当前位置: 仪器信息网 > 行业主题 > >

生态模拟控制系统

仪器信息网生态模拟控制系统专题为您提供2024年最新生态模拟控制系统价格报价、厂家品牌的相关信息, 包括生态模拟控制系统参数、型号等,不管是国产,还是进口品牌的生态模拟控制系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生态模拟控制系统相关的耗材配件、试剂标物,还有生态模拟控制系统相关的最新资讯、资料,以及生态模拟控制系统相关的解决方案。

生态模拟控制系统相关的论坛

  • 探空仪检定用低压环境模拟舱压力控制系统的升级改造

    探空仪检定用低压环境模拟舱压力控制系统的升级改造

    [color=#990000]摘要:针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文介绍了新一代低压环境模拟舱压力控制系统的实施方案,采用了双向控制模式,进行了方案验证试验,试验结果证明控制精度和稳定性都大幅提高。关键词:低压模拟舱,探空仪,压力控制,电动针阀,电动球阀,上游模式,下游模式,PID控制器[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题的提出[/color][/size]检定探空仪的重要手段之一是在地面进行低压环境模拟舱的测试,在用的低压环境模拟舱结构如图1所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,376]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061504557090_7216_3384_3.jpg!w690x472.jpg[/img][/color][/align][align=center][color=#990000]图1 低压环境模拟舱结构示意图[/color][/align]此低压环境模拟舱使用过程中存在压力控制波动较大的问题,越靠近1个大气压时波动越大,通过分析认为主要是以下几方面原因引起:(1)压力传感器选择不合理,在全量程压力范围内传感器误差所占比例并不相同,从而显示出靠近1个大气压时波动大和远离1个大气压时波动小的现象,但实际上整体都存在较大波动,只是压力传感器在1个大气压附近精度最高,而在远离1个大气压处压力传感器误差已经完全涵盖了压力波动范围。(2)压力控制采用的是开关控制模式,真空泵和电磁阀根据压力设定值大小同时开启或关闭,尽管增加了储气罐作为缓冲,但这种半自动控制模式很难实现压力的准确恒定。(3)控制器并没有采用PID自动控制方式,也是影响压力控制精度的主要原因。综上分析,针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文将介绍新一代低压环境模拟舱压力控制系统的实施方案,拟采用双向控制模式,并进行方案验证试验,由此证明控制精度和稳定性能大幅提高。[size=18px][color=#990000]二、压力控制系统升级改造方案[/color][/size]探空仪检定用低压环境模拟舱工作的绝对压力范围为1torr~760torr,要求在此范围内模拟舱的压力可以在任意设定点上准确恒定,甚至要求可以按照设定变压速率进行控制。为此,具体的升级改造方案是在原压力控制系统的基础上,保留真空泵和真空电磁阀,更换压力传感器和控制器,去掉储能罐,增加数控的进气阀和排气阀,具体方案如下:(1)采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量,从而保证全量程的测量精度。(2)采用高精度PID真空压力控制器,以匹配电容压力计的测量精度和保证控制精度。(3)分别真空腔体的进气口和排气口安装电动针阀和电动球阀,电动针阀直接安装在进气口处,电动球阀安装在排气口和真空泵的电磁阀之间。(4)控制方式分别采用上游模式和下游模式,上游模式用来控制10torr以下气压,下游控制用来控制10~760torr范围气压。(5)如图2所示,上游模式是维持上游压力和出气口流量恒定,通过调节进气口流量控制仓室压力。(6)如图3所示,下游模式是维持上游压力和进气口流量恒定,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压环境模拟舱压力控制,400,421]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506055621_2789_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图2 低气压上游控制模式[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,450,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506206214_771_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图3 低气压下游控制模式[/color][/align][size=18px][color=#990000]三、方案验证试验[/color][/size]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计、电动针阀、电动球阀和24位高精度压力控制器进行了考核试验,试验用的真空腔体内部空间为400×400×500mm,试验装置如图4和图5所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,369]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506318858_3696_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,339]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506474377_3818_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图6所示。在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图7所示。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,333]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507110485_1025_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图6 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507246957_2391_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图7 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图8和图9所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,309]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507435250_4590_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,340]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507565906_1701_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]从上述考核试验结果可以看出,升级改造后的控制方法可以将压力控制精度和稳定性提高五倍以上,并大幅提高了低压环境模拟仓自动化水平和可靠性。[align=center]=======================================================================[/align]

  • 西门子EM223模块用耐特PLC模块自动控制系统污水处理要点

    在城镇污水处理厂的PLC自动控制系统中主要采用集中监测方式,并辅以分散控制方式,终控室可以实时监控整个污水处理厂的工作运行状况,具体的生产工艺控制采用就地站点单独控制的方式。1.耐特PLC自动控制系统的特点污水处理自动控制系统比较复杂,实际生产过程中需要采集并控制的数据量也比较多,所以上位端要用到监控软件或者移动端APP,生产站点端要用到耐特PLC ST-200 CPU226XP主机模块ST-200 EM231 16I/16O开关量模块ST-200 EM232 4AO 模拟量模块ST-200 EM231 4AI 模拟量模块同时控制方式也多种多样,包括实时控制和顺序控制等,还有闭环控制和开环控制。其最终控制对象是CODCr、BOD5、SS、pH值、氨氮、总磷等参数,这不同于一般控制系统。为了使污水处理过程中的上述参数合格,需要对处理设备的运行状态、进泥量和排泥量、各工艺段的处理时间、加药量、进水量及排水量等进行综合控制,这些都大大增加了自动控制系统的复杂性。目前,污水处理自动控制系统已经由简单的逻辑控制发展到更为发展的分散控制阶段。2.耐特PLC自动控制系统的功能污水处理控制系统的功能包括:生产过程自动控制、实时在线监视、故障显示报警、联锁保护、自动生成报表等。这些功能能够提高污水厂的处理效率,提高企业的管理水平和劳动生产率,保证设备正常运行,减轻工人的劳动强度和人工成本。耐特PLC自动控制系统与传统的人工控制方式相比,大大提高了污水处理自动化水平和管理水平,同时也大大提高了污水处理的质量、减少了有害物质的排放,产生了很好的经济效益和社会效益。

  • 详细介绍高低温试验室控制系统

    高低温试验室是帮助一些大型产品进行试验箱的大型试验设备,通常是模拟产品在高温或是低温环境下的使用状态,然后能够快速的得出产品在经过多年使用之后的性能以及参数。不过现在有很多使用这款试验箱的用户对设备的控制系统完全不了解,所以小编下面就为大家详细介绍一下,希望能够帮大家更好的使用这款设备。很多用户都不是特别了解控制系统和控制器之间有什么区别,不过这两者名字虽然相近,但是区别还是非常大的,就比如控制器只是用户在使用过程中用来协助下达命令以及记录、导出试验数据的,而控制系统是在设备运行过程中调整设备状态的。不过现在很多用户都认为这两者是相同的,所以在选购时就只注意了控制器的选择而忽视了试验箱的控制系统。而且目前国内很多厂家现在选用的都是控制器中自带的系统,虽然他们能够实现的性能和选用优质系统的设备差不多,但是在运行过程中的消耗也更大,如果一直这样长时间使用,那么这样的试验箱也更加容易报废。其实在高低温试验室控制系统这方面,多禾真的占据了非常大的优势,因为他们的控制系统是专门从德国引进的,是可以和进口试验箱选用的控制系统相媲美的,再加上多禾在生产设备时使用的都是最好的零配件以及制造技术,保证了试验箱超长的使用寿命以及极低的故障频率。http://www.doaho.com

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 月壤环境地面模拟试验装置中的真空度精密控制技术方案

    月壤环境地面模拟试验装置中的真空度精密控制技术方案

    [size=14px][color=#ff0000]摘要:在探月工程中需要在月面真空环境下采集月壤样品,需要建立地面试验装置来模拟月面的真空热环境,以测试采样器在真空热环境下的性能,由此要求真空度能实现精密控制。本文针对真空热环境地面模拟试验装置,提出了真空度精密控制的技术方案,真空度控制范围为0.1Pa~0.1MPa,全量程的控制精度为±1%。[/color][/size][size=14px][color=#ff0000][/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#330033]一、问题的提出[/color][/size]在探月工程中需要在月面真空环境下采集月壤样品,由此需要建立地面试验装置来模拟月面的真空热环境,以测试采样器在真空热环境下的性能,并要求真空度能实现精密控制。由于月壤的特殊性,目前的月壤地面模式试验装置中的真空度控制还需要解决以下几方面的问题:[size=14px](1)月壤和模拟月壤样品,一般为粉末状颗粒,因此在开始阶段的抽气速率要进行严格控制以避免产生扬尘。[/size](2)目前的真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,造成试验结果的重复性很差。[size=14px](3)月壤地面模拟试验装置普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,也是造成试验结果重复性差的原因之一。[/size][size=14px]针对月壤地面模式试验装置中存在的上述问题,本文提出了相应的技术方案,并介绍了详细的实施过程。[/size][size=18px][color=#330033]二、技术方案[/color][/size][size=14px]月壤环境地面模拟试验设备真空度密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、电动球阀、PID控制器和真空泵。为了进行真空度全量程的精密控制,一般需要配备三只电容真空计,真空计的测量精度为0.25%。为配合电容真空计的测量精度,控制器采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游数控针阀和下游电动球阀的气体流量调节和控制。[/size][align=center][size=14px][img=真空度控制好,500,489]https://ng1.17img.cn/bbsfiles/images/2022/04/202204191021365551_7090_3384_3.png!w690x676.jpg[/img][/size][/align][size=14px][/size][align=center]图1 真空度精密控制系统结构示意图[/align][size=14px]真空度的精密控制使用了动态控制模式,即在低真空条件下调节电动球阀,在高真空条件下调节数控针阀,这是一种典型的正反向控制方法,可有效保证真空度的控制精度。[/size]总之,通过此经过验证的真空度控制方案,可实现全量程范围内真空度的控制精度优于1%。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 摩擦磨损试验机的控制系统

