石英玻璃平凹透镜

仪器信息网石英玻璃平凹透镜专题为您提供2024年最新石英玻璃平凹透镜价格报价、厂家品牌的相关信息, 包括石英玻璃平凹透镜参数、型号等,不管是国产,还是进口品牌的石英玻璃平凹透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石英玻璃平凹透镜相关的耗材配件、试剂标物,还有石英玻璃平凹透镜相关的最新资讯、资料,以及石英玻璃平凹透镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

石英玻璃平凹透镜相关的厂商

  • 洛阳滕景玻璃有限公司,自成立以来凭借自身的优质产品。良好的采购渠道,诚信谨慎的服务态度和勇于创新的钻研精神,短短几年就成为了洛阳知名的玻璃加工公司。形成了自身的广阔市场。经营范围: 玻璃加工,超薄电子玻璃,超白玻璃、实验室玻璃定制,国产进口石英玻璃,ITO/FTO/AZO导电玻璃,浮法钠钙玻璃原片产品名称:超薄玻璃基地产品 厚度:0.15-5mm玻璃品种:浮法钠钙玻璃、超白玻璃、石英玻璃、k9玻璃、高硼硅玻璃、不同材质的玻璃耐温、透光率、性能不同,如果不知怎么选择,请联系我给予推荐加工要求: 提供切割、增透、镀膜、打孔、磨边、倒角、划线、开槽等。方形 圆形异形皆可定制关于公差 玻璃材料或有尺寸、厚度、切割、加工正负差,若要求严格请先和客服核实,确认再购买
    留言咨询
  • 我们公司的生产基地坐落在中国著名的“水晶城”-东海县,地理环境优越,交通极其便利,铁路、公路四通八达。工厂成立一九九零年, 以生产石英玻璃为主,技术力量雄厚,拥有具备高级职称的管理人员数名和一批专业研究生产石英产品的技 术精英,同时吸取了多年积累的经验,引进国内外先进技术和生产设备,人性化管理,使得工艺流程更趋合理。主营产品:石英条、石英片、石英管、石英异形管、石英蒸发皿、石英源瓶、石英漏斗、石英坩埚、石英裂解管、石英缸、石英板、石英舟、石英玻璃仪器等!我们的产品有:管材:透明石英玻璃管、扩散管、氧化管;裂解炉配合弯头;透明石英玻璃连熔管;液位计用低、中压透明电熔石英玻璃管;不透明石英玻璃乳白管。 片材:远红外定向辐射加热器用石英板;透明、不透明石英玻璃毛片;远紫外、紫外、红外、氟化钙等光学玻璃镜片;半导体工业用气炼石英玻璃垫片;防紫外光学镜片;高纯度电弧法生产不透明石英片;高温压位计玻璃。 棒材:半导体工业用气炼石英棒;普通行业用连熔石英棒;石英焊接热加工用焊条棒。 仪器:石英烧杯、烧瓶、容量瓶、梨形漏斗 ……化工石英提纯设备:硫酸设备(电、煤、液化气加热);盐酸设备(电、煤、液化气加热);硝酸设备(电、煤 液化气加热);舟、箱、环:硫氮元素分析仪进样舟;石英平板舟;石英刻槽舟;石英半圆舟;石英矩形舟;石英环;透明石英方箱、不透明石英方箱。公司自成立以来,始终坚持“质量第一、信誉为本”的方针,一直致力于推进石英玻璃行业在国内外的发展,产品远销日本、美国、韩国、香港等国家和地区,我们愿以高质量的产品和诚挚的服务与国内外各界同仁、朋友在平等互利的原则的基础上,真诚合作、共谋发展。
    留言咨询
  • 东海县丰宇石英制品有限公司坐落于东海县,专业石英管厂家,主营:大口径石英管、石英法兰、大口径(Φ80-280mm)及厚壁大口径(壁厚4-10mm)透明石英玻璃管, 大口径滤紫外、无臭氧、低羟基(OH2ppm)和光源用石英管、石英玻璃棒(1.8-60mm)、石英玻璃片、石英玻璃器皿、石英管切割、石英管加工、石英管批发、烧口、封口、磨砂、异形等加工。公司成立于2016年4月29日,占地70亩,拥有固定资产300万元,生产高品质石英制品近二十年,用于点光源,消毒杀菌,化工,通讯,加热灯行业。主营产品:大口径(Φ80-280mm)及厚壁大口径(壁厚4-10mm)透明石英玻璃管, 大口径滤紫外、无臭氧、低羟基(OH2ppm)和光源用石英管、石英玻璃棒(1.8-60mm)、石英玻璃片、石英玻璃器皿、石英管切割、烧口、封口、磨砂、异形等加工。为增强企业的市场竞争力,每年科研投入不少于100万。我公司开拓进取,科学创新,努力打造成为石英届的精英。
    留言咨询

