当前位置: 仪器信息网 > 行业主题 > >

纳米沉积打印系统

仪器信息网纳米沉积打印系统专题为您提供2024年最新纳米沉积打印系统价格报价、厂家品牌的相关信息, 包括纳米沉积打印系统参数、型号等,不管是国产,还是进口品牌的纳米沉积打印系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米沉积打印系统相关的耗材配件、试剂标物,还有纳米沉积打印系统相关的最新资讯、资料,以及纳米沉积打印系统相关的解决方案。

纳米沉积打印系统相关的仪器

  • 美国SonoPlot是柔性印刷电子行业内畅销的高品质微纳米材料沉积喷墨打印系统(又名高分辨毛细作用直写打印系统),广泛用于制备可控电极薄膜、聚合物光电器件、碳纳米管石墨烯器件、微电子器件 、不同材料的多重构筑以及定位定量微纳修补等应用领域。创新的超声谐振释放机制可以完美解决传统压电式喷墨打印技术线宽限制问题,打印不连续,打印材料受限,不能打印一维二维材料,薄膜不均匀,无法定位以及更换喷头昂贵的诸多技术瓶颈。
    留言咨询
  • 美国SonoPlot是柔性印刷电子行业内畅销的高品质微纳米材料沉积喷墨打印系统(又名高分辨毛细作用直写打印系统),广泛用于制备可控电极薄膜、聚合物光电器件、碳纳米管石墨烯器件、微电子器件 、不同材料的多重构筑以及定位定量微纳修补等应用领域。创新的超声谐振释放机制可以完美解决传统压电式喷墨打印技术线宽限制问题,打印不连续,打印材料受限,不能打印一维二维材料,薄膜不均匀,无法定位以及更换喷头昂贵的诸多技术瓶颈。
    留言咨询
  • 德国Microdrop Technologies专注于为研发和工业应用领域的微液滴喷墨技术将近30年,是欧洲提供微纳米油墨高精确微量分配供应商,已成功应用到生命科学、材料科学和微纳加工制造等领域,并获得广泛的商业和学术认可,用户包括瑞士洛桑联邦理工学院、澳大利亚联邦科学与工业研究组织、德国耶拿大学和马克斯-普朗克研究所等,企业用户有罗氏诊断、巴斯夫、拜耳、杜邦和康宁等, 国内用户包括清华大学、上海大学、常州大学、中科院长春应化所、香港理工大学、香港城市大学和台湾工业技术研究院等。Microdrop以高分配准确度、多系列喷头、全面自动化、模块化组装和应用导向适应性为特点,可用于pl至μl级的微纳米材料高精确微量打印,是微纳米材料沉积及其它诸多领域的理想工具。产品包括括基于喷墨打印的Autodrop Compact实验级别,Autodrop Gantry II专业级及产业化级别和Autodrop Gantry流水线级别,AD系列,MD系列和基于阀技术的Nanojet系列。应用领域包括柔性印刷电子、有机OLED,QLED显示、传感器技术、皮升级量润滑、聚合物电子、微机械、光学和微量点样及生物医学系统.Materials Science Applications材料科学应用:Bio Medicine Science Applications生命医学领域应用:德国Microdrop产品系列:高精确定位沉积及倾斜自动补偿校准:高通量材料筛选制备工艺:样品制备是高通量材料筛选关键的一步,而采用喷墨打印技术进行高通量样品制备则更具挑战,德国Microdrop公司精密压电喷墨打印技术能稳定地分配微量液滴且适用于多种不同材料,同时创新的将压电喷印技术整合于移液管式喷头之中,能对基于96和384微孔板中的溶液进行全自动地吸取,打印,回收等操作。其配置高精度的定位系统及采用行进中点样模式,能对多种溶液进行精确,快速打印,从而制备高通量样品.Microdrop全系统可选喷头种类:Microdrop 喷头-除Nanojet外-使用与喷墨打印机同样的压电驱动技术用于非接触式分配,在喷嘴形成微细液滴,高速(约2m/s)从喷头分离。只有高惰性的材料如玻璃,PTFE(聚四氟乙烯)和PEEK(聚醚醚酮)与液体直接接触。不仅可用于分配室温下粘度从20mPas至10000mPas的蜡状材料也可通过加热将粘度降低至20mPas或更低,再进行分配,喷头的部分型号具有加热功能可完成此操作.Microdrop 喷头无机械移动部件,因此无损耗无需维护。Microdrop喷头MD-K-…能通过microdrop驱动电子设备 (MD-E-…) 或与Autodrop系统(AD-E-…)组合进行驱动。
    留言咨询
  • l纳米团簇束流沉积系统由纳米团簇源、质量选择器、沉积系统构成。 l可以用于基于纳米粒子的器件加工,可在结构、化学组分、封装等不同环节上对纳米结构单元进行操纵。l可用于纳米粒子膜的大规模工业化制备。l工艺过程高效、快速和低成本。v创新的镀膜、沉积设备 v新型的纳米颗粒制备设备 纳米粒子源通过气相聚集过程及差分束流系统形成纳米团簇束流,由质量选择器进行筛选,然后在高真空下以声速(低能)或被加速(高能)沉积于基底上。1、纳米团簇束流沉积系统——纳米团簇源l纳米粒子的平均直径:0.5~35nm(1 ~ 106个)可调。 l纳米粒子的尺寸分布(FWHM):2~5nm。 l可选用多靶套件。 l可选用粒子弯头,实现多种团簇沉积或取样。 l相比传统磁控溅射系统,节约大约50%氩气。 l靶材可以是金属(包括碱金属、贵金属和特高熔点金属,例如:锇、钨)、非金属(常温常压下固态非金属单质和化合物)、半导体(例如硅、锗)、能在真空存在的固态有机材料等。2、纳米团簇束流沉积系统——质量选择器l基于德国科学家的时间飞行法对小团簇进行原子数级的质量选择,可以从“白”束流中分选出pA-nA流量的单原子数组分束流,质量选择精度为0.5 ~2%。 l1-200单原子可控。l尺寸选择精度:亚纳米级。 l通量:1010/s ~ 1011/s(1-10nA)。l选择后束流原子数在1 ~10000之间,选择精度优于20,可达200。3、纳米团簇束流沉积系统——沉积系统l纳米薄膜沉积速度可监控,并在0.05 ~2nm/s连续可调。 l标准纳米束流直径:0.5 ~25mm可调,可选配样品X-Y扫描器,制备150×150mm以上样品。 l可实现加速动能为1 ~40keV的荷能纳米粒子沉积。 l系统背景真空度可达10-9Torr。 l控制沉积速度(声速)并配合控温台(选配)实现沉积过程不升温。 l可选配快速降温组件,实现退火,得到一些特殊相。 l可用于制备纳米颗粒。
    留言咨询