    摩擦磨损试验机的控制系统是连接试验人员与设备主机之间的纽带,用于对试验的进行控制与数据的显示,今天介绍的控制系统是济南凯锐公司自主研发,其不仅操作简单,而且功能齐全,还可以根据客户的需要量身定做。另外像电子万能试验机和液压万能试验机的控制系统其功能跟该系列产品大体也类似,具体看参照其他相关文章。1.摩擦磨损试验机的控制系统依托于windows控制系统,一切功能的实现都是在此基础上进行的,其全部内容所占空间也不过几百兆。控制系统相比较电脑系统来说,升级更容易,也更好操作。2.系统实现了分级别管理,控制系统的全部数据对于高权限的操作来说是完全公开的,不仅包括试验操作部分还包括设备的检定标定等功能。而对于普通的使用者来说也能对完全满足试验进行操作,即常规的试验操作部分。这样就保证系统的安全性,避免了因其他人对系统的操作造成系统的紊乱。3.控制系统具有完善的功能模块,有菜单栏,数据显示区(试验力显示区、摩擦力显示区、时间控制区、转速显示区、温度显示区、报警提示),曲线显示区(试验力-时间、摩擦力-时间-摩擦系数、摩擦系数-时间、转速-时间、温度-时间、摩擦力矩-时间),试验控制部分等思达部分组成。每个部分所能实现的功能还有很多,这里不一一介绍,详情可咨询凯锐的其他相关资料。4.该控制系统支持各种品牌商业用打印机,类似于三星、联想、爱普生等,兼容性高。5.操作功能不仅包括自动操作还可以进行手动操作,手动操作弥补了自动操作的一些缺点。适合用户进行各类复杂的数据分析。

  • 西门子EM232模块用国产耐特PLC模块自动控制系统恒压供水特点

    西门子EM232模块用国产耐特PLC模块自动控制系统恒压供水特点

    PLC恒压供水广泛用于高楼层生活、消防等供水系统。功能特点:1.将PLC、压力传感器、变频器、上位机等集成一个闭环控制系统。2.能保障系统管网的恒压,减少供水欠压和过压不合理现象。3.能用于诸多供水系统中,设备投资少,占地面积小,节水节电,操作控制自动。4.系统主要有:耐特ST-200系列PLC、变频器、上位监控PC机、压力传感器、液位传感器、控制接触器、软启动器及储水罐等组成。耐特PLC主机为STCPU226AC/DC/RLY,模拟量扩展模块为STEM235+STEM232耐特PLC应用于恒压供水设备控制系统产品功能特点:1、可采用USS通信或MODBUS通信方式控制变频器进行拖动水泵工作,也可采用模拟量控制方式通过变频器对水泵输出负载平滑调节;2、实时管网压力监测反馈,通过PID运算对水泵转速进行平滑连续性调节,减小对电网、电气设备、以及机械设备的冲击;3、备用水泵根据负荷需求智能介入工作,实现更大功率的调节周期,以及安全冗余;4、接入耐特智能网关模块,将管网压力、工作状态及故障报警信息上传到自来水公司或相关单位,达到快速响应快速维护,减少设备故障给终端用户带来的不便;5、本系统控制部分采用耐特PLCST-200CPU224XP+智能网关模块+压力仪表的配置进行控制,配合云服务器使用,控制灵活,安全可靠,对管网改造、管网压力监测等应用有先天优势。控制系统架构图[img=,554,397]http://ng1.17img.cn/bbsfiles/images/2018/08/201808071558374043_8916_3418314_3.png!w554x397.jpg[/img]

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 变温PID串级控制系统提高膜分离制氮机产量的解决方案

    变温PID串级控制系统提高膜分离制氮机产量的解决方案

    [size=16px][color=#990000]摘要:膜分离制氮过程中需要将干燥空气进行加热才能使产品氮气纯度满足要求。目前各种制氮机为了保证氮气纯度,往往都将加热温度控制在较高水平,无法根据氮气纯度实时改变工作温度,从而造成氮气产量小、效率低现象。本文提出的解决方案则以氮气纯度作为主控参数,而将温度作为次控参数,由两个具有变送和远程设定点功能的PID控制器组成串级控制系统来进行变温调节,将氮气纯度始终控制在设定值附近,在满足纯度要求的前提下可有效降低膜组件的工作温度,并显著提高产品氮气产量。[/color][/size][align=center][img=高精度温度串级控制器在空气膜分离制氮中的应用,650,353]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040954565083_2140_3221506_3.jpg!w690x375.jpg[/img][/align][size=16px][/size][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 氮气作为一种常用的惰化气体,其制作方法主要有变压吸附法、膜分离法和深冷法,而膜分离制氮[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]对于其他两种方法具有系统简单、 体积小、操作简便、可靠性高、便于操作和维护的优点。膜分离法制备氮气的设备在运行过程中需要加热空气才能使产品氮气纯度达到 99.0%以上,而在目前很多膜分离制氮机的温度控制方面,还存在以下工程实际问题需要解决:[/size][size=16px] 目前大多数膜分离制氮机的温度控制还是采用固定温度下的PID控制方式,如有些制氮机的膜组件需要将空气加热到49℃恒定温度。但当设备更换新膜组件时,膜性能比较好时,则只需较低温度(例如 35℃)就可以使产出的氮气纯度达到 99.0%,氮气流量也能够满足用户使用要求。如果膜组件入口气体温度仍然控制在 49℃,则膜组件产品氮气的纯度会升高很多,回收率下降,即氮气产量就下降很多,难以满足用户要求。 [/size][size=16px] 由此可见,在膜分离制氮设备中,真正需要的是能根据产出氮气的纯度要求来实时调节空气加热温度,这样才能保证产品氮气的纯度和流量同时满足用户要求。为了解决此问题,本文将提出采用串级控制器的膜分离制氮解决方案,在氮气纯度满足要求的前提下提高氮气产量。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 膜分离制氮的一般工艺流程如图1所示, 空气经空压机压缩和调节阀后形成高压压缩气体,经过空气预处理装置去除固体颗粒油分和水分,成为高度洁净的压缩冷空气后,再经过电加热器将其加热到设定温度。 高温压缩空气进入膜组件,膜组件将分离出高纯氮气和富氧气体。[/size][align=center][size=16px][color=#990000][b][img=01.膜分离制氮气工艺控制系统示意图,650,207]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040957161940_2313_3221506_3.jpg!w690x220.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 膜分离制氮气工艺流程示意图[/b][/color][/size][/align][size=16px] 膜分离制氮系统的温度控制多采用工业用PID控制方式,并由人工设定系统的工作温度。PID控制器调节加载给加热器的电功率,从而实现膜分离制氮系统恒温工作。温度控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.恒定温度PID控制示意图,500,137]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040957420919_8350_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 恒定温度PID控制示意图[/b][/color][/size][/align][size=16px] 图2所示的采用恒定温度PID控制方式存在膜组件老化时无法保证产氮气纯度稳定以及产量降低的缺点,本文的解决方案则采用了PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#990000][b][img=03.变温度PID串级控制示意图,690,189]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040958060588_9122_3221506_3.jpg!w690x189.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 变温度PID串级控制示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括温度传感器、电加热器和次PID控制器,其中将进入膜组件的空气温度作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了氮气分析仪、次控制回路、膜组件和主PID控制器,其中将膜组件产出氮气的纯度作为主回路的控制参数。[/size][size=16px] 解决方案中串级控制系统的主要特征是将主控制回路的输出值(即温度值)作为次控制回路的设定值,从而控制电加热器的加热功率来调整进入膜组件的空气温度。尽管串级控制系统中用到了两个PID控制器,但要实现串级控制功能,相应的PID控制器需要具备以下功能:[/size][size=16px] (1)在次控制回路中,所用的PID控制器输入信号为标准的热电偶或热电阻信号,输出信号是4~20mA或0~10V标准的模拟信号,控制器具有PID自动控制和PID参数自整定功能。而重要的是这个次PID控制器的设定值是主PID控制器的输出值,且不是固定值,而且设定值信号类型和量程要与所接入的温度传感器完全保持一致。[/size][size=16px] (2)在主控制回路中,主PID控制器需要具有标准的PID自动控制和PID参数自整定功能之外,还需具有接收氮气分析仪输出的4~20mA或0~10V模拟信号或其他形式信号的能力。最重要的是主PID控制器要具有输出温度传感器(热电偶或热电阻)信号的能力,而且所输出信号完全能被次PID控制器接收。[/size][size=16px] 由此可见,要真正在工程上实现膜分离氮气的串级控制,关键是要解决以下三个问题:[/size][size=16px] (1)增加一个氮气纯度测量装置。此装置可以是氮气纯度传感器或分析仪等,氮气测量装置的输出信号最好是4~20mA或0~10V等形式的标准模拟信号,以便主PID控制器接收。[/size][size=16px] (2)主PID控制器的输出信号需要与次PID控制回路中所用温度传感器的类型和量程始终保持一致,由此使得此输出信号便于被次PID控制器接收后作为设定值来进行温度控制。[/size][size=16px] (3)次PID控制器要具有自动可变设定值功能,即能够接收主PID控制器的控制输出信号作为随时改变的设定值,次PID控制器随时根据接收到的设定值进行温度控制。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#990000][b][img=04.串级控制PID调节器接线示意图,690,190]https://ng1.17img.cn/bbsfiles/images/2023/04/202304040958225065_8103_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收氮气纯度传感器测量信号,然后根据所设置的氮气纯度固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的温度传感器信号,进行PID自动控制,控制信号经主输出端口连接电加热器执行机构,对空气加热温度进行自动调节。[/size][size=16px] 需要提醒的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的温度传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以很好的解决空气膜分离中纯度稳定的氮气输出,从而提高产品氮气的产量。同时通过降低了的空气加热温度,可以达到节能效果。[/size][size=16px] 此解决方案不仅可以应用于空气膜分离制氮领域,也可以在其他串级控制方面得到应用。不仅可以进行温度参数的串级控制,也可以进行位移、真空、压力和张力等其他参数的串级控制。[/size][size=16px] 在此解决方案的串级控制系统中,分别采用了多功能PID控制器中的变送和远程设定点功能,这是一般工业用PID控制器无法具备的高级功能。方案中所用的PID控制器不仅功能强大和具有RS485通讯接口,还具有很高的测控精度,如24位AD、16位DA和0.01%最小输出百分比。随机配备的计算机软件,可直接通过计算机进行相应的参数设置和控制运行。[/size][align=center][size=16px][color=#990000][/color][/size][/align][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=16px][/size]

  • 【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    【资料】六自由度-单自由度/振动台闭环数控程序(以下简称:VibControl控制系统)

    振动台闭环数控程序(以下简称:VibControl控制系统)是基于系统非线性迭代补偿理论来对控制信号和响应信号进行修正的。1.1 单自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230112_185926_1634361_3.jpg[/img]1.2 六自由度系统构成[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911230113_185927_1634361_3.jpg[/img]液压振动台其实就是电液伺服技术的进一步扩展,不过在高性能和大吨位的技术上远远高于电磁台的水平,如大型地震模拟系统和整个装甲车的振动模拟系统都是液压振动台.

  • TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对红外目标模拟器的高精度可编程温度控制功能,本文介绍了实现高精度温控的温控装置,给出了温控方案。温控装置主要包括[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热模组、电源自动换向器、传感器和超高精度[/font]PID[font='微软雅黑',sans-serif]控制器。从超高精度温度控制,关键是[/font]PID[font='微软雅黑',sans-serif]控制器具有[/font]24[font='微软雅黑',sans-serif]位[/font]AD[font='微软雅黑',sans-serif]、[/font]16[font='微软雅黑',sans-serif]位[/font]DA[font='微软雅黑',sans-serif]和[/font]0.01%[font='微软雅黑',sans-serif]最小输出百分比的高性能指标,同时还具有可手动和通讯软件编程功能。[/font][/color][/b][align=center][img=常温黑体中TEC半导体可编程高精度温度控制解决方案,600,337]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220435170646_2129_3221506_3.jpg!w690x388.jpg[/img][/align][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align][b][size=18px][color=#339999]1. [font='微软雅黑',sans-serif]红外目标模拟器工作原理[/font][/color][/size][/b][font='微软雅黑',sans-serif] 红外目标模拟器([/font]Infrared Target Simulator[font='微软雅黑',sans-serif])广泛应用于红外探测器和红外热像仪整机的工艺测试和评价测试,它为被测装置提供标准的红外测试图像,用于测试关键指标,如[/font]NETD[font='微软雅黑',sans-serif](噪声等效温差)、[/font]MRTD[font='微软雅黑',sans-serif](最小可分辨温差)、[/font]MDRD[font='微软雅黑',sans-serif](最小可探测温差)、[/font]SiTF[font='微软雅黑',sans-serif](信号传递函数)等,以及整个系统的性能评估。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]红外目标模拟器的重要指标包括发射率、辐射均匀性、温度控制精度、温度稳定性和响应速度等,其中前两个指标取决于所用黑体的结构、辐射面材质和黑漆喷涂技术,其余指标则取决于温控系统的性能。红外目标模拟器一般通过单黑体或双黑体实现,但无论采用哪一种黑体结构,高精度的温控技术都是其中的技术关键,它直接关系到红外目标模拟器的性能,是实现红外系统指标测试的关键因素。红外目标模拟器的工作原理如图[/font]1[font='微软雅黑',sans-serif]所示。[/font][align=center][size=14px][b][color=#339999][img=红外目标模拟器原理示意图,500,365]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437236876_9226_3221506_3.jpg!w690x505.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]红外目标模拟器工作原理示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]如图[/font]1[font='微软雅黑',sans-serif]所示,目标位于准直器反射器焦平面上。热辐射图样将由热辐射表面和目标之间的温差产生,并由准直器转换成平行光以模拟无限远的红外目标,供被测红外系统的成像探测器使用。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]温控系统由温度传感器、[/font]TEC[font='微软雅黑',sans-serif]半导体模组、散热器、风扇、[/font]PID [font='微软雅黑',sans-serif]控制器、自动电源换向器等组成。温度传感器[/font]A[font='微软雅黑',sans-serif]检测的是目标温度,温度传感器[/font]B[font='微软雅黑',sans-serif]检测的是辐射表面温度。根据目标的设定温度,控制器通过[/font]PID[font='微软雅黑',sans-serif]控制算法计算加热或制冷的控制量并驱动电源换向器工作电流的方向和大小,使得[/font]TEC[font='微软雅黑',sans-serif]半导体模组进行加热或制冷输出。[/font][b][size=18px][color=#339999]2. TEC[font='微软雅黑',sans-serif]半导体高精度温度控制标准装置[/font][/color][/size][/b][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]根据红外测试设备的检测指标,要求红外目标模拟器的工作温度范围为[/font]0~50[font='微软雅黑',sans-serif]℃,温度分辨率为[/font]0.001[font='微软雅黑',sans-serif]℃,控温精度为[/font]0.03[font='微软雅黑',sans-serif]℃。要实现此技术指标,温度控制系统需包括加热装置、温度传感器、执行器和[/font]PID[font='微软雅黑',sans-serif]控制器这几部分内容,而且需要满足相应的技术指标。为此,专门针对温控系统本文设计了相应的解决方案,具体结构如图[/font]2[font='微软雅黑',sans-serif]所示。以下为图[/font]2[font='微软雅黑',sans-serif]所示温控方案的详细描述:[/font][align=center][size=14px][b][color=#339999][img=温度控制系统方案示意图,550,559]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437516841_6377_3221506_3.jpg!w690x702.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]红外目标模拟器温度控制系统方案示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]1[font='微软雅黑',sans-serif])加热方式:有很多种加热方式可供选择,如电加热、循环水加热和[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热等,但考虑到红外目标模拟器对工作温度范围和超高精度温度控制的要求,目前也只有[/font]TEC[font='微软雅黑',sans-serif]热电半导体制冷加热方式比较适用。[/font]TEC[font='微软雅黑',sans-serif]用于红外目标模拟器的温度控制除能满足温度范围之外,与其他加热方式相比具有更高的控温精度、更快的冷热变化控制速度、结构简单以及造价低的突出特点。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]2[font='微软雅黑',sans-serif])执行机构:为了实现[/font]TEC[font='微软雅黑',sans-serif]的加热制冷功能,除了需要对[/font]TEC[font='微软雅黑',sans-serif]模组的加载电流进行自动调节之外,还需在调节过程中能自动改变电流方向,为此,[/font]TEC[font='微软雅黑',sans-serif]执行机构配备了电源自动换向器。换向器接收加热和制冷控制信号,并根据控制信号大小和方向输出相应的工作电流。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]3[font='微软雅黑',sans-serif])温度传感器:温度传感器是决定温度控制精度的关键因素之一,因此本方案中配置了高等级的铂电阻温度计(如标准铂电阻温度计)或高等级热敏电阻温度传感器,使得温度传感器的温度分辨率能达到[/font]0.001[font='微软雅黑',sans-serif]℃以及测温精度能达到[/font]0.01~0.02[font='微软雅黑',sans-serif]℃。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]4[font='微软雅黑',sans-serif])超高精度[/font]PID[font='微软雅黑',sans-serif]控制器:决定温度控制精度的另一个关键因素是温度控制器的数据采集精度、控制算法和控制输出精度。为此,在本解决方案中采用了目前控制精度最高的[/font]VPC2021-1[font='微软雅黑',sans-serif]系列的工业用[/font]PID[font='微软雅黑',sans-serif]程序调节器,除具有不超过[/font]96mm[font='微软雅黑',sans-serif]×[/font]96mm[font='微软雅黑',sans-serif]×[/font]87mm[font='微软雅黑',sans-serif]的小巧尺寸外,关键是此[/font]PID[font='微软雅黑',sans-serif]调节器的模数转换[/font]AD[font='微软雅黑',sans-serif]为[/font]24[font='微软雅黑',sans-serif]位、数模转换[/font]DA[font='微软雅黑',sans-serif]为[/font]16[font='微软雅黑',sans-serif]位、双精度浮点运行运算以及[/font]0.01%[font='微软雅黑',sans-serif]的最小输出百分比,并可对控制程序进行编辑设计,适合红外目标模拟器在全温度量程内多个设定点的自动温度恒定控制。同时,此调节器采用了高级无超调[/font]PID[font='微软雅黑',sans-serif]控制模式,并具有[/font]PID[font='微软雅黑',sans-serif]参数自整定功能,结合超高精度的数据采集和控制输出,可实现十分精细的温度变化调节和控制。另外,此调节器附带功能强大的计算机软件,通过计算机运行此软件可快速进行[/font]PID[font='微软雅黑',sans-serif]控制器的远程设置和运行操作,同时能图形化的显示和记录所有设置参数、控制程序曲线和温度控制变化曲线。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]总之,本文所述的采用[/font]TEC[font='微软雅黑',sans-serif]模组进行的温度控制系统,已经成为超高精度可编程温度控制的一种标准和通用性方案,完全适用于红外目标模拟器的高精度温度控制。[/font][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align]