石英玻璃平凹透镜相关的仪器

  • 按形状分平凹透镜与双凹透镜,按材料分为K9玻璃(BK7)与石英。 相关参数: 1.材料:K9光学玻璃2.设计波长:587.6nm3.直径误差:+0.0/-0.1mm4.中心厚度误差:± 0.2mm5.焦距误差(EFL): ± 2%6.倒边:0.2mm× 45° 7.镀膜:无A.K9玻璃,平凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLD12.7-025&Phi 12.7,f-25OLD25-200&Phi 25,f-200OLD12.7-038&Phi 12.7,f-38OLD25-250&Phi 25,f-250OLD20-030&Phi 20,f-30OLD25-366&Phi 25,f-366OLD20-050&Phi 20,f-50OLD25-400&Phi 25,f-400OLD20-060&Phi 20,f-60OLD25-500&Phi 25,f-500OLD20-080&Phi 20,f-80OLD25-1000&Phi 25,f-1000OLD25.4-050&Phi 25.4,f-50OLD30-060&Phi 30,f-60OLD25.4-075&Phi 25.4,f-75OLD30-120&Phi 30,f-120OLD25.4-100&Phi 25.4,f-100OLD30-150&Phi 30,f-150OLD25.4-150&Phi 25.4,f-150OLD50-063&Phi 50,f-63OLD25-025&Phi 25,f-25OLD50-080&Phi 50,f-80OLD25-032&Phi 25,f-32OLD50-100&Phi 50,f-100OLD25-040&Phi 25,f-40OLD50-160&Phi 50,f-160OLD25-050&Phi 25,f-50OLD50-250&Phi 50,f-250OLD25-060&Phi 25,f-60OLD50-500&Phi 50,f-500OLD25-080&Phi 25,f-80OLD50-1000&Phi 50,f-1000OLD25-100&Phi 25,f-100OLD50.8-250&Phi 50.8,f-250OLD25-125&Phi 25,f-125OLD50.8-400&Phi 50.8,f-400OLD25-160&Phi 25,f-160OLD50.8-500&Phi 50.8,f-500B. 石英,平凹透镜OLDQ系列,石英,平凹透镜型号产品名称及尺寸型号产品名称及尺寸OLDQ25-035紫外熔融石英,平凹透镜,&Phi 25.4,f-35OLDQ25-175紫外熔融石英,平凹透镜,&Phi 25.4,f-175OLDQ25-050紫外熔融石英,平凹透镜,&Phi 25.4,f-50OLDQ25-200紫外熔融石英,平凹透镜,&Phi 25.4,f-200OLDQ25-075紫外熔融石英,平凹透镜,&Phi 25.4,f-75OLDQ25-250紫外熔融石英,平凹透镜,&Phi 25.4,f-250OLDQ25-100紫外熔融石英,平凹透镜,&Phi 25.4,f-100OLDQ25-400紫外熔融石英,平凹透镜,&Phi 25.4,f-400OLDQ25-150紫外熔融石英,平凹透镜,&Phi 25.4,f-150   C. K9平凹柱面透镜 (Plano-Concave Cylindrical Lenses)1) OLBCY系列平凹柱面透镜 命名规则:OLBCY尺寸1尺寸2-焦距 相关参数:1.材料:K9光学玻璃2.设计波长:587.6nm3.直径误差:+0.0/-0.2mm4.中心厚度误差:± 0.2mm5.焦距误差(EFL): ± 2%6.倒边:0.2mm× 45° 7.镀膜:无OLBCY系列,K9玻璃,平凹柱面透镜型号名称尺寸(X*Y)焦距边缘厚OLBCY2020-50K9玻璃,平凹柱面透镜20*20-5042) 其他规格平凹柱面透镜(进口)示意图: 相关参数:镀膜说明:标准产品未镀增透膜,若需要镀膜,请联系确认。选型表(部分):D. K9玻璃,双凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLE25.4-025&Phi 25.4,f-25OLE25.4-175&Phi 25.4,f-175OLE25.4-035&Phi 25.4,f-35OLE25.4-200&Phi 25.4,f-200OLE25.4-050&Phi 25.4,f-50OLE25.4-250&Phi 25.4,f-250OLE25.4-075&Phi 25.4,f-75OLE25.4-300&Phi 25.4,f-300OLE25.4-100&Phi 25.4,f-100OLE25.4-500&Phi 25.4,f-500OLE25.4-125&Phi 25.4,f-125OLE25.4-1000&Phi 25.4,f-1000OLE25.4-150&Phi 25.4,f-150E.石英,双凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLEQ25.4-025&Phi 25.4,f-25OLEQ2.45-200&Phi 25.4,f-200OLEQ25.4-050&Phi 25.4,f-50OLEQ25.4-250&Phi 25.4,f-250OLEQ25.4-075&Phi 25.4,f-75OLEQ25.4-300&Phi 25.4,f-300OLEQ25.4-100&Phi 25.4,f-100OLEQ25.4-500&Phi 25.4,f-500OLEQ25.4-150&Phi 25.4,f-150OLEQ25.4-1000&Phi 25.4,f-1000
    留言咨询
  • 平凹透镜 400-628-5299
    凹透镜按形状分平凹透镜与双凹透镜,按材料分为K9 玻璃(BK7) 与石英。凹透镜示意图:K9玻璃,平凹透镜K9玻璃,平凹透镜相关参数:材料:K9光学玻璃直径误差:+0.0/-0.1mm焦距误差(EFL): ±2%镀膜:无K9玻璃,平凹透镜选型表:OLD系列K9玻璃,平凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLD25-050?5,f-50OLD25-200?5,f-200OLD25-100?5,f-100OLD25.4-050?5.4,f-50注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。石英,平凹透镜相关参数:材料:紫外熔融石英直径误差:+0.0/-0.1mm焦距误差(EFL):±2%镀膜:无石英,平凹透镜选型表:OLDQ系列,石英,平凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLDQ25-100?5,f-100OLDQ25-200?5,f-200注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。
    留言咨询
  • 平凸透镜 400-628-5299
    透镜(Lens): 透镜主要是进行光的汇聚或者发散用的光学元件,主要分为:凸透镜、凹透镜、消色差透镜、非球面透镜等。关于平凸/凹透镜和双凸/凹透镜的选择: 球面平凸/ 凹透镜被用于无限远共轭时,具有较小的球差。所以,当需要把平行光汇聚,或者把点光源变成平行光时,选择球面平凸/ 凹透镜较好。在用于有限远共轭时,双凸/ 凹透镜具有较小的球差,当需要汇聚点光源发出来的光或者光学系统图像传递时,选择双凸/ 凹透镜为佳。凸透镜: 根据形状分为:平凸和双凸,根据材料分为K9 玻璃( 或BK7) 与石英;K9玻璃,平凸透镜相关参数: 材料:K9光学玻璃 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无选型表: OLB系列,K9平凸透镜型号尺寸及参数(mm) 型号尺寸及参数(mm) OLB12.7-25.4 ?2.7,f25.4 OLB25-1000 ?5,f1000 OLB12.7-38.1 ?2.7,f38.1 OLB25.4-050 ?5.4,f50 OLB20-050 ?0,f50 OLB25.4-075 ?5.4,f75 OLB25-050 ?5,f50 OLB25.4-100 ?5.4,f100 OLB25-080 ?5,f80 OLB25.4-150 ?5.4,f150 OLB25-100 ?5,f100 OLB38.1-075 ?8.1,f75 OLB25-125 ?5,f125 OLB50-100 ?0,f100 OLB25-200 ?5,f200 OLB50-160 ?0,f160 OLB25-250 ?5,f250 OLB50-250 ?0,f250 OLB25-300 ?5,f300 OLB50-500 ?0,f500 OLB25-400 ?5,f400 OLB50.8-100 ?0.8,f100 OLB25-500 ?5,f500 OLB50.8-400 ?0.8,f400 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。石英,平凸透镜相关参数: 材料:紫外熔融石英 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无OLB系列选型表: 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。
    留言咨询