  • VSParticle VSP-P1 纳米印刷沉积系统纳米印刷是柔性电子领域重要的区域性沉积技术, VSP-P1 采用独家的气溶胶冲压沉积技术,将原材料通过火花烧蚀的方式转变成纳米级气溶胶颗粒,并在真空系统配合下实现图案的绘制。该方法避免了传统喷墨打印需要导电油墨以及后续热处理去除油墨的弊端,保证图案的纳米结构最大程度的保留,避免产生气孔等缺陷。运行原理气溶胶颗粒会通过火花烧蚀的方式在前端产生,颗粒经由惰性气体带动运输至喷嘴处,经过真空系统作用,腔室的气压会保持在 10mbar 以下,而经由喷嘴喷出的气溶胶会在基底表面冲压沉积。而利用 XYZ 轴控制喷嘴的移动,即可实现图案的绘制。利用该方法,可轻松实现:1. 金属,合金,氧化物颗粒的印刷沉积2. 无添加剂,无废液3. 一步沉积,设备模块化,前端的气溶胶发生器可独立拆卸工作,进行其它方向的纳米研究4. 颗粒初始粒径可保持在 0-20nm 之间,形成多孔结构应用领域 高通量合金催化剂的筛选利用气溶胶喷印在多个通道打印沉积比例不同的合金催化剂,从而快速考查电催化性能。该方法可用于在工业相关电流密度下的流体力学条件下制备和筛选电极材料,可用于确定最佳催化剂和催化剂制备的稳健性。Ni / Fe 的复合电极被用于进行验证,64 个不同比例的催化阳极电极在快速筛选后可得到反应电位的变化。SERS表面增强拉曼光谱需要精细的 Au, Ag 等纳米结构,从而实现对低信号量化学物质的灵敏检测。利用气溶胶喷印技术在基底表面快速绘制纳米图案,进行拉曼光谱检测。这种方法避免添加剂对检测的干扰,在较低的温度处理后便可进行后续检测。纳米印刷结构在对罗丹明 6G,PMBA,三聚氰胺的检测中,标准基片表现出了优异的信号增强性能。气体传感器 金属氧化物 (MOX) 气体传感器通过半导体金属氧化物薄膜的电阻变化来检测气体,但氧化物涂层需要温和的沉积,故而常用的 PVD 与 CVD 手段均不适用。现有方法为利用溶胶凝胶法结合丝网印刷实现区域的沉积。利用气溶胶喷印直写可以实现精准的印刷沉积,避免热处理。
    留言咨询
  • Hummink是高精度毛细管打印(High Precision Capillary Printing)领域的独家开发者,HPCAP是针对于显示和半导体行业的一项全新的技术。Hummink公司从法国国家科学研究中心(CNRS)分离出来的研究成果, 目前Hummink已经完成了研发设备的完全,并正在与一级设备制造商进行深入讨论,以扩大技术规模,并即将达到大规模生产的能力。Hummink作为目前全球最高精度的打印工艺,主要是基于原子力显微镜(AFM)的技术原理,使用特定的微笔来替代AFM中的探针,然后通过控制频率来达到极其细微的出液,实现了高精度打印。在这种连续的震荡出液的情况下,微笔部分的毛细血管可以实现微米以内,接近百纳米级别的精度,一般在不需要额外能源供给的情况下,一些粘度大于100,000CPs的材料都可以实现沉积,该设备在基底表面具有一定的微起伏的情况下也可以实现沉积。Hummink的HPCAP(超高精度毛细打印)专利技术,同时突破了高粘度和高精度两个领域的限制,最优可以做到100纳米的精度打印,打印材料的粘度可以突破100,000CP的范围,真正意义上做到了可以打印任何场景的材料。对比于传统的喷墨打印或是其他方式的高精度打印,HPCAP的专利打印技术可以做到完全没有卫星点,HPCAP打印技术会让微笔保持在非常低的高度下,这种震荡出液的过程中不会产生额外的卫星点溅射。HPCAP技术在打印颗粒型的金属材料的情况下,通过精准地控制震荡频率来达到液滴的释放。在一些图形线路直接打印的场景、线路修补场景都可以有非常好的作用效果,直接满足按需打印的应用场景,包括多层的对位堆叠等技术。HPCAP打印技术可以轻松实现100-500纳米间距的图形打印,完成超高精度的场景应用需求。Hummink通过毛细作用打印的方式完成点经1.5um的量子点材料打印Hummink完成微结构3D打印工作,实现30微米直径的圆柱型的图形打印。
    留言咨询
  • [产品技术简介] 富士Dimatix专注于压电式喷印技术已经超过20年, 是全球印刷电子纳米材料沉积喷墨打印技术供应商, 其DMP系列 (DMP-2831/2850)也成为行业内畅销以及通用性很强的设备,其广泛应用于多个领域,包括新型显示,电子MEMS,太阳能,生物科技,纳米材料及光学等行业。 新型DMP系列基于Dimatix Samba压电陶瓷喷头技术,无需特殊调节即可获得高均匀度的喷墨质量以及更佳的喷印直线性,且可适合多种材料喷印, 且小到3pl (Samba), 10pl (DMC-11610) 等喷头可供选择, 目标线宽可达到20-50um;设备配置有精密对位校准CCD相机以及喷头自动旋转以及样品台自动旋转补偿等, 可用来高分辨精确定位以及喷印后量测喷印状况并记录。喷墨系统可于喷印前观察并调整喷印参数,以及独立控制各喷嘴参数及状态,且对各喷嘴墨滴飞行采集及分析。[技术规格]- 喷印范围: 210 mm x 315 mm (8.27 in x 12.4 in)- 平台重复精度: ± 25 μm (± 0.001 in)- 平台真空吸附固定- 平台可设定加热高至60° C- 操作环境15-40度,5%-80%湿度,无需冷却装置- 可防止手套箱中 应用领域包括:印刷电子,柔性电子,有机电子,可穿戴设备,微电子无掩模直写,光电器件包括有机TFT,OLED有机显示,QD LED,及其他各种新型显示,各种功能传感器如生物芯片,化学传感器等,碳管石墨烯器件,PCB印刷,太阳能光伏应用,新型材料研发等等
    留言咨询
  • nScrypt高粘度多功能材料沉积喷墨打印系统 美国nScrypt公司凭借其智能喷头SmartPump&trade 和3D打印方案,已经广泛应用于高粘度材料打印以及复杂不规则的表面基底。公司打印方案应用于3D打印、直接喷墨打印和微沉积领域的研究,已经拥有了能够在太阳能电池金属化(solar cell metallization)、微电子材料、新材料工艺研发、生命科学和化学制药行业能够应用的打印技术。 包括从柔性电路、新型传感器、新能源器件、RFID 标签、光电显示器、DNA 阵列、光学透镜和可佩带电子等。其智能打印喷头主要包括: 智能喷头(Smart Pump),混合喷头(Mixer)和溅射喷头(Sprayer)配套主打的Tabletop系列以及3Dn系列打印设备。每个设备均具备不同尺寸移动平台和控制软件以及高度感应器包括供给测高探针和激光探针(touch probe,laser)等,有效的帮助客户进行精确打印。智能打印喷头 (SmartPump)SmartPump打印粘度从0.001-1000 Pas (1-1,000,000 cps) 的多种材料,包括生物材料、无机材料、有机材料以及电阻,焊料。