  • 星际空间环境地面模拟:气氛、气压或真空度的精确模拟及控制

    [quote][color=#ff0000]摘要:针对星际空间气氛环境,介绍了地面模拟试验中的气氛、气压或真空度的精确模拟及控制技术,特别介绍了美国标准化技术研究所NIST和上海依阳实业有限公司在这方面所做的研究工作。[/color][/quote][align=center][img]http://p3.pstatp.com/large/5e830001f98c5d356c2a[/img][/align][align=center][color=#ff0000]美国NASA火星探测器[/color][/align][color=#ff0000][b]1. 前言[/b][/color] 航天飞行器和探测器在星际空间中会遇到各种气氛环境,有在深空中的高真空环境,也有在火星大气层中的低压二氧化碳气氛环境。飞行器和探测器中大量使用的防隔热材料在不同气氛和不同气压条件下都会呈现不同特性,因此在隔热材料选择时要准确了解相应气氛条件的材料性能。 防隔热材料经过多年的研究已经初步具备了比较成熟的各种模拟、测试和表征技术,但随着新型高效隔热材料技术的发展,特别是多种阻断传热技术的应用以及低气压使用环境,使得新型绝热材料及元件的热导率更低。如何准确测试评价这些隔热材料在1000℃以上高温和100Pa以上气压环境条件下的有效热导率就成为了目前国内外的一个技术难点。 由于新型高温隔热材料的传热形式是固体导热、气体导热和对流换热以及热辐射等多种形式的耦合传热,传热形式十分复杂,通过理论分析计算获得的有效热导率计算结果往往与实验结果存在很大的偏差,因此对于新型隔热材料的有效热导率测试主要还是依据实验测试结果。 纵观国内外对高温隔热材料有效热导率测试所采用的测试方法基本都集中在稳态热流计法,这主要是因为它是目前可以实现1000℃以上有效热导率测试的唯一成熟有效的技术。美国兰利研究中心1999年研制了一套变气氛压力高温有效热导率测试系统,测试中采用了薄膜热流计测试流经试样的热流密度,试样的冷面温度为室温,试样热面最高温度可达1800℉(约982℃),环境气压控制范围为0.0001~760Torr,正方形试样最大尺寸为边长8in(约203mm)。整个测量装置的有效热导率测量不确定度范围为5.5%~9.9%,在常压环境下对NIST标准参考材料测试的不确定度在5.5%以内。美国兰利研究中心的这篇研究报告给出了几种典型材料随温度和气压变化的有效热导率测试结果,证明了在不同气氛压强范围内对热导率的影响程度的不同。 通过美国兰利研究中心的研究工作从试验上证明了气压对材料热导率有明显的影响,气压(真空度)的控制误差是主要测量误差源,所以在材料热导率测试中要对气压进行准确控制。由此,这就在稳态热流计法热导率测试过程引入了两个控制变量,即除了达到温度恒定条件外,还需要达到气压压强的稳定。 因为温度和气压之间存在相互影响,一般情况下是气压随着温度升降而升降,同时气压下降使得被测试样热导率降低而延长了达到热平衡所需时间,这样就造成整个稳态法热导率测试过程中参数控制的复杂性。 由此可见,在稳态法热导率测量过程中,需要对气压控制的稳定性就行试验研究,摸清气压波动对温度恒定的影响,确定气压的恒定控制精度,并在可易实现的气压控制精度条件下尽可能的缩短气压对温度稳定周期的影响。 我们所研制的热流计法隔热材料高温热导率测试系统就是一个可在变温和变气压环境进行隔热材料热导率测试的设备,可以对温度和气压压强进行控制,因此针对气压对材料热导率测试的影响进行了研究。在气压波动性对材料热导率测试影响方面国内外几乎没有研究工作报道,在我们开展此工作的后期,美国NIST的Zarr等发表了一篇会议论文,文中介绍了NIST在开展直径500mm高温保护热板法热导率测试系统研制过程中所进行的一些气压对热导率影响方面的工作。 本文将对NIST和上海依阳实业有限公司的研究工作做一介绍,尽管两者研究工作的技术指标要求有很大不同,但通过这些研究可以获得很多的借鉴。另外,气压对热导率影响的试验研究,也可以作为其它热导率影响因素(如湿度)测试研究的技术借鉴。[color=#ff0000][b]2. 美国NIST在气压对材料热导率测试影响方面的研究工作2.1. 美国NIST护热板法热导率测试系统简介[/b][/color] 美国NIST多年来一直进行着护热板法热导率测试技术的研究工作,并研制了多套不同尺寸和不同测试温度的护热板法热导率测试系统。最近的研究工作是研制变温变气压环境下试样直径500mm的护热板法高温热导率测试系统,测试系统已经研制完成,如图 2‑ 1所示,正开展一系列的设备考核和试样测试评价工作。 在图 2‑ 1所示的NIST试样直径500mm的护热板法高温热导率测试系统中,热板(1)和冷板(2)由一个圆筒状护热装置(3)包裹,这些部件都悬挂在一个悬臂支撑结构(A)上,整个热导率测量装置放置在一个气氛压强可控的真空试验腔内,真空试验腔体包括一个直立式焊接基座(C)和放置在滚轮支撑架上的一个卧式圆筒腔体(B),(D)为扩散泵,整个测试系统的试验温度范围为280K~340K,真空试验腔的气压控制范围为4Pa至100.4kPa(1个大气压)。NIST研制此设备的目的主要是用于对低热导率标准参考材料进行校准测试。[align=center][img]http://p1.pstatp.com/large/5e7b0003ebf23bc410b6[/img][/align][align=center][color=#ff0000]图 2‑ 1 美国NIST 500mm保护热板法热导率测试系统[/color][/align][b][color=#ff0000]2.2. 气压控制系统[/color][/b] 图 2‑ 2所示的热导率测量装置气压控制系统包含的主要部件有:(a)干燥空气净化发生器(供气系统);(b)真空腔;(c)三个独立可控真空泵系统(11油扩散泵、13机械泵和15隔膜泵)。每个真空泵都由独立的计算机串口控制。[align=center][color=#ff0000][img]http://p3.pstatp.com/large/5e7c00038563ce740831[/img][/color][/align][align=center][color=#ff0000]图 2‑ 2 NIST 测试试样直径500mm护热板法热导率测量装置气压控制结构示意图[/color][/align] 真空系统中采用了三个机械泵来覆盖不同的气压压强范围。在NIST的这套测量装置中,并没有使用到用于超低气压控制的第三级泵(扩散泵)。根据气压范围,真空腔内的气压测量采用了3个薄膜电容规(CDGs)。这些电容薄膜规的三个基本量程为:133kPa(1000torr)、1.33kPa(10torr)和0.0133kPa(0.1torr)。 (1)中等气压:指3.3kPa~107kPa(25torr ~ 800torr)气压范围,可通过采用一个可变速隔膜泵和一个专用控制器将真空腔内的气压控制在此气压范围内。使用隔膜泵将不会使用到气源。 (2)低气压:指0.004kPa~3.3kPa(0.03torr ~ 25torr)气压范围,可通过采用一个机械泵(叶片旋转泵)和一个专用PID控制蝶阀以下游控制形式将真空腔内的气压控制在此气压范围内。 (3)超低气压:指低于0.004kPa(0.03torr)的气压范围,可通过采用一个扩散泵/初级泵系统和一个专用PID控制插板阀以下游控制形式将真空腔内的气压控制在此气压范围内。[b][color=#ff0000]2.3. 控制稳定性[/color][/b] 整个热导率测试系统的控制稳定性是通过图形分析量热计板温度响应来进行考察。图 2‑ 3和图 2‑ 4分别绘出了量热计板温度和真空腔气压随时间的变化曲线,其中左边Y轴为温度坐标轴,右边Y轴为气压坐标轴,X轴表示经历时间(以小时计),图 2‑ 3和图 2‑ 4所示的图中选定了相同的X时间轴(50h)以便于观察对比,量热计温度和真空腔气压的数据采集间隔时间为60s。 量热计板的温度测量采用扩展不确定度(k=2)为0.001K的长杆标准铂电阻温度计(SPRT),真空腔气压测量采用133kPa或1.33kPa量程的薄膜电容规。铂电阻温度计和薄膜电容规以及相应的数据采集系统都分别经过了NIST温度和气压计量部门的校准。 图 2‑ 3显示了从初始温度305.15K(前一个试验温度)到当前控制温度320.15K整个过程中温度随时间的变化过程和稳定性。从图 2‑ 3中可以看出,约在4小时处,在经历一个约0.9K的轻微过冲和近10小时的单调降温过程后,在经历了总共约15个小时后量热计温度达到稳定。在量热计温度稳定测量阶段,即从第24小时到第28小时期间,量热计温度的波动范围为320.1474K~320.1524K,波幅为0.005K,此期间的温度平均值为320.1497K。[align=center][img]http://p3.pstatp.com/large/5e7a00041fc5400d3f33[/img][/align][align=center][color=#ff0000]图 2‑ 3 未进行压强控制情况下,量热计板温度从305.15K控制到320.15K时的温度响应曲线[/color][/align] 在图 2‑ 3中所显示的真空腔气压是未经控制的环境大气气压,从图中可以看出气压有很小的变化。在量热计温度达到稳定测量阶段后,真空腔内的气压平均值为99.53kPa,气压波动范围为99.46kPa~99.58kPa,波幅为0.12kPa。 图 2‑ 4显示了当真空腔气压从前一试验气压突然降低到低气压后整个的量热计温度相应过程和控制稳定性,图中所示的量热计温度控制设定点未发生改变一致控制在320.15K。在开始测试的初期,真空腔气压被抽取到一个固定值0.013kPa,用时15分钟。[align=center][img]http://p1.pstatp.com/large/5e810001cbb901cbaf64[/img][/align][align=center][color=#ff0000]图 2‑ 4 在控制温度为320.15K,气压从0.035kPa控制到0.013kPa过程中温度响应曲线[/color][/align] 需要注意的是在6小时处的气压有一个扰动,但这个气压扰动对量热计温度的影响很小。另外还需要注意的是图 2‑ 4的左边Y坐标轴,与图 2‑ 3相比,图 2‑ 4中放大了温度差,由此可以更清晰的观察量热计温度的变化。 随着气压的突然降低,由于空气导热的减小,通过被测试样的热流量也随之降低,由此造成量热计温度逐渐升高并约在4小时后达到最高点320.8K,这与图 2‑ 3中的温度过冲相似。随后,量热计温度在一个约为22小时的时段内发生了围绕设定点320.15K附近的收敛式振荡,这种振荡现象有些令人惊讶。在43小时到47小时时间段内达到了热平衡,这比图 2‑ 3中所达到的热平衡时间段晚了近20小时。在稳态测量时间范围内,量热计温度的波动范围为320.1476K~320.154K,波幅为0.006K,此期间的温度平均值为320.1506K。[b][color=#ff0000]3. 上海依阳公司对材料热导率测试中实现气氛和气压精确控制[/color][/b] 依阳公司的热导率测试系统采用的是稳态热流计法,试样的热面温度最高为1000℃,试样的冷面温度最低为20℃,气压控制范围为6Pa至100.4kPa(1个大气压)。依阳公司的热流计法热导率测试系统主要应用于防隔热材料在高温和高空环境下的等效热导率测试评价。 在各种稳态法热导率测试设备中会经常用到冷却液冷却的冷板,如果冷板温度低于环境温度,且环境湿度比较大,则会在冷板上形成冷凝水,这将会严重的影响热导率的测量。