当前位置: 仪器信息网 > 行业主题 > >

射线线阵探测系统

仪器信息网射线线阵探测系统专题为您提供2024年最新射线线阵探测系统价格报价、厂家品牌的相关信息, 包括射线线阵探测系统参数、型号等,不管是国产,还是进口品牌的射线线阵探测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线线阵探测系统相关的耗材配件、试剂标物,还有射线线阵探测系统相关的最新资讯、资料,以及射线线阵探测系统相关的解决方案。

射线线阵探测系统相关的论坛

  • X射线荧光探测,光谱仪,RoHS/WEE 标准的仪器等分析仪器中重要的配件

    近年来国内X射线探测技术发展的也相当迅猛,在日本核泄漏的事故后大家更加的重视了辐射、安全。下面我给大家分享一下我们代理的X射线探测器看看大家是否熟悉:X-123 是一个完整的X 射线探测系统,它整合于可放在手中的小盒子里。X-123 标志着Amptek 14 年的X 射线探测器研发成果。我们一直致力于开发小型、低功率、高性能、易操作的仪器。X-123 是我们这一宗旨的一个例子,它提供一个套装的XR100 X 射线探测器和电荷敏感前置放大器, DP4 数字脉冲处理器和脉冲整形器、多通道分析器及数据接口、以及 PC4-3 电源。你只需要一个5 伏的直流电源和一根USB 或RS232 接线与你的计算机相连。包括:1. X-射线探测器和前置放大器;2. 数字脉冲处理器和MCA 多通道分析器;3. 电源和PC 接口特点:• 小巧的完整系统• 易操作• 尺寸小 (2.7*3.9*1 英寸(7 * 10 *2.5 厘米)• 功率低(1.2W)• 重量轻-180g(6.3 盎司)• USB 和RS232 连接• 跟所有类型的 Amptek 探测器匹配应用:• X 射线荧光探测 (XRF)• 符合 RoHS/WEE 标准的仪器• 程控• 文物和考古• X-123 演示 探测器:• Si-PIN X 射线探测器;• 两级热电制冷.• 面积: 5 至 25 mm2• 厚度: 300 至 680 μm主要指标:• 分辨率: 峰值5.9 keV 时为145 至260 eV 半峰宽• 最佳能量范围: 1 keV 至 40 keV• 最大计数率: 最高2 × 105 cps工作原理和配置:Amptek 擅长于生产小型化、低功耗、高性能和易于操作的X 射线光谱仪。X123 在一个容器内整合了Amptek 公司标准化、高性能的X 射线光谱分析元件,其中包括XR100CR 探测器和前置放大器、DP4数字脉冲处理器和MCA 多通道分析器、以及PC4-3 电源,成为可以握在手中的集成化完整系统。而其它厂家的系统,仅前置放大器就比X123 更大、更重且更耗能。其它所需只是两根连线:一个5V 直流电源和一根USB 或RS-232 数据线。通过X123,可以很快得到高质量的[/s

  • 焦平面探测系统的信息处理能力及其在激光测粒技术中的应用

    焦平面探测系统的信息处理能力及其在激光测粒技术中的应用

    焦平面探测系统的信息处理能力及其在激光测粒技术中的应用任中京山东建材学院, 济南250022提要:分析了两种焦平面探测系统信息处理能力,给出了所设计的新型激光粒度仪的光路实例,结果表明球面波照明的焦平面探测系统具有更大的综合优势。关键词焦平面探测系统信息能力激光粒度仪空间带宽积The Study of Information Capacity for Focal Plane Arrays Detectesystems and itsApplication in laser Part Icle Sizer DesignRen Zhongjing(Shandong Institute of Building Materials ,Jinan,250022)Abstract :the information capacity for 2 kinds of focal plane systems had been discueeed.there are different distinguishing feature and caculating methords between plane wave and spherical wave focal plane systems.A sample of application shows that it is very important to design the information capacity in laser particle sizer.Key word :information capacity ,spatial-bandwidth,laser particle sizer,focal plane array焦平面探测系统,实质是一种光学信息处理系统,它通过设置在焦平面上的阵列探测器检测物体或图像的散射谱,据此进行特征识别、图像处理等操作。激光粒度分析技术是此类系统最典型的应用之一。它通过检测颗粒群的散射谱反演颗粒粒度分布。作为信息处理系统,信息处理能力是它的一个重要指标,通常用空间带宽积表示, N=2Lρm式中,L:物平面输入尺寸,ρm:系统传递的最高空间频率。如用h 表示焦平面探测器的半高度,λ为激光波长,F为付立叶变换透镜的焦距(或者等效焦距)。则最高空间频率ρm可表为ρm=h/λF显然,系统的信息处理能力与输入尺寸L ,系统输出的最高空间频率ρm成正比,ρm表征了该系统对图像精细结构的分辨能力, 对激光测粒技术而言就是对小颗粒的分辨能力。要提高测粒水平, 必须探索提高信息处理能力的有效途径。理论分析不同的光学系统、空间带宽积的表达式不同。通常的焦平面探测系统采用平面波照明, 如图1 所示。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281102_441918_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281102_441919_388_3.jpg

  • X射线辐射剂量探测

    各位老师: 我想买一个X射线辐射剂量探测的仪器,我的X射线能量在5keV~30keV,剂量不是很大,不知道现阶段有没有哪款探测器能够进行剂量监测的?望大家给点建议啊.先谢过了

  • X射线衍射仪与X射线荧光光谱仪有什么不同?