线宽可达30微米到50微米,优越的高宽比,其高精密设计保证了单位挤出的体积精确控制。也可以提供动态的沉积控制,并且随着材料的改变,喷头的控制软件可以随之改变来实现更好的控制效果。溅射打印喷头 (Sprayer)溅射打印的时候,高至可以打印5000cp的材料。混合打印喷头 (Mixer)混合打印喷头又叫主动混合打印喷头,可满足研究过程中的多组分加工过程,主要应用多组分环氧树脂、生物高分子等,混合均匀,小的混合体积,和较短的停留时间。相对于被动混合,主动混合有自发性、更容易达到均匀混合的目的。这里主要介绍三组分混合打印喷头。该打印喷头拥有三个独立控制的线性活塞推动进料嘴来进行原料混合称为混料缸(mixing bowl),然后原料被注入到800微米的不锈钢槽中进行自发均匀混合。混合示意如图。三种原料进行混合示意图,青色代表混合均匀系统型号种类 (Tabletop和3Dn)单喷头或双喷头可选智能喷头或Mixer喷头适用于不规则3D基底多种固化处理可选可根据不同应用进行DIY主体架构采用铸铝结构、花岗岩基座和精密Aerotech精密龙门笛卡尔龙门系统都是实现精密打印的有力保障,系统的精密光学算法则为你控制这个系统提供很大的优势。Tabletop配置有150*300mm高精度平台,和此外3Dn系列拥有300mm, 500mm, 600mm大范围移动打印平台并且平台精度高分辨率可达0.1um到10nm,打印速度可到500mm/s
    留言咨询
  • TERA Fab M系列是商业化的PPL聚合物笔纳米制造工具, 此技术也叫DPN(Dip Pen Nanolithography)蘸笔纳米加工系统或浸蘸笔纳米加工刻蚀技术(美国NanoInk公司),是基于无悬臂扫描探针打印技术, 无需掩膜板即可在超过平方厘米的区域内, 使用多种材料和衬底上进行优于100nm高分辨图形化沉积打印 使用同一设备可获得纳米, 微米以及宏观尺度的特征尺寸, 自定义软件允许生成感兴趣的图形 可应用于纳米粒子合成、蛋白阵列、单细胞排布、纳米电路构造、生物芯片、化学检测、微尺度催化反应、分子马达等领域 更多详细资料请联系TERA中国区官方授权商:溢鑫科创。典型的应用包括:*研究单个细胞*使用DNA、蛋白质、肽或碳水化合物阵列*微流控或微纳电子功能器件的制备*图案化水凝胶*高定域光化学*合成和发现用于催化、光子学或治疗学应用的新纳米材料*其他高密集高分辨的微纳米器件制造
    留言咨询
  • 德国ParteQ 纳米颗粒合成制备系统ParteQ 公司介绍ParteQ GmbH由其两位管理合伙人Karsten Wegner博士和Martin Seipenbusch博士于2016年夏天创立,目标是成为纳米颗粒和气溶胶技术产品和服务的领先供应商。ParteQ为粉末和气溶胶提供可扩展的合成系统以及颗粒测量技术。在合成领域,重点是纳米颗粒和纳米粉体。这些材料用于纳米技术,多相催化,也用于电池技术和许多其他技术。除了气溶胶技术中的设备工程和测量技术外,我们还以研究服务和根据客户规格合成功能化颗粒材料的形式提供我们在颗粒技术、颗粒工程和纳米技术领域的知识和经验。ParteQ GmbH在功能材料领域的重点在于纳米颗粒和纳米粉末的合成。通过化学气相沉积将微米到毫米大小的颗粒功能化大大扩展了粉末和结构的范围。我们的合成方法包括用于生成氧化物、磷化物和金属纳米颗粒的火焰喷雾热解法,以及用于金属纳米颗粒的电弧和等离子体系统。ParteQ产品介绍ParteQ GmbH 提供一系列用于生成固体纳米颗粒和液滴的系统,包括从雾化和蒸发/冷凝到火焰到热壁合成的各种工艺。利用化学气相沉积法进行粉末功能化是我们另一个重点。对于粉末和气溶胶的表征,我们还提供广泛的颗粒测量技术及系统。关于纳米粉末的收集我们提供专门的过滤系统及过滤测试系统,以分析过滤介质和滤芯的效率。一、纳米颗粒和纳米粉体的合成制备ParteQ 提供基于火焰、热壁和火花技术的纳米颗粒制备合成系统。Parteq GmbH开发可扩展的气相合成系统,用于生成功能化纳米颗粒,用作功能材料的基础。我们的模块化合成平台能够生产多种不同的结构,从单金属颗粒、精确合金金属纳米颗粒到纯氧化物和异核壳结构纳米颗粒。生产规模可客户的需求。1. 火焰喷雾合成:氧化物纳米材料、磷酸盐和金属ParteQ提供火焰喷雾热解(FSP)反应器,用于纳米颗粒合成,从交钥匙实验室规模的FSP系统到具有kg/h规模的中试装置。我们还提供纳米颗粒生产和开发服务。火焰喷雾热解(FSP)是一种多功能且低成本效益的纳米颗粒生产工艺。取决于含有金属或过渡金属化合物的液体原料在高达3000°C的温度下燃烧,纳米颗粒在几毫秒内形成,并在过滤器上以干粉的形式收集。FSP工艺受益于短的工艺链,只需一步即可制备复杂的纳米颗粒制备产品是纳米粉体,FSP通常用于生产高结晶氧化物的纳米粉末,但也用于合成了磷酸盐和纯金属。产品包括单组分和多组分氧化物纳米颗粒以及氧化物载体上的贵金属簇。对于某些组合物,可以制造表面包覆或基质嵌入的纳米颗粒。典型的粒径范围为 10 至 50 nm,具体取决于工艺条件。火焰喷雾热解FSP制备纳米粒的应用包括:w 催化剂w 电池材料w 陶瓷w 颜料w 牙科和生物医学材料w 气体传感器w 聚合物纳米复合材料w 电陶瓷台式纳米颗粒合成系统NPS-20---基于火焰喷雾热解技术的交钥匙系统NPS-20是一种交钥匙台式火焰喷雾热解装置,用于研究和早期产品开发水平的纳米颗粒合成。NPS-20设计用于快速筛选FSP合成中可用的材料成分和工艺条件的多个参数,以加速纳米材料的开发NPS-20可以放置在实验室工作台上,也可以根据要求与移动机架一起交付。系统都须放置在化学通风柜或类似的封闭和通风区域才能操作。台式纳米颗粒合成系统NPS-20 主要特点w 实验室规模的火焰喷涂反应器w 低脉动注射泵,用于精确进料液体驱动。w 4 个质量流量控制器,用于输送工艺气体:分散氧气、支持火焰甲烷和氧气以及可选的护套气体。w 自动火焰点火系统。w 火焰探测器。w 集成微处理器和电子板,用于过程控制。w 通过 RS 232 控制软件和通信。w 玻璃纤维过滤器和干式旋片真空泵,用于收集产品粉末。w 用于监控过滤器状态的压力和温度表。从实验室到中试规模的纳米颗粒系统系统-基于FSP 的纳米颗粒制备技术实验室规模的FSP反应器以高达50 g / h的速度生产纳米粉末,而且实现了生产能力高达5 kg/h的全自动FSP中试设备。这些装置根据客户的要求量身定制,并作为交钥匙系统交付。