石英玻璃平凹透镜相关的资讯

  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • Scientific Report 文章解读:双高斯凸透镜DBR光学微腔
    导 | 读 近期,瑞士IBM苏黎世研发中心的Colin博士和Swisslitho公司的Martin博士利用热扫描探针(T-SPL)纳米加工技术,配合干法蚀刻解决方案实现了相互作用微腔(两个相邻的光学微腔),并对微腔距离进行了控制,实现了两个微腔光场的相互作用。相关工作发表在Nature子刊 Scientific Report。 T-SPL纳米加工技术 热扫描探针(T-SPL)纳米加工技术是一种灰度刻蚀技术。与传统意义上的3D打印技术相比,3D模型以灰度图的形式呈现和加工,技术难度要比3D打印技术要小得多;而且,灰度刻蚀与标准微电子加工工艺,如沉积和蚀刻等直接兼容,因此具有广泛的应用前景。例如,在光学/光子学方面,它可以用来制造任意光学曲面、多模光波导,光子晶体以及高Q值的光学微腔。在量子光子学中,高Q因子意味着光损失小,单位模式中有更多的光量子。在电子光学上,可以用螺旋结构来将轨道角动量传递给自由电子。相比平面结构,三维结构具备更多的功能和更好的性能。 图1 T-SPL的原理 纳米加工技术对比 传统纳米加工技术中,电子束蚀刻(EBL)是目前先进的直写技术,也能够进行这种灰度的光刻。然而,当结构小于1微米时,电子束在光刻胶内的弛豫散射要计算,需要进行三维距离校正。聚焦离子束(FIB)同样可以用于灰度光刻。然而,由入射离子引起的表面注入,深度延伸可以超过数百纳米,并且需要进行复杂的计算实现临近校正。此外,由于事故的电离造成的损害,FIB加工过的表面对进一步处理非常敏感。此时,T-SPL技术的优势就突显出来了。 T-SPL纳米加工技术的应用 Colin博士利用T-SPL技术,制备了正旋波图形(图2a, b),螺旋相位板(图2c, d),凹透镜(图2e, f),16方格棋盘(图2g, h)。图形结果和设计匹配,棋盘实验中,台阶的高度仅为1.5nm。得益于闭环的直写算法,将每一次直写后探测的深度信息反馈并修正下一行的直写, T-SPL技术实现了纳米高精度的3D直写。图2 利用T-SPL技术制备各种微结构,图形结果和设计匹配 光子分子—双高斯凸透镜DBR光学微腔 Colin博士进一步设计了光子分子——双高斯凸透镜DBR光学微腔(图3)。在SiO2上刻蚀两个相邻的凹高斯透镜结构,并以此为模板制作了TaO5/SiO2布拉格反射镜(DBR);利用发光染料作为增益介质制备在DBR中间形成法布里-珀罗(Fabry–Pérot)光学微腔,发光燃料层在结构部分形成高斯凸透镜,相邻两个凸透镜各自约束一路光场在DBR中形成谐振。 图3 光子分子的设计,制备和表征 通过加工多种不同间距的凸透镜对,Colin博士研究了不同距离下,两个谐振光场的耦合作用,以期实现基于交互强度控制的类腔阵列量子计算技术。T-SPL高精度3D纳米加工技术必将推动量子计算的研究向一个关键里程碑迈进。 参考文献:Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Swisslitho公司荣获“瑞士产品奖” 2017年11月13日,Swisslitho公司因NanoFrazor 3D纳米直写设备(采用热扫描探针纳米加工技术)的研发和特优势获得“瑞士产品奖”。该奖项主要奖授予“具有特、高技术、高质量的、的产品创新能力,具有高价值,强大潜力的公司”。 图为Swisslitho公司团队于苏黎世市中心举行的颁奖典礼 相关产品及链接:1、NanoFrazor 3D纳米结构高速直写机:http://www.instrument.com.cn/netshow/SH100980/C226568.htm2、小型台式无掩膜光刻系统:http://www.instrument.com.cn/netshow/SH100980/C197112.htm
  • 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)
    p style=" margin-left: 66px text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px font-family:宋体" 【作者按】 /span /strong span style=" font-size:19px font-family:宋体" 仪器的测试过程可归类为两件事:激发样品的信息,接收及处理样品的信息。因此其可被看成是由两类功能部件所组成:信号激发、信号接收处理。对扫描电镜来说电子枪和磁透镜属于激发样品信号的部件,探头属于接收样品信息的部件。它们都是构成扫描电镜的最基本部件,其性能的高低将对扫描电镜测试结果产生重大影响。学习扫描电镜也必须从认识这三个功能部件做起。篇幅所限,本文将只探讨激发信号的关键部件:电子枪、电磁透镜。 /span /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 0em " span style=" font-size:24px" 一、 span style=" font-variant-numeric: normal font-variant-east-asian: normal font-weight: normal font-stretch: normal font-size: 9px line-height: normal font-family: & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /strong strong style=" text-indent: 0em " span style=" font-size:24px font-family:宋体" 电子枪 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 0em " 电子枪是电子显微镜产生高能电子束,这一样品信号激发源的源头。透射电镜和扫描电镜电子枪的构造基本一致。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 电子枪分为两种:热发射、场发射,它们主体都是三极结构设计。不同点:热发射(阴、栅、阳);场发射(阴极、第一阳极、第二阳极)。热场电子枪在阴极下方增加了一个抑制热电子发射的栅极。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.1 /span /strong strong span style=" font-size:19px font-family: 宋体" 热发射电子枪 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 热发射电子枪按阴极材质分为两类:发叉钨丝和六硼化镧。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 发叉钨丝材质是多晶钨,功函数大,电子须由高温激发。电子束发散性、色差都比较大,束流密度低。故本征亮度低,分辨能力较差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 六硼化镧灯丝的材质为六硼化镧单晶,功函数较发叉钨丝低,激发电子的温度也较低,电子束发散性、色差较发叉钨丝小,束流密度较高。本征亮度和分辨力都好于发叉钨丝。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.1.1 /span /strong strong span style=" font-size:19px font-family:宋体" 钨灯丝结构图 /span /strong /p p style=" text-align: center text-indent: 0em " strong span style=" font-size:19px font-family:宋体" img style=" max-width: 100% max-height: 100% width: 664px height: 215px " src=" https://img1.17img.cn/17img/images/201912/uepic/ce0d7ace-71d6-4ab7-8f68-495672dab472.jpg" title=" 电子枪与电磁透镜的另类解析1.png" alt=" 电子枪与电磁透镜的另类解析1.png" width=" 664" height=" 215" border=" 0" vspace=" 0" / /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.1.2 /span /strong strong span style=" font-size:19px font-family:宋体" 六硼化镧灯丝结构图 /span /strong /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 0em font-size: 19px " strong img style=" max-width: 100% max-height: 100% width: 664px height: 278px " src=" https://img1.17img.cn/17img/images/201912/uepic/a3341978-d9d2-4556-b62b-1f1c8cfe9484.jpg" title=" 电子枪与电磁透镜的另类解析2.png" alt=" 电子枪与电磁透镜的另类解析2.png" width=" 664" height=" 278" border=" 0" vspace=" 0" / /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em font-size: 19px " strong 1.1.3 /strong /span strong style=" text-indent: 0em " span style=" font-size:19px font-family:宋体" 热发射电子枪(钨灯丝、六硼化镧)结构如下图: /span /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 239px " src=" https://img1.17img.cn/17img/images/201912/uepic/186b57f0-421c-4d0e-afcb-fcf35820cb7e.jpg" title=" 电子枪与电磁透镜的另类解析a.png" alt=" 电子枪与电磁透镜的另类解析a.png" width=" 664" height=" 239" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.2 /span /strong strong span style=" font-size:19px font-family: 宋体" 场发射电子枪 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 场发射电子枪分为:热场发射电子枪、冷场发射电子枪。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.2.1 /span /strong strong span style=" font-size:19px font-family:宋体" 场发射电子枪灯丝的结构及对比 /span /strong strong /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 215px " src=" https://img1.17img.cn/17img/images/201912/uepic/100f10a3-fe51-4966-96a8-ff2395470ad4.jpg" title=" 电子枪与电磁透镜的另类解析1.png" alt=" 电子枪与电磁透镜的另类解析1.png" width=" 664" height=" 215" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" & nbsp 1.2.2 /span /strong strong span style=" font-size:19px font-family:宋体" 场发射电子枪的结构 /span /strong strong span style=" font-size:19px" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 其结构图如下: /span span style=" font-size: 19px text-indent: 28px " & nbsp /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 19px text-indent: 28px " img style=" max-width: 100% max-height: 100% width: 664px height: 219px " src=" https://img1.17img.cn/17img/images/201912/uepic/201f9912-eb0e-4749-9f83-1d2fb5184e03.jpg" title=" 电子枪与电磁透镜的另类解析5.png" alt=" 电子枪与电磁透镜的另类解析5.png" width=" 664" height=" 219" border=" 0" vspace=" 0" / /span /p p style=" margin-left: 4px text-align: center text-indent: 2em " strong span style=" font-size: 18px " span style=" font-family: 宋体 " 左图为热场发射电子枪结构图 /span & nbsp & nbsp & nbsp & nbsp & nbsp span style=" font-family: 宋体 " 右图为冷场发射电子枪结构图 /span /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 从上图可见,电子枪无论是热场还是冷场,其基本架构都是阴极、第一阳极、第二阳极结构。