当前位置: 仪器信息网 > 行业主题 > >

散射式近场显微镜

仪器信息网散射式近场显微镜专题为您提供2024年最新散射式近场显微镜价格报价、厂家品牌的相关信息, 包括散射式近场显微镜参数、型号等,不管是国产,还是进口品牌的散射式近场显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合散射式近场显微镜相关的耗材配件、试剂标物,还有散射式近场显微镜相关的最新资讯、资料,以及散射式近场显微镜相关的解决方案。

散射式近场显微镜相关的资讯

  • 英国新建散射扫描近场光学显微镜设施
    英国国家物理实验室(NPL)和曼彻斯特大学建立了新的联合设施——散射扫描近场光学显微镜(s-SNOM)。该设施位于英国曼彻斯特大学,能够在宽温度范围内为产业界提供纳米级、非接触、非破坏性近红外和可见光波长的多功能光电表征。该设施能够提供详细纳米级信息的能力,对于增强或实现依赖于各种低维和纳米工程材料及其光电特性的量子技术至关重要。通过该设施,NPL和曼彻斯特大学将为英国工业界提供纳米光电子学和纳米光子学量子技术方面的战略竞争优势。预计这些技术对于未来十年的数字基础设施、医疗保健、能源和环境以及英国的安全和恢复能力至关重要。
  • 1645万!武汉大学采购散射式-近场光学高精度显微镜等
    项目编号:WHCSIMC2022-1308806ZF(H)项目名称:武汉大学散射式-近场光学高精度显微镜、电感耦合等离子体质谱、热重-红外-气相色谱质谱联用仪、有机无机样品预处理系统采购项目预算金额:1645.0000000 万元(人民币)最高限价(如有):1645.0000000 万元(人民币)采购需求:1.本次公开招标共分4个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:散射式-近场光学高精度显微镜(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:900万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:电感耦合等离子体质谱(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:285万元人民币(6)其他:本项目包接受进口设备投标第三包:(1) 项目包名称:热重-红外-气相色谱质谱联用仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:320万元人民币(6)其他:本项目包接受进口设备投标第四包:(1) 项目包名称:有机无机样品预处理系统(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:140万元人民币(6)其他:本项目包里的微波消解仪、十万分之一天平、非接触式超声破碎仪接受进口设备投标.合同履行期限:第一包:交货期 :合同签订后10个月内;质保期 :本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后120日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第三包:交货期 :合同签订后 90 日内;质保期:本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后60日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。其中微波消解仪的炉腔质保:腔体5年质量保证,非人为损坏、如出现形变或腐蚀生锈,免费更换。本项目( 不接受 )联合体投标。
  • 1500万!东南大学理科平台低温散射式扫描近场光学显微镜采购项目
    一、项目基本情况项目编号:0664-2360SUMECTY005D(SEU-ZB-230698)项目名称:东南大学理科平台低温散射式扫描近场光学显微镜采购预算金额:1500.000000 万元(人民币)最高限价(如有):1460.000000 万元(人民币)采购需求:东南大学理科平台采购低温散射式扫描近场光学显微镜1套,主要技术参数:低温散射型扫描近场光学显微镜平台1.1基于低温AFM的无孔径近场扫描显微镜系统。冷却系统需基于一个完全阻尼且封闭循环低温恒温器,保证底板温度本项目所属行业:工业。合同履行期限:境外产品:开具信用证后10个月设备安装调试合格。境内产品:自合同签订之日起30天内到货并安装调试合格。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月02日 至 2024年01月08日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:微信公众号“苏美达达天下”方式:在线获取(详见补充事宜)售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:东南大学     地址:南京市玄武区四牌楼2号        联系方式:技术咨询:电子科学与工程学院:骆老师 电话:19852843441; 实验室与设备管理处:刘老师 电话:025-83792693      2.采购代理机构信息名 称:苏美达国际技术贸易有限公司            地 址:南京市长江路198号苏美达大厦5楼502室            联系方式:杨 扬 025-84532455、葛晓菲025-84532451            3.项目联系方式项目联系人:葛晓菲电 话:  025-84532451
  • 散射式近场光学显微镜(neaSNOM)助力有机半导体的分子取向探究
    导读:布拉迪斯拉发先进材料应用中心(Center of Advanced Material Applications in Bratislava)的科研工作者利用对光致各向异性有不同响应的超高分辨散射式近场光学显微镜-neaSNOM,研究了有机半导体薄膜的分子取向与离散分子结构异质性的关系,揭示了分子取向对分子缺陷的影响。在此过程中,作者自创了一种综合利用振幅和相位信号测量分子取向的方法。上图:利用Neaspec设备表征材料得到的s-SNOM结果 文献解析:近年来, 共轭高分子以及小分子在有机电子设备方面的应用受到广泛关注,这是因为相比于无机半导体,它们在以下方面展现了其潜在优势:应用适配性、生物相容性、以及相对简单的制备过程。简单的制备过程也吸引化学家设计并研发了具有各种不同结构和功能基团的共轭分子,以此来满足有机电子设备的需要。而电导率作为重要的功能指标之一,与分子的取向息息相关。考虑到大多数分子都是各向异性的,分子取向将直接影响其光电特性(也就是能量转换效率)和机械特性。而根据具体应用的不同,设备需要一种特定的分子取向以满足其需要,并且此时其他的分子取向会被视为材料的缺陷。也因此,缺陷分析在有机半导体设备的开发与改进工作中,起到了举足轻重的作用。然而,对尺寸小于100 nm缺陷的判定一直是一块未被充分研究与记录的领域。 光学技术是表征分子取向的主要手段。而衍射限的存在限制了其测量精度,致使得到的光学响应信号体现的只是(精度范围内)很多纳米颗粒的平均情况。面对该问题,德国Neaspec公司历经多年研发出散射式近场光学显微镜(scattering-type scanning near-field optical microscopy,s-SNOM)。该设备突破衍射限(优于10 nm空间分辨率)并完成了超高空间分辨率的纳米成像。它能表征薄膜材料的固有纳米晶体结构、局部多晶型、异质性或应变性以及反应分子取向等信息。尽管近些年技术方面的进步日新月异,利用s-SNOM分析分子取向的工作却迟迟没有进展,眼下只有寥寥几篇的相关报告得以被发表。在本文中,作者深入研究了分子取向,并对离散分子结构的异质性做了分析。在此之上,作者观察到了与表面形貌并不相关的定向缺陷。这些缺陷对有机电子系统的功能性产生了直接的影响。 参考文献[1] Nanoimaging of Orientational Defects in Semiconducting Organic Films, [J]. The Journal of Physical Chemistry C, 2021, 125(17):9229-9235.
  • 成果速递 | 超高分辨散射式近场光学显微镜在超快研究领域最新应用进展
    近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。 前期的众多研究工作表明,扫描近场光学显微镜(SNOM)已经被广泛用于稳态波导的可视化表征,非常适合评估范德瓦尔斯半导体的各向异性和介电张量。 如上所述,范德瓦尔斯材料中具有异常强烈的激子共振,这些激子共振能产生吸收和折射光谱特征,这些特征同样被编码在波导模式的复波矢量qr中,鉴于范德瓦尔斯半导体在近红外和可见光范围内对ab-平面的光学化率有重大影响,因此引起了人们的研究兴趣。 2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:”Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。 原文导读: ① 在纳米空间分辨超快光谱和成像(tr-SNOM)实验中(图1,a),研究者先将Probe探测光(蓝色)照到原子力显微镜(AFM)探针的点上,从探针点(光束A)散射回的光被离轴抛物面镜(OAPM)收集并发送到检测器。同时,WSe2材料的中的波导被激发并传播到样品边缘后,进而波导被散射到自由空间(光束B)。二个Pump泵通道(红色)可均匀地扰动样本并改变波导的传播。 通过在WSe2/SiO2界面处的近场tr-SNOM的振幅图像(图1b)可明显观察到约120 nm厚WSe2材料边缘(白色虚线)处形成的特征周期条纹—光波导电场分布。研究者进一步通过定量分析数据,分别获取了稳态和光激发态下,WSe2中波导的光波导的相速度q1,r和q1,p。图1:纳米空间分辨超快光谱和成像系统对WSe2材料中光波导的纳米成像结果。a:实验示意图(蓝色为Probe光,红色为Pump光);b:近场纳米光学成像 c: 在稳态下,WSe2边缘的近场光学振幅图像;d: 光激发态下,延迟时间 Δt=1ps的WSe2边缘的近场光学振幅图像;e: 分别对c、d进行截面分析,获取定量数据。Probe探测能量,E=1.45 eV ② 研究者通过变化Probe探测能量范围(1.46–1.70 eV)及其理论计算成功获取了WSe2晶体稳态下的色散关系和理论数据显示A-exciton所对应的能量。图2:WSe2晶体稳态动力学的时空纳米成像研究。a: 不同Probe能量的近场光学振幅;b: 傅里叶变换(FT)分析 c: Lorentz拟合的WSe2块体材料介电常数面内组成;d: 基于Lorentz模型理论计算的能量动量分布(吸收光谱)。Probe探测能量,E 1.46–1.70 eV。 ③ 为了进一步研究光激发下WSe2中波导的色散和动力学,研究者进一步在90 nm的WSe2材料上,通过探测能量E = 1.61 eV,泵浦能量E = 1.56 eV,泵浦功率1.5 mW的实验条件进行了一列的纳米空间分辨超快光谱和理论研究。研究结果表明(图3a,b),研究者成功获取到了不同延迟时间Δt与δq2和δq1的关系。结果表明:光激发后的个ps内,虚部q2(图3a)突然下降(δq20)并迅速恢复。另一方面,理论计算结果(图3,c)显示了在A-exciton附近(黑色虚线箭头),初始能量Ex处,稳态(黑色虚线)和激发态A-exciton能量Ex’(蓝色箭头)分别的色散关系。 为了弄清各种瞬态机制,微分色散关系被研究者引入。先,研究者定义了微分关系:δqj=qj,p – qj,r,(j=1,2 分别代表波矢的实部和虚部,p, pump激发态,r 稳态)。研究者的理论及实验微分色散关系结果(图3 d、e)成功显示了光诱导转变中A-exciton的动力学行为。结果表明:A-exciton附近微分色散的特征是由两个伴随效应引起的:(i)仅在Δt=0时观察到的A-exciton的7 meV蓝移; (ii)A-exciton的漂白(定义为光谱频谱展宽和/或振荡强度降低(见图3d)。 趋势(i)在1 ps内恢复,与抑制耗散的动力学一致(图3a)。因此,研究者得出结论,A-exciton共振的瞬态蓝移是由于相干的光诱导过程所引起。 趋势(ii)持续时间更长,因此归因于非相干激子动力学。图3:WSe2中波导模的微分色散和动力学研究。a: δq2与Δt曲线;b: δq1与Δt曲线 c: 平衡和非平衡条件下洛伦兹模型计算的色散关系;d: 理论微分色散关系;e: 实验微分色散关系 综上所述,波导的瞬态纳米超快成像使我们能够以亚皮秒(ps)时间分辨率来量化光诱导变化的WSe2光学特性。研究者在WSe2上成功观察到了光诱导相速度的大幅变化,这表明所观察到的效应可能在范德瓦尔斯半导体中普遍存在。此外,研究者的研究结果表明,我们可以按需调谐范德瓦尔斯半导体的光学双折射行为。另一方面,研究者的工作开创性地发展了利用tr-SNOM探测超快激子动力学的工作,并为利用波导作为定量光谱学工具研究纳米光诱导动力学铺平了道路。研究者认为这种超快泵浦探测方法的高空间和时间分辨率,可能同样适用于新奇拓扑材料中的边缘模式和边缘效应的研究。 neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出的全新纳米空间分辨超快光谱和成像系统,其Pump激发光可兼容可见到近红外的多组激光器,Probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征,可广泛用于二维拓扑材料、范德瓦尔斯(vdW)材料、量子材料的超快动力学研究。 参考文献:[1]. Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications , 11, 3567 (2020).