通过PLC过程控制,中试工厂配备了24/7全天候运行,允许纳米粉末的小规模工业生产。2. 热壁合成-氧化物和负载金属流动式热壁反应器中纳米颗粒的合成纳米级颗粒的合成可以在火焰反应器中合成,也可以在热壁系统中合成。由于气体成分可自由选择,氧化敏感材料也触手可及。热壁合成纳米材料的原理:所需颗粒材料的前驱体材料被转移到气相中,并在热壁反应器中分解和氧化。高度分散结构形成具有高比表面积。通过选择工艺参数,可以改变表面粗糙度、分形结构和粒径。球形颗粒可以通过在高温下聚结获得。根据所选择的材料,可以合成均匀混合的氧化物纳米颗粒或核壳结构纳米颗粒。3. 火花合成:金属纳米颗粒 DNP 3000火花合成可实现石墨和金属纳米颗粒的无前体合成从石墨、银 (Ag)、金 (Au)、铜 (Cu) 等生成纳米级测试气溶胶。通过冷凝 载气:氮气 或氩气4. 灼热丝纳米粒子发生器-金属纳米粒子用于高浓度下尺寸范围低于 10 nm 的金属颗粒的颗粒发生器GWG产生具有可调粒径分布和浓度的稳定Pt气溶胶,是实验室实验和仪器校准的理想选择。可以使用氮气或氩气进行操作。外壳是真空密封的,由不锈钢制成,带有标准的真空法兰连接器。用于电线电气连接的电极隔离在PTFE中。提供世伟洛克连接器,用于气体和气溶胶管路的 6 或 8 mm 卡套管。具有 0-10 A 和 0-10V 输出的电源,输入 50Hz 240 V 用于加热用于产生颗粒的电线。气溶胶输出是受控于电流变化,电流可以很好地控制粒度分布。二、纳米粉末的功能化-通过通过化学气相沉积(CVD)对颗粒进行功能化用于颗粒功能化的ParteQ工艺基于通过化学气相沉积(CVD)对金属或氧化物进行涂层。该工艺能够对结构特征进行独特的控制,例如支撑颗粒的尺寸和表面纹理以及支撑金属颗粒的尺寸和数量密度或氧化物壳的厚度。我们可以生成各种各样的纳米结构,从简单混合氧化物到核壳结构以及Janus颗粒。我们的流化床反应器可加热至200°C,允许热CVD工艺。它们是真空密封的,因此可以在反应气氛下操作,并用于处理空气或湿度敏感系统。ParteQ提供从实验室规模(例如WSR50)到中试规模(例如WSR160)的完整系统,包括母离子加样和固体处理。三、纳米粒子和气溶胶测量仪器用于表征气溶胶和纳米粉末的仪器我们提供广泛的仪器,用于气溶胶表征、细粉尘监测以及气溶胶的生成测试和过滤器测试。产品包括纳米颗粒测量系统,气溶胶光谱仪,细粉尘的监测,气溶胶监测仪,稀释系统,在线颗粒测量四、纳米颗粒过滤-纳米粉末收集纳米级气溶胶的沉积需要专门的设备,因为与传统的过滤系统相比,有关密封性和效率的规格要求要高得多。 除此之外,ParteQ还提供适用于测试过滤介质和过滤单元的过滤测试台。开发了一种可扩展的过滤系统,用于产品气溶胶的沉积。该系统非常灵活,可适应您的工艺要求。采用真空密封法兰连接可以排除过程中的氧气。电解抛光表面可以改变纳米粉末的处理。手动或自动过滤器再生是可选的,CIP系统的实施也是可选的。过滤器可耐受高达 200°C 的工作温度。ParteQ产品应用领域ParteQ 产品用于材料开发,包括储能,光电化学,燃料电池,和健康领域的药品的缓控释,抗生素表面功能化,电子学和机械工程用于3D 打印材料的开发,以及用于环境,包括纳米颗粒测量系统,细粉尘的监测等。
    留言咨询
  • ICP沉积系统 400-860-5168转5919
    1. 产品概述SENTECH SIPAR ICP沉积系统是为使用灵活的系统架构的各种沉积模式和工艺开发和设计的。该工具包括 ICP 等离子体源 PTSA、一个动态温控基板电和一个受控的真空系统。该系统将等离子体增强化学气相沉积 (PECVD) 和原子层沉积 (ALD) 结合在一个反应器中。2. 主要功能与优势SENTECH SIPAR ICP 沉积系统将原子层沉积 (ALD) 和电感耦合等离子体增强真空沉积 (ICPECVD) 技术结合在一个反应室中以顺序沉积方法进行。用户可以利用这两种工艺的优势来实现精确、保形和高质量的多层膜,同时对膜厚、均匀性、选择性和沉积速率有出色的控制。这在先进的有机电子学、微电子学、纳米技术和半导体器件研究中尤为重要。3. 灵活的系统架构该系统采用灵活的系统架构,为各种沉积模式和工艺而设计和开发。由均匀和保形沉积的原子层沉积的原子层沉积层和快速生长的 ICPECVD 薄膜组成的混合多层膜在有机器件技术、纳米技术以及半导体研究和工业中具有优势。4. 高性价比SENTECH SIPAR ICP的高效多层沉积能力和小尺寸使其具有很高的成本效益和多功能性。它非常适合用于有机设备技术、纳米技术和半导体研究的研发和学术机构。5. 灵活性和模块化SENTECH SIPAR ICP 沉积系统允许使用 ALD 和电感耦合等离子体增强化学气相沉积 (ICPECVD) 进行顺序沉积,而无需在不同反应室之间转移底物。由均匀和保形沉积的原子层沉积物原子层沉积层和快速生长的 ICPECVD 薄膜组成的混合多层膜在有机器件技术、纳米技术和半导体研究中具有优势。SENTECH SIPAR ICP沉积系统为生产、研发和大学使用提供了高效的多层沉积。更低的价格、更高的吞吐量和更小的占地面积使 SENTECH SIPAR ICP 沉积系统比集群解决方案更具优势。
    留言咨询
  • 原子层沉积系统 400-860-5168转3281
    原子层沉积系统(Atomic Layer Deposition System,ALD)产地:美国 主要产品系列:1.ALD (传统的热原子层沉积);2.PEALD (等离子增强原子层沉积);3.Powder ALD (粉末样品的原子层沉积); 仪器简介:原子层沉积(Atomic Layer Deposition,ALD),也称为原子层外延(Atomic Layer Epitaxy,ALE),或原子层化学气相沉积(Atomic Layer Chemical Vapor Deposition,ALCVD)。原子层沉积是在一个加热反应的衬底上连续引入至少两种气相前驱体源,化学吸附至表面饱和时自动终止,适当的过程温度阻碍了分子在表面的物理吸附。一个基本的原子层沉积循环包括四个步骤:脉冲A,清洗A,脉冲B和清洗B。沉积循环不断重复直至获得所需的薄膜厚度,是制作纳米结构从而形成纳米器件极佳的工具。ALD的优点包括:1. 可以通过控制反应周期数精确控制薄膜的厚度,从而达到原子层厚度精度的薄膜;2. 由于前驱体是饱和化学吸附,保证生成大面积均匀性的薄膜; 3. 可生成极好的三维保形性化学计量薄膜,作为台阶覆盖和纳米孔材料的涂层;4. 