖设计,不会产生交叉污染,在密封状态下可向试管内添加反应试剂。 screen.width-300)this.width=screen.width-300"
  • 平行生物反应器 | 英国Cleaver Scientific公司生物反应器
    如需获取原文献/补充资料 请关注曼森生物公众号英国Cleaver Scientific是由Adie Cleaver创立,proSET是Cleaver Scientific旗下的产品,该系统是台式规模的,具有大型彩色触摸屏面板和用户友好的界面。1proSET 平行发酵系统proSET Parallel Fermentation System无论是需要同时进行两个相同的实验还是不同的实验,双重加热系统都允许同时运行两个恒温器加热、两个干式加热或一个恒温器和一个干式加热。远程控制软件可以控制 16 个容器,以实现真正的并行操作。产品特点:🔻一个控制器用于两个容器;🔻用于独立或同时控制的单容器或双容器;🔻用于恒温器和干式加热兼容性的双加热系统;🔻标准包中包含免费的远程控制软件;🔻与所有可选设备完全兼容。2proSET One 发酵系统proSET One Fermentation SystemproSET One System 体积小巧,作为标准仪器提供了所有必要的工具。双重加热系统允许为任何应用需求选择高达 10L 的任何容器类型。可选的扩展模块允许添加额外的设备以增强系统的功能。所有必需品,如温度、消泡剂、pH 和 DO 探头都包含在标准包装中。PC 软件可同时连接16 个系统 16 个容器。 产品特点:🔻基于 Linux 的系统;🔻尺寸:250x510x500mm;🔻最大容量为 10 升;🔻三档速度可调,蠕动泵控制不同流量的进料;🔻SCADA 软件就绪;🔻扩展模块可用于系统升级支持可选设备。3proSET Evo 发酵系统proSET Evo Fermentation SystemproSET Evo 可提供一体化发酵解决方案和终极自动化体验,它与 0.5 至 20L 的容器完全兼容,为大多数细胞系的培养提供了广泛的覆盖范围。proSET Evo System配备最新的控制软件;这款用户友好、直观的软件结合了许多高级功能,可提高实验效率。除了手动控制搅拌、温度、pH、DO 水平和进料外,还可以对上述参数进行 15 步预定顺序控制以及 pH 和 DO 反馈控制。此外,还提供多种即插即用可选设备。产品特点: 🔻用于细胞培养和微生物学研发的通用系统; 🔻可互换的五种耐高压灭菌玻璃容器; 🔻从单个界面控制十六个系统; 🔻兼容小型中试规模 15L 和 20L 玻璃容器。4曼森生物平行生物反应器前几期已经介绍了曼森JOY4-500和JOY4-1000型号的平行生物反应器,本期介绍JOY1-2400型号反应器。JOY1-2400高通量微型生物反应器专为菌种高通量筛选、配方开发、工艺优化、原材料质量评价等研究需求设计;与摇瓶、试管、孔板、微流控芯片相比,与生产罐结构更加一致,通过参数分析获得的工艺条件,可以直接进行放大,使试验室的成果迅速获得转化;高通量微型生物反应器与实验室传统的生物反应器相比,其软件设计更加合理,除了实现一键设定参数、一键同时校准外,还可以将编制好的工艺策略一键下发到每个罐上,提高操作效率,另外通过生物反应器的平行性设计和验证,使得用户的试验结论更加可靠。高通量微型生物反应器因为体积小,所以除了节约占用空间外,还可减少试验人员和原料成本,极大的降低研发成本。 产品特点:🔻一个单元模块由1个2400ml微型反应器组成,多个模块可以并联,组成高通量微型发酵罐组;🔻每个2400ml微型反应器的参数可独立设定和控制;🔻每个反应器对应4路蠕动泵,每个泵的转速单独可调;🔻一台电脑控制所有反应器,完成参数设置、命令执行、数据记录和曲线浏览;🔻一体化设计,不需要外接其他管路和设备,插电即用;🔻具有10个基本在线参数和30个可扩展参数;🔻有参数运行中自我诊断功能;信息来源:https://www.cleaverscientific.com/electrophoresis-products/proset-parallel-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-one-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-evo-fermentation-system/由于篇幅受限,关于上述生物反应器具体参数详见公众号右下角底部菜单栏→补充资料,自动跳转获取Mediacenter Editor | 曼森编辑文章来源:本文由上海曼森生物整理提供排版校对:刘娟娟编辑 内容审核:郝玉有博士-END-
  • “节能王”-Electrothermal 的平行反应工作站助您节能90%
    英国BIBBY旗下子品牌 Electrothermal, 推出的平行反应工作站系列,在全球掀起了节能的旋风;它们可以为您节约能源成本高达90%,号称“节能王”。Electrothermal 的平行反应设备是全球市场领导者。Electrothermal 于2013年加入英国Bibby Scientific 集团,拥有70多年的加热、制冷和搅拌设备的制造经验,提供电加热套,平行反应设备, 凯氏定氮设备, 组织学和病理学设备,电子本生灯系列,是全球领先的科学仪器提供者。与普通加热磁力器或加热套比起来, Electrothermal 生产的STEM RS, STEM Omni 及STEM Intergrity 系列平行反应工作站,可以节能高达90%, 为用户每年节约上万英镑。 也就是说,传统的加热,制冷或搅拌系统如果消耗电950W; 而这些有平行合成装置的“盒式实验室”,仅需要耗电300W,非常经济和有效率。Electrothermal 的平行反应工作站系列,从-30°C to 300°C 都可实现对冷却/加热搅拌的精确控制。平行反应数量之多,从6件到50件容器都可同行进行反应;实验人员只需一人,解放了其它人员以从事其它实验工作。这样就大大增加了实验室的灵活性与高效性, 也就相当于节约了金钱与时间。 Electrothermal 的英国总经理Peter Day 先生说:“我们的反应工作站是极其节能的, 耗电300W,是普通磁力搅拌器的1/3。工作站的所有型号都性能优越,操作成本低,三年内可正常使用无故障。它不仅仅为您节约了宝贵的时间,同时也协助您提升了生产率,优化了流程管理;工作站的更高效节能,说明了我们提供的是更绿色的实现室环保设备。”Electrothermal 共有13种带平行反应装置的工作站;优化的实验流程条件,有利于更快发现新成份。另外STEM Integrity 可与机器人自动平台联合使用,被广泛用于生产控制工作室。Electrothermal' s Reaction Stations help cut energy costs by up to 90%Compared with the routine use of hotplate stirrers or heating mantles , Electrothermal' s STEM RS, STEM Omni and STEM Integrity Reaction Stations can reduce energy costs by as much as 90%, potentially saving thousands of pounds each year. Equipped for parallel synthesis, these "lab-in-a-box" alternatives to traditional heating, cooling and stirring systems consume as little as 300W, making them energy-efficient and inexpensive to run. In comparison, hotplate stirrers generally consume between 550W and 950W.The STEM RS, STEM Omni and STEM Integrity ranges increase laboratory throughput by providing precise control of heating, cooling and stirring, from minus 30°C to 300°C. They can accommodate between 6 and 50 vessels simultaneously and will run unsupervised, freeing laboratory personnel for other tasks, thereby supporting laboratory flexibility and efficiency, as well as saving time and money.Peter Day, General Manager for Electrothermal said, "Our reaction stations are extremely energy-efficient, consuming as little as 300W compared with hotplate stirrers which can use three times as much electricity to run just one reaction. All models offer excellent performance and the opportunity to reduce running costs means that they can pay for themselves within 1-3 years. Not only do they save valuable time, increase productivity and improve workflow management, their energy-efficiency credentials mean we are creating a greener laboratory environment by running equipment more effectively and saving energy".With a total of 13 reaction stations in the range, the STEM RS and STEM Omni products are equipped for the parallel synthesis that is used to speed up the discovery of new compounds and screen for optimal process conditions. Additionally, the STEM Integrity range can be incorporated into robotic platforms so is more widely used for process control studies. 关于语特 和 英国Bibby / 德国ART / 德国CAT ( http://bibbyyt.instrument.com.cn. 电话/传真: 020 2802 3589 电邮: GZ_YT8@163.com) 广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国ART, 德国CAT 在中国的首代。英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器仪器生产商,世界上拥有最广泛产品系列的实验室仪器制造商之一, 其向全球提供的品牌产品以高品质和高操作性能而著称. 旗下有4个子品牌:Stuart,Techne,Jenway,Electrothermal.l Stuart: 专注于样品前处理等通用实验室仪器,包括: 熔点仪, 菌落计数器, 搅拌器, 混匀器,摇床, 纯水蒸馏器系列;l Techne: 专注于分子生物学研究设备(基因扩增仪和杂交箱), 以及温度控制产品系列(包括水浴和干浴) ;l Jenway: 是紫外/分光光度计, 火焰光度计,色度计等分析仪器的专家;l Electrothermal: 作为有70多年历史的BIBBY的新成员,全球领先的科学仪器提供者,提供电加热套,平行反应设备, 凯氏定氮设备, 电子本生灯系列。其平行反应设备是全球市场领导者。 德国ART 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。 其顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类极多,可满足客户各类需求;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一。其搅拌器,从手持式,教学用,到科研通用型,高粘度型,应有尽有,是CAT的代表产品线; 而今又由普通电子马达走向无刷马达, 引领着搅拌器的研发潮流。