  • QD中国建成高分辨率散射型近场光学显微镜(NeaSNOM)样机实验室
    2016年6月30日,Quantum Design中国子公司引进德国Neaspec公司的高分辨率散射型近场光学显微镜(NeaSNOM)样机并完成安装测试。该样机实验室可对相关领域科学 研究工作者提供真机体验服务,欢迎广大学者拨打010-85120280,或者致信neaspec@qd-china.com预约体验。Quantum Design中国子公司NeaSNOM近场光学显微镜样机实验室 Neaspec公司的NeaSNOM系统是市场一款散射型扫描近场光学显微镜。其化的散射式核心设计技术,打破了传统光学显微镜对入射激光波长的 依赖限制,大的提高了光学分辨率,在可见、红外和太赫兹光谱范围内实现了空间分辨率优于10nm的光谱和近场光学图像的测量。NeaSNOM系统中 化的照射、收集模块,确保了近场光学显微镜和谱图的可靠性和可重复性,使其成为了纳米光学领域等离子激元、FTIR和太赫兹等热点方向的科研设备。 NeaSNOM 典型应用案例: 1. 纳米结构等离子激元(Plasmonic)研究 2. Nano-FTIR对纳米结构不同材料组分分析 3. 太赫兹对单个晶体管中载体浓度分布成像 更多信息请点击:http://www.instrument.com.cn/netshow/C170040.htm 相关产品: 纳米傅里叶红外光谱仪 Nano-FTIR---具有10nm空间分辨率的纳米红外光谱仪
  • 南方科技大学400万元购买1套低温散射式近场光学显微镜,仅限国产
    8月25日,南方科技大学公开招标购买1套低温散射式近场光学显微镜,预算400万元,仅限国产。  项目编号:SZDL2021339837(0868-2142ZD1010H-D)  项目名称:低温散射式近场光学显微镜(二次招标)  预算金额:400.0000000 万元(人民币)  最高限价(如有):400.0000000 万元(人民币)  采购需求:序号货物名称数量单位备注1扫描近场光学显微成像系统1套拒绝进口2闭循环低温系统1套拒绝进口3超高真空腔体及泵组1套拒绝进口  合同履行期限:签订合同后 180 天(日历日)内交货  本项目( 不接受 )联合体投标。  开标时间:2021年09月07日 14点30分(北京时间)
  • 看散射型近场纳米红外光谱与成像系统如何助力胶原纤维、生物催化、活体细胞等生物领域研究
    一、胶原纤维研究 胶原纤维是人体各种器官(如骨、肌肉)中关键的组成成分之一。胶原纤维拥有复杂的微纳生物结构,这种结构的有序排列使胶原纤维能够表现出优异的生理性能,同时,这种结构的改变会导致其生理特征的急剧变化。劳损、骨折等常见疾病的发病机理就与胶原微纳结构变化密切相关。如何观测并理解胶原纤维微纳尺度的结构变化是治疗相关胶原类疾病的关键所在。 近日,中国科学院物理研究所陈佳宁课题组利用散射式近场扫描显微镜(IR-neaSCOPE)对胶原纤维进行纳米分辨率红外扫描成像。该研究通过在组织切片表面近场测量紧凑排布的胶原纤维簇,对胶原纤维的纳米周期性横纹结构进行量化分析,并观察到胶原纤维发生的横纹倾斜现象。该研究借助胶原晶格模型解释其现象的产生机理,揭示了胶原纤维内部分子间可能存在的滑移位错形变。 该结果有助于人们理解胶原结构失序时胶原纤维可能发生的纳米结构变化,为解读胶原类疾病的发病机理提供了新思路。同时,该工作展示了s-SNOM在生命科学中对于生物微纳尺度结构研究的广阔应用前景。相关结果发表在近期的《Nano Research》上。该工作得到了重点研发计划、自然科学基金,中国科学院战略重点研究计划的资助。 二、生物催化(MOF体系)研究 生物催化转化在生物体中,如多酶催化联,在不同的细胞膜区隔的细胞器中高效率地进行。然而,在自然系统中模拟生物催化联过程仍然具有挑战性。 近日,华东师范大学李丽老师课题组报道了多壳金属有机骨架(MOF)可以作为一种层次化的支架,在纳米尺度上对酶进行空间组织,以提高联催化效率。 研究人员通过外延逐壳过生长的方法将多壳MOF包裹在多酶上,其催化效率是溶液中游离酶的5.8~13.5倍。重要的是,多壳MOF可以作为一个多空间隔室的纳米反应器,允许在一个MOF纳米颗粒中物理分隔多个酶,以便在一个锅中进行不相容的串联生物催化反应。研究人员使用纳米傅立叶变换红外光谱(Nano-FTIR)来解决与多壳MOF中的酶相关的纳米振动活性的不均一性。多壳MOF能够根据特定的串联反应路线方便地控制多酶的位置,其中载酶1和载酶2的壳沿内到外壳的紧密定位可以有效地促进质量传递,从而促进高效的串联生物催化反应。 这项工作有望为设计高效的多酶催化联反应提供新的思路,以鼓励其在许多化工和制药工业过程中的应用。 三、原位液相活体细胞研究 近日,德国attocube systems AG的工程师Korbinian联合德国慕尼黑大学Fritz Keilmann课题组报道了基于散射型纳米红外成像与光谱技术在液相环境关于纳米颗粒和活体细胞的定量研究。纳米红外光谱与成像的液相探测基于一个由10 nm厚度的SiN薄膜和金属液相池组成,通过扫描探针在针形成有效的红外探测近场对吸附(浸润)在SiN另一侧的纳米颗粒或活体细胞进行原位液相扫描。 液相原位纳米红外成像与光谱下的A 549癌细胞 这项工作是基于反射式光路的散射型扫描近场显微镜(s-SNOM)和nano-FTIR建立的原位液相样品池,通过搭配波长可调谐的红外激光器,有希望拓展从近红外(特别是近红外II区)到中红外(全指纹区覆盖)乃至远红外的全红外波段的液相环境下材料和细胞的纳米尺度探测。
  • 近场光学显微镜,SiC纳米线发表一篇Nature!