    X射线衍射仪简称XRD( X-ray diffractometer ),特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线荧光光谱仪简称XRF( X Ray Fluorescence ),人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。X射线照在物质上而产生的次级 X射线被称为X射线荧光。利用X射线荧光原理,理论上可以测量元素周期表中铍以后的每一种元素。在实际应用中,有效的元素测量范围为9号元素 (F)到92号元素(U)。

  • 双能、多能X射线探测器技术的实现

    [b]SANTIS 0804双能、多能混合光子计数X射线探测器[/b]目前市场有极少数量的双能X射线探测器,多能X射线探测器刚刚进入中国市场,下面是我推荐的一款多能探测器,请同行们指导,多提宝贵建议。[b][img]http://img1.17img.cn/17img/images/201801/uepic/6f25d67a-b728-49cd-88e9-f0780582d383.jpg[/img][/b] SANTIS 0804多能X射线探测器是由DECTRIS公司设计和生产的双能、多能混合光子计数(HPC)探测器。该探测器的无噪声、无暗电流和高计数能力给一切用户提供无与伦比的的成像效果 SANTIS 0804多能X射线探测器和传统探测器相比,SANTIS 0804图像质量更高、帧速率更高、探测能力更强。同时,SANTIS 0804可以实现双能和多能状态下的优质图像信息。 [b]测器技术参数:[/b][table=578][tr][td=1,1,125][b]版本[/b][/td][td=1,1,217][b]高分辨率(HR)[/b][/td][td=1,1,236][b]多能量(ME)[/b][/td][/tr][tr][td=1,1,125]传感器[/td][td=1,1,217]碘化铬 0.75 mm[/td][td=1,1,236]碘化铬 1.0 mm[/td][/tr][tr][td=1,1,125]有效面积[/td][td=1,1,217]8 x 4 cm[sup]2[/sup][/td][td=1,1,236]8 x 4 cm[sup]2[/sup][/td][/tr][tr][td=1,1,125]像素矩阵[/td][td=1,1,217]1030 x 514[/td][td=1,1,236]515 x 257[/td][/tr][tr][td=1,1,125]像素尺寸[/td][td=1,1,217]75 μ㎡[/td][td=1,1,236]150 μ㎡[/td][/tr][tr][td=1,1,125]MTF在1 IP /毫米[/td][td=1,1,217] 90%[/td][td=1,1,236] 90%[/td][/tr][tr][td=1,1,125]能量范围[/td][td=1,1,217]最大至 120 kVp[/td][td=1,1,236]最大至160 kVp[/td][/tr][tr][td=1,1,125]阈值能量的数量[/td][td=1,1,217]2[/td][td=1,1,236]4[/td][/tr][tr][td=1,1,125]能量分辨率[/td][td=1,1,217]1.9 at 22 keV (FWHM)[/td][td=1,1,236]1.9 at 22 keV (FWHM)[/td][/tr][tr][td=1,1,125]填充因子[/td][td=1,1,217]100%[/td][td=1,1,236]100%[/td][/tr][tr][td=1,1,125]动态范围[/td][td=1,1,217]32 bit[/td][td=1,1,236]32 bit[/td][/tr][tr][td=1,1,125]帧速率[/td][td=1,1,217]up to 40 Hz[/td][td=1,1,236]up to 40 Hz[/td][/tr][tr][td=1,1,125]最大输入计数率[/td][td=1,1,217]1.5 * 10[sup]9[/sup] photons/s/mm2[/td][td=1,1,236]0.4 * 10[sup]9[/sup] photons/s/ mm2[/td][/tr][tr][td=3,1,578]所有规格如有变更,恕不另行通知。[/td][/tr][/table]

  • X射线荧光用的探测器与X射线辐射剂量检测用的探测器有什么区别

    http://b.hiphotos.baidu.com/baike/w%3D268/sign=27a70225acaf2eddd4f14eefb5110102/2cf5e0fe9925bc310dce7dbb5edf8db1cb137005.jpg请问图中半导体探测器是在什么行业中应用的呢,这个探测器可以进行元素分析吗,这个探测器与常用的Si-Pin SDD有什么区别。另外X射线荧光用的探测器与X射线辐射剂量检测用的探测器有什么区别?