因此,对于稳态法热导率测量装置来说,不论是不是需要进行气氛压力控制,试验环境中必须是干燥气体则是一个必要试验条件。[b][color=#ff0000]3.1. 气压控制系统[/color][/b] 在依阳公司的热流计法热导率测试系统的气压控制系统中,气压控制系统的整体设计思路与NIST的完全相同,但还是有以下三方面的微小区别:[quote] (1)气压控制范围为6Pa至100.4kPa(1个大气压),所以采用了INFICON公司的两个薄膜电容规气压传感器来覆盖这个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa。而不是像NIST那样采用了三个气压传感器。 (2)这两个传感器连接到一个INFICON VCC500真空控制器上控制一个数字真空阀INFICON VDE016,数字真空阀与干燥气体系统连接,根据不同的要求自动选择传感器进行气压的定点控制。而不是像NIST那样采用多路控制器进行控制。由于INFICON VCC500真空控制器在定点精确控制上有明显不足,气压控制波动较大,后改用自行研制的气压控制器。 (3)抽气系统仅仅采用了一个机械泵,真空腔体的极限真空度可以达到6Pa,并没有像NIST那样采用了隔膜泵和机械泵。[/quote][color=#ff0000][b]3.2. 气压控制3.2.1. 极限真空时的真空试验腔体的漏率[/b][/color] 真空腔空载情况下开启机械泵,约15分钟后真空腔体内的气压从大气常压降低到6Pa左右后将不再改变。达到极限气压后,此时关闭抽气管路并关闭机械泵,使得真空腔体处于自然状态,同时用数字真空计系统检测真空腔体内真空度的变化情况,由此来确定和考核真空腔体的漏率,检测结果如图 3‑ 1所示。[align=center][img]http://p1.pstatp.com/large/5e7d0002c895b6405a60[/img][/align][align=center][color=#ff0000]图 3‑ 1 停止抽气后真空腔体内的气压变化[/color][/align] 从图 3‑ 1所示的测试结果可以看出,关闭抽气管路后腔体内的气压基本按照线性规律缓慢上升,上升的速度为2.28Pa/h,经过14小时后腔体内的气压从6Pa左右上升到了38Pa左右,整个真空腔体的漏率为0.59m^3Pa/h。[b][color=#ff0000]3.2.2. 真空腔气压控制[/color][/b] 因为采用了两个薄膜电容规气压传感器来覆盖整个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa,所以针对不同的气压范围进行了相应的控制试验。但在实际压强控制过中发现,INFICON压强控制器的控制效果并不好,气压的波动性较大,因此最终我们采用了自行研制的压强控制系统来进行控制。[color=#ff0000]3.2.2.1.低气压压强控制试验[/color] (1)采用英富康真空控制系统进行低气压压强控制 所谓低气压是指真空腔内的真空度小于133Pa以下的气氛环境,133Pa也是其中一个电容薄膜真空计的最大真空度测量量程。整个低气压压强控制变化过程如图 3‑ 2所示。 试验开始阶段,首先全速抽真空,使得真空腔内的气压快速降低到15Pa左右,然后改变压强设定点为20Pa,控制参数设置为98,此时气压开始在20Pa上下大幅波动,后改变控制参数为1,气压开始逐渐收敛并恒定到20Pa左右。 为了检验加载氮气后对气压控制的影响,当真空腔内气压控制到20Pa后在控制阀的进气口处加载输出的氮气,由于加载的氮气会产生带有一定的压力,减压阀门调整最小刻度,加载后真空腔内的气压在20Pa上下波动较大,无论如何改变控制参数也很难控制稳定。 去除掉加载的氮气后,从新进行恒定气压控制,气压设定点分别为20Pa和10Pa,从图 3‑ 2中的控制曲线可以看出,真空腔内的气压在20Pa上下0.5Pa范围内波动,波动性较小,波动性基本在±2.5%以内。 通过以上试验可以说明为了达到很好的低气压控制的稳定性,加载的氮气压力越低越好。[align=center][img]http://p3.pstatp.com/large/5e7d0002c9e04033cafe[/img][/align][align=center][color=#ff0000]图 3‑ 2 低气压(100Pa以下)控压试验曲线[/color][/align] (2)采用自制真空控制系统进行低气压压强控制 采用自制的真空控制系统进行了初步的气压压强控制试验以后,专门针对低气压(采用1Torr真空计)并接通氮气供气系统进行了进一步考核试验。由于真空腔体的最低气压只能达到0.1Torr左右,所以设计了0.1Torr、0.3Torr、0.6Torr 和0.9Torr 四个气压控制点,整个气压控制过程如图 3-3 所示。[align=center][img]http://p3.pstatp.com/large/5e830001d23bbdd38b1d[/img][/align][align=center][color=#ff0000]图 3‑ 3 压缩氮气接通后的低气压恒定控制曲线[/color][/align] 所从图 3‑ 3所示的气压控制过程可以看出,气压从低点向高点进行恒定控制时,每次向上改变设定点时,都会由于充气使得气压产生超出量程范围的突变,然后再逐渐下降恒定在设定点上。这种现象的产生是由于导入的氮气为带有一定流量和压力的氮气,这个压力容易产生过量的氮气气体导入。 当气压恒定在0.9Torr后,逐渐向下设定气压控制点,气压向下恒定控制变化曲线如图 3‑ 3所示。[color=#ff0000]3.2.2.2.高气压压强控制试验[/color] (1)采用英富康真空控制系统进行高气压压强控制 采用了全开式真空泵抽取外加控制阀控制气压方式,控制阀外接大气,气压控制设定点分别为500Pa和300Pa,整个控制过程的气压变化曲线如图 3-4 所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003f7a4c50b7695[/img][/align][align=center][color=#ff0000]图 3-4 高气压压强控制试验曲线[/color][/align] 从以上高气压控制试验可以看出,采用富士康的VCC 500 真空度的控制是台阶式的变化,而且并不一定能恒定在设定点上,实际恒定点与设定点有一定的偏差,但恒定点的气压很稳定。这种现象需要在实际使用过程中注意。 (2)采用自制真空控制系统首次进行各种气压压强控制试验 采用自制的压强控制器来控制气压变化,首先在控制器上设定5.5Torr进行了PID参数的自整定,自整定完成后分别对设定了17Torr、50Torr、500Torr和100设定点进行控制,整个控制过程中气压随时间变化曲线如图 3‑ 5所示,图 3‑ 6为局部放大后便于观察的变化曲线。 对整个控制过程数据进行分析后得到的结论是:在所有的气压控制点上,气压波动性都小于1%以下。[align=center][img]http://p1.pstatp.com/large/5e7b0003f8579daea883[/img][/align][align=center][color=#ff0000]图 3‑ 5 控制全过程中气压变化曲线[/color][/align][align=center][img]http://p3.pstatp.com/large/5e7a000429b4c4c92e0d[/img][/align][align=center][color=#ff0000]图 3‑ 6 控制过程中部分气压变化曲线(纵坐标缩小后)[/color][/align][b][color=#ff0000]3.2.3. 热流计法高温热导率测试[/color][/b] 为了研究气压波动性对热导率测试的影响,我们在热流计法热导率测试系统上进行了相应的考核试验。被测试样选用耐高温隔热材料,试样热面温度控制在1000℃,水冷板温度控制在20℃,真空腔内的气压控制在50Pa。试验过程中的各个测试参数的响应曲线如图 3‑ 7和图 3‑ 8所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003fc058a0d2773[/img][/align][align=center][color=#ff0000]图 3‑ 7 试样热面和冷面温度响应曲线[/color][/align] 在试验的前4小时,试样热面温度处于恒定控制的初期还没有稳定,而腔体内部气压也没有处于稳定状态,在4.5小时时做了一次控制参数整定后,腔体内部气压很快进入恒定阶段,气压长时间的在50±0.5Pa区间内波动,波动率为±1%。 在控制参数整定过程中,气压波动剧烈,对冷面温度和热流密度的影响严重,从曲线中可以看到有明显的尖峰,但对试样热面温度影响并不大。[align=center][img]http://p3.pstatp.com/large/5e7d0002d4759aee6365[/img][/align][align=center][color=#ff0000]图 3‑ 8 试样厚度方向热流密度和腔体气压响应曲线[/color][/align] 在测试过程进入19个小时后,气压在50Pa处保持±1%的波动,冷面温度和热流密度达到了稳定,这时试样的热面温度为1000.2℃,波动率小于±0.1%;冷面温度为88.9℃,波动率小于±0.5%;热流密度为7928.3W/m^2,波动率小于±0.8%,计算获得的试样有效热导率为0.2611W/mK。[b][color=#ff0000]4. 结论[/color][/b] 通过以上试验可以得出以下结果: (1)两个结构的气压控制研究和试验证明,气氛压强对材料的热导率性能会产生明显的影响。 (2)在变温和变真空测试过程中,优先控制的是热面温度,正确的操作顺序是先在超过100Pa以上的气氛下将热面温度控制恒定在设定温度上,然后再进行不同气压设定点下的测量。因为气压可以很快的达到平衡,如果在热面温度还未恒定前先恒定了气压,则热面温度的恒定会需要很长时间。 (3)将气压波动控制在±1%,气压的波动将对材料的热导率影响不大,而且气压控制也不需要昂贵的控制设备。[b][color=#ff0000]5. 参考文献[/color][/b] (1) Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999 (2)R. R. Zarr and W. C. Thomas, Initial Measurement Results of the NIST 500mm Guarded Hot Plate Apparatus Under Automated Temperature and Pressure Control. 31st International Thermal Conductivity Conference & 19th International Thermal Expansion Symposium, Proceedings: Thermal Conductivity 31/ Thermal Expansion 19, pp. 195 - 204[img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/02/201802011921102118_2230_3384_3.gif!w640x20.jpg[/img]