    表面声子极化激元(SPhPs)是由红外光和光学声子之间的耦合产生的,被预测有助于沿极性薄膜和纳米线的热传导。然而,迄今为止的实验工作表明SPhPs的贡献非常有限。近日,美国范德比尔特大学Deyu Li教授研究团队通过测量没有覆盖Au金属层和覆盖了Au金属层的3C-SiC纳米线的样品的热导率,成功证实了SPhPs对其热导率大小的影响。由SPhPs的预衰减所引起的热传导增加甚至超过了兰道尔基于玻色-爱因斯坦分布所预测极限的两个数量级。这进一步揭示了SPhPs对材料热导率的显著影响,也打开了通过SPhPs调节固体中的能量传输的大门。文章以《Remarkable heat conduction mediated by non-equilibrium phonon polaritons 》为题,发表于Nature 期刊上。 本文中,研究者通过分辨率优于10 nm的近场光学显微镜对其手中的两类纳米线进行了表征。其中S1为缺陷较小的纳米线,而S2则为层错较多的纳米线。通过对纳米线进行865 cm-1中红外激光的赝外差成像(SNOM),研究者成功获得了两类纳米线的纳米级相位成像。如下图所示,在层错较多的Sample S2中,SPhPs的传播衰减非常迅速。而在结构缺陷较少的S1, 这种衰减则要小得多。Sample S1: Sample S2: 随后,作者通过将德国Neaspec公司的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR联用,沿下图图a中的箭头方向对S1采集了610 - 1400 cm-1波数范围内的光谱。这一范围已经包括了3C-SiC纳米线全部的剩余射线谱带。其中对TO 和 LO 频率的较强振幅反馈和这种反馈沿箭头方向的衰减进一步证明了SPhPs在S1中的存在。以上结果表明层错的存在是使其成为SPhPs散射的决定性因素,而这种因素与温度的变化并不相关,进一步证明了在S1中,SPhPs是导致热导率变化的决定性因素。 值得注意的是,为了测量SNOM和Nano-FTIR,两类纳米线都被放置在了300 nm厚的SiO2薄膜基底上,相比单独存在的纳米线,放在SiO2薄膜基底上的两类样品的SPhPs的传播距离都大大减小,而信号衰减速度大幅增加,这对设备采集信号的信噪比和光学成像的空间分辨率都提出了更高的要求。 文中使用的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱能与传统FTIR,ATR-IR的红外光谱一一对应。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,为本实验的红外及光学成像等研究起到了关键性作用。 neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 综上所述,通过使用Neaspec近场光学显微镜,研究者建立并证明了SPhPs传播和材料热导率变化的关联性。也为将来通过SPhPs调节固体材料的热传导提供了可能性。这种调节可以在很多薄膜材料中抵消尺寸效应并改进固态器件的设计。参考文献:[1]. Pan, Z., Lu, G., Li, X. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature (2023). https://doi.org/10.1038/s41586-023-06598-0
  • 639万!相干拉曼散射显微镜采购项目
    项目编号:0613-227122244765/02项目名称:ZYCGR22011903相干拉曼散射显微镜预算金额:639.0000000 万元(人民币)最高限价(如有):639.0000000 万元(人民币)采购需求:序号内容数量简要要求1相干拉曼散射显微镜1套可调红外皮秒脉冲激光器:波长范围 720-940 nm,光谱宽度0.3-0.4 nm,脉冲频率80 MHz,平均功率500 mW,典型脉宽2 ps。 合同履行期限:合同签订后4个月内交货本项目( 不接受 )联合体投标。
  • 聚焦 | 散射式近场光学技术开创者-Fritz Keilmann教授访问中国科学家
    ● 合作交流为加强与用户的沟通交流,准确把握客户的需求,使产品更好的为科研工作者服务,今秋11月,s-SNOM散射式近场光学技术开创者-慕尼黑大学Fritz Keilmann教授到访中国上海、深圳、广州等地,与中国科学家进行了广泛地探讨合作。Fritz Keilmann教授任职于德国慕尼黑大学(Ludwigs-Maximilians-Universit?t),主要从事红外纳米显微和光谱研究,自本世纪初起与Rainer Hillenbrand(现任教于西班牙nanoGUNE研究中心)等学生研究并实现了散射式近场光学显微镜的开发和搭建工作,而后作为主要奠基人成立了全球知名近场光学设备研发供应企业——德国neaspec公司。此次中国之行,Fritz Keilmann教授先后到访了上海理工大学、广州中山大学等院校的neaspec优质用户,对中国近场技术近年来的长足发展印象深刻,另外,Fritz Keilmann教授还先后参加了深圳先进科学与技术国际会议(报告题目:THz Near Field Mictroscopy),中山大学近场技术研讨会(报告题目:Surface-guide slow light for nanoscopy),与现场老师和同学深入浅出地交换了意见和看法,并获得一致好评。Fritz Keilmann教授也非常期待明年的中国之行可以与更多的学术友人建立广泛的联系和合作。图一:左上:Fritz教授参加深圳先进科学与技术国际会议;右上:Fritz教授参加中山大学近场技术研讨会;左下:Fritz教授和上海理工游老师(庄松林院士团队)及组员合照;右下:Fritz教授参观中山大学陈焕君老师(许宁生院士团队)实验室。● 新品推出 近期,德国neaspec公司又推出了三代散射式近场光学显微镜(简称s-SNOM),其采用的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹波段范围内,提供优于纳米空间分辨率的显微和光谱测量。目前,三代散射式近场显微镜已成功集合了纳米傅里叶红外(nanoFTIR),针增强拉曼(TERS),纳米超快光谱(nano-ultrafast),纳米太赫兹(nano-THz)等多种功能,并可以提供低温(10K)、超高真空(10-9mBar)等端测量环境,在等离基元、纳米FTIR和太赫兹等众多研究方向上取得了许多重要科研成果。图二:neaspec新近场系统可集成纳米傅里叶红外(FTIR)、纳米超快光谱(ultrafast)、针增强拉曼(TERS)和纳米太赫兹系统(THz)。 【进展参考】 1. 薛孟飞, 陈佳宁. 基于扫描探针技术的超分辨光学成像和谱学研究进展[J].物理, 2019, 48(10):662-676.
  • 港城大AEnM:钙钛矿太阳能电池效率和稳定性大幅提升?离不开超高分辨散射式近场光学显微镜的助力!
    在绿色能源的发展得到各国越来越多的重视与青睐的今天,光伏科技和太阳能电池的产业成长与技术研发成为了工业界和学术界共同的焦点。而这其中被广泛关注的当属使用具有钙钛矿结构的材料所合成的太阳能电池。钙钛矿结构是具有通式ABX3结构的一类化合物,除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。基于钙钛矿结构材料所合成的电池则一般被统称为有机-无机杂化钙钛矿太阳能电池(PVSCs)。在光伏领域的研究中,钙钛矿太阳能电池因其能量转化率在近几年的飞速提高而备受关注。其中的佼佼者更是可以达到25%的能量转化率。 然而,在我们期待上述的有机-无机杂化钙钛矿太阳能电池从实验室走向工业应用的时候,一个无法回避的问题出现在了研究者的面前:这种电池的环境敏感性非常之高。在电池的使用过程中,其性能稳定性和使用寿命很容易被环境湿度,环境热度,环境光照所影响,且这种影响多为负面影响。也就是说,要想让PVSCs能够被大规模应用,其环境耐性必须得到改进。 针对上述问题,香港城市大学Fengzhu Li于今年(2022年)4月在Advance Energy Materials中发表了等离激元局域光热现象调控钙钛矿太阳能电池应力以提升效率和稳定性的研究工作。该课题组发现二氧化硅包覆的金纳米管(GNR@SiO2)可有效提高钙钛矿太阳能电池的性能,尤其通过减小材料生成过程中所产生的残留应变,在维持电池高效转化率(23%)的前提下,大幅提高了电池的工作稳定性。这种GNR@SiO2有着8.2 nm的平均直径和40 nm的平均长度。其中的二氧化硅外壳结构的厚度在15 nm左右。图1. 作者所生成的GNR@SiO2的 (a) TEM与EDS扫描图样 (b)直径和长度的分布统计 在通过标准流程测得生成的太阳能电池的能量转化效率可以达到23%之后,接下来研究者的关注点则聚焦到了GNR@SiO2对电池稳定性——也就是钙钛矿材料层的稳定性的提高之上。在此研究中,Neaspec研发的近场光学显微镜起到了至关重要的作用。科研者利用此设备获取了相关材料基于中红外激光吸收的形貌图(光学成像)和与之对应的纳米傅里叶红外光谱结果。实验使用了一台相干宽波长中红外激光器,通过Neaspec近场光学显微镜将激光聚焦于镀铂金AFM针,从而表征了四组参照薄膜材料:(a)新生成的钙钛矿结构材料(PVK)(b)新生村的掺杂了GNR@SiO2的PVK(c)经过疲劳测试的PVK(d)经过疲劳测试的GNR@SiO2的PVK。图2 实验原理示意图和Neaspec近场光学显微镜AFM照摄像头在测试四组材料时的光学镜头成像。 在PVK所对应的中红外成像和纳米傅里叶红外光谱中,信号的产生主要源自材料里的脒结构中的非对称碳氮键的拉伸模式的变化。所有之后的分析都是基于上述四种材料所产生的这种信号(对应材料中脒的浓度也就是材料的降解程度)。下图a-d对应四种材料的1700 cm–1 中红外激光成像结果。而为了研究疲劳测试对材料稳定性的影响,研究者在每个结果中都选取了5个数据点,直接进行纳米傅里叶红外光谱的测试 (下图 e-h)。研究者通过对比发现,在没有掺杂GNR@SiO2的PVK中,疲劳测试使得材料的脒含量降到了原来的45%。而通过掺杂GNR@SiO2,PVK中的则能维持在原来的75%。可见,掺杂GNR@SiO2有效地减慢了PVK薄膜材料的降解和损耗速度。而使得这一结果得以获得的,正是Neaspec的近场光学显微镜可以同时对样品进行中红外成像和纳米傅里叶红外吸收谱分析的这一特性。图3 四组参照薄膜材料的中红外成像结果以及对应图上5个数据点的纳米傅里叶红外光谱结果参考文献:[1]. Fengzhu Li, Tsz Wing Lo, Xiang Deng, Siqi Li, Yulong Fan, Francis R. Lin, Yuanhang Cheng, Zonglong Zhu, Dangyuan Lei*, Alex K.-Y. Jen*, Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells, Advanced Energy Materials,DOI: 10.1002/aenm.202200186
  • 国际首台飞秒干涉散射显微镜研制成功
    光电界面携能载流子的时空演化与能源、催化和传感等领域紧密相关,是近年来物理、化学和材料等领域的研究热点之一。载流子的迁移、分布和弛豫是影响材料功能的关键之所在,因此,利用高时空分辨成像技术观测载流子时空演化对于新型材料基础研究和应用均具有重大意义。然而,极微弱载流子信号的测量是学界公认的难题。总体而言,国内外尚无成熟的仪器装置能够有效实现瞬态信号放大,直接"看见"少量载流子仍是巨大的挑战。近日,南京大学化学化工学院生命分析化学国家重点实验室康斌/徐静娟团队结合飞秒泵浦-探测技术和干涉散射显微术,研制成国际上首台飞秒干涉散射显微镜(Femto-iSCAT),并成功获得发明专利授权(专利号:202110510123.X)。该仪器作为一个通用测量平台,实现了超灵敏、高通量观测各种材料中的载流子迁移、分布和弛豫动力学。通过干涉放大效应和空间光场调制,瞬态图像对比度相比于传统方法提升了2个数量级以上,可探测极微弱载流子信号,从而有利于揭示超导材料、二维材料及新型光电材料中的稀奇科学现象。飞秒干涉散射成像原理随后作者展示了Femto-iSCAT的一系列极具挑战的应用场景,包括常用光电器件如金属薄膜、硅基半导体和钙钛矿太阳能电池中的界面载流子/热扩散迁移,单个等离激元微纳颗粒中的不均匀热电子分布和弛豫,以及二维材料中的载流子/激子在边缘态的独特动力学。Femto-iSCAT相比于传统瞬态显微镜,极大拓展了材料的适用范围,以极高灵敏度和检测通量实现了载流子时空演化的多功能成像,助力界面能量和载流子转移等超快过程的研究。该工作以"Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution"为题,于2022年7月22日发表在Journal of the American Chemical Society(美国化学会志)。博士生吕品田为该论文第一作者,康斌副教授和徐静娟教授为论文通讯作者,陈洪渊院士对该工作的研究思想做出了重要指导。该工作得到了国家自然科学基金、南京大学卓越研究计划、南京大学生命分析化学国家重点实验室自主研究课题等资助。文章链接:https://pubs.acs.org/doi/10.1021/jacs.2c05735
  • 科学家开发出一种多功能近场显微镜平台,可在高磁场和液氦温度以下工作