  • x射线衍射、x荧光、直读光谱3种仪器检测领域

    一、直读光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示.己被广泛使用于几乎所有的光谱测量,分析及研 究工作中,特别适应于对微弱信号,瞬变信号的检测.二、X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成.X射线管产生入射X射线(一次X射线),激发被测样品.受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性.探测系统测量这些放射出来的二次X射线的能量及数量.然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量.广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域三、X射线衍射仪"可分为"X射线粉末衍射仪"和"X射线单晶衍射仪器".由于物质要形成比较大的单晶颗粒很困难.所以目前X射线粉末衍射技术是主流的X射线衍射分析技术.单晶衍射可以分析出物质分子内部的原子的空间结构.粉末衍射也可以分析出空间结构.但是大分子(比如蛋白质等)等复杂的很难分析.X射线粉末衍射可以1,判断物质是否为晶体.2,判断是何种晶体物质.3,判断物质的晶型.4,计算物质结构的应力.5,定量计算混合物质的比例.6,计算物质晶体结构数据.7,和其他专业相结合会有更广泛的用途.比如可以通过晶体结构来判断物质变形,变性,反应程度等

  • X射线探测器保护

    各位大侠 小妹有一个困惑 X射线探测器的铍窗很容易就破损了 为了更好的保护他 我想应该用一种高透明 机械性能好的薄膜吧 大侠们能告推荐一下吗 或者有什么更好的办法

  • X射线半导体探测器

    请问X射线荧光半导体探测器谁家的产品比较好,国内的国外的都可以,要常温,无需冷却的,可以探测铝,铜,铁元素的

  • 特种气体探测系统

    特种气体探测系统

    [b]特种气体探测系统[/b]储存、输送、使用特种气体的区域应设置特种气体探测装置。自燃性、可燃性、毒性、腐蚀性、氧化性气体的使用场所、技术夹层等可能发生气体泄露处,气体设备间、气瓶柜和阀门箱的排风管口处,生产工艺设备的可燃性、自燃性、毒性、腐蚀性、氧化性气体接入阀门箱及排风管内。生产工艺设备的特种气体的废气处理设备排风口处、惰性气瓶间等,均需要设置探测装置。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2019/09/201909190943102333_5444_3989203_3.jpg!w690x690.jpg[/img][b]特气泄露报警装置设定:[/b]1. 可燃、自燃气体、有毒气体检测装置应设置一级报警或二级报警,其中常规的检测报警仅需一级报警,当需要联动控制时,检测装置应具有一级报警和二级报警。在二级报警的同时,输出接点信号至一级报警联动控制系统。2. 自燃、可燃性、毒性气体的一级报警设定值应小于或等于25%可燃性气体爆炸浓度下限值,二级报警设定值应小于或等于50%可燃性气体爆炸浓度下限值。毒性气体的一级报警设定值应小于或等于50%空气中有害物质的最高允许浓度值,二级报警设定值应小于或等于100%空气中有害物质的最高允许浓度值。3. 自燃性、可燃性气体检测报警响应时间应符合:扩散式应小于20s,吸入式应小于15s。毒性气体检测报警:扩散式应小于40s,吸入式应小于20s。4. 配有 PLC 的气瓶柜、气瓶架、阀门箱、阀门盘宜通过通讯接口与气体管理控制系统通信。5. 特种气体相对密度小于或等于0.75时,特种气体探测器应同时设置在释放源上方和厂房最高点易积气处。特种气体相对密度大于0.75时,特种气体探测器应设置在释放源下方离地面0.5m处。

  • X射线探测器和X射线光管求导购

    新手一枚,想做利用能散型X射线荧光光谱分析矿物中Al、Si含量大致范围,领导让买XRF探测器和X光管,让我选产品。看文献大家都用的是国外的,像Varian、COMET、牛津的光管,还有AmpTek、Moxtek的探测器。但是不知道实际价位和性能如何,实在不会选了。请问各位大神能不能给说明一下详细情况(价位、性价比)?我该怎么选?还有没有国内的比较好的品牌?另外多通道脉冲幅度分析器是不是都和XRF探测器集成在一起了?单买的话有什么合适的品牌?还有是不是探测器现在都是配有相应分析软件的啊?从来没接触过光学相关技术,实在头疼,小女子在此谢过各位了,拜托拜托~

  • 【原创】X射线荧光光谱仪基础知识普及(二)XRF工作原理及结构

    【原创】X射线荧光光谱仪基础知识普及(二)XRF工作原理及结构

    原理(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线 (一次射线),激励被测样品。样品中的每一种元素会放射出的二次X射线,并且不同的元素所放出的二次射线具有特定的能量特性。探测系统测量这些放射出来的 二次射线的能量及数量。然后,仪器软件将控测系统所收集的信息转换成样品中的各种元素的种类及含量。利用X射线荧光原理,理论上可以测量元素周期表中的每 一种元素。http://ng1.17img.cn/bbsfiles/images/2011/04/201104141430_288815_1601823_3.jpg 结构http://ng1.17img.cn/bbsfiles/images/2011/04/201104141432_288817_1601823_3.jpg仪器信息网相关讨论贴链接http://bbs.instrument.com.cn/shtml/20080114/1136302/

  • 【转帖】原子吸收分光光度计与X射线荧光分析仪有什么区别?

