闪烁体延时放大器

仪器信息网闪烁体延时放大器专题为您提供2024年最新闪烁体延时放大器价格报价、厂家品牌的相关信息, 包括闪烁体延时放大器参数、型号等,不管是国产,还是进口品牌的闪烁体延时放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合闪烁体延时放大器相关的耗材配件、试剂标物,还有闪烁体延时放大器相关的最新资讯、资料,以及闪烁体延时放大器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

闪烁体延时放大器相关的厂商

  • 朗研光电是国内首批研发和生产超快激光器及超灵敏探测设备的高新技术企业,为进一步扎根工业激光市场,在松山湖成立“朗研科技”,旨在贴身服务华南及全国的工业激光客户。公司现有工业级光纤超快种子源、全光纤放大器、多波段超快激光器、光学频率梳、单光子探测器,受30余项自有发明专利保护,相关产品已广泛应用于THz科研与仪器、多光子3D打印、非线性光谱成像、晶圆划片、激光测距等领域。朗研光电获科技部仪器专项及重点研发计划等多个项目支持,获上海市高新技术产品认证,获中国工业激光器创新贡献奖/最佳人气奖。朗研同仁将继续秉承“专而精”的匠人精神,打造超快激光品牌,为科研和工业客户提供优质服务。
    留言咨询
  • 深圳市捷晟达科技有限公司是一家集研发、生产、贸易为一体的高新技术企业,公司专业致力于AC-DC电源模块、DC-DC电源模块、微功率DC-DC模块电源、两线制无源4-20mA隔离放大器模块、两线制无源4-20mA隔离配电器模块、两线制无源4-20mA隔离调理器、光电隔离放大器系列、磁电隔离放大器系列、小信号隔离放大器系列、隔离功率驱动变送器、单通道隔离放大器、多通道隔离变送器、热电阻信号隔离变送器、单通道隔离配电器、电量隔离变送器、隔离栅、非隔离放大器、模/数信号隔离采集器及数/模信号隔离采集器(4-20mA转RS-485/RS-232)IO采集模块的研发、生产与销售,并代理国内外知名品牌隔离变送器产品的高新技术企业。 捷晟达科技从成立之日起,专注于传感器、隔离器变送器模拟信号采集、隔离放大和变换的高端技术应用研究开发,与当前国家重点发展的轨道交通、国电网改造、风能太阳能发电、电动汽车等新兴行业大量需求关键电子部件完全匹配。经全体捷晟达人的不懈努力产品在电力、通讯、仪器仪表、工业测量系统、医疗设备、工控智能化、汽车智能化、智能楼宇控制、汽车电子、安防、环保、食品、冷暖空调系统、水处理,石油化工()、煤矿开采、冶金,船舶等众多领域得到广泛的应用。在保证质量、合理性价比的前提下给不同领域的客户提供功能不同的产品,客户需要特制产品时并为客户专门订制相关的产品,为客户提供满意合理的解决方案,得到客户一致好评。 公司树立了“以人为本,顾客至上,锐意进取,共同发展”为经营宗旨,以“诚信、务实、奉献、创新”为管理经营理念,公司依靠科技求发展,不断为用户提供满意的高科技产品,是全体捷晟达人始终不变的追求。 今天捷晟达人奉行“进取 求实 严谨 团结”的方针,不断开拓创新,“以技术为核心、视质量为生命、用行动来证明”,竭诚为您提供高性价比的产品,同时又为您提供最专业一条龙的售后服务。
    留言咨询
  • 瑞士苏黎世仪器是世界领先的测试测量仪器制造厂家,其产品广泛地应用在各种先进的研发领域。苏黎世仪器的产品涵盖中频MF、高频HF和超高频UHF,频段齐全,功能丰富。产品系列有:锁相放大器、锁相环、任意波形发生器、阻抗分析仪等等。苏黎世仪器的全数字锁相放大器系列,带宽DC-600MHz,配套图形化操作软件LabOne,除了具有锁相的全部功能,同时兼具更多的测试测量功能:示波、频谱分析、扫频、频率特性分析、触发等,还可扩展任意信号发生器、LCR阻抗分析仪、数字转换器、BOXCAR平均器、PID控制器等等,带给您无与伦比的测试体验,极大的简化实验环节,并保证同步与精准。
    留言咨询