    重大的科学突破往往是由新技术和仪器实现的。一种新型的近场光学显微镜,在极端温度和磁场下具有高分辨率成像,可以为量子计算技术和拓扑研究做到这一点。Kim等人提出了一种sub-2开尔文低温磁赫兹散射型扫描近场光学显微镜(cm-THz-sSNOM)。太赫兹sSNOM成像使用照射在小金属尖端上的300微米波长光在纳米尺度上绘制材料,允许以深亚波长,20纳米空间精度测量局部材料特性 - 比所用光的波长小15,000倍。经过几年的努力,研究人员能够展示出一种改进的sSNOM平台,该平台在极端操作条件下具有无与伦比的分辨率能力。“我们在空间,时间和能量方面提高了分辨率,”作者Jigang Wang说。“我们还同时改进了在极低温度和高磁场下的操作。显微镜是通过测量超导体和拓扑半金属来展示的。结果显示了在1特斯拉磁场中9.5开尔文的第一个高分辨率sSNOM图像。显微镜可以帮助开发具有更长相干时间的新量子比特 - 目前受到材料和界面缺陷的限制 - 并提高对拓扑材料基本性质的理解。“重要的是成像到十亿分之一米,千万亿分之一秒和每秒数万亿个光波,以便能够选择更好的材料并指导量子和拓扑电路的制造,”王说。尽管显微镜已经展示了破纪录的测量结果,但研究人员的目标是通过提高灵敏度并使SUV大小的显微镜更加用户友好来进一步改进仪器。相关文章:“A sub-2 kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM),” by R. H. J. Kim, J.-M. Park, S. J. Haeuser, L. Luo, and J. Wang, Review of Scientific Instruments (2023). The article can be accessed at https://doi.org/10.1063/5.0130680.文章展示了研究人员开发的一种多功能近场显微镜平台,可以在高磁场和液氦温度以下工作。研究人员使用该平台演示了极端太赫兹(THz)纳米显微镜的操作,并在低至1.8 K的温度、高达5 T的磁场和0–2 THz的操作下获得了第一个低温磁太赫兹时域纳米光谱/成像。低温磁太赫兹散射型扫描近场光学显微镜(或cm THz-sSNOM)仪器由三个主要设备组成:(i)带有定制插件的5T分对磁低温恒温器,(ii)能够接受超快THz激发的定制sSNOM仪器,以及(iii)MHz重复率,用于宽带太赫兹脉冲产生和灵敏检测的飞秒激光放大器。应用cm THz sSNOM来获得超导体和拓扑半金属的原理测量证明。这些新能力为研究需要极端低温操作环境和/或在纳米空间、飞秒时间和太赫兹能量尺度上施加磁场的量子材料提供了突破。
  • 超高分辨近场光学显微镜近期重点科研成果速览
    1. 中国科学院 重庆绿色智能技术研究院 Zhongbo Yang等Near-Field Nanoscopic Terahertz Imaging of Single Proteins. Small. Figure 1. Schematic illustration of the THz s-SNOM setup and its use for single biomolecule imaging. Figure 2. THz near-field signals collected on different substrates. a) Time-domain THz electric field signals, and b) corresponding frequency-domain signals collected on graphene, Au, Si, and mica surfaces, respectively. The signals were demodulated at the second harmonics (2 Ω) of the probe oscillation frequency. c,d) The AFM topography images of graphene and Au substrates with 200 × 200 pixels, respectively. The height scale bars of (c) and (d) are the same. 摘要:太赫兹生物成像因其能以无标记、无创伤和非电离的方式获取样品的物理化学信息而颇受瞩目。但是,低介电常数生物分子的反射率问题,使得单分子精度的太赫兹成像仍是一个挑战。针对于此,作者开发了一种方法,利用石墨烯介导的太赫兹频率散射型扫描近场光学显微镜,对单个蛋白分子直接成像。此项研究发现,拥有较高太赫兹反射率和原子平整度的石墨烯基底可以为蛋白分子提供较高的太赫兹对比度。另外,我们还发现对铂探针的轴长优化能增强太赫兹散射近场信号中的振幅信号强度。基于这两个效应,作者同时获得了尺寸只有数纳米的免疫球蛋白G(IgG)和铁蛋白分子的形貌以及太赫兹散射图像。本文中所用的方法为单生物分子的太赫兹成像提供了新思路。2. 华中科技大学 Chao Chen等Terahertz Nanoimaging and Nanospectroscopy of Chalcogenide Phase-Change Materials. ACS Photonics 2020.Figure 2. THz near-field setup and imaging experiments. (a) Schematics of the THz s-SNOM setup with a bolometer usedas a detector. The inset shows an illustration of the finite dipole model for the layered sample. (b) Approach curve, showing the amplitude signal s2 on c-GST as a function of tip–sample distance. The mark h1/e represents the position at which the signal decays to 1/e of its maximum. The inset displays an optical microscope image of the AFM tip above the sample. The red dotted squares mark the c-GST areas. (c) AFM topography image (top panel) of GST on a silicon oxide substrate, which includes amorphous and crystalline states. Near-field amplitude (s2, middle panel) and phase (φ2, bottom panel) images at 1.89 THz. (d) Topography, (e) near-field amplitude, and (f) phase line profiles (shown as solid symbols) taken from the corresponding images in c. The red solid lines are smoothedcurves based on the experimental data. Horizontal dashed gray lines are a guide for the eye. 摘要:硫属化物相变材料(PCMs)在太赫兹(THz)频率下会发生光学声子共振现象,这个效应可被用于研究相变的基本特性,并产生很强的介电对比度,使其可被用于太赫兹的光子学应用。在本文中,我们证明可以通过频率可调的太赫兹散射型扫描近场光学显微镜(s-SNOM)研究PCM的声子。其具体方法为对包含非晶相和结晶相的PCM样品进行太赫兹纳米光谱成像。我们观察到材料的声子特征使其产生了很强的s-SNOM信号,以及重要的是,非晶态和结晶态PCM的光谱之间存在明显的差异,这使我们可以在纳米尺度上高信度地区分PCM的不同相。我们还发现可以通过增加针的半径来增强以信号强度和频谱对比度为标志的光谱特征。综上所述,我们用太赫兹s-SNOM成功构建了基于局部声子光谱的纳米结构以及化学组成的图谱。3. 中国地质大学-武汉 Zhigao Dai等人Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun..Figure 1. a Schematic diagram of edge-tailored PhPs in α-MoO3. The edge orientation is defined as angle θ with respect to the [001] direction. Green arrows indicate the incident PhPs waves launched by the laser-illuminated (purple curve arrows) AFM tip and reflected by the edge (red line). b Angle-dependent ke isofrequency contour of PhPs in α-MoO3 at ω = 889.8 cm−1. The solid lines and points stand for experimental results concluded from Fig. 1c. The green and black dotted arrows illustrate the incidence wavevector ki and Poynting vector Si, respectively. Generally, ki and Si are non-collinear. The reflected Poynting vector Se (solid arrows) is not parallel to the reflected wavevector ke (different color solid arrows) but antiparallel to Si. σ is the open angle. c Real-space imaging of edge-tailoring PhPs at angle-dependent α-MoO3 edges (length L: 2.5 µm width W: 200 nm sample thickness d: 210 nm, L andW defined in the Ed1). d s-SNOM line traces along the direction perpendicular to the edges in Ed1-Ed5. e Near-field amplitude s(ω) of PhPs on isosceles triangle α-MoO3 nanocavities with bottom edge perpendicular to the [001] crystal direction (height length: 4.33 μm thickness: d = 175 nm) The angles between adjacent sides of the series of triangles with respect to the [001] direction are approximately 7.5°, 15°, 30°, 45°, and 60°, respectively. 摘要:高度受限和低损耗的化子在石墨烯和六方氮化硼上是沿平面各向同性传播的,这使得对光的控制被限制在了有限的自由度内。而以α-MoO3 and V2O5为代表的新兴双轴范德华材料则展现出了特的化传播特性,它们的辅助光轴是在平面上的。利用这种强平面各向异性,作者通过空间纳米成像观测到了α-MoO3纳米腔的图样内有着受边界导向的双曲化子。并且发现边界的夹角和结晶方向对其光学响应信号有着举足轻重的影响,这对调整化图样的参数是至关重要的。基于此,通过调整α-MoO3纳米腔的几何构型,我们观测到了双曲化子会延边界传播并且会调整自身传播方向的特性以及与之对应的化子绕行禁区。而这种双曲化子的寿命和性能指数则受到纳米腔边界宽高比的限制。4. 国防科学技术大学 Jiangyu Zhang 等人Light-induced irreversible structural phase transition in trilayer graphene. Sci. & App..Figure 4. Raman mapping and s-SNOM imaging of the light-induced structural phase transition in MLG. (a) Optical microscopy image of MLG sample #125. (b) AFM image and height profile of graphene. (c) Raman maps of the integrated G peak intensity (position: 1576 cm−1, width: 5 cm−1) before laser irradiation and (d) after laser irradiation. The laser power is 20 mW, and the exposure time is 34 min. (e) s-SNOM image of graphene after laser irradiation. (f) Magnified s-SNOM image of graphene. Graphene domains with different stacking orders show different contrasts in the s-SNOM image. The marked regions I, II, and III correspond to ABC stacking, ABA stacking and mixed ABC + ABA stacking domains, respectively. The red arrows in (e, f) highlight the additional mixed ABC + ABA stacking domains that were not resolved in the Raman maps. (g) Raman spectra of different graphene regions taken from the marked solid dots before laser irradiation and (h) after laser irradiation摘要:晶体结构对相关材料的物理性质有着深刻的影响。