热场电子枪结构多了一个栅极保护器,以抑制热场电子枪为降低功函数,在灯丝上加高温所发射的热电子。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px" strong 1.2.3 /strong /span strong span style=" font-size:19px font-family: 宋体" 场发射电子枪的工作过程 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.2.3.1 /span /strong strong span style=" font-size:19px font-family: 宋体" 热场发射电子枪: /span /strong /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 37px " span style=" font-size:19px font-family:宋体" 氧化锆 /span /strong strong style=" text-indent: 37px " span style=" font-size:19px font-family: 宋体" ∕ /span /strong strong style=" text-indent: 37px " span style=" font-size:19px font-family: 宋体" 钨单晶 /span /strong strong style=" text-indent: 37px " span style=" font-size:19px font-family:宋体" ? /span /strong strong style=" text-indent: 37px " span style=" font-size:19px" 1.0.0 /span /strong strong style=" text-indent: 37px " span style=" font-size:19px font-family:宋体" ? /span /strong span style=" text-indent: 37px font-size: 19px font-family: 宋体 " 所构成的灯丝(阴极)通电后其温度达到 /span span style=" text-indent: 37px font-size: 19px " 1200K /span span style=" text-indent: 37px font-size: 19px font-family: 宋体 " 。位于灯丝下方的栅极(电压低于阴极)保护层将抑制多晶钨和单晶钨的热电子发射。栅极保护层下方第一阳极上加载的电位高于阴极,称为引出电压,在该电压作用下氧化锆电子被从灯丝尖部拔出,由第二阳极与阴极间的加速电场加速,形成扫描电镜信息激发源 /span span style=" text-indent: 37px " /span span style=" text-indent: 37px font-size: 19px font-family: 宋体 " — /span span style=" text-indent: 37px " /span span style=" text-indent: 37px font-size: 19px font-family: 宋体 " 直径小于 /span span style=" text-indent: 37px font-size: 19px " 50nm /span span style=" text-indent: 37px font-size: 19px font-family: 宋体 " 的“高能电子束”。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.2.3.2 /span /strong strong span style=" font-size:19px font-family:宋体" 冷场发射电子枪: /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 冷场发射电子抢灯丝尖为单晶钨? /span span style=" font-size:19px" 3.1.0 /span span style=" font-size:19px font-family:宋体" ?面。该晶面逸出功低,可由位于其下方第一阳极上的引出电压直接拔出。该电子枪不设栅极保护层。拔出的电子由阴极与第二阳极间加速电场加速,形成扫描电镜信号激发源 — 直径小于 span 10nm /span 的“高能电子束”。 /span /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 0em " span style=" font-size:19px" 1.2.4 /span /strong strong style=" text-indent: 0em " span style=" font-size:19px font-family:宋体" 冷、热场电子枪的优缺点 /span /strong /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 0em " span style=" font-size:19px" 1.2.4.1 /span /strong strong style=" text-indent: 0em " span style=" font-size:19px font-family: 宋体" 冷场电子枪 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em font-size: 19px font-family: 宋体 " 冷场电子枪阴极采用单晶钨( /span span style=" text-indent: 0em font-size: 19px " 3.1.0 /span span style=" text-indent: 0em font-size: 19px font-family: 宋体 " )面,功函数极低,针尖电子可以被第一阳极直接拔出。在工作中电子枪温度和环境温度一致而得名“冷场电子枪”。该电子枪灯丝电子的出射范围小,溢出角(立体角)也小,溢出电子的能量差也小(色差)。这些结果会使得以该阴极为基础形成的电子枪本征亮度大。电子枪本征亮度大有利于扫描电镜获取高分辨的测试结果。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 由于电子枪温度低,镜筒中气体分子容易在灯丝表面积累,对拔出电子产生影响。故在工作中发射电流会逐渐下降,需要不断提升引出电压( /span span style=" font-size:19px" set /span span style=" font-size:19px font-family:宋体" )或定时加一个瞬时电流( /span span style=" font-size:19px" FLASH /span span style=" font-size:19px font-family: 宋体" )来驱赶这些气体分子,使发射束流满足测试需求。为了保持束流在测试中尽可能稳定,镜筒真空要求更高,高真空也是高分辨的基础条件之一。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 由于发射面积较小,因此虽然电子枪的本征亮度大,但是束流总量不如热发射以及热场电子枪来的大。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 冷场电子枪可以有更好的图像分辨,但束流的稳定度以及束流总量略显不足。不过现在最新的日立 /span span style=" font-size:19px" REGULUS 8230 /span span style=" font-size: 19px font-family:宋体" 冷场电镜在电子枪设计、真空度以及镜筒质量上的改进使这些缺陷有所弥补。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " strong span style=" font-size:19px" 1.2.4.2 /span /strong strong span style=" font-size:19px font-family: 宋体" 热场电子枪 /span /strong strong /strong /p p style=" margin-left: 4px text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 热场电子枪问世时间较冷场电子枪来得早。电子枪阴极采用的是单晶钨( /span span style=" font-size:19px" 1.0.0 /span span style=" font-size:19px font-family:宋体" )面,其功函数较多晶钨丝和六硼化镧单晶要低很多但比冷场枪的单晶钨( /span span style=" font-size:19px" 3.1.0 /span span style=" font-size:19px font-family:宋体" )面要大。电子发射虽然也是由第一阳极拔出,但需要采用一系列降低功函数的方法: /span span style=" font-size:19px" 1. /span span style=" font-size:19px font-family:宋体" 灯丝加一定电流产生 /span span style=" font-size:19px" 1200K /span span style=" font-size:19px font-family: 宋体" 的高温, /span span style=" font-size: 19px" 2. /span span style=" font-size:19px font-family:宋体" 表面涂覆一层氧化锆,以降低灯丝表面的功函数,提升发射效果。由于电子基本由第一阳极在单晶钨针尖部拔出,因此其发射面积、立体角及色差都较热发射小很多,但比冷场要大。故本征亮度要比热发射提高很多,但略低于冷场电子枪。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " strong span style=" font-size:19px font-family: 宋体" 热场和冷场电子枪对比: /span /strong span style=" font-size: 19px font-family:宋体" 本征亮度低会造成仪器分辨能力不足;氧化锆的消耗会降低灯丝束流发射效果,氧化锆有破损,灯丝的高分辨寿命也到头,因此其高分辨寿命较短。束流大且稳定对微区分析有利,但是随着分析设备( /span span style=" font-size:19px" EDS\EBSD /span span style=" font-size:19px font-family:宋体" )性能的提升该优势也在逐步淡化,而分析过程中的空间分辨劣势也会逐步加深。不过这都有个度,而且和测试需求有关,辩证的关系无处不在。 /span /p p style=" margin-left: 4px text-align: justify text-indent: 2em " strong style=" text-indent: 0em " span style=" font-size:24px" 二、 span style=" font-variant-numeric: normal font-variant-east-asian: normal font-weight: normal font-stretch: normal font-size: 9px line-height: normal font-family: & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /strong strong style=" text-indent: 0em " span style=" font-size:24px font-family:宋体" 电磁透镜 /span /strong /p p style=" margin-left: 48px text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 透镜系统是显微镜对样品信息激发源(光)进行操控的部件。