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。 在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。 该法主要适用样品中微量及痕量组分分 1 什么是XRF? 一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激励被测样品。样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 利用X射线荧光原理,理论上可以测量元素周期表中的每一种元素。在实际应用中,有效的元素测量范围为11号元素 (Na)到92号元素(U)。 2 X射线荧光的物理意义: X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足够能量的X射线照射下脱离原子的束缚,释放出来,电子的逐放会导致该电子壳层出现相应当电子空位。这时处于高能量电子壳层的电子(如:L层)会跃迁到该低能量电子壳层来填补相应当电子空位。由于不同电子壳层之间存在着能量差距,这些能量上的差以二次X射线的形式释放出来,不同的元素所释放出来的二次X射线具有特定的能量特性。这一个过程就是我们所说的X射线荧光(XRF)。原子分光一般是测元素的,而且是一般是重金属 荧光则是测荧光物质的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]AAS是吸收光谱,逐个元素测量,样品处理成液体,痕量分析,用于典型重金属元素定量分析。XRF是可分析元素周期表上11号元素 (Na)到92号元素(U),样品为固体或粉末压片测试,可从常量到微量分析。

  • 美探索用反物质制造伽马射线激光器 探测微小空间

    美探索用反物质造伽马射线激光器 可对非常微小的空间进行探测 科技日报讯 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论·原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登·安德森以及查尔斯·克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦·米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。(刘霞)来源:中国科技网-科技日报 2014年05月10日

  • EDS探测器收集X射线是一个一个收集的吗?

    最近在学习EDS,EDS原理是Si(Li)半导体检测器检测到不同能量的X射线,激发出不同数量(与XS射线能量成正比)的电子空穴对,经过前置放大器变成电流脉冲,再由主放大器转变成电压脉冲,经多道脉冲分析器成谱图(电压脉冲强度属于哪一通道,谱图横坐标能量就确定了,而有几个这样的电压脉冲,对应着谱图纵坐标的信号强度)。有个问题就是电子束打到样品上,瞬间产生的X射线肯定是各种能量的都有的,各种能量的X射线肯定一起到达探测器上的,他们怎么一个一个分别在检测器上产生电子空穴对的?(如果好多能量的X射线一起到探测器上,结果就有类似加峰的感觉)还有就是零峰的作用,好像上面的EDS谱图的获得和零峰没什么关系呀?为什么会有一个零峰呢?好像零峰又叫噪音峰,为啥呀?我看了一个fengyonghe专家的解释([font=Arial, Helvetica, sans-serif][size=16px][color=#333333]零峰(也称零选通脉冲、零开关),是能量为0eV附近的虚拟峰。用于监测能量刻度的起始点,谱仪的分辨率和活时间)但是还是不明白呀,就是能量为0 的位置为什么会有一个这么强的峰呢?[/color][/size][/font][font=Arial, Helvetica, sans-serif][size=16px][color=#333333][/color][/size][/font][font=Arial, Helvetica, sans-serif][size=16px][color=#333333]跪求各位大佬解答,感谢![/color][/size][/font]

  • 传统一维点,线探测器和全二维面探测器XRD残余应力仪比较

    [color=#333333]全二维面探测器残余应力仪与传统一维点,线探测器残余应力仪比较区别:[/color][color=#333333](1)传统一维点,线探测器残余应力仪——sin2Ψ 1)通过测量应力引起的衍射角偏移,从而算出应力大小。测量时需要多次(一般5-7次)变X射线的入射角,并且调整一维探测器的位置找到相应入射角的衍射角 2)施加应力后,通过测角仪得到衍射角发生变化的角度,从而计算得到应力数据(2)圆形全二维面探测器残余应力仪——基于cosα方法 1)单角度一次入射后,利用二维探测器获得完整德拜环。通过比较没有应力时的德拜环和有应力状态下的变形德拜环的差别来计算应力下晶面间距的变化以及对应的应力 2)施加应力后,分析单次入射前后德拜环的变化,即可获得全部残余应力信息 世界首款基于二维探测器和cosα分析方法的新一代X射线残余应力分析仪,将利用X射线研究残余应力的测量速度和精度推到了一个全新的高度,总体说来它比传统方法具有如下优点:1,圆形全二维面探测器残余应力仪优点: 更快: 二维探测器获取完整德拜环,单角度一次入射测量即可完成测量,全过程平均约90秒 更精确:一次测量最多可获得500个数据点,用于拟合计算应力。无应力铁粉残余应力测定的精度为±2MPa(欧美标准无应力铁粉残余应力测定的精度要求为正常±6.9MPa,最大±14MPa.) 更轻松:无需测角仪,单角度一次入射即可,复杂形状和狭窄空间的测量不再困难 更方便:测量精度高, 无需冷却水、野外工作无需外部供电 更强大:有区域应力分布测量成像(Mapping)功能,软件有晶粒大小、材料织构、残余奥氏体信息分析功能2,传统一维点,线探测器残余应力仪: 1,设备笨重,不适合检测比较大的工件或设备 2,需要测角仪,每次摄入,要多点d-sin2Ψ曝光模式,互相关法计算峰位移。增加仪器成本 3,需要水冷系统,冷却液温度过高或其它流动不畅通时机器不能工作,增加仪器使用成本。 4,操作复杂,必须专业长时间培训或有经验的人员才能操作。检测时间长,每次测量必须转角,人工误差大。 5,设备故障率高,不管是,测角仪,冷却系统或测角角度有一处故障,设备就不能正常工作。 6,价格昂贵,测角仪和冷却系统大大增加了设备成本,维修费用及高。[/color]