闪烁体延时放大器相关的仪器

  • 近年来,钙钛矿型闪烁体及钙钛矿型 X 射线直接探测器被广泛研究及报道。在发光闪烁体层面,钙钛矿纳米晶闪烁体通过溶液即可制得,成本极低,且具备全色彩可调谐辐射发光的特点。在直接探测层面,铅卤钙钛矿材料因其具备较大的原子序数、高吸收系数等优点,在 X 射线直接探测领域同样表现出非常优异的性能。卓立汉光能够提供基于 X 射线的稳态发光光谱,荧光寿命,瞬态光谱以及 X 射线探测成像的相关测量方案。能够提供全套涵盖 X 射线激发源、光谱仪、稳态及瞬态数据处理、成像测量(CMOS 成像,单像素成像,TFT 面阵成像)、辐射剂量表、辐射安全防护等,辐射防护防护满足国标《低能射线装置放射防护标准》(GBZ115-2023)。如下陈述我们几种测量方案及相关配置明细( 一 ) 稳态光谱及荧光寿命采集基于皮秒 X 射线和 TCSPC 测量原理的方法纳秒脉冲 X 射线 稳态和寿命测量数据( 二 ) X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲 X 射线实现光电流衰减测量TFT 集成的面阵 X 射线成像 成像测量结果( 三 ) 技术参数稳态光谱及荧光寿命采集基于皮秒X 射线和TCSPC 测量原理的方法包含:皮秒脉冲激光器、光激发X 射线管、TCSPC 或条纹相机。 由皮秒脉冲激光器激发“光激发X 射线管”发射出X-ray 作用于样品上,样品发射荧光,经光谱仪分光之后,由探测器探测光信号,数据采集器读取数据。皮秒X 射线测量荧光寿命原理图纳秒脉冲X 射线150KV 纳秒脉冲X 射线* 安全距离要求:a:3 米,b:6 米,c:30 米稳态和寿命测量数据NaI 样品在管电压50KeV,不同管电流激发下的辐射发光光谱 纳秒X 射线激发的荧光衰减曲线X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲X 射线实现光电流衰减测量TFT 集成的面阵X 射线成像TFT 传感芯片规格TFT 读取系统规格成像测量结果 CMOS 成像实物图分辨率指标:TYP39 分辨率卡的X 射线图像。测试1mm 厚的YAG(Ce) 时,分辨率可以优于20lp/mm 手机充电头成像测试密码狗成像测试技术参数稳态X 射线激发发光测量光源 能量:4-50KV,功率:0-50W 连续可调,靶材:钨靶,铍窗厚度 200μm样品位置辐射剂量:0-25Sv/h光路透射和反射双光路,可切换 光谱范围200-900nm(可扩展近红外)监视器内置监视器方便观察样品发光,可拍照快门可控屏蔽快门,辐射光源最大功率下,关闭快门,样品位置辐射剂量小于10uSv/h辐射防护满足国标《X 射线衍射仪和荧光分析仪卫视防护标准》(GBZ115-2023)样品支架配备粉末、液体、薄膜样品架成像测量模块成像面积:直径20mm(可定制更大面积:120mm×80mm)成像耦合光路附件,样品测试夹具相机参数:颜色:黑白,分辨率:20MP, 5472 (H) x 3648 (V),像元尺寸:2.4μm×2.4μm,量子效率:84%@495nm,暗电流:0.001e-/pixel/s,制冷温度:-15℃,成像分辨率:优于20lp/mm瞬态X 射线激发发光测量光源皮秒脉冲X 射线源纳秒脉冲X 射线源*405nm ps 激光二极管:波长:100Hz-100MHz 可调,峰值功率:400mW@ 典型值,脉冲宽度:100ps光激发X 射线光管:辐射灵敏度:QE10%(@400nm),靶材:钨,操作电压:40KV,操作电流:10μA@ 平均值,50μA@ 最大值 电压:150KV脉冲宽度:50ns重复频率:10Hz平均输出剂量率:2.4mR/pulse数据采集器TCSPC 计数器条纹相机(同时获得光谱和寿命)示波器瞬时饱和计数率:100Mcps 时间分辨率(ps):16/32/64/128/256/512/1024/…/33554432通道数:65535死时间:< 10ns支持稳态光谱采集数据接口:USB3.0最大量程:1.08μs @16ps,67.1μs@1024ps, 2.19s@33554432ps 光谱测量范围:200-900nm时间分辨率:=5ps,( 最小档位时间范围+ 光谱仪光路系统)探测器:同步扫描型通用条纹相机ST10测量时间窗口范围:500ps-100us( 十档可选)工作模式:静态模式,高频同步模式以及 