不同激发源(光束、电子束)使用不同的透镜系统:光学显微镜用的是光学透镜,电子显微镜是电磁透镜和静电透镜(静电透镜在电镜中应用面较窄,效果也较差,本文不予探讨)。无论光学透镜还是电磁透镜都是通过对激发源(可见光、高能电子束)运行方向的改变来对其进行操控。尽管高能电子束在电磁透镜中的运行轨迹较可见光在光学透镜中要复杂的多,但结果基本相似,因此在电子显微镜教材中对电磁透镜和电子光路路径的探讨都是以光学显微镜为模板。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px" strong 2.1 /strong /span strong span style=" font-size:19px font-family:宋体" 光学透镜 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.1 /span /strong strong span style=" font-size:19px font-family: 宋体" 光的折射现象 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 直线传播、反射、折射是光的三种运行(传播)模式。在同一种均匀介质中光是以直线方式来运行,小孔成像、影子等都是光线直线传播的反映。光线在两种介质交界处会发生传播方向的改变,如果光返回原来介质中这就是反射,反射光光速和入射光相同。光线从一个介质进入另一个介质,会发生传播方向以及传播速度的改变,这就是光线的折射现象。初中的物理教科书告诉我们透镜的成像原理正是基于这种折射现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px" strong 2.1.2 /strong /span strong span style=" font-size:19px font-family:宋体" 光学透镜的成像原理 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 透镜可以看成许多棱镜按照特别设计的构造所进行的组合。通常情况下光通过透镜时:凸透镜会将光线经两次折射后会聚在透镜另一侧的焦点(平行光)或像平面上,凹透镜将光线经两次折射后按照像点和虚像各点连线所形成的角度发散出去。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size:19px font-family:宋体" img style=" max-width: 100% max-height: 100% width: 664px height: 347px " src=" https://img1.17img.cn/17img/images/201912/uepic/323d613a-1a81-4dda-9653-58a36a6d5ef1.jpg" title=" 电子枪与电磁透镜的另类解析7.png" alt=" 电子枪与电磁透镜的另类解析7.png" width=" 664" height=" 347" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size:19px font-family: 宋体" 凸透镜和凹透镜的经典成像图 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 显微系统中凸透镜的作用是对光线进行会聚、成像(实像、虚像、放大、缩小),也可对光路进行调整,是组成显微系统的主体部件。凹透镜在显微系统中主要是用于消除系统像差对分辨率的影响。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 307px " src=" https://img1.17img.cn/17img/images/201912/uepic/3543cd28-5d88-47f4-9ff7-0e6d73d304ad.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 664" height=" 307" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size:19px font-family: 宋体" 透镜的成像规律 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.3 /span /strong strong span style=" font-size:19px font-family: 宋体" 像差及像差校正 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 色差和球差是显微系统中光线经过透镜时形成的两个主要像差,对显微镜分辨率有极大影响。消除像差影响对获取高分辨像帮助极大。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.3.1 /span /strong strong span style=" font-size:19px font-family: 宋体" 色差 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px " 任何光都很难保证光束中能量完全一致。不同能量的光线传播速度不同,通过透镜时折射程度也存在差别,因此其焦点也不相同。如此就会在焦平面或像平面上形成一个弥散斑,使图像模糊不清,影响图像的分辨能力。不同能量的光线对应不同色彩,因此由光的能量差异而引起的像差被称为“色差”。不同形态(凸透镜、凹透镜)、不同材质的透镜色差通过合理的安排可以相互抵消,以此方式就可以消除整个透镜系统的色差。 /span /p p style=" text-align: justify text-indent: 0em " span style=" font-size:19px font-family:宋体" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/0cf133ab-eb6d-4b98-83bd-95d8413e54a0.jpg" title=" 电子枪与电磁透镜的另类解析8.png" alt=" 电子枪与电磁透镜的另类解析8.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.3.2 /span /strong strong span style=" font-size:19px font-family:宋体" 球差 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 透镜中心区与边缘区对光线折射会有差异,使得轴上某个物点发出的光束最后会聚在光轴上不同位置,在像面上形成一个弥散斑从而影响图像的分辨力,这种差异被称为“球差”。利用光阑只让近光轴光线通过可以减少球差,另外还有两种方法最常见:配曲以及组合。 /span /p p style=" text-align: justify " br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.3.2.1 /span /strong strong span style=" font-size:19px font-family:宋体" 配曲 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 37px " 透镜两个曲面采用不同曲率半径,这两个曲面会对光线的折射产生差异,互相抵消和弥补会减少透镜球差的数值。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.1.3.2.2 /span /strong strong span style=" font-size:19px font-family:宋体" 组合 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 37px " 利用凸凹透镜的组合消除球差。组合方式有胶合和分离。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 709px " src=" https://img1.17img.cn/17img/images/201912/uepic/546f7baa-45c4-4b2c-9bf5-06508692bd6f.jpg" title=" 电子枪与电磁透镜的另类解析9.png" alt=" 电子枪与电磁透镜的另类解析9.png" width=" 664" height=" 709" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.2 /span /strong strong span style=" font-size:19px font-family:宋体" 电磁透镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px " 电子显微镜使用高能电子束做为光源,若用光学透镜对电子束进行会聚的结果是损耗大、工艺繁琐、效果差。因此必须选用另外的方式来对电子束进行操控。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 37px " 一个轴对称的均匀弯曲磁场对电子束拥有更好的折射效果,而且操控简单、效果优异,是对电子束进行会聚的主要方式,类似于光学透镜对光线的会聚,被称为“磁透镜”。该磁场是利用电流通过铜线圈来产生,故而被命名为“电磁透镜”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px" strong 2.2.1 /strong /span strong span style=" font-size:19px font-family:宋体" 电磁透镜的构造及工作原理 /span /strong strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 电磁透镜构造是将一个轴对称螺旋绕制的铜芯线圈置于一个由软磁(顺磁)性质的材料 /span span style=" font-size:19px" ( /span span style=" font-size:19px font-family:宋体" 纯铁或低碳钢 /span span style=" font-size:19px" ) /span span style=" font-size:19px font-family: 宋体" 制成具有内环间隙的壳子里。内部插入磁导率更高的锥形环状极靴。该构造可以使得磁场强度、均匀性、对称性得到极大提升,从而在较小空间获得更大的电磁折射率来提升磁透镜的会聚效果。 /span /p p style=" text-align: justify text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 199px " src=" https://img1.17img.cn/17img/images/201912/uepic/0ea4c139-2224-402e-8f16-0c835e6079c0.jpg" title=" 123.png" alt=" 123.png" width=" 664" height=" 199" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 19px " 电磁透镜的工作过程如下:当电流通过铜芯线圈时,将产生一个以线圈轴中心对称分布的闭环磁场。电子束在穿越磁场时因切割磁力线而受洛仑兹力作用发生向心的偏转折射,该偏转和电子运行方向叠加后使得电子在磁场中以圆锥螺旋曲线轨迹运行,并使电子束从磁场另一端飞出后被重新会聚。类似于光学透镜中的光线会聚,电磁场对电子束起到一个透镜的作用。改变线圈电流的大小,可以改变电磁透镜对电子束的折射率。电子显微镜通过对透镜电流的调节,来无级变换焦点及放大倍率。任何一级透镜可以在需要时打开,不用时关闭,因此更易于仪器的调整。 /span /p p style=" text-align: justify text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 664px height: 199px " src=" https://img1.17img.cn/17img/images/201912/uepic/21c7877d-4b03-4a3c-a3a9-778f4197b5e6.jpg" title=" 电子枪与电磁透镜的另类解析10.png" alt=" 电子枪与电磁透镜的另类解析10.png" width=" 664" height=" 199" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size:19px" 2.2.2 /span /strong strong span style=" font-size:19px font-family: 宋体" 电磁透镜的像差 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px " 虽然电子束在电磁透镜中的电子轨迹比可见光在光学透镜中的轨迹要复杂得多,但结果基本类似。