  • X射线成像仪简介

    本视频简单的向大家介绍了什么是X射线成像仪,以及它的主要组成部分即X射线源、高精度样品台、光学物镜耦合的CCD探测器、计算机图形控制系统:同时介绍了X射线成像仪的工作流程、应用范围

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 关于布鲁克的LynxEyeTM 林克斯一维阵列探测器

    公司有布鲁克的D8 X射线衍射仪,现在探测器坏了,想买个新的探测器,打电话给布鲁克他们推荐新一代的探测器叫LynxEyeTM 林克斯一维阵列探测器,不知论坛里有没该探测器的用户,讨教下使用体验。

  • X-射线荧光光谱仪(XRF)简介

    X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。  波长色散型X射线荧光光谱仪(WD-XRF),是用晶体分光而后由探测器接收经过衍射的特征X射线信号。如果分光晶体和控测器作同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行定性和定量分析。该仪器产生于50年代,由于可以对复杂体系进行多组分同时测定,受到观注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。  随着科学技术的进步,在60年代初发明了半导体探测器以后,对X-荧光进行能谱分析成了可能。能谱色散型X荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)直接进入半导体探测器,便可以据此进行定性分析和定量分析。  由于普通能量色散X荧光采用低功率X射线管,又采用滤光片扣除背景和干扰,其背景偏高,分辨率偏小,使得应用范围受到限制,特别是在轻元素的分析受到限制。随之X射线偏振器的诞生,产生了一款新型的能量色散X荧光光谱仪,既偏振式能量色散X荧光光谱仪ED(P)-XRF,再加上SDD探测器的使用,不仅提高了(相对使用正比计数管和Si(PIN)探测器的仪器)的分辨率,免去Si(Li)探测器使用液氮冷却的繁琐和危险,原来普通能量色散X荧光的轻元素检出限高,分辨率差的缺陷,又使得(相对波长色散X荧光用户)购买和使用X荧光仪器的成本大大减低,这使得偏振式能量色散X荧光光谱仪ED(P)-XRF在分析领域的迅猛发展,越来越受到广泛关注。