因此,即使化学组成相同(比如石墨烯和金刚石),我们也可以通过生成具有特定对称性的晶体,来很大范围内调整它们的特性。而当晶体的结构相可以通过外部刺激动态改变时,更多有意思的可能性出现在了我们面前。这样的材料特性虽不常见,但却能引发很多喜人的现象,例如相变记忆效应。具体到三层石墨烯,它有两种常见的堆叠结构(ABA和ABC),二者都具有特的电子能带结构,并展现出了与众不同的特性。而这两种堆叠结构的三层石墨烯里的畴壁,则展现出了新的迷人的物理效应,比如说量子谷霍尔效应。科研工作者在三层石墨烯的相工程上投入了大量的精力。不过,操纵畴壁以实现对材料局部结构和特性的调控仍然是一个难题。本文通过实验表明,通过激光照射可以实现结构相之间的转换,并在三层石墨烯中构建各种形状的畴壁。这种能够控制畴壁位置和方向的能力,使得我们能够更好地调整石墨烯的局部结构相和特性,并为可定制原子结构,电子以及光学特性的人造二维材料的生成提供了一种简洁且有效的路径。 5. 华中科技大学 Peining Li等人Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat.Commun..Figure 2. Near-field imaging of polariton evolution in a hBN metasurface. a Schematic of the near-field nanoimaging experiment. b, c Near-field images measured at two different frequencies, ω = 1415 cm−1 (HPhP region) and ω = 1510 cm−1 (EPhP region). White arrows indicate the polariton fringes observed on the metasurface. 摘要:通过光子耦合激发和偶物质激发所产生的化子可以沿具有双曲线色散或椭圆色散的各向异性超表面传播。而在双曲线色散与椭圆色散之间的转换过程中(对应拓扑结构的转换),有各种有趣的现象被观测到,比如光子态密度的增强、化子的沟道效应和超透镜效应。在本文中,作者从理论角度和实验角度分别研究了这种拓扑结构的转换,单轴红外声子超表面中的化耦合和其强烈的非局域响应信号,以及六方氮化硼 (hBN) 纳米带的光栅。 通过超高分辨红外10纳米成像,研究者观察到了六方氮化硼中余辉带里合成的横向光学声子的共振(即纳米带强烈的集体性近场耦合),这触发了从双曲线色散向椭圆色散的拓扑转换。作者还表征并可视化了跃迁频率附近深亚波长通道模式的空间演化,该模式作为一种准直化子为超透镜和无衍射传播打下了基础。6. 山西大学 PengjuYang 等人Rational electronic control of carbon dioxide reduction over cobalt oxide. J. Cat..Figure 2. (a) XPS Co 2p of Co3O4 and Co3O4/Al-1(1 wt% Co3O4), (b) XPS Al 2p of Co3O4/Al-1 and Al-1, (c-d) the S-SNOM optical image of Co3O4/Al-1(1 wt% Co3O4) and SNOM amplitude S3 of lines A-E.摘要:选择性地将二氧化碳(CO2)还原为燃料和化学品是通过碳中和发展可持续性能源经济的重点所在。而其中CO2的活化则是重中之重。考虑到电子迁移是这一过程的决速步骤,通过调节CO2还原催化剂的电子结构来增强其活性则显得更为关键。不过,人们对催化剂的电子特性与活性的内在关系的理解还不是很深入,这也限制了高效CO2还原催化剂的有理论支撑的设计。本文中,作者设计了一种以铝作为电子供体的催化剂-缘体-金属系统,并以此来调节氧化钴(Co3O4)催化剂的电子结构。这样,铝中的电子便可以高效地通过一种超薄且自主形成的Al2O3缘层穿入Co3O4。实验和理论结果毫无疑问确证了Co3O4的高电子密度有利于CO2的吸收和活化,并同时降低了COOH的生成能垒,尤其是CO*中间体的解吸能垒,这大大加速了CO2到CO的光还原反应的动力学进程。相比Co3O4,Co3O4/Al2O3-Al中的Co的周转频率要高出很多。其表观量子产率在420纳米处能高达3.8%,这一数字超越了大部分文献中对催化剂的记述。另外,Co3O4 中电子密度的提高也有效地抑制了析氢竞相反应。同时对CO的筛选性也从Co3O4的57.9%提高到了Co3O4/Al2O3-Al的82.4%。值得注意的是,通过控制Al的含量和粒径我们还可以合理调节催化剂的催化效率。综上,该项研究建立了催化剂的电子结构与其对 CO2 还原反应的催化活性之间的联系。并且,作者提出的这种Al2O3-Al结构,还有潜力成为其他非均相催化剂电子效应研究的全新平台。7. 中山大学 Yan Shen等人Pyramid-Shaped Single-Crystalline Nanostructure of Molybdenum with Excellent Mechanical, Electrical, and Optical Properties. ACS Appl. Mater. Interfaces. 12. 华中科技大学 Peining Li等人Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons. Adv. Mater..Figure 4. Thickn
  • 1850万!中国科学院金属研究所场发射透射电子显微镜、广角X射线散射仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311156项目名称:中国科学院金属研究所场发射透射电子显微镜采购项目预算金额:850.0000000 万元(人民币)最高限价(如有):850.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期预算交货地点是否允许采购进口产品1场发射透射电子显微镜1套本系统主要用于各种材料高分辨快速成像和化学分析,系统由电子光学系统、高压系统、真空系统等部分组成。合同生效后18个月850万元中国科学院金属研究所是 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。合同履行期限:合同生效后18个月内交货。本项目( 不接受 )联合体投标。2.项目编号:23CNIC-031692-009项目名称:中国科学院金属研究所广角X射线散射仪采购项目预算金额:700.0000000 万元(人民币)最高限价(如有):700.0000000 万元(人民币)采购需求:名称:广角X射线散射仪数量:1套简要技术要求:本设备用于在温度(普冷区)、应力、磁场等复杂环境下精准测量金属、塑晶、磁性等材料的X射线衍射谱;可在温度(深冷区)、压力等环境下测试材料X射线原子对分布函数。用以研究材料多尺度应力分配、压力诱导分子有序度变化等材料科学共性问题。★微焦斑转靶最大额定输出功率:不低于800 W★ 微焦斑转靶额定管电压:不低于50 kV★微焦斑转靶额定管电流:不低于16 mA(50 kV下)★无液氦分体式超低振动设计,不消耗液氦★ 温度范围:10 K-350 K★ 温度稳定性:≤100 mK合同履行期限:合同生效后8个月本项目( 不接受 )联合体投标。3.项目编号:23CNIC-031692-008项目名称:中国科学院金属研究所高温微动磨损试验机采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:名称:高温微动磨损试验机数量:1套简要技术要求:本设备用于各种材料、涂层和薄膜在高温环境下的摩擦磨损性能测试,可为各种材料和各种涂层以及薄膜的研究提供有效手段,符合国家及相关国际标准,接触形式包括点、线、面三种。★高载荷模块:3—2500N, 加载控制精度:±1%,分辨率:0.1N★行程:0.01—5mm ,位移控制精度:优于10um,重现性:0.3%位移传感器:分辨率:2 μm,响应时间: 10 s★频率:1—500Hz 合同履行期限:合同生效后6个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:北京市西城区北三环中路25号英斯泰克大厦5层方式:电话联系购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。(一)1.采购人信息名 称:中国科学院金属研究所     地址:辽宁省沈阳市沈河区文化路72号        联系方式:佟老师 024-23971066      2.采购代理机构信息名 称:中国仪器进出口集团有限公司            地 址:北京市西城区北三环中路25号英斯泰克大厦            联系方式:唐经理 010-60961220/18612037725 陶经理010-60961520/18618131338            3.项目联系方式项目联系人:陶经理电 话:  010-60961520(二)1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290599            3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 扫描近场光学显微技术(SNOM)书写的发展史诗
    “扫描近场光学显微技术” 早由科学研究工作者Edward Hutchinson Synge提出。根据观察到的在一定压力下电弧发出的通过孔径仅为100nm的强聚焦平面光,他认为,利用这种小孔径可以使光在样品表面进行逐点扫描成像,同时采集被测量物质的光学信息,并大胆预测这一技术的实现将是照明探测研究领域中的巨大突破。在1956年和1972年,John A.O' Keefe与Ash and Nicholls进一步完善了该理论,并提出小孔探测原件尽可能接近样品表面将有助于该技术的实现。1984年,台利用可见光辐射进行测量的近场光学显微镜由Pohl等制造并使用,该显微镜通过探针在样品表面保持数十纳米的距离采集反馈信息,并在两年后实现了高分辨成像。 然而,传统近场光学显微镜由于瑞利衍射限(Rayleigh limitation),其分辨率不仅受到孔径尺寸的制约,也受到入射光波长1/2的限制。因此,对于sub-um的纳米材料检测成像时,传统近场光学显微镜只能采用有限波长范围的可见光,且难以获得高清图像信息。在中红外领域,近场光学显微技术对纳米结构几乎没有用武之地。 散射式近场光学显微镜利用AFM探针对激光光束聚焦照明,在针附近激发一个纳米尺度的增强近场信号区域。当针接近样品表面时,由于不同物质的介电性质差异,近场光学信息将被改变。通过背景压制技术对采集的散射信号进行解析,就能获取到样品表面的近场光学谱图并进行成像。该技术突破了传统孔径显微的限制,其分辨率仅由AFM探针针的曲率半径决定。 德国Neaspec公司提供的新一代近场光学显微镜NeaSNOM采用了这一散射式技术,高分辨率可达10nm,并通过式的赝外差数据分析模式,同时解析强度和相位信号,解决了纳米材料尤其是在红外光谱范围的近场光学成像难题。 利用赝外差技术实现了近场光学显微镜对强度和相位的同时成像 近五年以来(2011年至今)散射式近场光学显微技术在局域表面等离子激元,无机材料表面波传导,二维材料声子化,近场光电流,半导体载流子浓度,高分子材料鉴别和生物样品成像等领域研究得到了广泛的应用,已然成为推动光学物理、材料应用发展的重要工具。 2016年,A.Y. Nikitin等通过波长10-12μm激发裁剪后的石墨烯纳米谐振器,得到了大量共存的Fabry–Perot mode信息。通过理论分析其两种等离子模式,即sheet plasmon和edge plasmon,发现后者体积仅为激发波长的10^-8倍。并通过理解edge plasmon的原理,可以促进一维量子发射器的开发,等离子激元和声子在中红外太赫兹探测器的研究,纳米图案化拓扑缘体等领域的进一步发展。 文章中5nm厚SiO2上的不同尺寸(394 × 73 nm (a), 360 × 180 nm (b) and 400 × 450 nm (c))石墨烯纳米谐振器,在11.31μm波长下的近场成像 石墨烯由于其特性能被广泛的认可为具发展潜能的下一代光电设备材料,然而其纳米别性能的变化影响了宏观行为,高性能石墨烯光电器件的开发受到了大制约。AchimWoessner等结合红外近场扫描纳米显微镜和电子读取技术,实现了红外激发光电流的成像,并且精度达到了数十纳米别。通过研究边际和晶界对空间载流子浓度和局域热电性质的影响,实验者证明了这一技术对封闭石墨烯器件应用的益处。 近场光电流的工作原理示意图以及中从晶粒间界处得到的光电流实际测量结果 NeaSNOM是市场一款散射型扫描近场光学显微镜,化的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。 NeaSNOM中嵌入的一系列化探测和发光模块,保证了谱图的可靠性和可重复性,成为纳米光学领域热点研究方向的科研设备。 【NeaSNOM样机体验与技术咨询,请拨打:010-85120280】 相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪:http://www.instrument.com.cn/netshow/C194218.htm
  • 仪器新应用!科学家用干涉散射显微镜解密COF合成的全过程!