低频触发模式;系统光谱分辨率:0.2nm@1200g/mm单次成谱范围:=100nm@150g/mm静态(稳态)光谱采集,瞬态条纹光谱成像及荧光寿命曲线采集模拟带宽:500 MHz通道数:4+ EXT实时采样率:5GSa/s( 交织模式),2.5GSa/s( 非交织模式)存储深度:250Mpts/ch( 交织模式),125 Mpts/ch( 非交织模式) 寿命尺度500ps-10μs100ps-100μs 100ns-50msX 射线探测成像 方式CMOS 成像单像素探测器TFT 集成的面阵探测器配置成像耦合光路附件,样品测试夹具相机参数:颜色:黑白分辨率:20MP, 5472 (H) x 3648 (V) 像元尺寸:2.4μm×2.4μm量子效率:84%@495nm暗电流:0.001e-/pixel/s制冷温度:-15℃XY 二维电动位移台:XY5050:行程:X 轴50mm,Y 轴50mm,重复定位精度1.5μm,水平负载4Kg;XY120120:行程:X 轴120mm,Y 轴120mm,重复定位精度3μm,水平负载20KgTFT 阵列传感芯片(可提供直接型和间接型芯片):背板尺寸(H×V×T):44.64×46.64×0.5 mm,有源区尺寸(H×V):32×32mm,分辨率(H×V):64×64, 像素大小:500×500μmTFT 读出系统:成像规格:解析度:64 行×64 列,数据灰阶:支持256 灰阶显示,数据通信方式:WIFI 无线通讯,数据显示载体:手机/ 平板(Android 9.0以上操作系统、6GB 以上运行内存)辐射剂量测定辐射计量表探测器:塑料闪烁体, Ø 30x15 mm连续长期辐射:50 nSv/h ... 10 Sv/h连续短期辐射:5 μSv/h ... 10 Sv/h环境剂量当量测量范围:10 nSv ... 10 Sv连续的短时辐射响应时间:0.03 s相对固有误差:连续和短期辐射:±15% 最大137 Cs 灵敏度:70 cps/(μSvh-1 )剂量率变化0.1 to 1 μSv/h 的反应时间 ( 精度误差 ≤ ±10%) 2 s全光产额测量方案 闪烁晶体的光产额(也称为光输出或光子产额)是指晶体在受到电离辐射(如γ 射线、X 射线或粒子)激发后,发射光子(通常是可见光)的数量。光产额通常以每单位能量沉积产生的光子数来表示,单位可以是光子/MeV。光产额是衡量闪烁晶体性能的重要参数之一,它是衡量闪烁体材料性能的重要指标之一,也直接关系到该材料在实际应用中的灵敏度和效率。常见的闪烁晶体包括碘化钠(NaI),碘化铯(CsI),和氧化镧掺铈(LaBr3)等。不同的晶体材料会有不同的光产额,这取决于其发光机制、能带结构、以及材料的纯度和缺陷等因素。研究闪烁体材料的光产额对于提高其性能、拓展其应用具有重要的意义。一些常见闪烁晶体的光产额值如下:碘化钠(NaI(Tl)):约38,000 photons/MeV氯化铯(CsI(Tl)):约54,000 photons/MeV氧化铈掺杂的氧化镧(LaBr3):约63,000 photons/MeV钇铝石榴石掺杂铈离子(YAG:Ce):约14,000 photons/MeV 光产额越高,意味着该晶体能够在相同的能量沉积条件下产生更多的光子,从而在探测器中生成更强的信号,通常也会导致更好的能量分辨率。卓立汉光提供一整套包含同位素源、屏蔽铅箱(被测器件及光路)、光电倍增管、高压电源、闪烁体前置放大器、谱放大器、多道分析仪及测试软件,实现闪烁体的光产额测量。同位素源Na-22(或 Cs-137 可选),屏蔽铅箱(被测器件及光路),充分保证测试人员安全 光电倍增管 光谱范围:160-650nm,有效面积:46mm 直径,上升时间:≤ 0.8ns 高压稳压电源 提供:0-3000V 闪烁体前置放大器 :上升时间< 60ns积分非线性≤ ±0.02%计数率:250 mV 参考脉冲的增益偏移 0.25%,同时应用 65,000/ 秒的 200 mV 随机脉冲的额外计 数速率,前置放大器下降时间:信号源阻抗为 1 MΩ,则下降时间常数为 50 μs 谱放大器高性能能谱,适合所有类型的辐射探测器(Ge、Si、闪烁体等) 积分非线性(单极输出): 从 0 到 +10V0.025%噪声:增益 100 时,等效输入噪声 5.0uV rms;手动模式下,增益> 1000 时,等效输入噪声 4.5uV rms;或者自动模式下,增益 100 时,等效输入噪声 6.0uV rms温度系数(0 到 50° C)单极输出:增益为 +0.005%/'C,双极输出:增益为 +0.07%/'C,直流电 平为 +30μV/° C误差:双极零交叉误差在 50:1 动态范围内 ±3 ns增益范围:2.5-1500 连接可调,增益是 COARSE(粗调)和 FINE GAIN(微调增益)的乘积。