可以沉积多组份纳米薄层和混合氧化物;5. 薄膜生长可在低温下进行(室温到400度以下);6. 可广泛适用于各种形状的衬底;7. 原子层沉积生长的金属氧化物薄膜可用于栅极电介质、电致发光显示器绝缘体、电容器电介质和MEMS器件,生长的金属氮化物薄膜适合于扩散势垒。 技术参数:基片尺寸:6英寸、8英寸、12英寸;加热温度:25℃—400℃(可选配更高);均匀性: 2%;前驱体数:4路(可选配6路);兼容性: 可兼容100级超净室;尺寸:950mm x 700mm;ALD及PE-ALD技术; 原子层沉积ALD的应用包括:1) High-K介电材料 (Al2O3, HfO2, ZrO2, PrAlO, Ta2O5, La2O3);2) 导电门电极 (Ir, Pt, Ru, TiN);3) 金属互联结构 (Cu, WN, TaN,Ru, Ir);4) 催化材料 (Pt, Ir, Co, TiO2, V2O5);5) 纳米结构 (All ALD Material);6) 生物医学涂层 (TiN, ZrN, TiAlN, AlTiN);7) ALD金属 (Ru, Pd, Ir, Pt, Rh, Co, Cu, Fe, Ni);8) 压电层 (ZnO, AlN, ZnS);9) 透明电学导体 (ZnO:Al, ITO) 10) 紫外阻挡层 (ZnO, TiO2) 11) OLED钝化层 (Al2O3) 12) 光子晶体 (ZnO, ZnS:Mn, TiO2, Ta3N5) 13) 防反射滤光片 (Al2O3, ZnS, SnO2, Ta2O5);14) 电致发光器件 (SrS:Cu, ZnS:Mn, ZnS:Tb, SrS:Ce) 15) 工艺层如蚀刻栅栏、离子扩散栅栏等 (Al2O3, ZrO2) 16) 光学应用如太阳能电池、激光器、光学涂层、纳米光子等 (AlTiO, SnO2, ZnO) 17) 传感器 (SnO2, Ta2O5) 18) 磨损润滑剂、腐蚀阻挡层 (Al2O3, ZrO2, WS2); 目前可以沉积的材料包括:1) 氧化物: Al2O3, TiO2, Ta2O5, ZrO2, HfO2, SnO2, ZnO, La2O3, V2O5, SiO2,...2) 氮化物: AlN, TaNx, NbN, TiN, MoN, ZrN, HfN, GaN, ... 3) 氟化物: CaF2, SrF2, ZnF2, ...4) 金属: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ... 5) 碳化物: TiC, NbC, TaC, ... 6) 复合结构材料: AlTiNx, AlTiOx, AlHfOx, SiO2:Al, HfSiOx, ... 7) 硫化物: ZnS, SrS, CaS, PbS, ...
    留言咨询
  • TERA Fab M系列是商业化的PPL聚合物笔纳米制造工具, 此技术也叫DPN(Dip Pen Nanolithography)蘸笔纳米加工系统或浸蘸笔纳米加工刻蚀技术(美国NanoInk公司),是基于无悬臂扫描探针打印技术, 无需掩膜板即可在超过平方厘米的区域内, 使用多种材料和衬底上进行优于100nm高分辨图形化沉积打印 使用同一设备可获得纳米, 微米以及宏观尺度的特征尺寸, 自定义软件允许生成感兴趣的图形 可应用于纳米粒子合成、蛋白阵列、单细胞排布、纳米电路构造、生物芯片、化学检测、微尺度催化反应、分子马达等领域 更多详细资料请联系TERA中国区官方授权商:溢鑫科创。典型的应用包括:*研究单个细胞*使用DNA、蛋白质、肽或碳水化合物阵列*微流控或微纳电子功能器件的制备*图案化水凝胶*高定域光化学*合成和发现用于催化、光子学或治疗学应用的新纳米材料*其他高密集高分辨的微纳米器件制造
    留言咨询
  • 日本Advance Riko 公司致力于电弧等离子体沉积系统(APD)利用脉冲电弧放电将电导材料离子化,产生高能离子并沉积在基底上,制备纳米级薄膜镀层或纳米颗粒。电弧等离子体沉积系统利用通过控制脉冲能量,可以在1.5nm到6nm范围内精确控制纳米颗粒直径,活性好,产量高。多种靶材同时制备可生成新化合物。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管 形成新的纳米颗粒催化剂。 主要应用领域: 1、制备新金属化合物,或制备氧化物和氮化物薄膜(氧气和氮气氛围);2、制备非晶碳,纳米钻石以及碳纳米管的纳米颗粒;3、形成新的纳米颗粒催化剂(废气催化剂,挥发性有机化合物分解催化剂,光催化剂,燃料电池电极催化剂,制氢催化剂);4、用热电材料靶材制备热电效应薄膜。 技术原理:1、在触发电极上加载高电压后,电容中的电荷充到阴极(靶材)上;2、真空中的阳极和阴极(靶材)间,电子形成了蠕缓放电,并产生放电回路,靶材被加热并形成等离子体;3、通过磁场控制等离子体照射到基底上,形成薄膜或纳米颗粒。 材料适用性:APD适用于元素周期表中大部分高导电性金属,合金以及半导体。所用原料为直径10mmX17mm长圆柱体或管状体,且电阻率小于0.01 ohm.cm。下面的元素周期表显示了可制备的材料,绿色代表完全适用,黄色代表在一定条件下适用。 设备特点: 1. 系统可以通过调节放电电容选择纳米颗粒直径在1.5nm到6nm范围内。2. 只要靶材是导电材料,系统就可以将其等离子体化。(电阻率小于0.01ohm.cm)。3. 改变系统的气氛氛围,可以制备氧化物或氮化物。石墨在氢气中放电能产生超纳米微晶钻石。4. 用该系统制备的活性催化剂效果优于湿法制备。5. Model APD-P支持将纳米颗粒做成粉末。Model APD-S适合在2英寸基片上制备均匀薄膜。 APD制备的Fe-Co纳米颗粒的SEM和EDS图谱 系统参数: 1. 真空腔尺寸:400X400X300长宽高2. 抽空系统:分子泵450L/s3. 电弧等离子体源:标配一个,最多3个4. 沉积气压:真空或者低气压气体(N2, H2,O2,Ar)5. 靶材:导电材料,外径10mm,长17mm6. 靶材电阻率:小于0.01欧姆厘米7. 电容:360uF X5 (可选)8. 脉冲速度:1,2,3,4,5 Pulse/s9. 操作界面:触摸屏10. 放电电压:70V-400V (1800uF下最大150V) APD-P 粉末容器:直径95mm 高30mm形成粉末的速度:13-20cc (随颗粒尺寸和密度变化)旋转速度:1-50rpm