    【科学背景】共价有机框架(COFs)是一类功能性材料,能够在能量转换和存储方面发挥作用。然而,尽管近20年的研究,对于它们的合成条件却缺乏统一的预测规则。这部分是由于对于形成的早期阶段的成核和生长的认识仍然不完整。为了解决这一挑战,科学家们需要一种能够在操作中进行研究的技术,以全面理解COF形成的动态过程。鉴于此,德国慕尼黑大学的Richard Martel & Emiliano Cortés等研究者在“Nature”期刊上发表了题为“Early stages of covalent organic framework formation imaged in operando”的最新论文。科学家们使用了干涉散射显微镜(iSCAT)技术,首次揭示了在COF合成过程中液液相分离的现象,这表明了溶剂在形成过程中的关键作用。利用这些发现,他们成功地开发了一种新的COF合成方案,在室温下进行反应,实现了对合成条件的有效设计。这项研究的结果揭示了溶剂在COF合成中的重要性,并为有理材料合成提供了新的视角和方法。【科学亮点】(1) 本研究首次利用干涉散射显微镜(iSCAT)技术进行了COF聚合和框架形成的操作内研究。这一技术在高速度(微秒/毫秒级)下结合了亚5纳米的灵敏度和高空间分辨率,使得能够观察到反应混合物中的所有物质,包括晶态、非晶态、液体/固体相。(2) 实验结果显示,COF的形成过程中存在液液相分离,表明常规COF合成中存在结构化溶剂,呈现为无表面活性剂的(微)乳液。此外,发现溶剂的作用不仅仅是溶解性,还通过将反应物和催化剂分隔开来起到了动力学调节剂的作用,从而影响COF的形成过程。(3)基于这些发现,作者成功开发了一种室温下合成COF的新协议,摆脱了之前合成中需要提高温度的限制。这项工作将框架合成与液相图连接起来,为合理设计反应环境提供了新的方法。【科学图文】图1:iSCAT是全面了解COF形成机制的有效工具。图2. 实时iSCAT图像在空间和时间上显示COF的形成,在添加催化剂后的毫秒内显示液-液相分离过程。图3. 常规碳纳米管合成中的溶剂结构。图 4:合理设计了COFs的室温合成方案。【科学结论】这项研究为理解和优化复杂湿化学过程(如COF合成)提供了新的科学启示。通过使用iSCAT显微镜直接成像,作者得以深入解析COF合成的多阶段过程,揭示了液液相分离等关键现象。同时,作者提出的IAC合成方案展现了在温和条件下合成框架材料的可靠途径,这为设计更高性能的COF材料提供了新的思路。此外,作者提出的通过液相图定制反应环境的策略不仅可以用于COF合成,还可以推广到其他材料的合成领域,为实现有理材料合成提供了可行性方案。这一研究还强调了利用光散射技术可视化反应过程的重要性,这为更深入地理解化学反应机制提供了新的方法。综上所述,本研究不仅为COF合成提供了新的合成策略和理解机制,还为湿化学过程的探索提供了新的科学思路和方法。原文详情:Gruber, C.G., Frey, L., Guntermann, R. et al. Early stages of covalent organic framework formation imaged in operando. Nature (2024).https://doi.org/10.1038/s41586-024-07483-0
  • 630万!中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目
    项目编号:OITC-G220571963项目名称:中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目预算金额:630.0000000 万元(人民币)最高限价(如有):630.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号品目货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)11-1聚焦离子束场发射扫描电子显微镜1是3951-2X射线能谱成分背散射电子结构三维分析仪1是235 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 629万!赛默飞中标中科院过程所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目
    一、项目编号:OITC-G220571963(招标文件编号:OITC-G220571963)二、项目名称:中国科学院过程工程研究所聚焦离子束场发射扫描电子显微镜、X射线能谱成分背散射电子结构三维分析仪采购项目三、中标(成交)信息供应商名称:国药(上海)医疗器械实业有限公司供应商地址:中国(上海)自由贸易试验区正定路530号A5库区三层2号仓库中标(成交)金额:629.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 国药(上海)医疗器械实业有限公司 聚焦离子束场发射扫描电子显微镜;X射线能谱成分背散射电子结构三维分析仪 Thermo Fisher Scientific Helios 5 UC Compact730M 1套 ¥6,299,000.00
  • 中科院微电子所采购激光共聚焦扫描显微镜与近场光学显微镜
    中国科学院微电子研究所2011年仪器设备采购项目(第四批)招标公告   日 期: 2011年3月15日   招标编号: OITC-G11032057   1、东方国际招标有限责任公司受 中国科学院微电子研究所 (招标人)的委托,就中国科学院微电子研究所2011年仪器设备采购项目(第四批)(以下简称项目)所需的货物和服务,以公开招标的方式进行采购。现邀请合格的投标人就下列货物及有关服务提交密封投标。 包号 货物名称 数量(台/套) 是否接受进口产品 1 近场光学显微镜 1 是 2 激光共聚焦扫描显微镜 1 是   投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。   2、投标人资格条件:   1) 符合《中华人民共和国政府采购法》第二十二条要求   2) 按本投标邀请的规定获取招标文件   3、有兴趣的投标人可从 2011 年 3 月 15 日至 2011 年 4 月 6 日每天上午9:00至下午17:00(北京时间)在东方国际招标有限责任公司1507室查阅或购买招标文件,本招标文件售价为500元/包,如需邮寄另加100元的邮资费用,邮寄过程中产生的任何问题由购买标书人自行负责,售后不退。   4、所有投标文件应于 2011 年 4 月 6 日上午9:30时(北京时间)之前递交至北京市朝阳区北土城西路3号中国科学院微电子研究所办公楼A座西大厅101会议室,并须附有不低于投标金额1%的投标保证金,以招标机构为承受人。   5、兹定于 2011 年 4 月 6 日上午9:30在北京市朝阳区北土城西路3号中国科学院微电子研究所办公楼A座西大厅101会议室进行公开开标。届时请投标人派代表出席开标仪式。   招标机构名称:东方国际招标有限责任公司   地  址:北京市海淀区阜成路67号 银都大厦15层 邮  编:100142   电  话:010-68725599-8447 传  真:010-68458922   电子信箱:zcdou@osic.com.cn   联 系 人:窦志超、张明磊   开户名(全称):东方国际招标有限责任公司   开户银行:招行西三环支行 帐号:862081657710001
  • 30mK极低温近场扫描微波显微镜研发核心:attocube极低温纳米位移台
    关键词:低温位移台;近场扫描微波显微镜; 稀释制冷机 背景介绍扫描隧道显微镜(STM)[1]和原子力显微镜(AFM)[2]等基于扫描探针显微术(SPM)的出现使得科学家能够在纳米分辨率下去研究更多材料的物理特性及图形。以这些技术为基础的纳米技术、材料和表面科学的迅速发展,大地推动了通用和无损纳米尺度分析工具的需求。尤其对于快速增长的量子器件技术领域,需要开发与这些器件本身在同一区域(即量子相干区域)中能够兼容的SPM技术。然而,迄今为止,能够与样品进行量子相干相互作用的纳米尺度表征的工具仍非常有限。特别是在微波频率下,光子能量比光波长小几个数量,加之缺乏单光子探测器和对mK端温度的严格要求,更是一个巨大的挑战。近年来,固态量子技术飞速发展迫切需要能够在此端条件下运行的SPM探测技术。技术核心近场扫描微波显微技术(NSMM)[3]结合了微波表征和STM或AFM的优势,通过使用宽带或共振探头来实现探测。在近场模式下,空间分辨率主要取决于SPM针尺寸,可以突破衍射限的限制,获得纳米别的高分辨率图像。NSMM的各种实现方式已被广泛应用于非接触式的探测半导体器件[4],材料中的缺陷[5]、生物样品的表面[6]及亚表面分析,以及高温超导性[7]的研究。但是在低温量子信息领域中的应用还鲜有报道。英国物理实验室NPL的塞巴斯蒂安德格拉夫(Sebastian de Graaf)小组与英国伦敦大学谢尔盖库巴特金(Sergey Kubatkin)教授小组合作开发了一种在30 mK下工作的新型低温近场扫描微波显微镜,同时,该显微镜还结合了高达6 GHz的微波表征和AFM技术,旨在满足量子技术领域的新兴需求。整个系统置于一台稀释制冷机中(如图1(b)所示),NSMM显微镜的示意图如图1(a)所示:在石英音叉上附着了一个平均光子占有率为~1的超导分形谐振器。一个可移动的共面波导被用来感应耦合到谐振器上进行微波的发射和信号的读出。整个系统的核心是德国attocube公司提供的兼容低温的铍铜材质的纳米精度位移台,该小组使用一组ANPx100和ANPz100纳米位移器将样品与针在x,y和z方向上对齐,同时使用一个小的ANPz51纳米位移器进行RF波导的纳米定位和耦合。图1.(a)NSMM显微镜的示意图。(b) 稀释制冷机中弹簧和弹簧悬挂的NSMM示意图。测量结果如图2所示,Sebastian教授演示了在单光子区域中以纳米分辨率进行扫描的结果。扫描的区域与在硅衬底上形成铝图案的样品相同。扫描显示三个金属正方形(2×2μm2)与两个较大的结构相邻,形成一个叉指电容器。叉指电容器的每个金手指有1 μm的宽度和间距,尽管在图2中,由于的形状,这些距离看起来不同。图2. 在30 mK下扫描具有相邻金属垫的交叉指电容器.(a)得到的AFM形貌图。(b) 单光子微波扫描(~1)显示了微波谐振腔的频移,微波扫描速度为0.67 μm/s.(c)高功率微波扫描结果(~270)。(d) 在调谐叉频率(30 kHz)下解调的PDH误差信号,与dfr/dz(~270)成正比。(e) 扫描获得的信噪比(SNR)作为平均光子数的函数。attocube低温位移台德国attocube公司是上著名的端环境纳米精度位移器制造公司。拥有20多年的高精度低温纳米位移台的研发和生产经验。公司已经为各地科学家提供了5000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器。德国attocube公司的位移器以稳定而优异的性能、原子的定位精度、纳米位移步长和厘米位移范围深受科学家的肯定和赞誉。