  • 【转帖】顺序式X射线荧光光谱仪常见故障的诊断方法

    摘 要介绍顺序式X射线荧光光谱仪5种常见故障的诊断及处理方法.故障部位包括X射线发生装置,样品室和光谱室的真空,探测器,晶体和测角仪.关键词 X射线荧光光谱仪,维修中图分类号:TH744.15 文献标识码:B顺序式X射线荧光光谱仪是扫描型的仪器,当仪器运行时,许多部件在动作,如测角仪,晶体转换器,准直器等,经常动作的部件容易出现问题,另外控制和探测各个部件动作的电子线路板也可能出现问题.新型的X射线荧光光谱仪都装有故障诊断软件,分布于仪器各个部位的传感器将仪器的状态信号传输到计算机,供仪器操作者和维修工程师判断仪器是否正常,找到产生故障的部位.但是有些在测量过程中出现的问题靠诊断软件是发现不了的,而且诊断软件仅仅提示产生了故障,要找到产生故障的原因,要求维修人员对仪器的结构比较熟悉,且具有一定的维修经验.本文介绍5种常见故障的产生原因及处理方法.1 故障现象一X射线发生器的高压开不起来.故障分析:这是X射线荧光光谱仪较常见的故障,一般发生在开机时,偶尔也发生在仪器运行中.故障的产生原因可以从三个方面去分析:1,X射线防护系统 2,内部水循环冷却系统 3,高压发生器及X射线光管.1.1 X射线防护系统为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动.射线防护系统正常与否,主要检查以下二部分:1,面板的位置是否正常.X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能.因此,每块面板上都有位置接触传感器,面板没有完全合上,高压开不起来.2,X射线的警示标志是否正常.国家标准[1]规定X射线荧光光谱仪必须安装红色警告信号灯并与相应的开关联动,因此如果信号灯失灵,高压也开不起来.有一种简单的方法可以判断高压不能启动是否是由射线防护系统引起,即将仪器的状态设定为维修状态,屏蔽射线防护系统,如果这时高压可以开起来,就可以确定故障是由射线防护系统的问题引起的.1.2 内部水循环冷却系统高压发生器的输出功率一般为3kW或4kW,将高压加至X射线光管后,除小部分用于产生X射线外,大部分转化为热能,由内部水循环冷却系统带走.内循环水用于冷却阳极靶附近的光管头部分,因此要求内循环水为电导率很低的去离子水,以防高压击穿.内循环水通过仪器内部的去离子树脂柱降低电导率,去离子树脂柱中的树脂会年久失效,因此高压无法启动时,可检查一下内循环水的电导率,如果电导率降不下去,考虑更换树脂.另外,内循环水的水位过低,也会导致高压开不起来.还有一种故障现象是高压开起来几分钟后跳掉,产生这种故障的原因可能为内循环水的流量过小.内循环水的流量通过流量计测量,水流过流量计时,带动流量计内的叶轮,叶轮切割磁力线,产生电信号.叶轮在水中长期转动,可能会锈蚀,从而使叶轮的转速减慢,流量计的电信号减弱,使仪器误认为水流量过小而导致高压跳掉.另外内循环水的过滤网堵塞导致水流量减小,也会引起高压跳掉.1.3 高压发生器及X射线光管本身高压发生器和X射线光管是仪器内最贵重的部件,一般不会出问题.检查高压发生器,可将高压发生器打开,根据电路图,检查各个开关是否在正常位置,看一下保险丝有没有熔断,再进一步的检查最好由专业维修工程师来做.X射线光管是个封闭的部件,一旦损坏,只能更换,不能修理.检查X射线光管,可检查X射线光管与高压电缆的连接是否正常,高压电缆有无损坏.2 故障现象二光谱室和样品室的真空抽不到规定值.故障分析:X射线荧光光谱分析通常在真空光路条件下工作,但光谱室和样品室有很多部位与外部相连,可能漏气的部位很多.检查真空故障时,将可能出问题的地方人为分隔为三部分:真空泵,样品室,光谱室,对这三部分逐一检查以缩小范围.2.1 真空泵将真空泵与光谱室和样品室的接口拆下并用橡皮塞堵住,然后抽真空,如果能在几秒钟内抽到规定值,可以排除真空泵出现故障的可能性.如果能抽到规定值但时间较长,可能是真空泵的效率降低,这种情况一般发生在经常分析压片样品和油品的仪器上,粉末或油被吸到真空泵油中,改变了油的粘度,这时需更换真空泵油.2.2 样品室样品室最常见的漏气部位是样品自转装置上的密封圈,样品测量时通常以0.5转/秒的速度自转,仪器几年运行下来,样品自转处的密封圈磨损,密封效果变差.2.3 光谱室光谱室最常见的漏气部位是流气计数器,流气计数器安装在光谱室内,有一根入气管和一根出气管与外界相通,流气计数器的窗膜很薄,窗膜漏气,就会影响光谱室真空.检查方法:将入气管和出气管用一根软管连接,使流气计数器与外界隔绝,然后抽真空.检查真空故障,在拆卸和安装时,要小心操作,不要让灰或头发掉到密封圈上,以避免产生新的漏气点,安装时可以在密封部位涂一点真空油脂.3 故障现象三计数率不稳定.故障分析:X射线荧光光谱仪的常用探测器有二个:流气计数器和闪烁计数器.闪烁计数器很稳定,问题常出现在流气计数器上.流气计数器窗膜由一块聚酯薄膜,hostaphan膜或聚丙烯薄膜镀上一层很薄(约30nm)的铝膜所构成,由于窗膜承受大气压力,一段时间后随着基体材料的延展,铝膜可能产生裂纹,从而减弱导电性能,这种情况对脉冲高度分布影响不大,但会使计数率不稳定.新型号的X射线荧光光谱仪一般都安装1μm甚至0.6μm的窗膜,而不再使用6μm的窗膜,因此流气计数器的窗膜导电性能下降的可能性增大.检查方法[2]:在低X射线光管功率情况下,选一个K Kα计数率约2000CPS的样品,测定计数率,然后用一个钾含量高的样品取代原样品,将光管调到满功率,保持2分钟,再将X射线光管功率减至原值,测量第一个样品,如窗膜导电正常,将得到原计数率,如窗膜导电性能变差,会发现计数率减小,然后慢慢回升至初始值,这时就应调换窗膜.4 故障现象四2θ扫描时,发现峰形不光滑,有小锯齿状.故障分析:晶体是仪器内最脆弱的部件,尽量不要用手接触衍射面,如果手或其他东西碰到了晶体的衍射面,就会污染晶体,手上的汗或其他物质渗到晶体的表面,使晶体表面的晶格间距发生变化,而X射线荧光的衍射主要发生在晶体的表面,因此造成2θ扫描的峰形不光滑.这种故障一时很难消除,文献[3]介绍了晶体的表面处理方法,但一般清洗不干净.5 故障现象五2θ扫描时只出现噪声信号,没有峰位信号.故障分析:可能的原因有二个:5.1 探测器的前置放大电路出现故障,出现的噪声信号为电路噪声,不是X射线信号.5.2 测角仪的θ和2θ耦合关系发生混乱,通常是控制θ和2θ耦合关系的CMOS中的数据由于电池漏电等原因丢失,这时需要重新对光.参 考 文 献中华人民共和国国家标准,X射线衍射仪和荧光分析仪放射卫生防护标准[S].GB16355-1996.北京:中国标准出版社,1996.1-5.应晓浒,张卫星,陈晓东. 波长色散X射线荧光光谱仪的性能测试方法介绍[J].光谱实验室,2000,17(3):281-285.李国会等,TAP,PET等分析晶体的表面处理,岩矿测试,1989,8(2):147-148.