单极脉冲形状:可用开关为 UNIPOLAR(单极)输出端选择近似三角形脉冲形状或近似高斯脉冲形状。配置专用 3kv 高压电源 2K 通道多道分析仪ADC: 包括滑动标度线性化和小于 2us 的死区时间,包括存储器传输 积分非线性 : 在动态范围的前 99% 范围内≤士 0.025%。 差分非线性 : 在动态范围的前 99% 范围内小于士 1%。 增益不稳定性 : 士 50 ppm/° C死区时间校正 : 根据 Gedcke-Hale 方法进行的延长的实时校正。 USB 接口 :USB 2.0 到 PC 的数据传输速度最高可达 480Mbps操作电脑/ 光学平台 尺寸:1500*1200*800mm台面 430 材质,厚度 200mm,带脚轮。固有频率:7-18Hz,整体焊接式支架
    留言咨询
  • 闪烁体是一类吸收高能粒子或射线后能够发光(探测器灵敏波段)的材料,可分为有机和无机两大类,按其形态又可分为固体、液体和气体三种。 当闪烁体受到高能粒子或射线照射后能够发生能级跃迁,且产生的紫外可见光强度可被光电探测器探测到。当X射线与闪烁体作用时,一个X射线光子,可以产生多个光子,与紫外可见光不同,因为X射线的能量足以使物体电离,使电子脱离能级的束缚。能量越高的X射线光子,通过产生俄歇电子,康普顿散射等产生更多的电离电子(二次电子),二次电子热能化退至激发能级,通过荧光或磷光的方式发光。因此闪烁体对辐射具有能量分辨率。在医学上,闪烁体是核医学影像设备的核心部件,通过它可以快速诊断出人体各器官的病变大小和位置。闪烁体在行李安检、集装箱检查、大型工业设备无损探伤、石油测井、放射性探测、环境监测等领域也都发挥着不可替代的作用。闪烁体还是制造各类对撞机中电磁量能器的重要材料,它可捕捉核反应后产生的各种粒子的信息,是人类探索微观世界及宇宙演变的重要工具。稳态瞬态荧光-闪烁体综合性能表征系统可综合测试稳态瞬态光致发光以及X射线辐射发光。X射线辐射样品仓安装可控屏蔽快门,在辐射光源最大功率下关闭快门时,样品位置辐射剂量小于10uSv/h,辐射防护满足国标GBZ115-2023《低能射线装置放射防护标准》的要求。 该系统可根据用户需要搭建以下功能● 稳态荧光/瞬态荧光● 稳态X射线荧光/瞬态X射线荧光● X射线荧光成像● 显微荧光/显微荧光寿命成像● 温度相关光谱 X射线荧光成像瞬态X射线荧光寿命测试技术参数X射线荧光成像TYP 39分辨率卡的X射线图像。测试1mm厚的YAG(Ce)时,分辨率可以达到20pl/mm以上。
    留言咨询
  • 独立操作100m~4.5km量程内置数据记录仪内置数据处理功能LAS MkII大口径闪烁仪大口径闪烁仪用于测量大气湍流状况。其工作原理基于大气中的闪烁现象。出现闪烁现象时,热通量导致大气折射率变化,继而引起热路上可看到的闪光效果。 新型LAS MkII大口径闪烁仪可持续测量100m~4.5km路径沿线的感热通量。测量过程直接简单,并且能够快速得出测量结果。由于该装置仅需极少电力支持,大多数情况下使用一块简单的太阳能充电电池即已足够。LAS MkII接收机内部有数字处理装置,可以自动计算所有相关参数,例如Cn2和感热通量。通过显示屏上显示的实时数据,您可以在短时间内了解试验状况。内置的数据记录仪则存储数月内获得的测量数据和结果。通过数字接口,您可以远程实时显示并全面控制仪器的操作设置。通过模拟输出,您也可以将仪器与任何数据采集系统实现虚拟连接。这样便于和新的或现有的测量网络相集成。如果随身携带仪器进行现场部署,会耗费大量人力,更不用说安装各种笔记本电脑、接口电缆和软件了。LAS MkII可以采取内置显示屏和键盘的安装方式,无需任何其他额外设备。闪烁计数器本身对大气折射率变化Cn2进行测量,但是如果选装有气象传感器套件,则可以计算出感热通量。该套件由风速、温度和压力传感器以及各配套插头组成,直接安装在LAS MkII接收机内。EVATION® 软件套装属于标准交付件,用于查看以数字和图形方式显示的实时数据以及对高级数据进行事后处理。
    留言咨询