产品广泛应用于普通大气环境和端环境中,包括超高环境(5E-11 mbar)、低温环境(10mK)和强磁场中(31 Tesla)。图3. attocube低温强磁场纳米精度位移器,扫描器,3DR主要参数及技术特点参考文献:[1]. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57 (1982).[2]. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).[3]. Bonnell, D. A. et al. Imaging physical phenomena with local probes: From electrons to photons. Rev. Mod. Phys. 84, 1343 (2012).[4]. Kundhikanjana, W., Lai, K., Kelly, M. A. & Shen, Z. X. Cryogenic microwave imaging of metalinsulator transition in doped silicon. Rev. Sci. Instrum. 82, 033705 (2011).[5]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[6]. Gregory, A. et al. Spatially resolved electrical characterization of graphene layers by an evanescent field microwave microscope. Physica E 56, 431 (2014).[7]. Lann, A. F. et al. Magnetic-field-modulated microwave reectivity of high-Tc superconductors studied by near-field mm-wave. microscopy. Appl. Phys. Lett. 75, 1766 (1999). 更多文章信息请点击:https://doi.org/10.1038/s41598-019-48780-3
  • 1218万!华南理工大学纳米红外光谱及近场光学显微镜等采购项目
    一、项目基本情况1.项目编号:CLF0123GZ07ZC91项目名称:华南理工大学纳米红外光谱及近场光学显微镜预算金额:620.0000000 万元(人民币)最高限价(如有):620.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1纳米红外光谱及近场光学显微镜一套纳米红外光谱及近场光学显微镜主要用于对样品表面形貌、纳米力学、纳米热学、以及微纳米尺度的化学成分分布进行表征,可获得微纳米材料的红外吸收光谱,并且可以得到微纳米尺度上的化学成分分布图。620经政府采购管理部门同意,本项目(纳米红外光谱及近场光学显微镜设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):收到信用证后(300)天内。本项目( 不接受 )联合体投标。2.项目编号:0809-2341HGG14055项目名称:华南理工大学大型结构疲劳试验机采购项目预算金额:205.0000000 万元(人民币)最高限价(如有):205.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大型结构疲劳试验机1套具体详见采购需求205.00本项目(大型结构疲劳试验机)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 交付地点:华南理工大学五山校区。合同履行期限:在合同签订后(210)天内完成供货、安装和调试并交付用户单位使用本项目( 不接受 )联合体投标。3.项目编号:GZZJ-ZFG-2023606项目名称:华南理工大学植物活性组分高效制备系统采购项目预算金额:118.0000000 万元(人民币)最高限价(如有):118.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1植物活性组分高效制备系统1套植物活性组分高效制备系统,可实现对细胞、酵母、细菌、藻类等内溶物进行高效提取,并实时监测内溶物的电导率、溶解氧、pH、温度等多项指标。设备操作便捷,稳定,能够满足食品,生物,医药等多领域研究需求。主要应用于果酒果醋果汁等食品加工;化妆品功能活性提取、活性改性;中药组分预处理等研究。人民币118万元本项目只允许采购本国产品。本项目采购标的所属行业为:工业合同履行期限:在合同签订后(90)天内完成供货、安装和调试并交付用户单位使用;本项目( 不接受 )联合体投标。4.项目编号:0809-2341HGG14046项目名称:华南理工大学超快瞬态荧光光谱仪(条纹相机)采购项目预算金额:375.0000000 万元(人民币)最高限价(如有):375.0000000 万元(人民币)采购需求:序号标的名称数量(台/套)简要技术需求或服务要求最高限价万元(人民币)1超快瞬态荧光光谱仪(条纹相机)1具体详见采购需求375.00 经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为: 工业 合同履行期限:关境内货物:在合同签订后(40)天内完成供货、安装和调试并交付用户单位使用;关境外货物:办理免税证明后360天内完成供货、安装和调试并交付用户单位使用;质保期:不少于1年。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月12日 至 2023年09月19日,每天上午9:00至12:00,下午14:00至17:30。(北京时间,法定节假日除外)地点:采联国际招标采购集团有限公司官网(http://www.chinapsp.cn/)方式:详见本招标公告“六、其他补充事宜”。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南理工大学     地址:广州市天河区五山路381号        联系方式:文老师 020-87112962      2.采购代理机构信息名 称:采联国际招标采购集团有限公司            地 址:广州市环市东路472号粤海大厦7、23楼            联系方式:陈女士 020-87651688转分机132或130            3.项目联系方式项目联系人:陈女士/张芷华电 话:  020-87651688转分机132或1304.采购代理机构信息名 称:广东华伦招标有限公司            地 址:广州市广仁路1号广仁大厦7楼            联系方式:何工 020-83172166转823(hualunsibu@163.com)            5.项目联系方式项目联系人:何工电 话:  020-83172166-823
  • 620万!华南理工大学纳米红外光谱及近场光学显微镜采购项目
    项目编号:CLF0123GZ00ZC63项目名称:华南理工大学纳米红外光谱及近场光学显微镜预算金额:620.0000000 万元(人民币)最高限价(如有):620.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1纳米红外光谱及近场光学显微镜一套纳米红外光谱及近场光学显微镜主要用于对样品表面形貌、纳米力学、纳米热学、以及微纳米尺度的化学成分分布进行表征,可获得微纳米材料的红外吸收光谱,并且可以得到微纳米尺度上的化学成分分布图。620经政府采购管理部门同意,本项目(纳米红外光谱及近场光学显微镜设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):收到信用证后(300)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师 020-871129622.采购代理机构信息名称:采联国际招标采购集团有限公司地址:广州市环市东路472号粤海大厦7、23楼联系方式:陈女士 020-87651688转分机132或1303.项目联系方式项目联系人:陈女士电话:020-87651688转分机132或130
  • 红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所红外科学与技术全国重点实验室的科研团队在《红外与毫米波学报》期刊上发表了以“红外近场辐射探测及超分辨温度成像”为主题的文章。该文章第一作者为朱晓艳,主要从事红外被动近场成像方面的研究工作。本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知地是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之为近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步地研究。图1(a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距h,即可获得近场、远场混合信号(h 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2(a)红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO₂衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长(~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO₂)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO₂强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14 μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14 μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO₂衬底)的(a)光学显微、(b)远场红外和(c)近场红外的图像及成像原理示意图另外值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO₂;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO₂。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4 (a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。总结与展望综上,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。这项研究获得国家自然科学基金优秀青年基金的资助和支持。论文链接:DOI: 10.11972/j.issn.1001-9014.2023.05.001