光学透镜成像过程中存在的像差,在电磁透镜的成像过程中也同样存在,只是程度以及解决方式不一样。解决像差,对扫描电镜和透射电镜成像效果的影响也不一样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 电子显微镜使用高能电子束和电磁透镜,相对于光学显微镜,其所形成的像差要小很多。而解决像差影响也会对测试结果产生负面影响,比如束流密度增大带来的热损伤、运用单色器会对信号量形成衰减、会聚角增大在扫描电镜测试时会增加样品信号扩散,这些负面影响是否会超过解决像差所带来的正面效果?这里存在着一个辨证的关系。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 光学显微镜显然是解决像差带来的正面效果要大,所以大量的消像差组件存在于光路当中。电子显微镜呢?目前仅在场发射透射电镜中加入球差校正器有着极为明显的作用,扫描电镜中却未见使用。这与两种电子显微镜所针对的样品以及所获取的样品信息特性有关。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 透射电镜样品极薄、样品中信号扩散基本可以忽略不计。球差的改善会带来两个结果:束流密度的增加、会聚角的增加。束流密度增加会使得信息的激发区缩小同时信号量增加,这无疑对提高分辨力有利;电子束会聚角的增加有利于散射电子散射角的扩大,对 /span span style=" font-size:19px" stem /span span style=" font-size:19px font-family:宋体" 成像有利。因此对于透射电镜来说,解决球差所带来结果基本都是正面,这使得球差校正对透射电镜提高分辨力的影响十分明显。当然基础还是电子枪,热发射电子枪加装球差校正,结构更复杂而且结果差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 28px " 扫描电镜样品相对电子束来说无穷厚,电子束击入样品所引起的信号扩散较大。采用信号又是溢出样品表面的二次电子和背散射电子,电子束会聚角的改变对它们溢出范围影响不可忽略。球差校正结果到底如何?目前还没看到球差校正在扫描电镜中被运用。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 19px " 球差校正器是采用多极子校正装置产生的磁场对电子束做一个补偿散射(如凹透镜对光线的散射),来消除聚光镜边缘所引起的球差。 /span /p p style=" text-align:center" span style=" font-size:19px" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/c178f974-3020-497b-9c33-5f66b75f8046.jpg" title=" 10.jpg" alt=" 10.jpg" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size:19px font-family: 宋体" 球差校正器图解 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 font-size: 19px text-indent: 28px " 电子显微镜减少色差主要依靠单色器。其原理是将电子束按照能量进行分离,然后选取某个能量段的电子束,由此降低电子束的能量差也就是色差。其缺点是电子束强度同时降低,这就要求样品能产生充足信号,同时信号接收器的接收效果也要相应提升。目前单色器主要被用在热场电子枪电镜。冷场电子枪由于色差很小,束流也较小,单色器对测试结果的正面影响不大,负面影响(束流的衰减)可能会更大,因此冷场电镜未见使用单色器。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 28px font-size: 19px font-family: 宋体 " 辩证法的规律无处不在,任何条件的改变,部件的设计都不会是完美无缺。任何事、任何物的存在和变化都包含有正、反两方面的结果。我们必须对事和物做全面的正确了解,根据自己需求选取最大的正面因素,才能使得我们在做事和选物时获得最好的结果。最后以老祖宗的名言来做结束。那就是被我们常常认为是消极思维,其实却包含极大哲理的 /span strong style=" text-indent: 28px " span style=" font-size:24px font-family: 宋体" “中庸之道、过犹不及”。 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" font-family: 宋体 font-size: 19px text-indent: 28px " 作者简介: /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " span style=" font-family: 宋体 font-size: 19px text-indent: 28px " img style=" max-width: 100% max-height: 100% float: left width: 100px height: 154px " src=" https://img1.17img.cn/17img/images/201912/uepic/3b78ff26-962f-4859-9049-9705ef02e500.jpg" title=" 9735aac7-cc11-41a0-b012-437faf5b20b5.jpg" alt=" 9735aac7-cc11-41a0-b012-437faf5b20b5.jpg" width=" 100" height=" 154" border=" 0" vspace=" 0" / 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " span style=" font-family: 宋体 font-size: 19px text-indent: 28px " br/ /span /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" font-size: 19px font-family: 宋体 " 参考书籍: /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 19px font-family: 宋体 " 《扫描电镜与能谱仪分析技术》张大同 /span span style=" font-size: 19px " 2009 /span span style=" font-size: 19px font-family: 宋体 " 年 /span span style=" font-size: 19px " 2 /span span style=" font-size: 19px font-family: 宋体 " 月 /span span style=" font-size: 19px " 1 /span span style=" font-size: 19px font-family: 宋体 " 日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 《微分析物理及其应用》 /span span style=" font-size:19px font-family: 宋体" 丁泽军等 /span span style=" font-size: 19px" & nbsp & nbsp & nbsp 2009 /span span style=" font-size:19px font-family:宋体" 年 /span span style=" font-size:19px" 1 /span span style=" font-size:19px font-family:宋体" 月 /span span style=" font-size:19px" /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 《自然辩证法》 /span span style=" font-size:19px" & nbsp /span span style=" font-size:19px font-family:宋体" 恩格斯 /span span style=" font-size:19px" & nbsp /span span style=" font-size:19px font-family:宋体" 于光远等译 /span span style=" font-size:19px" 1984 /span span style=" font-size:19px font-family:宋体" 年 /span span style=" font-size:19px" 10 /span span style=" font-size:19px font-family: 宋体" 月 /span span style=" font-size:19px" /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 人民出版社 /span span style=" font-size:19px" & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 19px font-family: 宋体 " 《显微传》 /span span style=" font-size: 19px " & nbsp /span span style=" font-size: 19px font-family: 宋体 " 章效峰 /span span style=" font-size: 19px " 2015 /span span style=" font-size: 19px font-family: 宋体 " 年 /span span style=" font-size: 19px " 10 /span span style=" font-size: 19px font-family: 宋体 " 月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 日立 /span span style=" font-size:19px" S-4800 /span span style=" font-size:19px font-family:宋体" 冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family:宋体" 北京天美高新科学仪器有限公司 /span span style=" font-size:19px" & nbsp /span span style=" font-size:19px font-family:宋体" 高敞 /span span style=" font-size:19px" 2013 /span span style=" font-size:19px font-family:宋体" 年 /span span style=" font-size:19px" 6 /span span style=" font-size:19px font-family: 宋体" 月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family: 宋体" br/ /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 19px font-family: 宋体 color: rgb(0, 176, 240) " 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 0, 0) font-size: 19px font-family: 宋体 " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈(1) /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-decoration: underline " span style=" font-size: 19px font-family: 宋体 color: rgb(0, 0, 0) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" font-size:19px font-family: 宋体" /span /p