闪烁体延时放大器相关的资讯

  • Science|一种纳米光子学闪烁体:闪烁数量级增强 推进电镜等技术发展
    仪器信息网讯 2月25日,麻省理工学院电子研究实验室和物理系等在Science发表一种纳米光学的闪烁体架构最新成果:A framework for scintillation in nanophotonics。该闪烁体架构在电子诱导和x射线诱导的闪烁中都获得了近一个数量级的增强,有助于开发出一种更亮、更快、更高分辨率的新型闪烁体。这或将推动医学成像、x射线无损检测、电子显微镜和高能粒子探测器等技术的发展。(DOI: 10.1126/science.abm9293 )闪烁体纳米光子学当高能粒子与材料碰撞时,能量会传递给材料中的原子,从而可以发光。这种闪烁过程被应用于从医学成像到高能粒子物理学等的许多探测器中。Roques-Carmes等人将纳米光子结构集成在闪烁材料上,以增强和控制其光发射。作者展示了纳米光子结构如何塑造闪烁的光谱、角度和偏振特性。这种方法将有助于开发更亮、更快和更高分辨率的闪烁体。摘要高能粒子对材料的轰击通常导致光发射,这一过程称为闪烁。闪烁在医学成像、x射线无损检测、电子显微镜和高能粒子探测器中有广泛的应用。大多数研究集中在寻找更亮、更快、更可控的闪烁材料。团队发展了一个统一的纳米光子闪烁体理论,该理论解释了闪烁的关键方面:高能粒子的能量损失,以及纳米结构光学系统中的非平衡电子的光发射。然后,我们设计了一种基于将纳米光子结构集成到闪烁体中来增强其发射的方法,在电子诱导和x射线诱导的闪烁中都获得了近一个数量级的增强。该框架预期能够开发出一种更亮、更快、更高分辨率的新型闪烁体,具有定制化和优化的性能。纳米光子闪烁体:( A ) 纳米光子闪烁体由与闪烁体集成的纳米光子结构组成。通过结合能量损失动力学、占据水平动力学和纳米光子学建模,可以对闪烁进行建模、定制和优化。( B ) 光子晶体纳米光子闪烁体增强x射线闪烁的数量级。( C ) 使用纳米光子闪烁体(白色虚线正方形)进行的 X 射线扫描。简介高能粒子对材料的轰击通常导致光发射,这一过程称为闪烁。闪烁体广泛应用于电离辐射的检测,具有广泛的应用,包括用于医学成像、无损检测的 X 射线探测器、用于正电子发射断层扫描的伽马射线探测器、夜视系统和电子显微镜中的荧光屏以及高能物理实验中的电磁热量计。因此,人们对开发具有更高光子产率和更高空间和能量分辨率的“更好的闪烁体”非常感兴趣。一般来说,更好的闪烁体会导致上述所有应用技术的明确改进。比如在医学成像技术中,更亮的闪烁体可以实现极低剂量的 X 射线成像,从而减少对患者的潜在伤害。大多数对改进闪烁体问题的研究都涉及合成具有更好固有闪烁特性的新材料。基本原理高能粒子转化为光子是一个复杂的多物理过程,其中入射粒子在闪烁体中产生一连串的二次电子激发。然后这些二次激发在发射闪烁光子之前放松为非平衡分布。通过在闪烁体中在闪烁光子波长的尺度上产生空间不均匀性,从而在波长尺度上调制材料的光学特性,可以控制和增强光发射。在这种“纳米光子闪烁体”中,由于电子可用于发光的光学态的局部密度的增强,闪烁体中的发光电子可以更快地发光。还可以使用这些纳米光子结构将捕获的光“引导”出闪烁体,从而检测到更多的光。这两种效应都导致闪烁光子发射率的提高。这些纳米光子效应与材料无关,原则上可以增强任何闪烁体,并且原则上也可以对任何类型的高能粒子观察到这些效应。纳米光子成形和增强电子束诱导闪烁实验演示:(a) 使用改进的扫描电子显微镜(SEM)诱导和测量电子束(10-40 keV)轰击闪烁纳米光子结构的闪烁。(b) 通过Monte Carlo模拟计算了绝缘体上硅晶片中的电子能量损失。插图:放大闪烁(硅)层中的电子能量损失。(c) 光子晶体(PhC)样品(蚀刻深度35nm)的SEM图像。倾角45◦.比例尺:1µm(顶部),200 nm(底部)。(d) 具有不同蚀刻深度(但厚度相同)的薄膜(TF)和PhC样品的闪烁光谱。(e) 闪烁信号通过物镜从真空室耦合出来,然后在相机上成像,并用光谱仪进行分析。(f-g)绿色和红色闪烁峰的理论(左)和实验(右)闪烁光谱之间的比较。插图:计算出的正常发射方向的闪烁光谱(每个立体角),显示出在单个发射角度上可能有更大的增强。成果该团队建立了纳米光子闪烁体的第一性原理理论,理论考虑了导致电子激发的复杂过程以及任意纳米光子结构中非平衡电子的光发射。使用该理论作为指导,在两个不同的平台上通过实验证明了数量级的闪烁增强:通过硅缺陷产生的电子诱导闪烁,以及传统闪烁体中通过稀土掺杂引起的 X 射线诱导闪烁。两种情况下的增强都是通过对闪烁体或闪烁体上方的材料进行二维周期性蚀刻来实现的,以创建二维光子晶体平板几何形状。该理论解释了实验观察到的增强,以及其他需要对发射过程的潜在微观动力学进行第一性原理描述的影响。例如,我们可以将观察到的光谱形状解释为光子晶体板的几何参数的函数。此外,使用该框架,我们可以解释信号与入射粒子通量的非线性关系,以及主要闪烁波长可能随高能粒子通量而变化的影响。此外,团队使用纳米图案 X 射线闪烁体来记录各种样本的 X 射线扫描,并观察到图像亮度的增加。这直接转化为更快的扫描,或者相当于实现给定亮度所需的更低 X 射线剂量。X射线闪烁的纳米光子增强结论该框架可以直接应用于在许多现有实验中的纳米光子闪烁模型,可解释任意类型的高能粒子、闪烁体材料和纳米光子环境。除此之外,该框架还允许发现用于增强闪烁的最佳纳米光子结构。成果展示了如何使用拓扑优化和其他类型的纳米光子结构来寻找可以呈现更大闪烁增强的结构。该团队期望这里展示的概念可以部署在使用闪烁体的所有应用领域,并在整个应用领域提供引人注目的应用,包括医学成像、夜视和高能物理实验等。实验设置和校准测量示意图.(A)实验设置示意图,扫描电镜SEM室内,1:电子束与样品相互作用;2:法拉第杯,链接外接皮安计,测量入射电流;3:6轴,同心圆工作台,由SEM控制;4:XYZ目标阶段。5:X射线遮挡窗口,SEM室外;6:镜面;7:管状镜头;8:分束器;9:CCD摄像机,成像样品表面;10:偏振片(可选);11:XYZ框架组件,带两个聚焦透镜和一个光纤耦合器,内部分光仪;12:光栅转台;13,14:(聚焦)镜;15:光谱仪CCD,绿色激光馈通对准臂;16:绿色激光源;17:光纤耦合直通,真空兼容;18:光纤输出照明样品。(B)校准实验(其余设置与(A)类似)。19:AVA校准光源。(C)测量校准转换功能。
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M