  • 借助Integrity 10平行结晶系统分析溶菌酶结晶介稳区
    #Integrity 10 平行结晶系统#结晶介稳区是指溶解度平衡曲线与超溶解度曲线之间的区域。溶解度曲线和超溶解度曲线将溶液浓度-温度相图分割成三个区域,分别是稳定区、介稳区和不稳定区。一个特定的物系,只有一条明确的溶解度曲线,而超溶解度曲线的位置却受到很多因素的影响,如有无搅拌、搅拌速度、有无晶种、晶种的大小种类、杂质,超声波、电磁场等。介稳区理论对API结晶工艺过程控制至关重要。在一个结晶过程中,当过饱和度超过介稳区进入不稳定区域时,溶液中就会自发成核。为了使得产品具有较高的纯度和理想的粒度分布,通常将结晶过程控制在介稳区内进行。介稳区宽度越大,说明结晶物质的过饱和溶液越稳定。图1:介稳区示意图介稳区宽度的测定对于工业结晶有着非常重要的意义,它不仅是结晶操作时选取适宜过饱和度的依据,也是进行过夜结晶器设计的重要参数,也就是说,要求的较为准确的最大过饱和度或最大过冷却度,作为设计中选择适宜的过饱和度的依据。目前使用经典技术测量样品溶液的溶解度点和成核点可能需要很长时间。在蛋白质的应用中,这是一个特殊的问题,因为不能用一种方法同时进行测定。 本应用简报介绍了一种快速、可靠且可重复的测定方法,用于测定乙酸钠缓冲溶液中溶菌酶的介稳区宽度。该方法使用配备红外透射检测器的 STEM Integrity 10 平行结晶系统,使用浊度测量技术进行检测。图2:STEM Integrity 10 平行结晶系统相关实验及结果 实验方法:溶液在 STEM Integrity 10 平行结晶系统中以 0.1°C/min 的控制方式加热和冷却,以确定成核点和溶解度点。使用可选的浸入式 IR 探头(货号:ATS10230)收集浊度测量值。 实验结果:溶解度点定义为透射率百分比达到稳定平台的点,形核点定义为透射率百分比持续下降的第一个点,如下图所示。图3: 溶菌酶溶液浊度随温度的变化(15mg/ml)下图确定了许多溶液浓度下的成核点和溶解度点。图4:12mg/ml和20mg/ml溶菌酶溶液浊度随温度的变化根据浊度测量确定的成核点和溶解度点与下图所示伪相图中溶菌酶溶解度的文献数据一起绘制。图5:溶菌酶蛋白假相图(4%NaCl,0.1M醋酸钠缓冲液pH 5.0)这种类型的图表的构造使得介稳区很容易被识别。结论:通过使用浊度测量技术确定具有不同蛋白质浓度的溶液的成核点和溶解度点。该方法的特点是重现性好、可信度高。结合文献报道的已知相图,本研究中获得的数据显示了良好的相关性。与其他经典方法相比,使用这种技术可以在几个小时内确定介稳区宽度,并且精度极高。Integrity 10 应用及配置一、Integrity 10应用方向:介稳区宽度测定快速获取溶解度曲线测定成核诱导时间API晶型高效率筛选API溶解度筛选化学反应条件筛选二、Integrity 10为您提供:1. 多管平行结晶系统10个完全独立的反应池,行业领先每个反应池独立控温和搅拌温度范围: -30°C~150°C搅拌速度: 350rpm~1200rpm2. 精确的温度控制变温速度可以在0.1°C/min至5°C/min之间选择反应池间可承受温差高达180℃温度均一性: ±0.5℃分辨率: 0.01℃3. 强大的软件功能直观,易于操作,由您指尖随心完全控制6’高清微处理触摸屏PC软件可快速获取溶解度曲线,用于溶解度/结晶评价4. 宽广的样品体积1ml试管适合珍贵药物的筛选3ml试管适合常规筛选25ml试管适合化学合成筛选5. 灵活的配置可选非浸入及浸入式IR探头,分析样品浊度(可搭配多重红外探头盒进行平行实验)可选外置温度探头及多重温度控制单元,使温度监控更加精确可选惰性气体接口可选冷凝回流装置可选集成机器人自动化工作站三、我们的客户众多行业用户选择了我们的Integrity 10 平行结晶系统,这些用户中不乏知名药企巨头。联系我们,获取行业用户应用案例。
  • 屹尧科技展出COOLPEX灵动型微波化学反应仪等产品-CFAS 2012食品、农产品检测新技术系列视频采访
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛以“为构建我国食品安全保障体系,进一步推动食品、农产品检测新技术的广泛应用,完善食品与农产品质检体系建设”为主题,特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告,并同期举行展览会,汇聚了70余家国内外科学仪器相关厂商,吸引了600余位来自各界的专家、代表参会。   展会期间,仪器信息网特别制作了“食品、农产品检测新技术系列视频采访”,与会的部分参展仪器厂商分别针对目前食品、农产品检测当中面临的技术、应用与市场需求,介绍了各自所能提供的解决方案。   屹尧科技市场部经理李春梅女士介绍到,屹尧科技成立于2000年,是专业从事微波消解、微波合成等产品的研发、生产、设计、销售的高科技企业。目前,公司产品系列主要包括WX-4000温压双控密闭微波反应系统、WX-8000专家型密闭微波反应系统、EXCEL微波化学工作平台、SUPEX智能微波化学工作平台等。   为满足客户对微波消解仪器的使用需求,屹尧科技推出了一款新的产品——COOLPEX灵动型微波化学反应仪,这是全球首创使用微波“定向压缩”技术的微波化学反应仪。该仪器采用基于矢量微波场建模的顶层反射设计,定向改变场强分布,将微波能量高度均匀聚集在样品区域,微波能效提高60%,可以更快速、彻底处理样品,提高反应的平行性。另外,该款仪器还采用高端体验的“实时影像”技术,通过7寸高清晰LCD视频显示,远距离实时观测内部消解罐运行情况,让客户体验高科技带来的便捷性。   更多详细信息,请点击查看采访视频。   上海屹尧仪器科技发展有限公司   上海屹尧仪器科技发展有限公司成立于2000年,是一家专业研制、开发、生产微波化学设备的高新技术企业。公司10余名专业研发人员均具有多年微波及相关设备开发和生产的经验。公司主要产品有:微波消解仪、微波萃取仪、微波合成仪、微波马弗炉和微波消解辅助设备等。   近年来,公司在各个方面迅猛发展。2004年6月,公司率先通过ISO9001:2000国际质量体系认证,成为行业发展的新标杆。同年,公司相继在北京、广州、成都开设了联络处和维修站,以便为广大国内用户提供更迅捷、更优质的服务。除了固有的国内市场,公司还从06年初开始积极介入国外市场,目前已成功销往意大利、俄罗斯、土耳其、日本、澳洲、韩国、台湾、印度、伊朗、巴基斯坦等国家和地区。
  • 320万!山东大学多谱线高速实时四维动态成像系统采购项目
    项目编号:SDJDHF20220606-Z371项目名称:山东大学多谱线高速实时四维动态成像系统采购项目预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1多谱线高速实时四维动态成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学多谱线高速实时四维动态成像系统采购项目公开招标公告.pdf
  • 四维杂交技术推动基因检测进入临床时代
    我国科技工作者自主创新研发成功的四维参数系统核酸分子杂交技术,一改传统DNA检测技术检测结果再重复性差的弱点,做到了被测物在不同时间、不同地点、不同操作者以及不同种类反应之间的再重复性,从而实现了临床应用反应体系与实验室检测关键参数的反应体系的一致性。为基因检测技术在临床上真正适用提供了可能。   自1953年发现生物遗传分子脱氧核糖核酸(DNA)的双螺旋结构,提出生物遗传基因的分子机理以来,DNA检测技术就成为当代生命科学研究的重要技术手段。从上世纪八十年代开始,DNA检测技术在生命科学、农业、轻工业、医药、法医、考古等行业得到广泛应用。但由于现有的DNA检测技术采用的是三维参数系统杂交技术,大都是通过基因扩增(PCR)技术进行检测,经常会受到假阳性信号的困扰。使得被测物在同样的检测技术手段下,会因检测时间、检测地点、操作者的不同出现不同的检测结果,检测结果准确度较低。英国《自然》杂志今年发表的一篇论文就指出,依靠现有基因检测技术对人类30亿个对碱基对检测结果编制的人类基因组图谱,其准确率最高不超过85%。   由北京广博世纪基因芯片科技有限公司研发成功的四维参数系统核酸分子杂交技术,突破性的引入了温度因子。被测物在能提供稳定反应微环境的四维参数系统杂交反应试剂处理后,做到了被测物在各种情况下检测数据的一致性。实验表明,相关被测物在冰箱冷冻一年以上,解冻后仍可重复一年前的测试过程和测试结果。   四维杂交技术业经中国医学科学院北京协和医院历时一年多的检测证明,该技术具备理化标准的准确度、溯源性和可靠性。为临床DNA检测提供了坚实可靠的基础,其显著特点,使之既可为实际系统做质量控制,也可以为仪器系统做质量控制和校正,从而实现了DNA检测技术的一次革命。
  • Eppendorf和DASGIP共同推出首个用于平行生物过程研究的一次性罐体微型
    2012年6月18-22日,在法兰克福/莱茵举办的全球最大化工展阿赫玛展会上,Eppendorf和DASGIP信息和过程技术股份有限公司&mdash &mdash 世界领先的平行生物反应器系统制造商,并为生物过程研究提供全面的软件解决方案的知名公司,现场共同展示全新的一次性罐体微型生物反应器DASbox。 自今年一月德国艾本德股份公司战略性收购了DASGIP 集团,此次DASbox一次性罐体生物反应器的面世对于双方来说都获益匪浅。 &ldquo Eppendorf在塑料制品技术领域拥有核心竞争力,与我们生物反应器的专业经验相结合,在很短的时间内创造出这个全新的产品&rdquo , DASGIP研发部主管及管理层成员Matthias Arnold博士自豪地表示。 DASbox一次性罐体是世界首个为DASGIP平行生物反应器系统研发的一次性生物反应器。作为工作体积为60-250毫升标配的微型生物反应器,在设计时特别考虑了与DASGIP DASbox微型生物反应器系统结合使用。对于细胞培养用户来说,单次使用技术的优势在于其结合了平行培养和工业生物反应器的全部功能。所有关键工艺参数,如pH值、溶解氧浓度和细胞密度,可通过工业化标准电板监测和控制。 DASbox一次性罐体的集成管路可以进行加液、取样以及通入由质量流量计控制的气体等操作。磁力耦合搅拌器解决了一次性生物反应器的无菌技术方面的难题。DASbox一次性罐体显著特点在于其创新的Peltier元件进行无需液体的温度控制和尾气冷凝技术。该项技术的成功将是推动传统生物反应器技术向一次性技术转变的又一未来性的里程碑。 DASbox一次性罐体的诞生将加速生物反应过程行业的发展。微量工作容积将节省宝贵的细胞原料和培养基,并且无需进行大规模清洗和灭菌过程。生物反应器的安装时间更少,完全避免交叉污染的发生。通过精确控制培养条件,平行培养得出的实验结果更快速、更可靠。此外,DASGIP DASware全面的软件功能可以帮助用户便捷和详细地获得、纪录、分析和管理实验数据。 官方微博:http://weibo.com/eppendorfchina 中文官网:http://www.eppendorf.cn DASGIP官网:http://www.dasgip.com 关于艾本德(Eppendorf) 德国艾本德股份公司于1945年在德国汉堡成立,是一家全球领先的生物技术公司。产品包括移液器、分液器和离心机,以及微量离心管和移液吸头等耗材,此外还提供从事细胞显微操作的仪器和耗材、全自动移液系统、DNA扩增的全套仪器。产品主要应用于科研、商业化的研发机构、生物技术公司以及其他从事相关生物研究的领域。2007年Eppendorf收购美国New Brunswick Scientific (NBS) 公司,拓展了其细胞培养领域的产品线。 关于DASGIP集团 自1991年成立以来,德国DASGIP集团已成为生物行业领先的台式生物反应器供应商,为生物技术、制药、化工行业以及科研机构提供解决方案。生物工艺工程师、科学家和产品研发人员通过使用DASGIP平行生物反应器系统及其配套软件培养微生物、植物、动物和人类细胞,具有产率高、重复性好、易于扩大培养等显著优势。70多个内部专家团队的卓绝贡献让公司收益5年来保持约25%的年增长率。DASGIP集团总部设在德国Juelich,业务遍及欧洲、北美和亚洲。2012年1月,世界领先的生命科学公司Eppendorf&mdash &mdash 专注于液体处理、样品处理和细胞处理的制造商和生命科学实验室的专家收购了DASGIP集团。