石英玻璃平凹透镜相关的方案

石英玻璃平凹透镜相关的资料

石英玻璃平凹透镜相关的论坛

  • 【资料】-石英玻璃的特点及应用

    [b]石英玻璃的特点及应用[/b]石英玻璃是以含二氧化硅物质,如水晶、硅石。四氧化硅为原料高温熔制而成。 其二氧化硅含量比普通玻璃高得多,一般石英玻璃二氧化硅含量在99.999%。 石英玻璃具有优异的光学性能,不仅可见光透光度特别好,而且透紫外线,红外线。 石英玻璃是良好的耐酸材料,除氢氟酸和300度以上的热磷酸外,在高温下,它能耐硫酸,硝酸,盐酸,王水,中性盐类,碳和硫等侵蚀,其化学稳定性相当于耐酸陶瓷的30倍,相当于镍铬合金和陶瓷的150倍,它耐高温,耐热震,热膨胀系数特别小。 石英玻璃电学性能极佳,在常温下,它的电阻相当于普通玻璃的10倍,对全部频率的介电损失很微小,绝缘耐压强度大。 石英玻璃还具有耐宇宙放射线,和不透原子核裂变产物的性质。 石英玻璃主要用于电光源,半导体,光学新技术等方面。 新型光源方面:做高压水银灯、长弧氙灯、碘钨灯、碘化铊灯、红外线灯和杀菌灯等。 半导体方面:是半导体材料和器件生产过程中不可缺少的材料,如生长锗,硅单晶的坩埚、舟皿炉芯管和钟罩等。 在新技术领域中:用其声、光、电学的极佳性能、做雷达上的超声延迟线,红外跟踪测向,红外照像、通迅、摄谱仪、分光光度计的棱镜,透镜、大型天文望远镜的反射窗,高温作业窗、反应堆、放射性装置;火箭,导弹的鼻锥体,喷嘴和天线罩:人造卫星的无线电绝缘零件,辐射;热天秤,真空吸附装置,精密铸造等。 石英玻璃还用于:化工、冶金、电工、科研等方面 在化工方面:可做高温耐酸性气体的燃烧、冷却的和通风装置,酸性溶液的蒸发,冷却吸物收,贮存装置,蒸馏水,盐酸、硝酸、硫酸等的制备和其它物理化学实验用品。在高温业作方面:可做光学玻璃的,坩埚成萤光体客气,电炉炉芯管,气体燃烧辐射体,在光学方面:石英玻璃和石英玻璃棉可作火箭的喷咀,宇宙飞船防热罩和观察窗等,总之,随着现代科学技术的发展,石英玻璃在各个领域方面得到更加广泛的应用。 一、 受热方面: 透明石英玻璃的线膨胀系数的5.4*10,相当于普通玻璃的1/121/20由于石英玻璃的热膨胀系数低,故热稳定性能特别好,透明石英玻璃的平均比热是0.251(0-900℃)热传导率是0.0035卡/厘米、秒、度(20℃)透明石英玻璃的变形点,退火点和工作温度。请参看表2。性能透明石英玻璃 表2.透明石英玻璃的变形点,退火点和工作温度 性能透明石英玻璃 变形点1075℃ 退火点1180℃ 软化点1730℃ 工作温度 连续短时间1000℃-1100℃ 1300℃ 一、 化学性能: 石英玻璃是良好的耐酸材料,其化学稳定性相当于耐酸陶瓷的30倍,相当于镍铬合金和陶瓷的150倍,在高温和浓酸中应用优越性尤为显著,除氢氟酸和300℃以上的磷酸外,不为其它酸所侵蚀,特别能耐酸高温下硫酸,硝酸,盐酸和王水的侵蚀。 酸 类处理时间(小时)温度(℃)透明石英玻璃(克/平方米) 硫酸(比重1.82)242050.06 硝酸(比重1.40)241150.11 硫酸(比重1.19)24660.14 硫酸(比重1.84)240200.016 硫酸(比重1.40)240200.06 硫酸(比重1.19)240200.18 二、 电气性能: 石英玻璃几乎不含电碱离子,故属不良导体,它的介电损失对全部频率都很小,用作固体绝缘材料,其电化和机械性能远较其它材料优越,在常温下,透明石英玻璃的固有电阻的10欧姆厘米,相当于普通玻璃的介电系数卫个常数3.78随着温度增高,在550℃时达到最大值,导电率也很小,当温度相当高时也未出现结构松弛和变形,所以介电损失非常小,因此绝缘耐压大。 透明石英玻璃使用中注意事项 1、 石英玻璃制品,在使用胶,必须用取离子水认真清洗或用酒精擦洗干净,清洗后严禁用手直接接触,和防止落上灰尘,否则会使玻璃玻璃失去高纯度性,而直接影响使用寿命。 2、 虽然石英玻璃的耐急热性能均非常好,但和其它物质一起使用,必须考虑到其它物质的膨胀系数,否则就会造成破损。 来源:金坛市晶玻实验仪器厂