闪烁体延时放大器相关的方案

闪烁体延时放大器相关的资料

闪烁体延时放大器相关的试剂

闪烁体延时放大器相关的论坛

  • 什么是放大器

    放大器是什么呢?你们知道吗?放大器有很多种,各式各样的都有,今天我们就来说说放大器是什么样的吧,放大器是用来增加信号幅度或功率的装置,它是自动化技术工具中处理信号的重要元件。放大器的放大作用是用输入信号控制能源来实现的,放大所需功耗由能源提供。输出就是输入信号的复现和增强。知道放大器的作用吗?它可以能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、电视、自动控制等各种装置中。它还有一个小小的原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。放大器的分类也有好几种呢?1:通用型集成运算放大器2:高精度集成运算放大器3:高速型集成运算放大器4:.高输入阻抗集成运算放大器5.低功耗集成运算放大器放大器的用途知道了不:主要用于检测信噪比很低的微弱信号。即使有用的信号被淹没在噪声信号里面,即使噪声信号比有用的信号大很多,只要知道有用的信号的频率值,就能准确地测量出这个信号的幅值。

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

  • 放大器的反向互调失真测量

    当放大器受到一个来自输出端的反向功率时,也会产生互调失真。虽然反向互调失真的概念和测试方法较少被提到,但实际上,射频工程师们在很多场合是关注到这个问题的,比如在正向互调测试中,要求合路器有很高的隔离度,如果自身隔离度不够,还要外加隔离器。另外一个例子是在多路发射机的合成系统中,对多工器的隔离度有很高的要求。这些都是为了减少反向功率加到放大器输出端时所产生的互调失真。[color=#ffffff]www.[/color][align=center][img=gooxian-放大器测量-1]http://www.gooxian.com/Storage/master/gallery/201711/20171110141354_6340.jpg[/img][/align][align=center]放大器的反向互调测量[/align] 上图是放大器反向互调的测试方法[url=http://www.hyxyyq.com][color=#ffffff].[/color][/url]。其中被测放大器以f1频率工作,而测试放大器将频率为的功率从反向加入到放大器的输出端。F2的功率要小于力的功率,至于小多少,要参照实际的应用环境由使用者来定义。比如在蜂窝基站测试中,要求反向信号功率的幅度比被测放大器的输出功率小30dB。[color=#ffffff]hyxyyq[/color] 反向互调的测试结果见下图。通常只考虑三阶互调产物,被测放大器的输出功率与最大的三阶互调产物之间的差值即为反向互调值。[align=center][img=gooxian-无源互调测量系统-2]http://www.gooxian.com/Storage/master/gallery/201711/20171110141418_3670.jpg[/img][/align][align=center]放大器的反向互调测试结果[/align][color=#ffffff].com[/color] 无源互调测量中各向异性器件的反向互调问题与之类似,实际上在很多功率放大器的末级就采用了铁氧体环流器。