  • 恒奥平行浓缩蒸发仪在四川省纤维检验局检测项目中得到实际性应用
    平行浓缩蒸发仪是在温和的条件下,通过同时减压/加热/漩涡振荡对多样品进行浓缩的小型仪器,可将样品浓缩到定量体积或直接浓缩至干。四川省纤维检验局日常工作中一个主要的检验项目是纺织品中禁用偶氮染料(致癌芳香胺)的测定,其依据的国家标准是GB/T 17592-2011。实验中使用的仪器型号为HPE-12平行浓缩蒸发仪、HVS-02真空控制系统、LX-300冷却水循环机以及定制配套氮吹装置。使用平行浓缩蒸发仪HPE-12弥补了原来采用旋转蒸发仪浓缩存在的不足,并得到实验员老师们的一致好评。据老师实际反馈,主要的优势体现在以下几个方面:1 显著提高了实验效率,原来旋转蒸发仪一次只能浓缩一个样,HPE-12一次可以浓缩12个样品,效率大大提高;2 乙醚回收率提高,原来乙醚的回收率为0,实验室的味道很大,对操作人员的身体健康也存在危害,现在使用平行配套装置,乙醚回收率提高到70%左右;3 使用配套氮吹装置,减压浓缩后可直接氮吹至干,无需转移样品,简化了实验步骤,避免样品损失。
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 辽宁打造“四位一体”食品安全检测技术
    兔年春节前夕,由辽宁检验检疫局技术中心“辽宁省食品安全检测技术重点实验室”(以下简称重点实验室)承担完成的国家质检总局课题《食品中有毒有害物质残留监控关键技术研究》顺利通过科技成果鉴定。   该课题首次采用JAVA语言B/S架构,建立了一套包括国家、省、地方三级操作界面和进出口动物源、植物源、加工食品六个模块的“进出口食品安全风险监控管理系统”,实现了监控计划制定、计划分解、监控数据传递、监控结果统计与分析、监控报告起草等软件管理功能,保证了残留监控管理过程及结果的准确性、可靠性、动态性和即时性。   专家一致认为,该研究成果填补了国内空白,达到国际领先水平,建议将上述研究成果列入国家或行业标准制定计划,进一步推广应用。   关键词:“科研+专利+标准+产业化应用”四位一体   所谓“科研+专利+标准+产业化应用”四位一体的检测技术创新模式,一是在科研项目立项、申请等方面,密切围绕检验检疫业务工作的特点,与检验检疫实际工作紧密结合,重点解决食品安全检测关键技术难题,确保所承担和完成的科研项目和课题在检验检疫实际工作中有广阔的推广应用前景和市场开发空间。二是在项目和课题研究中立足于科技创新和关键技术突破,确保所完成的科研课题具有创新性,拥有自主研发的知识产权,并申请国家发明专利。三是不断地将这些自主研发的专利技术陆续地制订成相关的国家标准和行业标准发布实施,使新技术在检验检疫实际应用过程中有标准依据。四是将这些具有重要引领性创新和推广应用价值的专利技术,在上升为国家标准或行业标准并发布实施的基础上,在检验检疫实际工作中加以应用,成熟产品则实现产业化并推广销售。将上述四个方面有机地结合在一起,形成一个完整的检验检疫技术运行体系,既拓宽检验检疫把关新领域,又保证检测结果快而准。   瑞士专家与辽宁检验检疫局技术中心实验室人员进行技术交流。   从科研到专利、标准化再到实际应用,辽宁检验检疫局技术中心在食品安全检测之路上积极探索,建立了一整套行之有效、能够取得积极社会效果的创新模式,尽管这一模式尚处在探索阶段,但其对于检测技术领域改革创新的示范意义已经开始显现。   小试剂盒做出“大文章”   辽宁检验检疫局技术中心主任周兴伟介绍,转基因检测技术早在科研立项阶段,重点实验室就瞄准当今国际国内社会关注的“转基因食品检测”这一热点问题,紧密结合检验检疫业务实际,从填补国内相关科研空白的小小“试剂盒”入手,做出了一篇篇“大文章”。   目前,重点实验室转基因产品检测使用的都是具有自主知识产权的技术和关键试剂,在为国家节省大量财力的同时,打破了国外企图垄断国内转基因产品检测试剂盒的局面,使得国外转基因产品检测试剂盒始终没能进入国内市场,提高了实验室的国际影响力。重点实验室获得的“用于转基因玉米实时荧光PCR检测的探针序列和试剂盒”和“用于转基因油菜实时PCR检测的探针序列和试剂盒”等国家发明专利5项已成功应用于检验检疫实际工作中 2009年,由重点实验室主持的国家“十一五”科技支撑计划“食品微生物高通量检测试剂盒的研制”重大课题通过专家鉴定。该项目解决了食品微生物从多目标菌一次复合增菌、一次提取核酸、多目标菌一次同时检测的高通量快速检测技术难题,在食品微生物检测的节能、节时、节力三方面取得了突破性进展,并在食源致病菌检测方面全部取代国外昂贵的商业化试剂盒。   基于这一体系,辽宁省食品安全检测技术重点实验室自2005年7月正式成立以来,科研制标及实际应用取得了累累硕果:   近几年来,重点实验室组织完成了多项亚太实验室认可合作组织的国际实验室间能力验证项目,如APLAC T046“致病菌检测能力验证计划”、APLAC T047“动物源性成分检测能力验证计划”、APLAC T050“虾中硝基呋喃代谢物能力验证”和APLAC T056“大米农药残留量检测能力验证计划”等。同时,还组织完成了中国实验室国家认可委员会CNAL T0158“食品添加剂毒性测试能力验证计划”,CNAL T0159“致病菌检测能力验证计划”,CNAL T0160“毒麦检疫鉴定能力验证计划”和CNAL T0161“牛羊源性成分检测能力验证计划”等能力验证项目。这些能力验证项目分别填补了相关领域的国内、国际多项空白。   2009年10月27日,重点实验室承担了输韩大米221项农药残留MSM检测方法开发任务,自10月27日项目启动至11月30日,仅用了1个多月的时间就完成了前期调研、文献搜集、技术开发路线设计,最终采用GC/MS、LC/MS/MS、GC、LC等共6个方法完成了研发任务,并于12月31日通过了CNAS的现场评审并提交扩项评审材料,保证了输韩大米的顺利出口,有力地促进了地方经济的发展。   2010年7月,重点实验室成功研制出20项细菌核酸国家标准样品。该批细菌核酸国家标准样品填补了国内相关领域的空白,解决了细菌核酸标准样品高效稳态制备核酸、保证样品均匀性和稳定性等关键制备技术难题 重点实验室自主研究开发的5种能力验证标准样品已获得专利并已经投放市场,产生了良好的经济效益和社会效益。   通关提速的深层次效应   随着全球贸易的迅速发展,近年来,由食品安全带来的国际贸易问题日显突出。发达国家凭借技术领先、设备先进等优势,实施以检测标准为基础的贸易技术性屏障,对食品质量提出了更高的要求。   坚持走“专、特、精、新”研发之路的辽宁检验检疫局技术中心食品安全检测技术重点实验室,在加快出口食品农产品检验和通关速度、服务地方经济发展方面取得令人可喜的初步成效。   2010年10月,由重点实验室承担的的国家质检总局科研项目《五种猪繁殖障碍性疾病病原荧光PCR和基因芯片快速检测方法的研究及其试剂盒的研制》通过成果鉴定。该项目开发的cDNA基因芯片可同时高通量检测五种猪繁殖障碍疾病病毒(PRRSV、JEV、PPV、PRV、PCV-2),且敏感性和特异性好。在4小时内即可得出全部检测结果,相比传统检测方法所需2天的检测时间,极大地提高了检测效率,为出入境种猪的快速筛查和国内猪场对这几种猪繁殖障碍性疾病提供了新的检测技术。鉴定专家组一致认为,cDNA基因芯片检测方法达到了国际先进水平。   2011年1月23日,由重点实验室首次承担的大连市地方科研项目“高致病性猪蓝耳病单克隆抗体的制备及免疫胶体金试纸的研制”,经过课题组两年的潜心攻关,顺利通过由来自大连理工大学、大连海洋大学等单位的专家组成的鉴定委员会验收鉴定。该课题制备出了高致病性猪蓝耳病单克隆抗体,将其作为捕捉抗体,结合多抗组装制备成胶体金试纸条。鉴定委员会一致认为该课题研制的试纸条快速便捷、特异敏感,为高致病性猪蓝耳病病原的检测提供新的检测技术,尤其适用于基层兽医部门及相关实验室的快速检测,项目总体达到国际先进水平。   近日,辽宁检验检疫局技术中心食品安全检测技术重点实验室再次顺利通过了辽宁省重点实验室验收组的验收,验收组充分肯定该实验室在支持辽宁省地方外向型经济发展方面作出的贡献,希望实验室充分发挥资源及技术优势,强化“检、学、研”合作机制,为地方经济发展再立新功。
  • Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工
    Sanotac高精度平流泵,助力微通道高通量反应器,打造美丽化工 SANOTAC系列平流泵(柱塞泵,中压恒流泵)产品广泛应用于石油开发评价实验、石油化工的催化反应、聚合反应、食品、制药、液相色谱分析、超临界萃取、分离、原子能科学、环境科学、工艺设备、实验设备中各种液体的精确微量输送。最近,在微通道高通量反应器中应用最为广泛。关键词: 流体输送,耐腐蚀,耐压力,精确度高,脉冲小 SANOTAC系列平流泵能为您解决泵液不连续不稳定问题!提供稳定、连续的输送液体!能为您解决泵液流量不准问题!提供精确流量的输送液体!能为您解决泵的压力脉动高造成基线不稳的问题! 提供低脉动输送系统。当您需要自己搭建微反应器系统,或者给微反应器系统配套平流泵的时候,请记得找我们三为科学,三生万物,为您而来。我们专门配套模块化微反应系统,微通道反应器,管式反应器,釜式反应器,催化评价装置,催化加氢装置,煤化工装置。 微反应器,即微通道反应器是一种借助于特殊微加工技术以固体基质制造的可用于进行化学反应的三维结构元件。微反应器通常含有小的通道尺寸(当量直径小于500 μ m)和通道多样性,流体在这些通道中流动,并要求在这些通道中发生所要求的反应。这样就导致了在微构造的化学设备中具有非常大的表面积/体积比率。 微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 目前,最新的高通量研发加速技术(HTR&D),高通量研发实验系统,集成了组合化学、机器人技术、自控技术、先进精密仪器、反应器、现代计算机信息处理技术和分析工具以及人工智能等众多前沿科技。 进入21世纪, 化工过程向着更为绿色、安全、高效的方向发展, 而新工艺、新设备, 新技术的开发对于化工过程的进步显得十分重要。在这样的背景下, 微反应器系统的出现吸引了研究者和生产者的极大关注。微反应器系统并非简单的微小型化工系统,而是指带有微反应或微分离单元的新型化工系统。     SANOTAC系列高压恒流平流泵用于微反应器中微流体的输送,使得微通道反应器性能更出色,如虎添翼,更能发挥微通道反应器的魔力,发挥微通道反应器高效,本质安全、智能制造的新技术优势,打造美丽化工的未来。 Sanotac系列平流泵,按流量范围区分有:0.001-10ml/min、0.01-50ml/min、0.1-200ml/min以及0.1-300,0.1-1000ml/min,1-10000ml/min等不同型号。 按压力范围区分有:0-2Mpa、0-10Mpa、0-15Mpa、0-30MPA,0-42Mpa。 按泵头的材质区分有:316L不锈钢、PEEK材料、PTFE聚四氟乙烯,钛金属材料等供您选择。 三为科学,三生万物,为您而来!