  • 【原创】内冷控制系统

    内冷控制系统适用于大棚膜、土工膜、包装膜等设备。本设备提高了塑料薄膜制品的透明度和横向、纵向拉伸强度,使用方便、直观,易于操作。

  • 超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    超高温高压流变仪用艾默生TESCOM ER5000压力控制系统的国产化替代方案

    [color=#ff0000]摘要:本文针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统TESCOM ER5000,提出相应的国产化解决方案。解决方案采用的也是电气比例阀驱动背压阀实现高压精密控制,整个压力控制系统为分体式结构,但采用了独立的精度更高的双通道PID控制器作为外部控制器,与电气比例阀一起构成双环控制模式。此方案除了实现国产替代之外,最大特点是可以驱动两个背压阀实现高压全量程的精密控制,且控制精度更高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][b]一、问题的提出[/b][/size]高温高压流变仪是在特殊的高温高压条件下测量流体材料流变特性(如粘度等)的精密分析仪器,模拟材料的使用工况条件,研究流体材料的黏度与温度、压力的关系,对石油开采(如钻井液、压裂液、酸化液、原油)、石化生产(如润滑油)、煤化工(如油煤浆)、食品加工(如淀粉糊化)等行业有重要指导意义。国内外都非常重视流变仪的研发和使用,但是其核心技术以前一直由西方国家掌握,我国的流变仪一直依赖进口,迫切需要中国自主研发的设备。为此,科技部设立了重大科学仪器设备开发专项“超高温高压钻井液流变仪的研发及产业化”(项目编号:2012YQ050242)以期彻底解决核心技术卡脖子问题。此开发专项由北京探矿工程研究所牵头承担,于2018年取得了重大技术突破,开发完成了Super HTHP Rheometer 2018超高温高压流变仪,并编制了相应的企业标准“Q/HDTGS0006-2018 超高温高压流变仪”,可用于测试钻井液、压裂液等样品在高温高压(最高320℃、220MPa)及低温高压(最低-20℃、220MPa)条件下的流变性。尽管Super HTHP Rheometer 2018超高温高压流变仪在关键技术上取得了突破,但根据文献“王琪, 赵建刚, 韩天夫,等. 超高温高压流变仪中高精度压力控制系统的实现[J]. 地质装备, 2018, 19(2):3.”报道,高压流变仪中的压力控制采用的是美国艾默生公司的全套压力控制系统,其中包含了TESCOM ER5000压力控制器和相应的背压阀。本文将针对高温高压流变仪中的压力控制,特别是针对美国艾默生公司的全套压力控制系统,提出相应的国产化解决方案。本文将详细介绍国产化替代方案的具体内容和相应配套产品。[b][size=18px]二、国产化替代解决方案[/size][/b]在高温高压流变仪中使用的TESCOM ER5000压力控制系统是一种典型的双回路串级PID控制方式(双环模式),如图1所示,其工作原理是采用0.7MPa量程的低压电气比例阀来驱动200MPa量程的背压阀实现精密高压调节。[align=center][img=01.TESCOM压力控制系统结构示意图,690,301]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941118441_5182_3221506_3.png!w690x301.jpg[/img][/align][align=center]图1 TESCOM ER5000压力控制系统结构示意图(内置和外置双压力传感器,双环模式控制)[/align]根据我们对高压压力控制的使用经验和具体实际应用的了解,特别是针对高温高压流变仪中的高压压力精密控制,应用TESCOM ER5000压力控制系统特别需要注意以下几方面的问题:(1)尽管TESCOM ER5000压力控制系统采用的是双回路PID串级控制模式,但由于采用的是16位AD转换器,所以在控制精度上还有潜力可挖,如采用更高精度的AD转换器。(2)在整个200MPa的高压范围内,采用一个艾默生TESCOM背压阀并不能准确覆盖整个高压范围的压力精密控制,在某些压力区间会出现失调现象。这也是所有背压阀都会出现的问题,解决方法是采用至少2个背压阀来覆盖整个高压范围的精密控制。由此,如果采用2个背压阀进行全量程的高压控制,这势必要采用两套ER5000压力控制器,会明显提升成本。目前国产的背压阀已经非常成熟,技术难度主要在于ER5000压力调节器的国产化替代。针对高精度的压力控制,我们分析了ER5000压力调节器的技术思路,特别基于ER5000压力调节器所采用的这种非常有效的双环模式高精度压力控制方法,我们提出了精度更高和更经济国产化替代方案。如图2所示,方案的技术核心为:[align=center][img=02.双阀高压压力精密控制系统结构示意图,690,497]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200941243661_3252_3221506_3.png!w690x497.jpg[/img][/align][align=center]图2 双阀结构高压压力精密控制系统结构示意图[/align](1)采用分体结构形式,与TESCOM ER5000系统的工作方式相同,同样采用电气比例阀驱动背压阀。根据高压压力控制范围,选择2个不同工作压力范围的背压阀来覆盖整个量程。(2)采用国产电气比例阀作为背压阀的驱动,自带PID控制功能的电气比例阀组成内部闭环控制回路,实现背压阀压力输出的精密调节。(3)外置压力传感器和双通道PID控制器构成外部闭环回路,控制器输出作为电气比例阀设定值,由此可实现ER5000压力控制器的双环工作模式。(4)国产化替代的技术核心是双通道PID控制器,每个通道都具有24位AD和16位DA,双精度浮点运算和最小输出百分比为0.01%,控制器具有RS 485通讯和标准的MODBUS协议,并配备了测控软件,可遥控操作和存储显示测试曲线。此PID控制器性能指标远优于ER5000控制器。我们经过大量试验,已经验证了这种国产比例阀和高精度PID控制器组成的串级控制模式可有效的实现和改善高压压力控制精度,完全可以实现对ER5000压力控制系统的国产化替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 反应釜温度控制系统中为何存在空气?

    在制药化工行业中,反应釜温度控制系统是经常需要使用的,但是由于反应釜温度控制系统存在一定的空气、氢气、氮气、润滑油蒸汽等一些气体,这些气体是不利于反应釜温度控制系统运行的,那么到底是怎么一回事呢?反应釜温度控制系统中这些杂质气体是使制冷系统冷凝压力升高,从而使冷凝温度升高,压缩机排气温度升高,耗电量增加,制冷效率降低,同时由于排气温度过高可能导致润滑油碳化,影响润滑效果,严重时会烧毁制冷压缩机电机。反应釜温度控制系统中的这些气体产生可能是漏入的空气,可能是在充注制冷剂、加注润滑油的时候,外界空气趁机进入,或者反应釜温度控制系统密封性不严密导致空气进入系统内部。此外,冷冻油的分解、制冷剂不纯以及金属材料的腐蚀等原因也会产生气体。当然,无锡冠亚在反应釜温度控制系统上采用的是全密闭的循环系统,避免这些空气进入反应釜温度控制系统中。一般来说,反应釜温度控制系统中的气体表现在反应釜温度控制系统压缩机的排气压力和排气温度升高,冷凝器(或储液器)上的压力表指针剧烈摆动,压缩机缸头发烫,冷凝器壳体很热;反应釜温度控制系统蒸发器表面结霜不均匀,反应釜温度控制系统存在大量气体时,因装置的制冷量下降而使环境温度降不下来,压缩机运转时间长,甚至因高压继电器动作而使压缩机停车。反应釜温度控制系统是否存在这些气体的话,可以用压力表实测制冷系统的冷凝压力与当时环境气温下的饱和压力作比较。如果实测压力大于环境温度下的饱和压力,则说明该系统中含有气体了。如果发现了反应釜温度控制系统中存在上述的这些气体的话,就需要及时排除这些气体,及时解决故障。

  • 小型恒温控制系统怎么判断其运行状况

    现在很多制药、化工行业都用的上了无锡冠亚小型恒温控制系统,小型恒温控制系统在运行的过程中怎么判断其运行状况呢?  小型恒温控制系统汽缸中应无杂声,只有吸气阀片正常规律的起落声。冷凝器冷却水应足够,水压0.12MPA以上,水温不能太高。汽缸壁不应有足部发热和结霜情况,表面温差不大于15-20度,冷藏或低温系统,吸气管结霜一般可到吸气口;对于高温工况,吸气管应不结霜,一般结露为正常。  小型恒温控制系统曲轴箱油温小型恒温控制系统不超过70度,不低于10度。小型恒温控制系统润滑油可有泡沫,排气温度不能太高,太高接近国产冷冻油的闪点会对设备不利。冷凝压力不易太高,冷凝压冷库施工力高低受水源、冷凝方式及制冷剂影响而变化。曲轴箱油面不低于视油镜水平中心线的1/2。  小型恒温控制系统手摸卧式储液器和油分离器应上部热下部凉,冷热交界处为液面或油面,安全阀或旁通阀按低压一端应发凉,否则高低压串气。运行中蒸发压力与吸气压力应近似,排气压力、冷凝压力与储液器压力应相近。  小型恒温控制系统冷却水进出应有温差,如无或温差极微,说明热交换器有污垢,需清洗。小型恒温控制系统应密封,不得渗露制冷剂或润滑油,氟小型恒温控制系统轴封不许有滴油。小型恒温控制系统轴封及轴承温度不超过70度。膨胀阀阀体结霜或结露均匀,但进口处不能有浓厚结霜。流体经过膨胀阀时,只能听到沉闷的微小声。系统各压力表指针应相对稳定,温度指示正确。  以上小型恒温控制系统相关的情况是可以判断其小型恒温控制系统运行情况的,建议操作者多多观察,及时判断出有故障的声音,有效的解决。