闪烁体延时放大器相关的耗材

  • 闪烁体转换屏
    这款闪烁体转换屏是欧洲进口的优质荧光转换屏,X射线转换屏,X射线荧光屏,具有全球最高的转换效率和最薄的厚度,非常适合X射线探测,电子成像、X射线成像和紫外成像应用.我们可根据用户要求提供全球领先的Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。这种闪烁体转换屏使用YAG:Ce晶体和LuAG:Ce晶体作为衬底,具有超薄和超高分辨率的优点(最薄可达5微米以下)。这两种闪烁体材料(YAG:Ce晶体 LuAG:Ce晶体)具有具有良好的化学、力学和温度性能,非常适合光电二极管和雪崩二极管读取。中国领先的进口X射线成像系统旗舰型服务商--孚光精仪!闪烁体转换屏特意为电子成像、X射线成像和紫外成像应用而设计,并可以提供Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。 确定成像显示屏的厚度需要考虑到合适的探测效率和高分辨率两种因素。根据多年的经验可以确定的是对于耦合在精密光学衬底上的超薄山活体荧光屏荧光屏而言,如果使用高灵敏度的CCD探测器照相,就X射线应用而言可以给出大约1微米的分辨率。光学衬底上的荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏高分辨率的闪烁体转换屏实际上是高效率成像系统的主要元件.我们提供基于YAG:Ce或LuAG:Ce 单晶闪烁探测器的超薄显示屏. 超薄YAG:Ce闪烁屏(左图) 和 超薄LuAG:Ce超薄闪烁屏(右图) 使用这种镀在光学衬底上的闪烁体转换屏,结合光学系统和CCD相机,可以获得优于1微米(X射线应用)和2纳米(电镜)的分辨率.光纤光学上的成像屏 (荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏)我们可以提供耦合到FOP上的YAG:Ce和LuAG:Ce成像屏,也可与CCD耦合一起。 FOP上的薄YAG:Ce闪烁屏(左图)和锥形FO上的YAG:Ce闪烁屏(右图) 我们提供的这种用成像系统获取的X射线图像的分辨率大约是20微米。我们也可以根据用户需求把成像屏耦合到光纤元件和CCD上。超薄独立成像屏: 这种超薄闪烁体转换屏不需要与衬底耦合或其他支持物,不需要胶合在玻璃或FOP上。直径为10mm厚度为0.030mm。也可以提供更大直径的荧光转换屏,X射线转换屏,X射线荧光屏,闪烁体转换屏,但是厚度需要增加到0.050mm左右。
  • 德国zinsser analytic 闪烁瓶/液体闪烁瓶/闪烁计数瓶
    它会给你值得信任的实验数据! 低背景 高效率 低成本 高体验Zinsser一次性HDPE液体闪烁计数瓶 行业的趋势是塑料计数瓶逐渐取代低钾玻璃计数瓶,因为塑料计数瓶不但价格低廉、使用方便,而且背景率小于5-7cpm,360-400nm之间的紫外透过率更高。 市面上许多廉价的塑料计数瓶都是用重新研磨的材料制成,这加大了背景率的干扰和发生淬灭的风险。在二甲苯或甲苯等溶剂反应时瓶体很可能会膨胀,极大可能无法继续计数。多数低质量、更便宜的计数瓶是通过挤压吹塑生产的,不但壁厚极不均匀,底部还会出现细小的裂缝、颈部会出现脊,这样的计数瓶很难密封。这使得在液体闪烁计数器中使用这种小瓶在三个方面非常危险: 1.有污染的危险,底缝很难密封。 2.由于底部的脊而存在机械堵塞的风险。 3.由于颈部脊或形成的帽造成密封不良。 不均匀的壁厚,如果样品不直接测量,会导致更高的扩散溶剂损失和更大的误差风险。准备挤压吹塑小瓶的其他缺点是直径和高度的尺寸上有很大的偏差,这可能导致液体闪烁计数器的机械故障。 Zinsser液体闪烁计数瓶尺寸与其他同类小瓶的尺寸相同可通用,但Zinsser液体闪烁计数瓶与其他产品的主要区别是制作方方法-注射吹模制。 这是分两步进行的制作工艺。第一步,颈部区域用一个预制件成型;第二步,颈部预制件被吹出形成一个计数瓶。