  • 德祥新品来袭!EasySyn-12平行合成仪亮相全国化学竞赛
    化学作为一门创造性的学科,已渗透进制药、环境等各领域。近年来,化学产业的迅猛发展与精密仪器、实验技术的不断提升都密不可分。7月26-28日,德祥科技旗下品牌INNOTEG英诺德新品仪器——EasySyn-12平行合成仪,将亮相由湖南大学和吉首大学联合承办的第四届全国大学生化学实验创新设计大赛(华南赛区)。德祥将为来自华南各地的师生带来一场全新的智能化合成体验,以前沿技术助力高校化学创新。本次大赛将于湖南省湘西土家族苗族自治州吉首市湘泉阳光酒店(人民中路 387 号)举行,欢迎大家莅临大赛现场,共同交流。同时,INNOTEG英诺德EasySyn-12平行合成仪新品预约活动正在火热进行中!新品发布:INNOTEG英诺德EasySyn-12平行合成仪 德祥科技旗下品牌INNOTEG英诺德正式推出新品——EasySyn-12平行合成仪,用于平行溶液相化学和固体支持试剂合成的有效个人合成站。EasySyn-12位于INNOTEG英诺德WM-1磁力搅拌器上,可同时加热至室温至180&ring C(短时间220&ring C)的12次反应,精度为±1&ring C。INNOTEG英诺德WM-1 的Pt1000温度传感器可以实现更高的精度。Pt1000温度传感器允许用户通过块温或溶液温度进行控制。将温度传感器插入铝基座或通过盖子直接插入反应溶液中。产品优势● 多点位反应,最高12位,反应体积:1ml—20ml;● 强大,均匀的搅拌50-2000转;● 快速加热至220&ring C;● 快速设置和易于使用;● 清晰的观察口在实验过程中容易观察管内容物;● 可拆卸水冷回流进出口;● 可在惰性气体环境进行反应;● 含氟聚合物涂层具有耐化学性和易清洁性;● PTFE盖帽具有独特的1/4“快速螺纹”,可快速连接到玻璃管上,降低旋盖的工作量;● 可拆卸,使得所有反应管能够同时被移除以转移到支架或用于快速后合成冷却。产品性能品牌INNOTEG英诺德型号EasySyn-12反应器工位12*20ml反应器类型试管控温范围RT-220℃集中进出气√单独气路开/关阀门√冷凝回流功能√中途进样√快速取样√搅 拌磁子搅拌关于本次竞赛全国大学生化学实验创新设计大赛于2019年开赛,已成功举办三届,是全国性大学生学科顶级竞赛。大赛旨在夯实大学生化学基础知识、基本理论和基本技能,强化大学生发现问题、分析问题和解决问题的能力,培养大学生的创新意识、创新精神和创新能力。7月26日-28日,将有上百支高校队伍参加本次华南赛区竞赛,展现化学设计创新实力,共同交流化学前沿技术。关于INNOTEG英诺德INNOTEG英诺德是德祥科技旗下一家专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了卓有成效的研究开发工作。此外,INNOTEG英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。INNOTEG英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。关于德祥集团德祥集团成立于1992年,总部位于香港特别行政区。作为卓越的科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度*代理商”、“年度最高销售奖”等殊荣。我们始终秉承诚信经营的理念,致力于成为*的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每*都在使这个世界变得更美好!
  • 2021未来科学大奖揭晓,袁国勇等四位科学家获“中国版诺奖”
    9月12日上午,2021未来科学大奖获奖名单揭晓。袁国勇、裴伟士获得“生命科学奖”;张杰获得“物质科学奖”;施敏获得“数学与计算机科学奖”。每个奖项的单项奖金为100万美元(约650万元)。2021年“生命科学奖”获得者袁国勇(香港大学)、裴伟士(香港大学)袁国勇,1956年12月出生于香港。医学微生物学专家。2007年当选中国工程院院士;2015年当选香港科学院创院院士;2019年当选美国微生物科学院院士,并被聘为中国医学科学院学部委员。他是香港大学新发传染性疾病国家重点实验室首任主任,研究领域集中在新发传染病的新型病原体,他带领团队发现了人类冠状病毒HKU1、蝙蝠类似SARS冠状病毒、蝙蝠冠状病毒HKU2-24和多种细菌、真菌以及寄生虫。曾作为“以防控人感染H7N9禽流感为代表的新发传染病防治体系重大创新和技术突”项目主要完成人,获得2017年度国家科技进步奖特等奖。裴伟士,1949年出生于斯里兰卡。临床及公共卫生病毒学家。2006年当选伦敦皇家学会院士,2015年当选香港科学院创院院士。他是香港大学公共卫生学院病毒学讲座教授,香港大学世卫H5和新型冠状病毒参考实验室联席主任。他的研究涵盖了人类和动物流感病毒的发病机制、先天免疫反应、传播模式、生态学和流行病学,如:H5N1、H9N2和H7N9甲型禽流感,猪流感,以及引发SARS、中东呼吸综合症等的冠状病毒等。2021年获得盖尔德纳全球卫生奖。获奖评语:奖励他们发现了冠状病毒(SARS- COV-1)为导致2003年全球重症急性呼吸综合征(SARS)病原,以及由动物到人的传染链,为人类应对 MERS和COVID-19冠状病毒引起的传染病产生了重大影响。2021年“物质科学奖”获得者张杰(上海交通大学,中国科学院物理研究所)张杰,1958年1月出生于山西太原。物理学家。2003年当选中国科学院院士,2007年当选德国国家科学院院士;2008年当选发展中国家科学院院士;2011年当选英国皇家工程院外籍院士;2012年当选美国国家科学院外籍院士。曾于2006年11月-2017年2月担任上海交通大学校长;2017年-2018年担任中国科学院副院长。他是开发利用太瓦到拍瓦激光束有效生成受控、高强度快电子束(~100 keV 到 10 MeV)方法的先驱。利用这一技术,张杰领导的研究团队在快电子束方面取得了一系列重大突破,包括高效产生非热电子、用激光调节电子束能量、实现高定向电子发射,以及创时空分辨世界纪录的电子束成像。他们研发的可精确控制的高强度快电子束为一系列其他重要的科学探索提供了可能。曾荣获第三世界科学院TWAS物理奖、国家自然科学奖二等奖,何梁何利科技奖、世界华人物理学会“亚洲成就奖”、“求是”杰出青年学者奖等多项奖励。获奖评语:奖励他通过调控激光与物质相互作用,产生精确可控的超短脉冲快电子束,并将其应用于实现超高时空分所高能电子衍射成像,和激光核聚变的快点火研究。2021年“数学与计算机科学奖”获得者施敏(终身讲座讲授 阳明交通大学电子工程学系暨电子研究所)施敏,1936年3月出生于南京。1998年当选为中国工程院外籍院士。他是国际知名的微电子科学技术与半导体器件专家和教育家,是非挥发MOS场效应记忆晶体管(NVSM)的发明者,在金半接触、微波器件及次微米金属半场效应晶体技术等领域都有开创性的贡献,在电子元件领域做出了基础性及前瞻性贡献。他还撰写了具有传奇色彩的研究专著《半导体器件物理学》。这是一本全球半导体和集成电路研究人员“必学”之书,一直被研究生院教师/学生以及整个电子和光子行业的工程师使用和引用。 获奖评语:表影他对金属与半导体间载流子互传的理论认知做出的贡献,促成了过去50年中按“摩尔定律”速率建造的各代集成电路中如何形成欧姆和肖特基接触的关键技术。什么是未来科学大奖?未来科学大奖设立于2016年,是中国大陆首个由科学家、企业家群体共同发起的民间科学奖项。未来科学大奖获得者所获奖工作必须同时具备以下条件:(一)产生巨大国际影响;(二)具有原创性、长期重要性或经过了时间考验;(三)主要在中国大陆(内地)、香港、澳门、台湾完成。完成者的国籍不限。未来科学大奖目前设置“生命科学奖”、“物质科学奖”和“数学与计算机科学奖”三大奖项。2016年至今,共评选出24位获奖者,获得了科学和社会领域的广泛认可。未来科学大奖单项奖金为100万美元(人民币约650万元), 每项奖金由四位捐赠人共同捐赠:“生命科学奖”捐赠人为丁健、李彦宏、沈南鹏、张磊;“物质科学奖”捐赠人为邓锋、吴亚军、吴鹰、徐小平;“数学与计算机科学奖”捐赠人为丁磊、江南春、马化腾、王强。
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率,-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • (续)分批补料微型生物反应器设计的最新进展
    上期讲到分批补料微型生物反应器设计的内部补料策略(点击此处查看),本期将讲述外部补料策略及结论。外部分批补料策略在外部分批补料系统中,基质从外部储器补料。该策略的主要优点是增加了灵活性和过程控制能力。然而,由于补料需要额外的基础设施,外部分批补料系统固有地更复杂且操作成本更高。3.1自动化液体处理系统使用液体处理工作站可以实现高通量采样以及向 MTP 或平行 MBR 中添加液体。例如,RoboLector®包括集成的 BioLector®(mp2-Labs,德国)MBR 筛选平台。自动取样编程为每 24 小时一次。补料和取样均在不中断摇动的情况下实现,从而最大限度地减少对氧气传输的干扰并防止细胞沉降,从而允许获得代表性的样品。与脉冲补料策略相关的关键挑战是缺乏连续的补料供应,这导致细胞代谢中的振荡并限制与工业规模发酵的可比性,在工业规模发酵中,指数补料策略更常用。Jansen 等人于 2019 年开发了一种自动反馈调节的基于酶的分批补料系统(FeedER)。可以通过控制添加来实现定义的指数生长速率。Ambr®平台通过添加泵送液体管线,可以向每个单独的反应器中连续添加液体。克服了间歇补料的局限性,有利于实施连续补料方案和更严格的 pH 控制。Bioreactor48 平台(2mag,德国)与Freedom EVO(TECAN,瑞士) LHS 相结合,以实现分批补料和过程控制。Bioreactor通过 LHS 向含有 β-呋喃果糖苷酶的培养物间歇投加蔗糖,使可代谢的果糖和葡萄糖得以连续释放。对间歇葡萄糖和酶促摄食策略的比较表明,生物量累积非常相似,但是,连续(酶促)摄食增强了 GFP 荧光。DO 振荡在间歇补料培养物中显著更大。3.2 用于分批补料微生物反应器系统的微流体和微型阀技术与自动 LHS相关的一个关键挑战是补料的间歇性。近来,微流体技术已经被实施,其目的在于开发更精确的工业过程的按比例缩小模型。微流控生物反应器系统涉及对小体积流体的受控操作。在 Mardanpour 和 Yaghmae 研究中,使用大肠杆菌作为生物催化剂,在微流控微生物燃料电池(MFC)中以分批补料模式从葡萄糖和尿素产生生物电。为了构建微流控 MFC,使用具有单个微通道的聚甲基丙烯酸甲酯板作为主体,使用镍基阳极和负载铂的碳覆盖阴极作为主体顶部和底部的电极,通过这种方式,亲水性镍表面吸收阳极电解液并促进细胞附着,从而促进生物膜的生长。为了确定最适合再现大型生物反应器波动条件的微流体系统,Ho 等人比较了三种广泛使用的微流体设计。该研究表明,微流体系统的设备设计在定量和灵敏地再现典型工业规模生物反应器中的不均匀性方面起着关 键作用,可能会影响分批补料系统的工艺产率。微流控FlowerPlate 技术最近被用于优化谷氨酸棒杆菌的绿色荧光蛋白(GFP) 生产。Morschett 等人开发了一种高通量、并行化的 pH 控制分批补料培养工作流程,可在线监测微孔板中的生物量、pH 值、DO 和荧光。每排的两个容器中分别加入葡萄糖-尿素补料溶液和 3M 磷酸(单侧 pH 控制)。将具有不同补料策略(脉冲、恒定、指数)的分批补料工艺与标准分批工艺进行了比较。商业微基质(Applikon Biotechnology,荷兰)平台是一种接近连续补料的替代方法,这种方法便于通过微型阀对每种单独的 μBR 进行独立的液体添加。该最先进系统基于标准 24 孔深孔板,工作体积为 2–7mL,具有集成的荧光团 pH 和溶解氧传感器,以及每个单独孔的独立气体和液体添加量。3.3 外部补料策略总结具有自动外部补料和严格控制工艺参数的新型 MBR 技术的最新进展,使得能够更接近地模拟工业规模的生物过程。通过自动化,实验的吞吐量和精确度得到了显著的提高。机器人 LHS 已证明了在微尺度下有效高通量分批补料培养的潜力。它们可以与现有硬件相结合,并易于编程,以实现广泛的实验应用。通过安装液体处理机器人和分析设备,对 Bioreactor 培养平台进行了改造,实现了全自动受控分批补料培养,并具有自动取样和在线样本分析功能。Mühlmann 等人的一项研究也证明了 RoboLector®平台的适应性,为了实现自动补料培养基制备和细胞培养,安装了额外的冷却器、加热器摇动器和真空站。移液操作可以预先编程以执行定义的补料配置文件并以高精度重复多次。LHS 补料的另一个限制是它的间歇性。微流体设备提供连续的补料供应,以更接近地代表工业规模条件。可以使用微流体装置分配小体积,使得它们对单个细胞的研究特别有吸引力。由于对分离细胞的研究允许将细胞内效应与细胞间或群体效应区分开来,因此这可能有利于菌株的发育。具有外部补料和无创在线监测的自动化并行MBR 平台允许在相对短的时间内生成大量高质量数据集。然而,由于高设备成本和广泛的编程要求,投资比更简单的内部系统要大得多。结论在过去的十年中,微量高通量分批补料培养技术取得了长足的进步。已经开发了各种复杂性和硬件要求不同的补料机制,使得流式分批培养越来越容易获得。由于与传统的分批培养系统相比,分批补料系统可以更接近地模拟工业规模条件,因此它们可以最大限度地降低与生物工艺规模相关的风险。尽管成本相对较低且易于实施,在整个培养过程中不可能进行精确的补料速率控制,并且补料通常仅限于单一基质。通过引入外部硬件,可以实现更复杂的补料分布和过程参数(如 pH)控制。自动液体处理机器人可被编程为响应于过程参数与指定设定点的偏差或根据预定义的补料曲线执行液体添加。最近,自动化液体处理机器人的可负担性有了显著提高,然而,为确保其广泛应用,有必要开发标准化操作程序和直观的软件,以便于其简单操作。尽管它们的高精度和灵活性很有优势,因为补料是通过间歇推注进行的,但无法实现工业相关的连续补料曲线。然而,这可以很容易地通过耦合 LHS 和酶控制的补料策略来解决。微流体技术也被开发出来,以便于非常小体积的连续精确补料。通过将自动化的高通量分批补料培养平台与实验的战略设计和基于模型的 优化策略相结合,可以显著增强对过程的理解,同时最大限度地减少实验负担。结合实时数据来重新确定最佳补料添加和工艺控制策略显示出增强生物工艺开 发的巨大潜力。然而,关键工艺参数的在线和在线分析技术应得到改进,以充分发挥基于模型的优化,在大多数情况下,对优化至关重要的底物利用率和产物形成等参数仅限于离线分析。对传统技术(如色谱)的快速在线替代品的开发将特别有利于重新设计实验策略。尽管该综述中讨论的技术显示出高效和低风险生物工艺开发的巨大潜力,但目前自动化培养平台的高成本和复杂性限制了它们的广泛应用。此外,这些技术和方法的标准化对于学术界和工业界的共同使用和接受至关重要,未来的工作还应侧重于开发 FOSS 和 FOSH 以提高可访问性。曼森平行生物反应器分批补料应用曼森采用Watson-malow 400A高精度泵头,16 路补料,平均每个罐有四路补料,蠕动泵流量可设定,连续可调;每个蠕动泵的功能可单独分配,可以作为酸泵、碱泵、补料泵、消泡泵、液位控制泵。信息来源:https://www.sciencedirect.com/science/article/pii/S0734975021001944?ref=pdf_download&fr=RR-2&rr=747c4db53ee4ddb1文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 像差校正电镜四位传奇老人获科维理奖:一段60年理论-实验-商业化典范