  • CVD和PECVD管式炉真空控制系统的升级改造

    CVD和PECVD管式炉真空控制系统的升级改造

    [color=#ff0000]摘要:本文介绍了根据客户要求对CVD管式炉真空控制系统进行升级改造的过程,分析了客户用CVD管式炉真空控制系统中存在的问题,这些问题在目前国产CVD和PECVD管式炉中普遍存在。本文还详细介绍了改造后的真空压力控制系统的工作原理、结构和相关部件参数等详细内容,改造后的真空压力控制精度得到大幅度提高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000]一、背景介绍[/color][/size]客户订购了一台CVD管式炉以进行小尺寸材料的制作,CVD管式炉及其结构如图1所示。在使用中客户发现这台管式炉在CVD工艺过程中无法保证材料的质量和重复性,材料性能波动性较大,分析原因是真空压力控制不准确且不稳定。为解决此问题,客户提出对此CVD管式炉的真空控制系统进行升级改造。[align=center][img=CVD和PECVD管式炉真空控制系统,690,370]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281659560038_5783_3384_3.png!w690x370.jpg[/img][/align][align=center]图1 用户购置的CVD管式炉及其结构内容[/align]我们通过分析图1所示CVD管式炉的整体结构,发现造成真空压力控制效果较差的原因,主要是此管式炉的真空控制系统存在以下几方面的严重问题,而这些问题在目前国产CVD和PECVD管式炉中普遍存在。(1)真空计选择不合理:对于绝大多数的CVD和PECVD管式炉,其真空度的控制范围一般都为1Pa~0.1MPa(绝对压力),并要求实现真空度精确控制。而在客户所购置的CVD管式炉(包括其他品牌产品)中,为了节省造价,管式炉厂家配备了皮拉尼计和皮拉尼+电容真空计,但这种组合式电容真空计在10kPa~95kPa范围内的精度只有±5%,0.1Pa~10kPa范围内的精度则变为±15%,比单纯的薄膜电容真空计的全量程±0.25%精度相差太大。合理的选择是使用单纯的薄膜电容真空计,而且须配置2只真空计才能覆盖整个真空度范围的测量和控制。(2)控制方法错误:对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,需要分别采用上游和下游控制模式进行控制才能达到很好的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。客户所采用的CVD管式炉则仅采用了调节进气流量的上游控制模式,势必会造成1kPa~0.1MPa范围内的真空度控制波动性很大,同时造成工作气体的极大浪费。(3)多种比例混合气体控制结构错误:在CVD工艺中,反应气体为按比例配置的多种工作气体混合物。尽管CVD管式炉中采用了4只气体质量流量计来配置工作气体,但质量流量计只能保证气体混合比的准确性而无法对真空度进行准确控制,除非是单一气体则可以通过一个质量流量计来调节进气流量来实现真空度控制。综上所述,客户所购置的CVD管式炉存在一些严重影响真空度控制精度的问题,文本将详细介绍解决这些问题的具体方法和升级改造详细内容。改造后的真空度控制系统可在全量程范围内控制精度优于±1%。[size=18px][color=#ff0000]二、升级改造技术指标[/color][/size]对客户的CVD管式炉的真空控制系统进行升级改造,需要达到的技术指标如下:(1)真空度控制范围:1Pa~0.1MPa(绝对压力)。(2)真空度控制精度:±1%(全量程范围)。(3)控制形式:定点控制和曲线控制。(4)输入形式:编程或手动。(5)PID参数:自整定。[size=18px][color=#ff0000]三、升级改造技术方案[/color][/size]针对客户的4通道进气CVD管式炉,为实现真空控制系统的上述技术指标,所采用的技术方案如图2所示。[align=center][img=CVD和PECVD管式炉真空控制系统,690,360]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281700285160_4408_3384_3.png!w690x360.jpg[/img][/align][align=center]图2 CVD管式炉真空度控制系统结构示意图[/align]如图2所示,升级改造的技术方案主要在以下几方面进行了改动:(1)还保留了皮拉尼真空计以对真空度进行粗略的测量,更主要的是采用皮拉尼计可以覆盖0.001Pa~1Pa的超高真空监控。但在1Pa~0.1MPa真空度范围内,增加了两只薄膜电容真空计分别覆盖1Pa~1kPa和10kPa~0.1MPa,以提高CVD工艺过程中的真空度测量精度。(2)对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,分别采用上游和下游控制模式进行控制以实现更高的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。(3)对于多种比例混合工作气体的CVD工艺,继续保留4路气体质量流量控制器以实现比例准确的工作气体混合,但精密混合后的气体进入一个缓冲罐。缓冲罐内气体进入CVD管式炉的流量通过一个电动针阀进行调节,由此既能保证工作气体的准确混合比,又能实现上游进气流量的精密调节。(4)为实现下游控制模式,在CVD管式炉的排气口处增加一个电动针阀,此电动针阀的作用是调节排气流量。下游控制模式在CVD工艺中非常重要,这种模式可以保证1kPa~0.1MPa范围内真空度的精确控制。如果在1kPa~0.1MPa范围内采用上游控制模式,一方面是真空度控制波动太大,另一方面是会无效损耗大量工作气体。(5)真空度的控制精度,除了受到真空计测量精度和电动针阀调节精度的影响之外,还会受到PID控制精度的严重制约。为此,技术方案中选用了24位AD和16位DA的高精度PID控制器,且具有定点和可编程控制功能,同时PID参数可进行自整定以便于准确确定控制参数。(6)由于采用了两只高精度的电容真空计测量整个量程范围的真空度,在实际真空度控制过程中,就需要根据不同量程选择对应的电容真空计并进行真空度控制。由此,这就要求PID控制器需要具备两只真空计之间的自动切换功能。(7)在CVD和PECVD管式炉真空度控制系统升级改造方案中,使用了上下游两种控制模式,这就要求PID控制器同时具备正向和反向操作功能,也可以采用2通道可同时工作的PID控制器,一个通道对应一个电动针阀。[size=18px][color=#ff0000]四、总结[/color][/size]针对客户的4通道进气CVD管式炉存在的CVD工艺中真空度控制严重不稳定的问题,分析了造成真空度控制不稳定的主要原因是真空计测量精度不够、控制方法不正确、多种工作气体混合结构不正确。为解决上述问题,本文提出了相应的升级改造技术方案,更换了精度更高的薄膜电容真空计,采用了控制精度更高的上下游控制方法,在多种气体混合管路上增加了缓存罐,并使用了调节和控制精度较高的电动针阀和2通道PID控制器。升级改造后的真空控制系统,可在全量程的真空度范围(1Pa~0.1MPa)内实现±1%的控制精度和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 恒温恒湿老化箱控制系统的重要性

    恒温恒湿老化箱控制系统的重要性

    控制系统可以说是恒温恒湿老化箱中最重要的部分之一,因为控制系统相当于我们的大脑,是控制其他部分运行的关键。如果控制系统发生故障,那么整台试验设备就会停止使用,只有将故障解决之后才可以重新运行。不过现在还有非常多的厂家没有意识到这一点,依然采用控制仪表中自带的系统,导致设备使用寿命受到非常大的影响。不过这种现象并不存在于国内所有的恒温恒湿老化箱厂家中,就比如一实仪器就不是这样的。[align=center][img=,400,400]http://ng1.17img.cn/bbsfiles/images/2018/03/201803121531163480_7662_3222217_3.jpg!w400x400.jpg[/img][/align] 就比如国内有些厂家的恒温恒湿老化箱使用寿命大致在25年左右,能够媲美许多进口试验设备品牌,这是现在国内众多环境试验设备厂家难以达到的。不过其实一实生产的试验箱能够达到这样的程度,也少不了精准的控制系统帮助。如果没有这个专门从德国引进的控制系统,那么在使用的过程中产生的磨损一定会比现在严重很多。不过也有的用户觉得试验箱的磨损并不是什么严重的事情,但其实现在市面上出售的试验设备短期使用过程中不会出现什么问题,但是随着使用时间的延长,出现的故障会越来越多、越来越严重,所以最近需要购买这款设备的大家还是慎重一些吧。 不过除了控制系统以外,恒温恒湿老化箱上的其他几个系统也是非常重要的,能够对试验箱的质量和性能产生非常大的影响。但是大家是为了顺利的使用或是购买的一台优质的试验箱,都不能忽视了试验箱上登的任何一个细节。

  • 【原创】中真空控制系统

    一、操作便捷性:1、抽气口及气路连接口采用KF式快速连接结构。简化安装过程,只需一支卡箍便可完成连接,方便操作。2、配置两种电源连接线,即可直接与我公司的产品直接连接组合使用,也可单独连接独立使用。二、控制智能化:1、采用数显真空计,配合热偶规管采集数据。测量精度高、稳定性好、抗干扰能力强。真空度显示采用科学计数法,数字显示,使用方便直观。2、自动控制与手动控制切换功能。自动控制模式能通过设定值自动开启/关闭真空泵,时容器内保持在一定的真空压力范围内。手动控制模式使用户通过真空泵开启/关闭按钮直接操作真空泵。以满足不同实验的需要。3、电磁阀缓启动技术,使电磁阀在真空泵开启10秒钟后打开,使炉管内压力保持准确,也保证了废气不会返回到容器内影响实验效果。三、结构实用性:1、内置双极旋片式机械真空泵,有效的提高了抽气效率。2、内置压差式防返油机构,使真空泵中的油不会返出。结合气镇阀在使用时更加安全可靠。3、本身作为真空控制系统的同时,也可作为活动平台使用,方便放置电炉及其它设备。

  • 半导体制冷温度控制系统选择说明

    半导体制冷温度控制系统是无锡冠亚针对半导体行业推出的新型设备,用户在选择半导体制冷温度控制系统的时候,需要考虑半导体制冷温度控制系统主要的性能,设计以及其他,才能更好的选择半导体制冷温度控制系统。  半导体制冷温度控制系统的选用应当依照冷负荷以及准备用于哪方面来思忖。对于低负荷运行工况时间较长的制冷系统,适合选择多机头活塞式压缩机组或螺杆式压缩机组,便于调理和节能,也就是我们常说的双机头半导体制冷温度控制系统,可随着负荷的变化,半导体制冷温度控制系统组自动确定开机的数量,保证开启的压缩机处于工作状态,从而有效节约电能。  选用半导体制冷温度控制系统时,优先考虑性能系数值较高的机组。依照以往资料统计,正常半导体制冷温度控制系统组整年下运行时间约占分运行时间的1/4以下。因此,在选用半导体制冷温度控制系统组时应优先考虑效率曲线比较平坦的半导体制冷温度控制系统型号。同时,在设计选用时应考虑半导体制冷温度控制系统组负荷的调节范围,半导体制冷温度控制系统组部分负荷性能优良,可根据工厂实际情况选用半导体制冷温度控制系统。  选用半导体制冷温度控制系统时,应当留意该型号半导体制冷温度控制系统的正常工作范畴,主要是电机的电流限值是表面工况下的轴功率的电流值。  半导体制冷温度控制系统在选择上无非就是性能、品牌以及价格,在选择合适的半导体制冷温度控制系统的时候,尽量选择高性能的半导体制冷温度控制系统,这样运行更加稳定。