  • 【转帖】X射线荧光光谱仪原理用途

    X射线荧光衍射:利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

  • 【资料】顺序式X射线荧光光谱仪常见故障的诊断方法

    顺序式X射线荧光光谱仪常见故障的诊断方法应晓浒 陈晓东(宁波出入境检验检疫局,浙江省宁波市,315012)张卫星(德国布鲁克AXS公司北京代表处,北京,100081)摘 要介绍顺序式X射线荧光光谱仪5种常见故障的诊断及处理方法。故障部位包括X射线发生装置、样品室和光谱室的真空、探测器、晶体和测角仪。关键词 X射线荧光光谱仪,维修中图分类号:TH744.15 文献标识码:B顺序式X射线荧光光谱仪是扫描型的仪器,当仪器运行时,许多部件在动作,如测角仪、晶体转换器、准直器等,经常动作的部件容易出现问题,另外控制和探测各个部件动作的电子线路板也可能出现问题。新型的X射线荧光光谱仪都装有故障诊断软件,分布于仪器各个部位的传感器将仪器的状态信号传输到计算机,供仪器操作者和维修工程师判断仪器是否正常,找到产生故障的部位。但是有些在测量过程中出现的问题靠诊断软件是发现不了的,而且诊断软件仅仅提示产生了故障,要找到产生故障的原因,要求维修人员对仪器的结构比较熟悉,且具有一定的维修经验。本文介绍5种常见故障的产生原因及处理方法。1 故障现象一X射线发生器的高压开不起来。故障分析:这是X射线荧光光谱仪较常见的故障,一般发生在开机时,偶尔也发生在仪器运行中。故障的产生原因可以从三个方面去分析:1、X射线防护系统;2、内部水循环冷却系统;3、高压发生器及X射线光管。1.1 X射线防护系统为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分:1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合上,高压开不起来。2、X射线的警示标志是否正常。国家标准[1]规定X射线荧光光谱仪必须安装红色警告信号灯并与相应的开关联动,因此如果信号灯失灵,高压也开不起来。有一种简单的方法可以判断高压不能启动是否是由射线防护系统引起,即将仪器的状态设定为维修状态,屏蔽射线防护系统,如果这时高压可以开起来,就可以确定故障是由射线防护系统的问题引起的。1.2 内部水循环冷却系统高压发生器的输出功率一般为3kW或4kW,将高压加至X射线光管后,除小部分用于产生X射线外,大部分转化为热能,由内部水循环冷却系统带走。内循环水用于冷却阳极靶附近的光管头部分,因此要求内循环水为电导率很低的去离子水,以防高压击穿。内循环水通过仪器内部的去离子树脂柱降低电导率,去离子树脂柱中的树脂会年久失效,因此高压无法启动时,可检查一下内循环水的电导率,如果电导率降不下去,考虑更换树脂。另外,内循环水的水位过低,也会导致高压开不起来。还有一种故障现象是高压开起来几分钟后跳掉,产生这种故障的原因可能为内循环水的流量过小。内循环水的流量通过流量计测量,水流过流量计时,带动流量计内的叶轮,叶轮切割磁力线,产生电信号。叶轮在水中长期转动,可能会锈蚀,从而使叶轮的转速减慢,流量计的电信号减弱,使仪器误认为水流量过小而导致高压跳掉。另外内循环水的过滤网堵塞导致水流量减小,也会引起高压跳掉。1.3 高压发生器及X射线光管本身高压发生器和X射线光管是仪器内最贵重的部件,一般不会出问题。检查高压发生器,可将高压发生器打开,根据电路图,检查各个开关是否在正常位置,看一下保险丝有没有熔断,再进一步的检查最好由专业维修工程师来做。X射线光管是个封闭的部件,一旦损坏,只能更换,不能修理。检查X射线光管,可检查X射线光管与高压电缆的连接是否正常,高压电缆有无损坏。2 故障现象二光谱室和样品室的真空抽不到规定值。故障分析:X射线荧光光谱分析通常在真空光路条件下工作,但光谱室和样品室有很多部位与外部相连,可能漏气的部位很多。检查真空故障时,将可能出问题的地方人为分隔为三部分:真空泵、样品室、光谱室,对这三部分逐一检查以缩小范围。2.1 真空泵将真空泵与光谱室和样品室的接口拆下并用橡皮塞堵住,然后抽真空,如果能在几秒钟内抽到规定值,可以排除真空泵出现故障的可能性。如果能抽到规定值但时间较长,可能是真空泵的效率降低,这种情况一般发生在经常分析压片样品和油品的仪器上,粉末或油被吸到真空泵油中,改变了油的粘度,这时需更换真空泵油。2.2 样品室样品室最常见的漏气部位是样品自转装置上的密封圈,样品测量时通常以0.5转/秒的速度自转,仪器几年运行下来,样品自转处的密封圈磨损,密封效果变差。2.3 光谱室光谱室最常见的漏气部位是流气计数器,流气计数器安装在光谱室内,有一根入气管和一根出气管与外界相通,流气计数器的窗膜很薄,窗膜漏气,就会影响光谱室真空。检查方法:将入气管和出气管用一根软管连接,使流气计数器与外界隔绝,然后抽真空。检查真空故障,在拆卸和安装时,要小心操作,不要让灰或头发掉到密封圈上,以避免产生新的漏气点,安装时可以在密封部位涂一点真空油脂。