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 5月27日,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 346px " src=" https://img1.17img.cn/17img/images/202006/uepic/83325f9d-30af-42e2-a151-13dcd1110736.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 作为诺贝尔奖的补充,卡弗里奖是世界最高的科技奖之一,由挪威科学与文学学院、美国卡弗里基金会和挪威教育科研部联合成立。自2008年起,卡弗里奖每两年颁发一次,由三个学术委员会从世界各地提名的科学家中评选出该领域的获奖者,奖金为100万美元,奖金以外,每位获奖者还获得一块纯金的奖章。候选者则由各国享有盛名的科研机构推荐,这些科研机构包括中国科学院、法国科学院、德国马克普朗克学院、美国科学院、英国皇家科学院等。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 578px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d799119-7443-4b26-90fa-4728b7d3aa31.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 578" border=" 0" vspace=" 0" / /p p br/ /p p style=" text-indent: 2em " 在奖项设置上,诺奖涉及领域比较广,其分设物理、化学、经济学、文学等6个奖项。而卡弗里奖则只关注纳米科学、神经科学和天体物理三个细分领域,也是这三个科学领域中最具有权威性的奖项之一。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2020年度科维理奖宣传片: /span /p script src=" https://p.bokecc.com/player?vid=D8801874C0BE8E5D9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 纳米科学科维理奖授予了对像差校正电镜技术的发展做出贡献的四位欧洲科学家: /p p style=" text-indent: 2em " strong Harald Rose /strong (德国乌尔姆大学和达姆施塔特工业大学) /p p style=" text-indent: 2em " strong Maximilian Haider /strong (德国CEOS GmbH公司联合创始人,于1996年和Joachim Zach共同创立CEOS GmbH公司,目的是商业化生产像差校正器。目前是该公司高级顾问) /p p style=" text-indent: 2em " strong Knut Urban /strong (德国于利希研究中心) /p p style=" text-indent: 2em " strong Ondrej L. Krivanek /strong (美国Nion公司联合创始人,1997年,他与Niklas Dellby创立了Nion公司,他目前仍是该公司总裁。同时也是Gatan公司研发总监) /p p style=" text-indent: 2em " 以表彰他们20世纪90年代在 “用电子束进行亚埃级分辨率成像及化学分析” —— 即研制亚埃级电子显微镜方面的开创性工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/noimg/abb8cdf0-0b58-4e05-a0a3-4cbd0d1db1af.gif" title=" 3.gif" alt=" 3.gif" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " 左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p style=" text-indent: 2em " 眼见为实促进了科学的进步。2020年科维里纳米科学奖表彰了四位先驱,他们使人类能够在前所未有的微小尺度上看到材料的三维结构和化学成分。 /p p style=" text-indent: 2em " 纳米科学的主要目标是创建原子级精度组装的材料和设备,以获得新颖的功能。原子的大小约为一个埃米(0.1纳米)。因此,亚埃规模的材料和设备的成像和分析至关重要。经典显微镜的分辨率受到用于成像的探针波长的限制。因为可见光的波长大约是原子的5000倍,所以光学透镜无法对原子成像。在20世纪初期,具有原子级波长的电子束变得可用,从而促成了1931年电子显微镜的发明。然而,由于透镜像差的限制,制造理想的电子透镜成为一个重大的理论和实验问题。60多年来,人们一直在为此而奋斗!通过不懈努力、独创性以及对20世纪90年代计算能力提高的利用,获奖者们构造了像差校正透镜,并将亚埃成像和三维化学分析作为标准的表征方法。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 三位获奖者共同创立了两家公司,并将他们的像差校正镜片商业化,进一步促进了他们科学工作的重大影响 /span 。从那时起,他们的显微镜及技术在基础科学和技术领域发挥了巨大的作用,并被半导体、化学和汽车等行业广泛使用。 /p p style=" text-indent: 2em " 科维理纳米科学奖评审委员会认为,四位获奖者对像差校正电镜发展的贡献分别为: /p p style=" text-indent: 2em " Harald Rose:提出了一种新颖的镜头设计,即Rose校正器,这使得透射电子显微镜中的像差校正技术应用于常规和扫描透射电子显微镜成为可能。 /p p style=" text-indent: 2em " Maximilian Haider:在Harald Rose设计的基础上,打造出第一个六极校正器,并为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Knut Urban:为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Ondrej L. Krivanek:发展了四极八极校正器,并打造首台亚埃分辨率的像差校正扫描透射电子显微镜,非常适合于高空间分辨的化学分析。 /p p style=" text-indent: 2em " strong 科维里纳米科学奖委员会 /strong /p p style=" text-indent: 2em " Bodil Holst(主席),卑尔根大学,挪威 /p p style=" text-indent: 2em " Gabriel Aeppli,保罗谢勒研究所,瑞士 /p p style=" text-indent: 2em " Susan Coppersmith,新南威尔士大学,澳大利亚 /p p style=" text-indent: 2em " 李述汤,苏州大学,中国 /p p style=" text-indent: 2em " Joachim Spatz,德国马克斯· 普朗克医学研究所 /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 逐个原子的查看物质内部 /strong /span /p p style=" text-indent: 2em " 纳米技术和纳米技术的最终目标是在很小的范围内操纵物质——甚至精确到移动单个原子——以创建具有新功能的粒子和设备。因此,如果没有允许以原子分辨率研究材料和设备的成像技术,这些都将无法实现。 /p p style=" text-indent: 2em " 在授予奖项时,科维里纳米科学奖委员会选出了以上四位科学家,他们为两种类型的仪器的开发和使用做出了贡献,这两种仪器通常被称为像差校正透射电子显微镜,可以提供亚埃级分辨率有关结构和其他性质的信息,即可以获得单个原子信息。 /p p style=" text-indent: 2em " 光学显微镜最多只能分辨几百纳米的尺度,因此需要一种不同的方法来区分单个原子。 1980年代发明的扫描隧道显微镜和原子力显微镜实现了原子分辨率,但是,它们都只能在暴露的表面上起作用,对于大多数纳米级结构,必须研究不同材料或同一材料的不同相之间的掩埋界面。最有希望的途径是优化Ernst Ruska于1931年发明的透射电子显微镜。这种仪器的原理是利用一束电子直接照射到给定材料的薄样品上,电子束与材料中原子的相互作用产生电子散射。利用散射电子,显微镜的电磁物镜和附加镜头形成一个放大的图像,并用CCD或CMOS相机记录。Ruska的设计今天被称为CTEM,用于传统的透射电子显微镜。“常规”是指,除了利用电子辐射外,CTEM还遵循光学显微镜的设计。1937年, Manfred von Ardenne发明了扫描透射电子显微镜STEM。在这种情况下,用细电子束扫描样品,并通过电磁透镜将其准直,并且穿过样品的电子被收集在样品后面。然后通过在视频屏幕上显示这些电子的强度来创建图像。 /p p style=" text-indent: 2em " STEM的一个独特优势是,对于电子束所聚焦的材料的每一个点,它也可以分析当电子束从材料中的原子散射时,电子所损失的能量。这种技术被称为电子能量损失光谱学(EELS),可以提供材料内部原子组成和电子状态的信息。 /p p style=" text-indent: 2em " 虽然到20世纪80年代末,CTEM和STEM的分辨率都达到了埃米级,但要解决大多数材料的详细原子排列是不可能的。问题是使用的电磁透镜比光学透镜有更多的像差。举例来说,穿过透镜的电子远离透镜的中心,聚焦的距离与穿过透镜的电子靠近透镜中心的距离不同,从而使图像变得模糊。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202006/uepic/70eb2c83-548b-486e-9c1b-5abb84cff363.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " Harald Rose在1990年的论文中的像差校正器示意图。 Optik 85,19-24(1990) & copy Elsevier GmbH /span /p p style=" text-indent: 2em " 1990年,任职达姆施塔特大学的Harald Rose在先前有关各种像差校正技术工作的基础上,设计了一种基于电磁六极杆的透镜系统(上图),可以对其进行调整以消除标准电子透镜的像差,这对CTEM和STEM均适用。在随后的几年中,Rose与当时位于海德堡的实验员Maximilian Haider和位于Jü lich的Knut Urban合作,以实验方式实现了他对CTEM的提议。1998年,这项合作发表了第一批使用像差校正CTEM改进的图像。 1996年,Haider和Joachim Zach一起创建了德国CEOS GmbH公司(相关电子光学系统),以使“Rose校正器”商业化,如今,这种校正器已在CTEM和STEM中广泛使用。 /p p style=" text-indent: 2em " 在过去20年中,像差校正CTEMs有了长足的发展,分辨率现已达到0.5埃米。因此,与未经校正的TEM相比,相对于电子波长的分辨率可以提高7倍。查看晶格中单个原子的能力已使局部原子结构与原子性质之间的关系成为可能。要研究的材料。下图显示了一个漂亮的例子,图中使用像差校正的TEM直接将经典铁电材料中原子的位置与极化方向的变化联系起来。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/5f5a10bf-6174-4e26-b218-076702c9bd4b.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 通过像差校正的TEM获得的材料PZT中不同铁电畴的原子结构。两相中原子(O,蓝色,Pb,黄色,Zr / Ti,红色)的位置可以直接与极化方向(Ps)关联。摘自C.