  • 300万!华南理工大学拉曼-扫描近场光学联用显微镜采购项目
    项目编号:CLF0122GZ18ZC69-2项目名称:拉曼-扫描近场光学联用显微镜(二次)预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)单价最高限价万元(人民币)1拉曼-扫描近场光学联用显微镜1激发波长:532nm TEM00单频激光器,功率≥75 mW 光谱仪与检测器系统:光谱仪焦长:≥300 毫米;同时配备光栅,包括150, 600及1800刻线, 可实现软件控制全自动切换,无需手动更换光栅,单窗口可覆盖(3700 cm-1)。300经政府采购管理部门同意,本项目 拉曼-扫描近场光学联用显微镜(二次) 允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:办理免税证明后180天内。本项目( 不接受 )联合体投标。
  • 综述:太赫兹近场超分辨成像,不断突破衍射极限
    太赫兹(THz)辐射频率处于电子学和光学频率之间,因此具备多种光电子特性。THz成像作为THz辐射最重要的应用方面,在国防、通信、生物、医学和材料有着巨大应用潜力。THz 时域光谱系统(THz-TDS)被广泛用于角膜含水量测量、角膜瘢痕成像、蛋白浓度检测和细胞标志物检测等。然而受限于衍射极限存在,THz成像分辨率一般被限制在毫米量级。近场光学成像技术使用空间尺度极小探针直接探测样品表面亚波长尺度细节,可有效突破衍射极限,是实现THz超分辨成像的重要路径。目前,根据探针工作方式的区别,THz近场成像技术可分为孔径探针THz近场成像和散射探针THz近场成像。孔径探针THz近场成像方案需要平衡空间分辨率、截至频率和近场耦合效率之间关系,其成像分辨率仍无法突破至nm量级。散射探针THz近场成像分辨率与探针几何结构和探针-样品表面距离有关,截至目前其成像分辨率可以突破至0.3 nm。本文综述了THz超分辨成像的基本原理及最新进展,围绕孔径探针和散射探针两种主流的THz近场成像技术,详述其在成像原理、成像质量与成像分辨率等方面的突破,并对THz超分辨成像做出总结与展望。图1 THz近场成像及其应用场景孔径探针孔径探针THz近场成像主要利用亚波长结构形成THz辐射源或THz探测器在近场范围内扫描样品表面提升成像空间分辨率。依据孔径类型分类,孔径探针THz近场成像共有四种技术路线,分别是物理孔径、动态孔径、人工表面等离子激元和近场天线。物理孔径探针通常为锥形波导,可以将THz辐射局域成亚波长THz辐射源并扫描样品,提升空间分辨率。其优势在于:结构简单制备容易,可根据THz源设计波导几何结构提升THz耦合效率。图2 锥形物理孔径THz近场成像示意图动态孔径THz成像系统主要有两种实现方式。一种是基于光泵浦方案,该方案激发半导体材料形成特定分布的载流子,进而调制THz空间分布。另一种是基于飞秒激光成丝方案,该方案应用光丝对THz辐射强束缚作用,或是应用交叉光丝,形成动态微孔调制THz空间分布。动态孔径技术优势在于,一方面可以和压缩感知技术结合在保证空间分辨率情况下极大提升成像速度,另一方面基于飞秒激光光丝可以进一步提升成像分辨率至20 μm。图3 交叉光丝形成动态孔径实现THz近场成像人工表面等离子激元器件表面具有周期结构,通过改变材料表面等效介电常数实现THz波近场聚焦。常规调制方案包括金属锥形结构聚焦探针、金属周期结构THz超透镜和石墨烯THz超透镜等;其适用波长范围广、聚焦效率高具有一定的应用前景,尽管目前还处于实验室阶段,但是随着THz器件加工技术逐渐发展,相信在不久的将来其实用性会得到提升。图4 人工表面等离子激元器件实现THz近场成像近场THz天线这是一种微型近场THz探测器,优势为在提升空间分辨率同时能够保证时间分辨率,另一方面THz近场天线可以被集成至片上,拓宽了其使用场景。 图5 近场天线实现THz近场成像散射探针散射探针THz近场成像系统,是通过测量探针与样品表面在外场作用下的近场耦合效应反映样品表面信息。其适用于宽谱THz光源,成像空间分辨率与探针几何结构和探针-样品表面间距有关最高可以达到0.3 nm量级。由于背景散射信号强度远大于近场散射信号强度,散射探针THz近场成像系统主要技术难点在于信号收集与提取。目前,较为成熟的近场散射信号提取技术包括:自零差方案、正交零差方案、伪外差方案和合成光学全息方案等。在保障扫描时间的前提下,伪外差方案成像对比度高且具备相位分辨能力,因此被广泛采用。散射探针THz近场成像系统通常使用扫描隧道显微镜或者原子力显微镜作为提供近场条件的媒介,可将探针针尖与样品表面间距精确控制在20 nm范围内。基于扫描隧道显微镜的散射THz近场成像系统优势:1)其空间分辨率最高可以提升至0.3 nm;2)基于扫描隧道显微镜增强隧穿电流原理,可以增强近场散射信号。缺点:扫描隧道显微镜是通过测量针尖与样品表面隧穿电流实时反馈控制针尖与样品表面间距,故此种方案不适用于不导电样品。图6 基于扫描隧道显微镜搭建的近场成像系统及其一维扫描结果图基于原子力显微镜的散射THz近场成像系统原子力显微镜,因其和扫描隧道显微镜类似,具有卓越的空间分辨能力,是搭建散射探针THz近场成像系统的主力设备,同时能够通过检测针尖与样品之间相互作用反馈控制针尖和样品间距,故该系统可以适用于多种样品。图7 基于原子力显微镜搭建的近场成像系统及其扫描结果图散射探针THz近场成像不仅可以将THz成像分辨率提升至nm量级,还可以被应用于检测样品表面载流子运动。与光学波段和红外波段成像技术相比,有掺杂的半导体或者半金属材料对THz波段更加敏感,因此散射探针THz近场成像技术还被应用在nm量级表征载流子数目和分布情况。 总结与展望随着强THz产生技术和高灵敏THz探测技术的不断发展,超分辨THz成像技术得到了长足发展。孔径探针和散射探针THz成像方案各有侧重,在不同领域得到广泛应用。根据以上总结,从应用角度出发对近场THz成像技术作出展望:(1)成像速度。目前大多数超分辨THz成像方案都是采用逐点扫描模式,尽管成像分辨率得到很大提升,但是成像速度较慢。(2)装置集成化与轻量化。高效的桌面式近场THz成像系统能够助力此项技术得以推广。(3)样品多样性。目前,nm量级THz近场成像技术主要被应用于材料学研究,未来可以充分发挥THz辐射优势,将检测样品扩展至生物大分子甚至活体。(4)大范围成像。未来可以在平衡成像质量与成像速度前提下,实现nm量级大范围样品成像。综上所述,本文概括了超分辨近场成像技术的多个技术指标,分别是空间分辨率、时间分辨率、相位分辨能力、成像速度、成像对比度和装置复杂性。在保证空间分辨率的前提下,提升其他技术指标仍然任重而道远。
  • 220万!中国科学院大连化学物理研究所近场扫描光学显微镜采购项目
    项目编号:OITC-G220311704项目名称:中国科学院大连化学物理研究所近场扫描光学显微镜采购项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期最高限价交货地点是否允许采购进口产品1近场扫描光学显微镜1套详见采购需求合同签订后6个月内220万元人民币中国科学院大连化学物理研究所是 合同履行期限:合同签署后6个月内到货本项目( 不接受 )联合体投标。
  • 2014年全球显微镜市场达40.658亿美元
    根据MarketsandMarkets最新发布的市场报告显示:2014年全球显微镜市场为40.658亿美元,到2019年将增长到57.56亿美元,年均复合增长率为7.2%。   随着全球对于纳米技术的关注,政府和企业资金的良好支持,以及技术进步,如高分辨率显微镜、高通量技术和数字化显微镜等都在推动显微镜市场的增长。然而,高端显微镜昂贵的价格、美国政府征收的消费税,以及医疗器械沉重的关税都阻碍着这一市场的增长。   按照产品类别来分,显微镜市场分为光学显微镜、共聚焦显微镜、电子显微镜和扫描探针显微镜。光学显微镜进一步划分为荧光显微镜(FM)和超分辨率显微镜。荧光显微镜分为全内反射荧光显微镜(TIRF)、荧光共振能量转移显微镜(FRET)、荧光漂白后恢复显微镜(FRAP)、以及荧光寿命成像显微镜(FLIM)。   超分辨显微镜分为随机光学重建显微镜(STORM)、结构化照明显微镜(SIM)、受激发射损耗显微镜(STED)、相干反斯托克斯拉曼散射显微镜(CARS)、光活化定位显微镜(PALM)和可逆饱和光荧光转移显微镜(RESOLFT)。共聚焦显微镜包括多光子显微镜和旋转盘共聚焦显微镜。   电子显微镜分为扫描电子显微镜(SEM)和透射电子显微镜(TEM)。   扫描探针显微镜(SPM)则分为扫描隧道显微镜(STM)和原子力显微镜(AFM),以及近场光学显微镜(NSOM)。2014年,光学显微镜占全球显微镜市场最大的份额,达到39.5%。   显微镜的应用市场分为半导体、生命科学、纳米技术和材料科学。其中纳米技术是增长最快的应用市场。根据终端用户划分,显微镜市场分为学术机构、生产制造和其他(政府研究机构和私营实验室),其中学术机构是占市场份额最大的终端用户。   根据区域划分,显微镜市场分为北美、欧洲、亚太和其他地区(RoW)。其他地区包括巴西、阿根廷、墨西哥和其他拉美地区。2014年,北美地区的显微镜市场份额最大,其次是欧洲。预计未来5年,这两个市场的增长率都为低个位数。   然而,亚太区预计将保持较高的增长率,因为这一区域有着巨大的投资机遇。亚太区显微镜市场的增长将来自于中国、澳大利亚,以及中东地区的国家。(编译:秦丽娟)
  • 一文了解|红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知的是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步的研究。图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距,即可获得近场、远场混合信号( 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集的光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO2衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长( ~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO2)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO2强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外另外,值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO2;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO2。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制