    留言咨询
  • Mini碳纳米管制备系统 400-860-5168转1431
    碳纳米管制备设备(碳纳米管制备系统,碳纳米管生长系统),可用于制备碳纳米管,包括垂直方向碳纳米管生长;在Si、石英、陶瓷、各种金属(不锈钢,Ti和Pt等)等多种基底上用廉价的酒精、汽油或者生物燃料等作为碳源生长碳纳米管;系统封闭腔体不但保证必要的真空度,而且还可对基底进行加热。联合日本科学与技术研究所(JST)开发,并且在多个国家注册了该项技术的专利!相关产品:1. 纳米颗粒制备系统;2. ZnO纳米带制备系统;3. 材料碳化研究系统:用于agricultural and forestry waste, papers, recyclable plastics, and so on;4. 碳纳米管生产系统CVD:用于粉末碳纳米管、nanofiber, nanocoil, and film-type CNTs 等;5. 催化剂薄膜制备系统:可沉积催化剂薄膜在各种材料上,用于高性能碳纳米管的指标;技术参数:碳纳米管生长、制备装置(包括垂直方向碳纳米管生长);Au, Ag, Cu, Al, Si, Ti, Mg, Zn等纳米颗粒制备;ZnO纳米带制备;处理温度范围:400~800℃实时碳纳米管生长过程中温度监控反应源:含碳气体或者液体酒精主要特点:*价格优惠; *运行成本低; *制备速度快; *支持基底加热; *保证一定的真空度;*成熟的工艺和丰富的经验;*操作便捷; 技术介绍:*装备乙醇喷射单元;无需易燃烃化物气体。*碳纳米管生长只需几分钟,整个操作过程不超过30分钟。*小型化设计、操作简便、低成本、高质量碳纳米管。*在碳纳米管合成过程中,不需要使用还原性气体(氢气)使催化剂还原,因为使用的乙醇碳源本身具有很强的还原性。乙醇的金属还原性使得碳纳米管能够直接在多种合金材料上沉积,比如,NiCu, SUS等等。而不需要预先沉积催化剂薄膜,因为Ni, Fe, or Co等催化性元素在合金中作为催化颗粒独立存在。*透明的玻璃腔室使得研究人员可以直接观察整个沉积过程。该系统满足高校研究所的碳纳米管合成实验的研究工作。
    留言咨询
  • 请通过我们的联系我们!分子层沉积系统MLD (Molecular Layer Deposition)是一种高级的有机聚合物薄膜与有机无机杂化膜制备技术,可以实现每个循环沉积一个分子层,精确控制厚度,在科研和工业界有非常好的发展前景。分子层沉积系统MLD相对于传统的有机聚合物薄膜沉积工艺(旋涂,热蒸发)而言,薄膜厚度精确可控(控制循环数),厚度更均匀、阶梯覆盖率和保型性更好、重复性更可靠。分子层沉积系统MLD:通过将两种反应气体(或者蒸汽)以气体脉冲形式交替地引入反应器,依靠留在基底表面的吸附分子(如羟基或氨基)进行反应而生成薄膜。由于每次参与反应的反应物局限于化学吸附于基底表面的分子,这使得 MLD 具有自限制生长特征。分子层沉积系统MLD目前可沉积的薄膜有: 有机聚合物物薄膜:Polyimide聚酰亚胺(热解可得到碳膜),Polyurea聚脲,Polyamide(聚酰胺(尼龙66),Polyimide–amide聚酰亚胺-酰胺,Polyurethane聚氨酯,Polythiurea聚硫脲,Polyester聚酯,聚乙二醇(PEG)等。 有机无机杂化薄膜:Al、Ti、Zn、Fe 的有机-无机杂化膜… 设备沉积部分薄膜均匀性数据:材料基片大小均匀性Al-EG(HQ, alucone)6”﹤1%Ti-EG(HQ, Tincone)6”﹤1%Zn-EG(HQ, zincone)6”﹤1%聚酰胺(polyamide)6”﹤3%聚酰亚胺(Polyimide)6”﹤3%聚脲(polyurea)6”﹤3%分子层沉积系统MLD应用领域:MLD沉积的有机聚合物薄膜、有机无机杂化薄膜、有机无机纳米叠层薄膜,可以用于微电子,MEMS, 薄膜封装、生物芯片,润滑,耐磨,耐腐蚀,防静电,阻燃,耐高温 防潮,防水保护层,药片薄膜衣等领域。MLD可实现单层、亚单层、埃级别的精确厚度控制,在分子水平上控制薄膜的形成和生长,并对形貌无特殊要求,能够在平面、粒子、纤维、多孔以及复杂结构上沉积薄膜。Polyimide聚亚酰胺与Ta2O5纳米叠层的介电常数与纳米力学性能:介电常数随Ta2O5含量增加而增加。薄膜的柔软度、弹性、塑性随Polyimide聚酰亚胺的增加而增加分子层沉积系统MLD沉积聚酰亚胺,热解成炭膜Al2O3/TMA+EG纳米叠层防水层:作为气体阻挡层,比单纯的氧化铝薄膜要好,WVTR值可达0.021 g/(m2day),而氧化铝本身值为0.037 g/(m2day),测试条件:85 °C,相对湿度85%。PEG薄膜作为防污薄膜-用于生物芯片MLD沉积PEG薄膜,可以提供厚度精确可控,高质量,防污的薄膜,使生物芯片具有高的选择性、稳定、可产业化。技术参数:反应器尺寸:4-8 英寸反应器温度:室温~400 oC前驱体源:4-6 路液/固源,2-3 路气源 MLD可与气相色谱、固定床/高压反应釜联用MLD 可与红外光谱仪联用以上类型 MLD,均可配备实验全程控制与监测系统、尾气处理等
    留言咨询
  • 台式三维原子层沉积系统ALD原子层沉积(Atomic layer deposition, ALD)是通过将气相前驱体脉冲交替的通入反应器,化学吸附在沉积衬底上并反应形成沉积膜的一种方法,是一种可以将物质以单原子膜形式逐层的镀在衬底表面的方法。因此,它是一种真正的纳米技术,以控制方式实现纳米的超薄薄膜沉积。由于ALD利用的是饱和化学吸附的特性,因此可以确保对大面积、多空、管状、粉末或其他复杂形状基体的高保形的均匀沉积。 美国ARRADIANCE公司的GEMStar XT系列台式 ALD系统,在小巧的机身(78 x56 x28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。GEMStar XT全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计, 使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅实现在 8英寸基体上膜厚的不均匀性小于1%,而且更适合对超高长径比的孔径结构等3D结构实现均匀薄膜覆盖,可实现对高达1500:1长径比微纳深孔内部的均匀沉积。