-L. Jia et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Μater. 7, 57–61 (2008) & copy Springer Nature Ltd /span /p p style=" text-indent: 2em " 当Rose,Haider和Urban在开发像差校正CTEM的同时,一位长期从事电子光学和EELS的专家Ondrej Krivanek于1995年开始在英国剑桥与Mick Brown和Andrew Bleloch合作开发STEM的像差校正。1997年,Krivanek与Niklas Dellby一起创立了Nion公司,以商业方式开发像差校正的STEM。2002年,Krivanek,Dellby和他们的IBM同事Phil Batson发布了使用Nion四极八极STEM校正器获得的亚埃分辨率分辨率图像(下图)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 736px " src=" https://img1.17img.cn/17img/images/202006/uepic/53af0e89-ff35-41da-8356-3c6d72b118e0.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 500" height=" 736" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 非晶碳衬底上的Au岛的原子分辨率图像。该岛被金的单原子簇包围。岛周围不同区域的衍射图表明,这些簇在邻近已建成岛的各种结构中有序排列。Nature 418, 617-620 (2002) & copy Springer Nature Ltd. /span /p p style=" text-indent: 2em " 在过去的20年中,STEM的发展更加迅速。如前所述,STEM可用于执行EELS,并且此组合已用于获取有关材料化学组成(下图)甚至原子之间键合类型的信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 498px " src=" https://img1.17img.cn/17img/images/202006/uepic/685d3129-54a8-497c-923d-e8c17190020f.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 500" height=" 498" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 使用EELS在STEM上获得的(La,Sr)MnO3 / SrTiO3多层膜的原子分辨率化学图,显示了La(绿色),Ti(蓝色)和Mn(红色)原子。白色圆圈表示La列的位置;视场3.1 nm。自D. A. Muller et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)。 /span /p p style=" text-indent: 2em " Rose,Haider,Urban和Krivanek的开创性工作促进TEM和STEM成为研究实验室常规使用的仪器。得益于相关技术的进步,首先是最重要的是实现了高度灵敏的电子探测器,这两种仪器现在都可以用于非常精细的样品,包括例如石墨烯和其他二维材料。一些仪器被用作小型实验室,其中化学反应是在直接的原子分辨率观察下原位进行观察。也有团队尝试超越成像,并操纵晶格内的单个原子。在工业上,这些仪器经常用于监视设备的质量和可靠的制造。 /p p style=" text-indent: 2em " 正如卑尔根大学的Bodil Holst教授和纳米科学委员会科维理奖主席所说:“今年的科维理奖的背后是60多年的理论和实验斗争。这是科学创造力,奉献精神和坚持不懈的完美典范。我们向四位获奖者致敬,他们使人类得以看到我们以前看不见的地方。” /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" strong span style=" color: rgb(192, 0, 0) " 【近期相关电子显微学在线讲堂推荐】 /span /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/202006/uepic/12067d80-b34c-4523-9321-7bc0bc78a0d3.jpg" title=" dzxwx1125_480(1).jpg" alt=" dzxwx1125_480(1).jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8906587b-e68b-4d40-bd11-fa2cb7bd5f69.jpg" title=" 1590032360.png" alt=" 1590032360.png" / /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(192, 0, 0) " /span /strong a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 40余位电镜知名专家在线讲堂邀您线上参加 strong 【扫码或点击免费报名】 /strong /span /a /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 获奖人简介与自传 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/20fb159f-7c22-4e42-a6f3-07cee486be23.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " Maximilian Haider,德国CEOS GmbH公司,奥地利 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Maximilian Haider是奥地利物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。 /p p style=" text-indent: 2em " 他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。 /p p style=" text-indent: 2em " Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。 /p p style=" text-indent: 2em " 他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 1950年,我出生在奥地利的一个历史小镇,我的父母Maximilian Haider和Anna Haider在那里拥有一家钟表店。我父亲接管他父亲商店, 长兄也继承他们的职业,成为一个钟表匠。为了扩大业务,在我童年的早期,我就同意成为一名眼镜师& #8230 & #8230 a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " 【点击查看自传全文】 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/91b36629-908d-449c-8019-9fb14da2dc83.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " Ondrej Krivanek,美国Nion 公司,英国和捷克共和国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p script src=" https://p.bokecc.com/player?vid=C5FEDAA47F2B90169C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " Ondrej Krivanek是居住在美国的捷克和英国国籍的物理学家。他出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。 /p p style=" text-indent: 2em " 在剑桥大学毕业后,Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。 /p p style=" text-indent: 2em " 1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该结果于2002年发表。 /p p style=" text-indent: 2em " Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我出生于捷克斯洛伐克的布拉格(现为捷克共和国),当时苏联和其他社会主义国家为自己的科学技术成就和教育体系感到自豪。 1961年4月,Yuri Gagarin成为第一个绕地球轨道飞行的人时,我们受到鼓励,在宇航员中成立了俱乐部,我和学校里的朋友们也成立了一个俱乐部& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9f37a0dd-f804-444e-a93e-d44c6afe39df.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Harald Rose,乌尔姆大学,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,他在1930年代做了一些电子显微镜的开创性工作。 /p p style=" text-indent: 2em " Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。 /p p style=" text-indent: 2em " 他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。 /p p style=" text-indent: 2em " 自2009年以来,Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖。他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我于1935年2月14日出生在不来梅,是我父母Anna-Luise和Hermann Rose的第二个孩子,他们俩都是数学天才。我父亲在一个家里长大,家里的每个人都在演奏一种乐器,我父亲弹钢琴。他开始学习数学,但在20世纪20年代初,他的父亲因为恶性通货膨胀失去了财产,他被迫从商。& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/00a314d6-767a-4fac-b80f-c3a9ad87f226.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Knut Urban,德国于利希研究中心,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Knut Urban是德国物理学家。他曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-indent: 2em " 1986年,他被任命为德国埃尔兰根-纽伦堡大学材料性能教授,仅一年后,他成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,他与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该结果于1998年发表。 /p p style=" text-indent: 2em " 随后,Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-indent: 2em " 2004年,他被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,他一直是亚琛工业大学的JARA高级教授。 Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与Rose和Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。他还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我成长于战后早期的德国斯图加特。这个城市以其汽车工业和大量的中小型工业公司而闻名。我的父亲是一名电气工程师,他经营一家生产小型电动机的工厂。在过去的几十年里,他以自己的一系列发明为公司定下了基调& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 关于科维理奖的故事 /span /strong /p script src=" https://p.bokecc.com/player?vid=D3F66A9BB31443E49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 如果我们能了解宇宙的起源呢?如果我们可以通过控制原子结构来改善生活呢?如果我们能真正理解人类大脑的复杂性呢? /p p style=" text-indent: 2em " 科维理奖背后的故事始于20世纪30年代,一个名叫Fred的好奇男孩在挪威埃里斯峡湾的高山中长大。对自然和宇宙的好奇心一直伴随着Fred,贯穿了他在美国学习物理和创业的整个过程。 /p p style=" text-indent: 2em " 直到他最终建立了一个慈善基金会,以推进科学造福人类为愿景。该基金会的首批活动之一便是从2008年开始的科维理奖的成立。该奖项由卡维里基金会、挪威科学与文学院和挪威教育与研究部合作,每两年颁发一次。 /p p style=" text-indent: 2em " 三个国际奖项的奖金都是100万美元和一枚金牌,由挪威王室成员在奥斯陆主持的颁奖仪式上颁发。 /p p style=" text-indent: 2em " 挪威科学院以提名委员会的建议选出Kavli奖得主,该委员会由来自天体物理学,纳米科学和神经科学这三个科学领域的来自世界上最著名的六个科学学会和研究院的领先国际科学家组成。 /p p style=" text-indent: 2em " 科维理奖的获奖者是由挪威科学院根据评奖委员会的推荐选出的,评奖委员会由来自世界上六个最著名的科学学会和学院的领先国际科学家组成,他们来自三个科学领域:天体物理学、纳米科学和神经科学。 /p p style=" text-indent: 2em " 分别代表宏观、微观、复杂。 /p p style=" text-indent: 2em " 科维理奖有四个最终目的:表彰杰出的科学研究,表彰富有创造力的科学家,促进公众对科学家及其工作的理解和欣赏,促进科学家之间的国际合作。 /p p style=" text-indent: 2em " 我们一次又一次地看到,实现这些目标对于使世界变得更美好至关重要。科维理奖继续受到Fred Kavli的敬畏感和好奇心的驱使,他在最壮美的大自然中成长,体验着宇宙的浩瀚。 /p p style=" text-indent: 2em " br/ /p