  • 【原创大赛】石英透镜及石英窗的维护

    【原创大赛】石英透镜及石英窗的维护

    石英这个词相信大家在使用仪器过程中应该是再熟悉不过了,毕竟太多的仪器上面都有它们的身影,如原子吸收上使用的石英透镜、石英窗。这些石英材料的部件在仪器里都担负着重要的作用,所以学会对于这些部件的日常维护保养就尤为的重要。本文将向大家分享关于这些部件维护的心得和经验。1石英玻璃的优点石英玻璃顾名思义就是用石英制成。也许你会问当今科学飞速发展,各种的材料也是层出不穷,为何石英玻璃就能广泛的用在仪器上呢?它到底有什么过人之处呢?下面我就为大家列举一些石英玻璃的特点看了你就了然了。1.1、石英玻璃能够透过远紫外光谱,并且是是所有透紫外材料中最优者。1.2、石英玻璃不仅能够透过远紫外光谱也能够透过可见光和近红外光”,透光波长从185-3500nm。1.3、石英玻璃耐高温,热膨胀系数极小,化学热稳定性好,气泡、条纹、均匀性、双折射又可与一般光学玻璃媲美。所以凭借着上述的优点石英玻璃不被光谱仪器所青睐都难。2 石英玻璃在原吸上的应用2.1、提起石英玻璃在原吸上的使用大家一定会马上想去石墨炉上的石英窗,其实除了石英窗,原吸上的两个透镜也是使用石英玻璃制成的。http://ng1.17img.cn/bbsfiles/images/2012/10/201210171420_397245_1634661_3.jpg在火焰法状态下总共有两个石英透镜。在石墨炉状态下除了有两个石英透镜,还有两个石英窗。2.2石英透镜的作用 每一台的原吸都会有两个石英透镜起着聚焦光束的作用,第一透镜把空心阴极灯发出的光束准直,焦点位于燃烧器和石墨管的中央,第二透镜把将要进入单色器的光在入射狭缝中汇聚成一点。http://ng1.17img.cn/bbsfiles/images/2012/10/201210171421_397246_1634661_3.jpg2.3石英窗的作用 因为石墨炉原子化的时间很短,为了避免样品原子蒸汽的扩散和损失,尽可能的使原子蒸汽在石墨炉停留更长的时间从而提高灵敏度所以要将石墨炉原子化器设计成半封闭状态。石英窗在原子化器的作用是相当于一个“透明的窗”把原子蒸汽挡在石墨炉原子化器里但是光束能自由透过。同时石墨炉在原子化过程温度很高为了保护石墨管不在高温下氧化,所以需要石英窗把石墨管和空气隔离开并且冲入惰性气体。http://ng1.17img.cn/bbsfiles/images/2012/10/201210171421_397247_1634661_3.jpg3 石英透镜常见问题和日常维护。 从上面的介绍可以看出石英透镜和在仪器的分析中起了非常重要的作用,所以对于它们的维护就特别的重要。3.1石英透镜的安装位置 石英透镜作为光路系统中重要元器件,它的好坏对于光能量的传输有重大的影响。在仪器上一般都会有两个石英透镜(也有的仪器使用反射镜的),通常一个石英透镜是安装在空心阴极灯和原子化器之间可以称为(出射透镜或者叫第一透镜),另一透镜是安装在原子化器和单色器之间可以称为(出射透镜或者叫第一透镜)。下面为示意图http://ng1.17img.cn/bbsfiles/images/2012/10/201210171422_397248_1634661_3.jpg这些透镜属于原吸的外光路系统,没有处在完全密封的环境下,所以容易受到外界干扰。常见的故障有以下这些。3.2石英透镜上沾染了灰尘和其它污渍 如果没有保证实验室的洁净度,实验室里面的灰尘较多的话难免会使透镜上面粘上灰尘,降低了仪器的灯能量使仪器的稳定性和检测限变差。如果碰到这个情况,可以使用洗耳球先吹去上面的灰尘,如果还有污渍无法除去的可以使用脱脂棉签沾上酒精和乙醚的混合物(单独的酒精也可以)小心的擦拭透镜。通常靠近原子化器的那两面的石英透镜直接和外界接触所以容易污染,不过处理起来也较为方便。如果另外两面的透镜污染了就需要拆开相应的外壳进行清理了。下图为操作示意图http://ng1.17img.cn/bbsfiles/images/2012/10/201210171423_397249_1634661_3.jpg贴心小提示 平时仪器室一定要保持洁净度,要勤于打扫。如果仪器室靠近路边的一定要把门窗关好避免灰尘大量进入房间内。仪器没有使用时候要将其罩好,定期对透镜进行除尘维护。3.3石英透镜上形成冷凝水 在潮湿闷热的天气里,如果仪器里面没有空调或者除湿机透镜上就容易形成冷凝水。如果透镜上形成了冷凝水会阻挡光的透过,使仪器出现灯能量不足、负高压上升、仪器的稳定性和重现性降低。如果遇到这个情况的可以,可以使用电吹风把透镜吹干、也可以使用滤纸把水吸掉。需要注意的一点是使用电吹风吹干以后容易在透镜上形成水渍,最好再使用脱脂棉沾上酒精清洗一下。http://ng1.17img.cn/bbsfiles/images/2012/10/201210171424_397250_1634661_3.jpg贴心小提示 通常光学仪器室需要把温度控制在18℃~30℃(最佳20±2℃)同时温度变化率3℃/h;湿度可允许在20%~80%(最适合光学仪器的相对湿度范围是40%-70%)温度高于30℃时候湿度要小于70%。所以建议有条件的尽量给实验室安装带有除湿功能的空调,为仪器创造一个恒温的条件。在湿度较大的季节里要做好仪器的防潮工作,最好装配除湿机。[

  • 石英玻璃膜怎么测荧光

    在石英玻璃上通过静电作用上一层荧光膜,之后要怎么测荧光呢,已经定做了可以插入比色皿对角线的石英玻璃,之后要怎么测试呢,求助大神

石英玻璃平凹透镜相关的耗材

  • 平凹透镜
    平凹透镜 :应用于光学扩束,在光学系统中增大系统焦距、平衡像差。当准直光从凹面处入射、位于无穷共轭处时能减少球面误差和彗形像差。不同款型号覆盖波长从193nm到1550nm。透镜材料为N-BK7和UVFS。支持定制尺寸、焦距和镀增透膜。部分型号有较高损伤阈值。窄带脉冲激光:15J/cm2, 20 nsec, 20 Hz @ 1064 nm,宽带脉冲激光:10 J/cm2, 20 nsec, 20 Hz @ 1064 nm,连续激光:1 MW/cm2 @ 1064 nm。
  • 双凹透镜
    双凹透镜:在各个光学系统中用于分散光或扩束,在成像系统中可以透过透镜看到形成的虚像。透镜材料为N-BK7和熔融石英,波段从193nm到1550nm。通光孔径大于85%,镀增透膜后透过率超过99%(具体由波长决定)有较高的损伤阈值:窄带脉冲激光15 J/cm2, 20 nsec,20 Hz @ 1064 nm,宽带脉冲激光:10 J/cm2, 20 nsec, 20 Hz @ 1064 nm连续激光:1 MW/cm2 @ 1064 nm
  • 平凸凹透镜
    平凸凹透镜:材质:有BK7,UVFS,CaF2和ZnSe等。规格:包括直径12.7mm,25.4mm和50.8mm,厚度2.0mm和3.0mm,焦距可选20mm-10000mm,最大可定制500mm直径,1.5-20000mm焦距的产品。用途:可用于光束聚焦发散。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制