  • 快速温变试验箱电气控制系统原理

    快速温变试验箱电气控制系统原理 快速温变试验箱电气系统设有手动和自动控制;具有温度测控、实时数据显示、参数设定、记录打印、报警、故障显示等功能,快速温变试验箱电气控制系统基本构成:  系统配置压缩机高、低压力开关,用于系统运行故障报警和保护压缩机作用。系统还为压缩机设有超压、过载、过热、缺相保护。风机设有热保护功能快速温变试验箱电气系统分强电和弱电两部分。强电部分主要由控制R404A压缩机的起停、箱内风机运行的交流接触器、热继电器;控制辅助加热器的固态继电器及线路保护的断路器等器件组成。弱电部分由日本优易1100型彩色液晶触摸屏及配套PLC(带USB接口1个,RS232接口1个,可与电脑连接,可与电脑进行数据通讯)和人机界面触摸屏、温度传感器组成。温度测量传感器为:Pt100铂电阻,通过Pt100铂电阻把温度信号送入PLC的A/D转换模块,实现试验箱内的温度的控制和显示,Pt100选用进口A级元件。http://www.whgt17.com/uploads/allimg/160817/1-160QG515350-L.jpg

  • 冻干机控制系统验证

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34467]冻干机控制系统验证[/url] 冻干机的验证方案,大家可能都会作,冻干机控制系统验证的你作过吗!!!看看吧!!! 希望对你会有帮助!!!

  • 电阻管式炉真空控制系统技术升级改造解决方案

    电阻管式炉真空控制系统技术升级改造解决方案

    [align=center][img=高温石英管式炉及其真空控制系统,600,391]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281102414320_6035_3221506_3.jpg!w690x450.jpg[/img][/align][size=16px][color=#990000][b]摘要:针对用户提出的高温石英管加热炉真空度控制系统的升级改造,以及10~100Torr的真空度控制范围,本文在分析现有真空控制系统造成无法准确控制所存在问题的前提下,提出了切实可行的解决方案。解决方案对原有的无PID控制功能的压强自动控制仪和慢速大口径电动蝶阀进行了更换,采用了高精度可编程PID真空压力控制器,采用了口径较小响应速度更快的电动球阀。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 高温石英管式炉广泛用于陶瓷、冶金、电子、玻璃、化工、机械、耐火材料、新材料开发、特种材料和材等领域。石英管式炉的加热元件一般为NiCrAl电阻丝,并采用双层壳体结构,并带有风冷,使得壳体表面的温度小于70℃。保温材料采用高纯氧化铝纤维,环保节能,可以最大程度的减少热量的损失。为了进行各种气氛环境下的高温反应和研究,并避免高温产出物对加热丝的腐蚀影响,石英管式炉中普遍安装了一根高纯石英管用来作为炉膛,且石英管两端可固定金属密封法兰,从而可在石英管内形成密闭真空环境。[/size][size=16px] 最近有用户提出了对在用的石英管式炉进行技术改造,此卧式高温石英管式炉如图1所示。[/size][align=center][size=16px][color=#990000][b][img=需进行升级改造的高温石英管式炉及其真空控制系统,690,286]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105026257_5413_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 需进行改造的真空石英管式炉及其真空控制系统[/b][/color][/size][/align][size=16px] 用户对现有石英管式炉进行技术改造的内容是要实现管式炉真空度的精密控制,如图1所示,现有的真空度控制系统采用了电容薄膜真空规作为真空度传感器,传感器配套有真空显示仪进行真空度测试值显示并输出信号,压强自动控制仪接收传感器信号,然后驱动电动蝶阀进行开度变化,以实现真空度的自动控制。但此真空度控制系统在调试过程中,完全无法实现真空度的自动控制,这主要是现有真空度控制系统存在以下几方面的问题:[/size][size=16px] (1)现有真空控制系统所采用的压强自动控制仪并不具备PID控制功能,所以有时候会出现某些真空度区间无法准确控制的现象。[/size][size=16px] (2)所采用的电动蝶阀响应速度太慢,而且口径太大,很难对压强自动控制仪输出的控制信号做出快速响应,对如此小内径的石英管腔体很难进行真空度的准确控制。[/size][size=16px] 为了彻底解决现有真空度控制系统存在的上述问题,本文提出了如下技术升级改造方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 首先,按照用户要求,解决方案拟达到的技术指标如下:[/size][size=16px] (1)真空度控制范围:10~100Torr(绝对压力)。[/size][size=16px] (2)真空度控制精度:读数的±%。[/size][size=16px] (3)控制功能:PID自动控制,多个设定点可编程自动控制。[/size][size=16px] 为了实现上述技改指标,本解决方案所设计的高精度真空度控制系统如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改造升级后的真空控制系统结构示意图,690,292]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105266047_8320_3221506_3.jpg!w690x292.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改造升级后的真空控制系统结构示意图[/b][/color][/size][/align][size=16px] 改造升级后的真空控制系统还是沿用下游控制模式,即对排气流量进行调节,同时还继续使用原有的电容真空计,但在以下几方面做出了改进:[/size][size=16px] (1)真空度测量和控制仪表的改进:解决方案中采用了超高精度VPC2021-1型真空压力控制器,其具有24位AD、16位DA和0.01%最小输出百分比,可直接用来接收电容真空计输出的真空度电压信号并按照真空度单位进行显示,无需再使用原有的真空显示仪。此真空压力控制器是一款超高精度的PID控制器,充分发挥了PID自动控制的强大功能,且PID参数可进行自整定,是实现真空度高精度控制的重要保证。另外,此真空压力控制器具有多个设定点编程控制功能,可按照设定折线和真空度变化速率对石英管内的真空度进行自动程序控制。[/size][size=16px] (2)排气阀门的改进:解决方案中将原有的慢速和大口径电动蝶阀更换为响应速度更快和口径更小的电动球阀,在减小排气调节口径提高阀门开度调节效率的同时,能更快的响应真空压力控制器给出的控制信号,极大减小了控制的滞后性,保证了控制的准确性。[/size][size=16px] 图3给出解决方案中真空度控制系统的接线图。[/size][align=center][size=16px][color=#990000][b][img=真空控制系统接线图,600,191]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105446783_3371_3221506_3.jpg!w690x220.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 真空度控制系统接线图[/b][/color][/size][/align][size=16px] 解决方案中所配置的VPC2021-1真空压力控制器具有标准MODBUS通讯协议的RS485接口,并配置了计算机软件,可通过在计算机上运行软件完成控制器的参数设置、远程控制操作、控制过程参数和曲线的显示和存储。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本解决方案将彻底解决了管式炉真空度的高精度控制问题,并具有以下特点:[/size][size=16px] (1)解决方案的下游真空度控制不受上游进气流量大小的影响,在调节的恒定进气流量下,石英管内的真空度可以自动控制在设定值上。[/size][size=16px] (2)本解决方案具有很强的灵活性,目前本解决方案所控制的是10~100Torr真空度范围,如果要进行0.1~10Torr范围的真空度控制,则通过在进气端口增加一个电动针阀,通过恒定排气流量的同时调节针阀开度,则可实现高真空度精密控制。同样,更换更大量程的真空计,还可以在石英管内实现微正压控制。[/size][size=16px] (3)本解决方案具有很强的适用性,在排气端增加真空进样装置,可将石英管加热炉内高温下产生的气体导入到质谱仪或与其他仪器联用进行产物分析。[/size][size=16px] (4)本解决方案中的真空压力控制器是一款通用性PID控制器,除了具有高精度真空压力控制功能之外,更换温度传感器和流量计后也可以用于温度和流量控制。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • LINPIN淋雨试验箱控制系统以及结构

    LINPIN淋雨试验箱控制系统以及结构

    雨点有时轻盈,有时沉重,柔柔的飘过发丝却浑然不知,或者在屋顶上的青瓦敲击出清脆的音符。今日接连雨季,这让小编想到了这款[b][url=http://www.linpin.com.cn/product_show-230.html][color=blue]淋雨试验箱[/color][/url][/b],或许大家对该设备有点陌生,不过没关系小编会详细给大家介绍该设备的相关特点,希望大家好好阅读下文:[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2018/09/201809270901442223_777_1037_3.jpg!w348x348.jpg[/img][/align]  选购之前我们需要了解该设备的所能涉及的行业以及使用范围,淋雨试验箱可以提供逼真模拟电子产品以及相关元器件在运输期间所能受到的淋水以及喷淋试验,从而检测产品的防水能力,一般使用在外部照明、汽车灯具外壳以及信号装置等。为了让设备工作效率高,其控制系统是十分重要的,林频针对淋雨试验箱的工作原理,在试验箱的底部设有储水箱,试验使用水喷淋系统,而工作台有旋转系统以及摆管摆幅驱动装置。  为了让淋雨试验箱更好的进行工作,关于该设备的密封性能林频设计的十分合理,箱门和箱体之间使用双层耐高温高涨性密封条从而确保设备密封性。同时在试验箱的底部使用高质量可固定式PU活动轮,便于在日后试验设备的移动。

  • 【分享】MAT-271质谱计进样控制系统改造

    针对MAT-271质谱计进样控制系统老化,操作方式繁琐的问题,提出一种基于Linux和MiniGUI的进样控制系统解决方案。利用PC/104主板控制PC/104总线规范的A/D及I/O驱动接口板,在Linux操作系统下,采用MiniGUI设计图形控制界面,通过大尺寸液晶触摸屏控制进样,并实时显示多个参数,实现对现有质谱计进样控制系统的升级改造。应用表明本系统不仅操作简便,而且显示直观,实现进样系统的自动化控制。

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制