  • 为化学反应保驾护航 优莱博携众多创新仪器产品亮相CPhI
    p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 仪器信息网讯 /strong /span 在上海新国际博览中心(SNIEC)举办的第十九届中国制药原料展会(CPhI 2019)上,优莱博携众多创新仪器产品亮相,吸引了国内外众多医药化工企业、仪器贸易商及相关领域从业者的参观。 /p p style=" text-align: justify text-indent: 2em " 德国JULABO主要提供精准的温度控制设备,覆盖从触点玻璃温度计到高精度密闭式动态温度控制技术。作为JULABO在中国的分公司,优莱博既延续了JULABO在温度控制领域的传统优势,又延伸了温度控制相关的更多应用领域,如:化学反应系统及分离纯化系统解决方案,食品及物性测试解决方案,以及实验室及工业气源供应解决方案等。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 优莱博高精度温度控制及测量设备 /strong /span /p p style=" text-align: justify text-indent: 2em " PRESTO系列高精度动态温度控制系统产品,是德国JULABO多年温度控制技术积累沉淀后推出的最新一代产品,其温度控制技术在制药行业,汽车新能源及材料测试,化学反应系统中广泛应用。PRESTO系统专门应用于快速加热和冷却外部体系,提供更佳的加热制冷功率和宽广的温度控制范围。全程温度范围内无需更换浴液。动力强劲,控温精准,安全可靠。 /p p style=" text-align: justify text-indent: 2em " 全新一代PURA系列通用水浴槽采用了新型加热设计理念,巧妙的将加热盘管隐藏,让整个槽体干净整洁。VIVO,CORIO和DYNEO三个系列的加热制冷恒温循环浴槽是优莱博温控的核心产品线,首先采用了全新隐藏式加热盘管,大大降低了外露盘管附着水垢以及被腐蚀的可能性,延长了仪器使用寿命。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 554px height: 209px " src=" https://img1.17img.cn/17img/images/201907/uepic/4a5c8c30-95e1-4447-8b19-6dc4ba48c263.jpg" title=" 优莱博-刘立东" alt=" 优莱博-刘立东" width=" 554" height=" 209" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100734/" target=" _blank" span style=" color: rgb(0, 112, 192) " 优莱博化学反应系统及分离纯化设备(点击查看更多信息) /span /a /p p style=" text-align: justify text-indent: 2em " 优莱博中国覆盖全线反应釜产品,从玻璃到不锈钢,从桌上式小釜到公斤级大型中试反应釜,从真空型到压力型,从反应釜主体到周边配套产品,甚至全自动反应釜。 “ALL FROM ONE SOURCE”是优莱博反应釜的核心竞争力,为终端用户提供完整的硬件、软件、售前、售后解决方案。此次展出了ALL-IN-ONE玻璃反应小釜,PLUS PILOT中试玻璃反应釜,高压金属反应釜,以及全自动中试反应系统等。 /p p style=" text-align: justify text-indent: 2em " PLUS PILOT专家型中试玻璃反应系统采用符合FDA材质标准的厚壁玻璃,稳定的弹性法兰连接,自补偿无死体积放料阀,一体式自对准支架,卧式高效冷凝器,回流分流切换器,大扭矩搅拌器,全封闭动态加热制冷循环器等配置;再加上自动升降,CIP在位清洗,EX整釜防爆,ReacTROLTM全自动控制等功能。确保PLUS PILOT可以满足严苛的反应实验需求,为精细化工,制药,航空航天等领域的用户提供优质的解决方案。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/e160e259-3cf0-44e6-a79e-13fbe84353fb.jpg" title=" image002.jpg" alt=" image002.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100734/C166397.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " PLUS PILOT专家型中试玻璃反应釜(点击查看报价参数) /span /a /p p style=" text-align: justify text-indent: 2em " 不锈钢中试反应系统是优莱博针对石油化工、高分子材料、新能源等领域的客户,优化高温控制,快速制冷,高粘搅拌和放料,过程可视化,高温高压安全防护等方面的设计而推出的新一代产品。此产品还可根据用户工艺进行定制化服务,满足用户更多的需求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/530ad48d-aa78-4850-8f74-6b79693484e9.jpg" title=" image003.jpg" alt=" image003.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 112, 192) " 全自动不锈钢中试反应系统 /span /p p style=" text-align: justify text-indent: 2em " 旋转蒸发仪是优莱博近年通过收购增加的一条产品线,可提供0.5~3L的桌上式小型旋蒸,以及6L、10L、20L、50L、100L的大型防爆工业旋蒸。全系列装备了专利的防腐蚀免维护旋蒸轴承,解决了广大旋蒸用户的使用痛点。本次展出的STRIKE 300型旋转蒸发仪套装,曾荣获IBO实验室产品设计金奖。除了免维护轴承这一最大卖点外,还具有大型触摸屏及飞梭轮,手感电动升降,下沉式高效冷凝器,蒸汽温度测量控制,真空度自动控制,程序控制等特点,在耐用性,维护费用,安全性等方便都会给用户全新的体验。此外,本次优莱博还带来了首次在国内展会上亮相的大型旋蒸STRIKE 20。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201907/uepic/7ca7212a-16d5-4284-9688-ea626848036d.jpg" title=" image004.png" alt=" image004.png" style=" max-width: 100% max-height: 100% " / br/ /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/SH100734/Product-C0-36418-0-1.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " STRIKE系列旋转蒸发仪(点击查看报价参数) /span /a br/ /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 食品及物性测试类分析仪仪器 /strong /span /p p style=" text-align: justify text-indent: 2em " FLASH自动电位滴定仪,适用于测定总酸碱度、氯化物、二氧化硫、维C、皂化值等,在食品、饮料、环保行业应用广泛。尤其适合于酒品总酸、游离二氧化硫、结合二氧化硫以及总二氧化硫的一次性滴定。FLASH可单机运行,也可配合16位或35位自动进样器。可自动调整被滴样品体积,自动加酸加碱,自动测试及清洗,具有很高的自动化程度,非常适合相关的企业、第三方检测机构和高校用户使用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/7cdf9811-7b59-49a4-99bd-f984be7d9c1c.jpg" title=" image005.jpg" alt=" image005.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH100734/C216075.htm" target=" _blank" span style=" text-indent: 0em color: rgb(0, 112, 192) " FLASH自动电位滴定仪(点击查看报价参数) /span /a /p p style=" text-align: justify text-indent: 2em " 分析仪器产品线上,优莱博除了展示其全自动电位滴定仪外,还展示了成熟的运动粘度计——聚合物分子量测试系统。该系统的特点在于可将时间数据直接以电子钟形式呈现,准确度高,为用户节省时间与人力,减少了用户吸入有机溶剂的时间。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/a7b7a15a-b922-42da-9097-c06ae681b037.jpg" title=" image006.jpg" alt=" image006.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH100734/product-C0802-0-0-1.htm" target=" _blank" span style=" text-indent: 0em color: rgb(0, 112, 192) " 粘度计Visco Clock plus(点击查看报价参数) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 优莱博气体发生器——传统气体钢瓶的竞争对手 /strong /span /p p style=" text-align: justify text-indent: 2em " 气体发生器是优莱博最年轻的成员,优莱博通过收购拥有34年历史的瑞士Schmidlin Labor拥有了这一条极具竞争力的产品线。这条线包括高纯氢气发生器、高纯氮气发生器、大流量氮气发生器、质谱专用氮气发生器、零级及超零级空气发生器、压缩空气供给系统,主要为实验室色谱、质谱应用提供合格的气体。这些瑞士原装产品具有和德国温控一样的高品质,具有安全可靠、操作简单、免维护的特点。其氢气发生器拥有CPEM自产质子交换膜、CCEL钛金电解池、CPSA极稳再生纯化三大核心技术,并可以提供PQ7纯度检测证书。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/eaae01db-89fe-4159-a1dd-46b40f894189.jpg" title=" image007.jpg" alt=" image007.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100734/C242496.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 氢空一体发生器 /span /a span style=" color: rgb(0, 112, 192) " 、 a href=" https://www.instrument.com.cn/netshow/SH100734/C242496.htm" target=" _blank" 氮气发生器 /a 和 a href=" https://www.instrument.com.cn/netshow/SH100734/C269308.htm" target=" _blank" 氢气发生器 /a (点击查看报价参数) /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/e6b9f36a-f5cc-4026-b8f8-36a20ceeaedd.jpg" title=" image008.jpg" alt=" image008.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100734/C220402.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 大流量氮空一体发生器(点击查看报价参数) /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/9ba8b31a-3fd0-4c75-a110-4436dff83aff.jpg" title=" image009.jpg" alt=" image009.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100734/C166566.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 超零级空气发生器 /span /a span style=" color: rgb(0, 112, 192) " 和 a href=" https://www.instrument.com.cn/netshow/SH100734/C84462.htm" target=" _blank" 空气压缩机(点击查看报价参数) /a /span /p p style=" text-indent: 0em text-align: center " 关注【3i生仪社】更多生命科学仪器内容等你来阅 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/091d017f-b5e0-4de6-a111-ee9bd6a524f8.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p