使用这种技术生产的Zinsser液体闪烁计数瓶是一体成型,因此壁厚均匀,没有底缝、颈脊和底脊。在整个缩小过程中,几种电子控制设备保证了参数一致性。因此,虽然注射吹塑是一种更昂贵的生产技术,但产品以其均匀性和稳定性而闻名。 Zinsser液体闪烁计数瓶使用的原材料是不含杂质的高密度刚性聚乙烯(可能导致淬灭) Zinsser液体闪烁计数瓶的“Polyvials 20”型号配有“DIN22螺纹”的超级密封帽 Zinsser液体闪烁计数瓶的带有“SLD”型号是专门为长时间观察或需要反复计数的客户服务,主要是因为瓶体内部具有一层薄薄的聚四氟乙烯,能够很大程度保持溶剂不挥发,所以能够很好的完成这一任务。产品特点: 用后即换无需清洗,操作方便省时; 最大限度地将放射性能量从样品转化为光; 无损失地将光子传输到光倍增器; 确保样品/闪烁体混合的均匀性; 精密成型;安全性更高; 技术条件几乎恒定,可重复性高; 产品型号:货号参数与规格3071401型号ZINSSER POLYVIALS® V 20ml;容积20ml;HDPE材质;瓶身白色/白色瓶盖;1000个/箱3071402型号ZINSSER POLYVIALS® V 20ml;容积20ml;HDPE材质;瓶身白色/红色瓶盖;1000个/箱3071403型号ZINSSER POLYVIALS® V 20ml;容积20ml;HDPE材质;瓶身白色/蓝色瓶盖;1000个/箱3071404型号ZINSSER POLYVIALS® V 20ml;容积20ml;HDPE材质;瓶身白色/绿色瓶盖;1000个/箱3071490型号ZINSSER POLYVIALS® SLD 20ml;长时计数容积20ml;100个/箱3040002型号ZINSSER POLYVIALS® 145ml;容积145ml 250个/箱3040090型号ZINSSER POLYVIALS® 145ml;长时计数容积145ml;100个/箱3020001型号ZINSSER MINIS® 2001;容积5.5ml;2500个/箱3020002型号ZINSSER MINIS® 2002;容积5.5ml;2500个/箱3010000型号ZINSSER MINIS® 1000;容积4ml;聚丙烯材质;3000个/箱3011000型号ZINSSER MINIS® M;容积3ml;独特按压帽设计;3000个/箱3015311型号Schaumstoffeinlage DIN 22;白色;1000个/箱3015411型号Schraubverschlüsse DIN 22;聚丙烯材质;白色;1000个/箱
  • YAG:Ce闪烁晶体
    YAG:Ce闪烁晶体也叫作YAG:Ce闪烁体或YAG:Ce晶体。我们提供优质欧洲进口的YAG:Ce闪烁晶体,并可以在YAG:Ce晶体基础上支撑Ce:YAG闪烁晶体和YAG:Ce晶体作为衬底,从而保证具有超薄和超高分辨率的优点(最薄可达5微米以下)。YAG:Ce闪烁晶体材料具有衰减快以及具有良好的化学、力学和温度性能。Ce:YAG闪烁体和Ce:YAG闪烁晶体发出的光非常适合光电二极管和雪崩二极管读取。这些YAG:Ce闪烁晶体成像荧光屏特意为电子成像、X射线成像和紫外成像应用而设计,并可以提供Al、ITO或C(铝、氧化铟锡、炭)等传导性和反射或者增透镀膜。光学衬底上的YAG:Ce晶体高分辨率的成像屏实际上是高铝成像系统的主要元件.我们提供基于YAG:Ce晶体或YAG:Ce闪烁晶体的超薄显示屏.超薄YAG:Ce浸提屏(左图) 和超薄LuAG:Ce超薄屏(右图)使用这种镀在光学衬底上的超薄成像屏,结合光学系统和CCD相机,可以获得优于1微米(X射线应用)和2纳米(电镜)的分辨率.光纤光学上的成像屏 我们可以提供耦合到FOP上的YAG:Ce和LuAG:Ce成像屏,也可与CCD耦合一起。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制