  • 【资料】X射线荧光光谱仪的分析基本原理及详解

    X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 [~104490~]

  • 【分享】(德国)X射线实时成像检测系统检测金属铸件橡胶轮胎内部分层裂纹

    http://simg.instrument.com.cn/bbs/images/brow/em0816.gif X射线检测系统点激此处链接X射线实时成像系统:对于批量大、要求检测效率高的零件,是一种非常实用有效的检测手段,它具有动态观察、形态真实、检测效率高的特点,并可采用计算机图像处理装置对射线图像进行处理,使检测灵敏度进一步提高。 主要应用领域,金属铸件,塑料橡胶等。本系列产品对于不同形状和大小,钢、铝、陶瓷、复合材料或橡胶等不同材料的工件均可提供高质量的实时监测内部裂纹、分层等。 用于非金属、轻金属、铸造件、各种合金、压力容器等进行X射线无损检测。主要检测焊接缺陷(裂纹、气孔、夹渣、未溶合、未焊透等)以及腐蚀和装配缺陷。XRAY微焦点工作原理和发展:在伦琴先生发现X-Ray后的不久,他就认识到X-Ray可以用于材料检测。但直到上世纪70年代,X-Ray才开始被用于工业领域。由于当时电子产品的微小化以及对元部件可靠性要求的提高,人们极其关注在微米范围内的材料缺陷分析。如今微米焦点X-Ray检测已经稳定地被应用于无损害材料检测,并且通过不断的技术革新将在更广泛的工业领域中被使用.  基本原理 在微米焦点X-Ray检测的过程中,扇形的X-Ray穿过待检样品,然后在图像接收器(现在大多使用X-Ray图像增强器)上形成一个放大的X光图。该图像的质量主要由以下三点决定:放大率、分辨率及对比度。图像分辨率(清晰度)主要由X射线源的大小决定,微米焦点X-Ray放射管的射线源只有几个微米。图像的几何放大率由X光路的几何性质决定(图1),在实际应用中可达到1000至2500倍。 具体物体的微小部分在图片上的表现力主要是由该部分的本身属性在X光图上产生的对比度决定。对比度主要由物体内部的不同厚度,及不同材料(如印制线路板上的铜印制导线),对光线的不同程度吸收而引起的。举例来说,样品A和B拥有相同的厚度,如果A的原子序数较B大,则它对射线的吸收性能较B强。C与B的组成物质相同,若C比B薄,则其对射线的吸收性能比较弱。对比度除与X-ray本征特性有关外,在技术上的局限是由X射线探测器的性质决定的。对图像增强器而言,只有吸收差别达到至2%,才能在X光图中清晰地呈现出来。   X射线管当高速带电粒子突然被减速时,X-Ray就产生了。在简单的X射线管中,电子从热阴极中出来,通过一个电场,向阳极加速。在撞到阳极时停止,同时释放出X射线。碰撞区域的大小就是X射线源的大小,它以毫米为单位,在这种情况下我们只能得到很不清晰的画面。通过微焦点X射线管的使用,就能改变这种状况。电子通过阳极上的一个小孔进入磁电子透镜,该透镜中的磁场力使电子束聚焦在阴极靶上一个直径只有几微米的焦点上。通过这种方式X射线源变得很小,在高放大率的情况下能得到分辨率在微米范围内的清晰图像。新研制的纳米射线管通过多个透镜的使用分辨率将达到500nm。  X射线探测器 传统的X-Ray探测器是一个射线照相胶卷,它拥有良好的空间分辨率(在10μm内)和对比度(0.5%)和可以保存的检测结果等特点。它的缺点是曝光和冲洗都需要好几分钟的时间。针对这种情况,人们在图像增强器上装了拍摄被检测样品动感画面的影像链接,可是仍然只能得到比较粗糙的分辨率。在物体细节显微检测中,可以通过微焦点X光技术消除这个缺点。在足够大的几何放大率的情况下,图像清晰度只同X射线源的大小有关,因此最小的细节也能被清晰地拍摄下来。新研制的数码X射线探测器在理想状态下将两种图像接受方式合为一体:既能提供动态图像,又能拥有完美的对比度。   应用领域 如今微米X光技术主要应用于电子工业中的过程控制和缺陷分析。在元件组装中首先是隐藏焊点的检测,如:BGA封装中的气孔,浸润缺陷,焊桥,及其它的性质,如:焊料的多少,焊点的位移等。在半导体工业中,X光系统作为稳定的工具被应用于集成电路封装中内部连接的无损害检测。因此,在高分辨率的基础上可以检测到直径只有25微米的焊接连线上的最小坏点(图2),及芯片粘接上的气孔在温度降低时晶体的粘合反应等。在多层印制电路板的的制造中,各个板面的排列将被连续地监控。在这里X光系统能精确地测量特别是处于内层位置的结构及焊环宽度,是制造过程优化的基础。此外,如在层间电路金属连通过程中,通过该技术还可以在X光图上清晰地辨认短路及断路,确定它们的位置并作出分析.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制