  • 分批补料微型生物反应器设计的最新进展
    前沿先进的分批补料微生物反应器可降低扩大规模的风险,并更接近模拟工业培养实践。近年来,已经开发了高通量微量补料策略,无论实验预算如何,都可以提高微量分批补料培养的可及性。该综述探讨了这些技术及其在加速生物过程开发中的作用。扩散和酶控制的补料可实现基质的连续供应,且简单实惠。更复杂的补料曲线和更强的过程控制需要额外的硬件。自动液体处理机器人可被编程为预定义的补料曲线,并具有响应过程参数偏差的灵敏度。研究显示,微流体技术可促进连续和精确补料。将自动化高通量分批补料培养与实验设计和基于模型的优化相结合的整体方法极大地增强了过程理解,同时最大限度地减少了实验负担。为在线优化补料条件引入实时数据可进一步细化筛选。尽管该综述中讨论的技术有望实现高效、低风险的生物过程开发,但自动化培养平台的费用和复杂性限制了其广泛应用。未来的关注点应该集中在开源软件的开发上,减少硬件的排他性。介绍许多公司依赖于不可再生的石化原料以及更复杂工艺的天然产品所需的大量步骤可能会阻碍经济可行性,将可再生原料生物转化为此类天然产物的微生物细胞工厂的建设,引起了人们的极大兴趣。生物工艺开发的初始阶段涉及广泛筛选各种菌株和工艺参数。使用简单的批量微量滴定板(MTP)或摇瓶培养在此阶段仍然很普遍,这主要是由于与实验室规模的搅拌反应器相比,它们的成本相对较低且通量较高。然而,由于体积小和缺乏用于在线监测和控制基础设施,分析通常限于端点分析,限制了过程洞察力。在这种情况下,先进的微型生物反应器MBR 系统越来越多地被采用,其目的是克服这些关键的瓶颈。使用新的混合策略,尽管空间和资源要求显著降低,但仍有可能有效模拟较大的实验室生物反应器。许多装置可以并行运行,便于高通量筛选应用。通过将 MBR 技术与战实验设计(DoE)方法相结合,可以进一步最大化过程洞察力,同时最小化实验负担。DoE 促进了对生物系统中无处不在的因素相互作用的系统评估,以及对设计空间的更广泛探索。为确保工业规模的最佳性能,应在生物过程开发的早期阶段应用 DoE 同时优化遗传和环境。微规模培养和工业规模培养之间的培养策略的主要不一致性可导致在生物过程开发的最早阶段选择次优菌株和过程条件。因此,必须将过程控制策略和分批补料操作纳入高通量筛选,以确保更接近地模拟工业规模的培养条件。最近开发了几种具有内置补料、控制和采样能力的新型 MBR,以克服这一关键瓶颈。已经研究了创新的内部和外部补料策略及其模仿不同常用工业补料策略的潜力,例如脉冲、指数、修正指数和线性补料。内部分批补料策略包括扩散和酶控制的补料,通常涉及由半透膜分开的双相培养基和多糖基质的生物催化分解。通过使用微流体和自动化液体处理系统(LHSs)。这种系统提供了改进的补料控制,允许更有效地模仿工业相关的脉冲、线性和指数进给策略。引入基于模型的优化算法以实时分析过程数据并重新确定最佳培养策略也获得了极大的兴趣,以进一步加快生物过程开发。将新型分批补料 MBR 与统计 DoE 和基于模型的优化策略相结合的整体方法可能是稳健菌株开发和优化的最佳方法。通过对大量遗传和环境因素组合进行战略性高通量筛选,可以确保设计质量,同时监测和控制工业相关工艺参数。与传统方法相比,这种增加的过程洞察力有可能通过减少所需的筛选阶段的数量来大大加快生物过程的开发。内部补料策略在内部分批补料系统中,基质在培养容器内逐渐释放,无需外部补料。这些系统的主要特点是它们与现有基础设施的兼容性。由于不需要先进的微型泵、微流体或液体处理机器人技术,因此可以显著降低成本和复杂性。这种系统通常利用扩散或催化现象。2.1扩散控制补料扩散控制进料涉及将截留的营养物从聚合物吸附剂或通过人工膜缓慢释放。培养基中的营养物质扩散穿过半透性透析膜,然后被细胞利用。Philip 等人 2017年阐明了作为影响补料速率的关键因素的两个参数,储器中的初始基质浓度和膜几何形状。这有助于更好的补料速率控制,并且发现尽管培养体积放大了 100 倍。然而,使用透析膜的扩散控制补料方法的一个主要限制是其对摇瓶培养的限制, 这限制了生产量。Jeude等人2006 年开发了 FeedBead® 技术,这项技术最初也是为了在摇瓶中使用而开发的,但 Scheidle 等人 2009 年证明了 FeedBead® 技术适用于 MTP 应用。Keil 等人于 2019 年开发了一种 MTP FeedPlate® 系统,该系统在每个孔的底部包含一个固定的固体有机硅基质和嵌入的葡萄糖晶体。在这些 FeedPlates® 中,GFP 产量提高了 245 倍。该板以 24、48 或 96 孔形式上市,允许以分批补料模式直接进行高通量培养。然而,培养基 pH、温度和渗透压等外部因素对葡萄糖释放速率有主要影响。因此,使用该技术时,对基质释放速率的精确控制受到限制。2016 年,Flitsch 等人研发了一种改进的 μ-RAMOS 设备,其目的是克服原始设备的瓶颈。更新后的系统在 48 孔 MTP 的每个孔中配备了气体入口和出口阀以及光学传感器,便于对所有 48 种培养物同时进行 OTR 监测。该技术最近被进一步扩展用于 96 孔深孔 MTP,使研究人员能够实现比原始摇瓶规模的RAMOS 系统增加 15 倍的实验通量。Habicher 等人 2020 年证明了最先进的 μ- RAMOS 和 FeedPlate® 对于工程化用于蛋白酶生产的地衣芽孢杆菌菌株的葡萄糖限制培养的兼容性。OTR 的在线监测极大地改善了 MTP 培养物的信息含量,发现其在 MTP 和摇瓶规模下的性能相当。使用该平台生成的数据可用于在开发的最早阶段生成数学模型,从而根据设计原则显著改善了过程质量。Wilming 等人 2014 年使用 96 孔 MTP 开发了一种替代的基于扩散的分批补料系统。每个培养孔通过填充有聚丙烯酰胺水凝胶的扩散通道连接至储层孔,便于每个平板进行多达 44 次平行分批补料培养。用浓缩基质溶液填充储器,以实现逐步扩散驱动补料。通过改变储器中的浓度并由此改变驱动浓度梯度。然而, 发现补料浓度和葡萄糖释放速率之间的关系是非线性的。这种使补料速率微调复杂化的非线性归因于水的反向扩散。尽管如此,板的透明底座提供了与板读取技术兼容的主要优势,例如用于通过散射光测量生物量和荧光的 BioLector 系统(mp2-Labs,德国)。使用该系统证明了大肠杆菌和多形嗜血杆菌菌株的分批补料培养。与分批对照相比,用最佳 300g/L 葡萄糖补料进行大肠杆菌的分批补料培养分别导致生物量和基于黄素单核苷酸的荧光报告蛋白信号增加约5 倍和14 倍。2.2酶控补料淀粉在液体培养基中的溶解度差,需要在原始 EnBase® 工艺中使用固相。为了消除对双相系统的需求,开发了具有完全可溶性聚合物基材的 EnBase® Flo。葡萄糖释放方法与矿物盐和复杂培养基添加剂的精心优化组合相结合,以产生高细胞密度和产品滴度。Glazyrina 等人 2012 年通过在 3mL 至 60L 的范围内培养经工程改造过量生产模型酶醇脱氢酶的大肠杆菌菌株,研究了 EnBase® Flo 系统的可扩展性。在所有测试规模下均实现了相当的增长率和蛋白质滴度,突出了可扩展性。在所有测试规模上都实现了可比的生长速率和蛋白质滴度,突出了可扩展性。EnBase® 系统还提供了在大型生物反应器的初始培养阶段控制葡萄糖释放的额外好处,完全消除了溢出代谢。EnBase® 技术还以方便的片剂形式在市场上销售。该 EnPresso® 系统与 D- optimal DoE 方法相结合,可优化 24 孔板中工程大肠杆菌的缬诺霉素生产。与原始分批培养相比,DoE 驱动的平行分批补料培养策略使缬氨霉素滴度提高了 33 倍。2.3内部补料策略小结扩散和酶控制的补料策略提供了一种相对简单和低成本的方法来模拟更大规模的分批补料过程。它们提供了恒定基质补料的关键优势,但在整个培养过程中通常不可能精确控制补料速率。结果,更复杂(例如指数)的进给曲线不能使用内部补料策略。此外,补料通常限于单一基质,这可能导致培养基中的其他营养物变得有限。特别是基于酶的补料依赖葡萄糖作为碳源,这可能不是所有过程的最佳选择。此外,在此类系统中,酸和碱补料通常是不可能的,从而限制了过程控制能力。曼森平行生物反应器分批补料应用曼森采用Watson-malow 400A高精度泵头,16 路补料,平均每个罐有四路补料,蠕动泵流量可设定,连续可调;每个蠕动泵的功能可单独分配,可以作为酸泵、碱泵、补料泵、消泡泵、液位控制泵。信息来源:https://www.sciencedirect.com/science/article/pii/S0734975021001944?ref=pdf_download&fr=RR-2&rr=747c4db53ee4ddb1文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 四位华人学者入选2014年诺贝尔奖预测名单
    全球领先的智能信息服务提供商汤森路透旗下的知识产权与科技事业部今天发布了其2014年度&ldquo 诺贝尔奖级别&rdquo 的&ldquo 引文桂冠奖&rdquo 获奖名单,名单中首次同时出现了四位华裔科学家。汤森路透年度引文桂冠奖开始于2002年,该奖项基于对化学、物理学、医学和经济学领域的学术论文及其引文进行深入分析来遴选全球最有影响力的研究人员,迄今已成功预测了35位诺贝尔奖得主。   在今年的提名名单中,值得关注的科学家有:来自生理学和医学领域的大卫&bull 朱利叶斯(David Julius),他的研究阐释了人类神经处理痛感的分子运行机制,在疼痛管理领域开创了新的发展道路 同样来自生理及医学领域的还有李业广(Charles Lee)、史蒂芬W&bull 谢(Stephen W. Scherer)和米歇尔 H&bull 威革勒(Michael H. Wigler),他们的研究解释了特定基因变异与疾病的关联。在物理学领域,杨培东(Peidong Yang)研究的光生成纳米线可用于数据存储和光计算。在化学领域,邓青云(Ching W. Tang)和史提芬&bull 范斯莱克(Steven Van Slyke因发明有机发光二极管而著称,这一技术现已广泛应用于智能手机、平板电脑和高清电视技术中。在经济学领域,威廉 J&bull 鲍莫尔(William J. Baumol)和伊斯雷尔M&bull 科茨纳(Israel M.Kirzner)因对企业家精神的突破性研究而受到关注。   值得一提的是,今年预测的名单中同时出现了四位华裔面孔,这是引文桂冠奖13年来罕见的。除了出生于香港的美籍科学家邓青云和美国霍华德休斯医学研究所主席钱泽南(Robert Tjian)外,还有出生于上海的美籍华裔物理学家张首晟(Shoucheng Zhang),以及出生于江苏的美籍华裔科学家杨培东(Peidong Yang)。张首晟因其对量子自旋霍尔效应与拓扑绝缘体的理论与实验研究被预测,而杨培东因其对纳米线光子学的贡献,包括其创建了第一个纳米线纳米激光而入选。   2014 诺贝尔预测名单包含了来自9个不同国家、27 个不同学术和研究组织的27 位研究人员。   &ldquo 科研文献的引用是对科研人员智力投资最好的回报。&rdquo 汤森路透知识产权与科技业务全球总裁Basil Moftah先生表示:&ldquo 对科研文献总被引频次的总结和分析,我们可以看到科学家们独特的见解和其科研工作的影响力和贡献度,从而预测出那些最有可能获得诺贝尔奖的候选者。&rdquo   汤森路透每年一度的全球&ldquo 引文桂冠奖&rdquo 的分析数据来自全球最重要的囊括自然科学、社会科学和人文艺术领域的研究发现平台Web of ScienceTM,该奖项分为化学、物理、生理学或医学和经济学4个门类。基于对科研论文的被引用情况的全面考察和多种量化分析方法,汤森路透遴选出最具影响力的研究人员并授予汤森路透引文桂冠奖,同时预测他们可能在当年或者将来获得诺贝尔奖。   了解汤森路透引文桂冠奖的研究方法、以及历届全球&ldquo 引文桂冠奖&rdquo 得主及其研究领域的详细介绍,请浏览科学指标与研究绩效分析的开放资源网站&ldquo 科学瞭望&rdquo (http://sciencewatch.com/nobel)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制