GEMStar XT 产品特点:■ 300℃ 铝合金热壁,对流式温度控制■ 175℃ 温控150ml前驱体瓶,200℃ 控输运支管■ 可容纳多片4,6,8英寸样品同时沉积■ 可容纳1.25英寸/32mm厚度的基体■ 标准CF-40接口■ 可安装原位测量或粉末沉积模块等选件■ 等离子体辅助ALD插件■ 多种配件可供选择GEMStar XT 产品型号:GEMStar -4 XT:■ 大4英寸/100 mm基片沉积■ 单路前驱体输运支管, 4路前驱体瓶接口■ 不可升为等离子体增强ALDGEMStar -6/8 XT:■ 大6英寸(150mm)/8英寸(200mm)基片沉积■ 双路前驱体输运支管, 8路前驱体瓶和CF-40接口■ 可升为等离子体增强ALDGEMStar -8 XT-P:■ 大8英寸/200mm基片沉积■ 双路前驱体输运支管, 8路前驱体瓶和CF-40接口■ 装备高性能ICP等离子发生器13.56 MHz 的等离子源非常紧凑,只需风冷,高运行功率达300W。■ 标配3组气流质量控制计(MFC)控制的等离子气源线,和一条MFC控制的运载气体线,使难以沉积的氧化物、氮化物、金属也可以实现均匀沉积。GEMStar NanoCUBE:* 大100 mm 立方体样品 沉积* 单路前驱体输运支管, 2路前驱体瓶接口* 主要用于3D多孔材料,以及厚样品的沉积丰富配件:多样品托盘:* 多样品夹具,样品尺寸(8", 6", 4")向下兼容。* 多基片夹具,多同时容纳9片基片。 温控热托盘:* 可加热样品托盘,高温度500℃,可实现热盘-热壁复合加热方式。粉末沉积盘: 臭氧发生器: 真空进样器(Load Lock) 晶振测厚仪 前驱体瓶: 前驱体加热套:
    留言咨询
  • 纳米薄膜热导率测试系统-TCN-2ω— 薄膜材料的热导率评价将变得为简便日本Advance Riko公司推出的纳米薄膜热导率测试系统是使用2ω方法测量纳米薄膜厚度方向热导率的商用系统。与其他方法相比,样品制备和测量为简单。纳米薄膜热导率测试系统特点:1. 在纳米尺度衡量薄膜的热导率开发出的监测周期加热过程中热反射带来的金属薄膜表面温度变化的方法,通过厚度方向上的一维热导模型计算出样品表面的温度变化,为简便的衡量厚度方向上热导率。(日本:5426115)2. 样品制备简单不需要光刻技术即可将金属薄膜(1.7mm×15mm×100nm)沉积在薄膜样品上。纳米薄膜热导率测试系统应用:1. 热设计用薄膜热导率评价的优先选择。low-k薄膜,有机薄膜,热电材料薄膜2. 可用于评价热电转换薄膜纳米薄膜热导率测试系统测量原理:当使用频率为f的电流周期加热金属薄膜时,热流的频率将为电流频率的2倍(2f)。如果样品由金属薄膜(0)-样品薄膜(1)-基体(s)组成(如图),可由一维热导模型计算出金属薄膜上表面的温度变化T(0)。假设热量全部传导到基体,则T(0)可由下式计算:(λ/Wm-1K-1,C/JK-1m-3,q/Wm-3,d/m,ω(=2πf)/s-1)式中实部(同相振幅)包含样品薄膜的信息。如热量全部传导到基体,则同相振幅正比于(2 ω)0.5,薄膜的热导率(λ1)可由下式给出:(m:斜率,n:截距)纳米薄膜热导率测试系统参数:1. 测试温度:室温2. 样品尺寸:长10~20mm,宽10mm 厚0.3~1mm(含基体)3. 基体材料:Si(推荐) Ge,Al2O3(高热导率)4. 样品制备:样品薄膜上需沉积金属薄膜(100nm) (推荐:金)5. 薄膜热导率测量范围:0.1~10W/mK6. 测试氛围:大气设备概念图样品准备纳米薄膜热导率测试系统测试数据:Si基底上的SiO2薄膜(20-100nm)测量结果d1 / nm 19.9 51.0 96.8 λ1/ W m-1 K-1 0.82 1.03 1.20 发表文章1. K. Mitarai et al. / J. Appl. Phys. 128, 015102 (2020) 2. M. Yoshiizumi et al. / Trans. Mat. Res. Soc. Japan 38[4] 555-559 (2013)
    留言咨询
  • 热法原子层沉积系统 400-860-5168转0338
    设备规格衬底尺寸:标准尺寸:200mm Dia (8 inch)(可定制)工艺温度:温度范围:RT~500°C (可定制)前驱体路数:最大支持6路前驱体气路(可定制),包含固、液态前驱体源瓶加热系统:可加热温度范围:RT~150℃反应物路数:支持2路反应物气路(可定制)载气:标准:N2, MFC 流量控制(可定制)压力监测:双薄膜规组合(耐腐蚀),0.005Torr - 1000Torr本底真空度:5x10-3 Torr真空系统:标准油泵控制系统:19寸显示器,支持触控工业级嵌入式工控机,高可靠性,支持扩展操作系统:Win7 操作系统工业级可编程逻辑控制器,支持现场总线与实时多任务处理操作高温加热模块:独立的源瓶加热模块,可支持RT~200℃预留模块:预留等离子体系统接口,无需更换腔体即可直接升级至等离子体系统(PEALD),实现Thermal-ALD与PEALD的双模式切换 工艺可沉积薄膜种类和应用场景包括:&bull High-K介电材料 (Al2O3, H2O, ZrO2, PrA1Q, Ta2O5, La2O3) &bull 金属互联结构 (Cu, WN, TaN, Ru, In) &bull 催化材料 (Pt, Ir, Co, TiO2):&bull 生物医学涂层 (TiN, ZrN, TiAIN, AlTIN) &bull 金属(Ru, Pd, Ir Pt, Rh, Co, Cu, Fe, Ni &bull 压电层 (ZnO, AIN, ZnS) &bull 透明电学导体 (ZnO:Al, ITO) &bull 光子晶体(ZnO, TiO2, Ta3N5) 机架&bull 框架采用进口铝材搭建,重量轻、承载能力强,散热性好&bull 外壳采用碳钢烤漆及圆角处理,轻便美观,拆卸方便,符合人体工学&bull 显示屏360度自由旋转,可调视距、视角、自由悬停 控制系统&bull 控制系统采用 PLC+工控机+19 寸触摸屏方式实现,系统通过高速以太网进行通讯。&bull 采用 PLC 对设备进行实时控制,同时实现基于Windows7 操作系统的人机界面互动,支持历史数据、工艺配方、报警及日志的储存和导入导出的功能&bull 设备支持“一键沉积”功能,点击运行按键即可自动完成真空抽取、升温、材料沉积、降温等一系列步骤。实现单一或多层材料的沉积;提供独立的手动操作页面,支持手动开关阀门的操作,人机交互同时支持鼠标、键盘和触摸的输入方式&bull 设备运行软件提供用户权限管理功能,可根据用户级别设定使用权限,防止误操作,保证设备和人身安全&bull 设备运行软件提供逻辑互锁功能,防止用户误操作,并弹出信息对话框进行提示&bull 设备运行软件集成安全及参数配置、IO互锁列表信息功能 真空系统 真空测量采用双真空压力计组合方式,工艺数据更真实,更迅速,更精确,为工艺人员提供井真的数据采集来源,为工艺的可重复性提供了可靠的保障应用领域1.纳米材料:ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。ALD具有高致密性以及高纵宽比结构均匀性,为MEMS机械耐磨损层、抗腐蚀层、介电层、憎水涂层、生物相容性涂层、刻蚀掩膜层等提供优质解决方案。ALD技术沉积参数高度可控,可通过精准控制循环数来控制MTJ所需达到的各项参数,是适用于MTJ制造的最佳工艺方案之一。ALD技术可通过表面修饰,改善纳米孔的生物相容性,同时提升抗菌抑菌和促进细胞合成。2.太阳能电池:ALD基材料在c-Si太阳能电池中的应用始于Al2O3,Al2O3是一种非常有效的表面钝化层,被发现可以显着提高c-Si太阳能电池的效率并应用于大规模产业化中。此后的研究中,ALD的应用研究从表面钝化层扩展到载流子传输材料[8]。3.催化:ALD技术很容易地控制纳米颗粒的大小、孔隙结构、含量和分散,有效设计出核壳结构、氧化物/金属倒载结构、氧化物限域结构、具有多金属管套结构和多层结构,且独特的自限制特性可实现催化材料在高比表面材料上的均匀和可控沉积,实现一步步和“自底向上”的方式在原子层面上构建复杂结构的异质催化剂材料而得到广泛研究。利用ALD技术具有饱和自限制的表面反应特性,有效抑制金属有机化合物、配体的空间位置效应,天然的将金属中心原子互相隔离开,抑制金属原子聚集,合成单原子催化剂。利用ALD技术有效调控金属与载体间的相互作用的特性,可获得单金属催化剂,如Ru、Pt、Pd等贵金属。利用ALD技术能调控两种金属元素生长顺序、循环周期数的特性来精准得到双金属纳米催化剂,合成原子级精准的超细金属团簇,如PtPd、PtRu、PdRu等双金属纳米颗粒。利用ALD技术制备金属氧化物,不仅可以制备性能更加优良的多相催化剂,而且可以对负载型催化剂进行改性,达到修饰、保护催化剂的目的。4.锂电池:ALD在锂离子电池中的应用特点:(1)电极材料的制备和改性;(2)阴极材料上的保护镀膜;(3)阳极材料上的人造固体电解质相间(SEI);(4)锂金属阳极钝化和防止枝晶生长;(5)ALD作用的固态电解质(SSE);(6)隔离膜上的保护涂层原速科技ALD技术在锂电池领域的应用主要有以下几个方面:a、锂电池PP/PE隔膜包覆,改善隔膜的浸润性,耐压性,热收缩性能b、锂电池正极包覆,改善电池的倍率性能,循环性能等c、锂电池负极包覆,改善电池的倍率性能,循环性能以及安全性能5.光学镀膜:ALD薄膜以饱和吸附的layer-by-layer生长模式,可在结构复杂的几何表面,如大曲面及高纵深比深孔结构,大面积形成高均匀性薄膜,且膜层相较于PVD膜更为致密,在界面处的结合力更强,更适用于未来工业界先进精密光学器件的制造。6.生物医疗:ALD可以通过低温沉积形成非常致密的保护膜,由于是纳米级别的膜厚其本身对医疗设备也不会造成影响,沉积ALD涂层后可以大幅度增加植入设备的寿命以及安全性,也有可能有效的减少更换手术的频率;同时ALD有多种材料都具有生物相容性,这种涂层对人体组织是没有任何细胞毒性的,这使得在再生医学领域中,用于对细胞构建生物相容性底物的制备时,ALD沉积表面涂层能满足对新型生物相容性材料的需求;在药物方面,ALD涂层可以有效的保护颗粒不受周围空气和水分的影响,从而大幅度的延长药物的保质期。7.OLED:几十纳米厚度的ALD封装膜甚至可媲美传统OLED封装技术的阻隔效果,同时具有良好的透光率、热导率、机械强度、耐腐蚀性及与基底的粘结性等性质;ALD封装薄膜因其纳米级的膜厚,可以实现很大程度上的弯曲并保持封装效果不变,这一特性可完美兼容柔性OLED器件封装,真正做到显示屏的可折叠、卷曲;ALD薄膜优异的保型性使其在一些复杂形貌和三维纳米结构的LED表面实现出色的钝化保护层,有效地起到阻隔水氧的作用,提高性能;用ALD在LED表面沉积钝化膜还可以很好地修补被等离子刻蚀造成的破坏性表面,可有效降低漏电流,显著提高LED效率。
    留言咨询
  • 仪器简介:桌面型原子层沉积系统由哈佛大学纳米科学中心薄膜沉积工艺研究首席科学家Dr. Philippe de Rouffignac设计,基于多年纳米薄膜制备的丰富经验以及对科研工作者切实研究需要的了解,推出了此桌面型、高性能的原子层沉积系统。首台设备自2015年在CNS安装以来,到目前为止已有超过1500人次使用,人性化的设计、便捷的操作和优质的成膜工艺,赢得了众多科研工作者的赞誉。原子层沉积技术可沉积材料:氧化物: Al2O3, ZrO2, HfO2, Ta2O5, SnO2, RuO2, ZnO, SrTiO3等氮化物: TiN, NbN, TaN, Ta3N5, MoN, WN, TiSiN, SiN等 单一物质: Si, Ge, Cu, Mo, W, Ta, Ru等 半导体材料: GaAs, Si, InAs, InP, GaP, InGaP等原子层沉积系统可以广泛应用于: 半导体领域:晶体管栅极电介质层(高k材料),光电元件的涂层,晶体管中的扩散势垒层和互联势垒层(阻止掺杂剂的迁移),有机发光显示器的反湿涂层和薄膜电致发光(TFEL)元件,集成电路中的互连种子层,DRAM和MRAM中的电介质层,集成电路中嵌入电容器的电介质层,电磁记录头的涂层,集成电路中金属-绝缘层-金属(MIM)电容器涂层。 纳米技术领域:中空纳米管,隧道势垒层,光电电池性能的提高,纳米孔道尺寸的控制,高高宽比纳米图形,微机电系统(MEMS)的反静态阻力涂层和憎水涂层的种子层,纳米晶体,ZnSe涂层,纳米结构,中空纳米碗,存储硅量子点涂层,纳米颗粒的涂层,纳米孔内部的涂层,纳米线的涂层。技术参数:1. 腔室专为R&D设计和优化,样品尺寸达直径4’’,支持扩展6‘’;2. 反应腔温度可控范围:RT-350℃;3. 前驱体源温度可控范围:RT-150℃;4. 腔室处理压力可控范围:0.1-1.5 torr;5. 源扩展多达5个;6. 快速循环处理功能;7. 气路优化设计、腔体小型化设计;8. 一分钟多达6-10;9. 成熟的薄膜Recipes内置程序;10. 触屏PLC控制;11. 可配套手套箱使用;12. 可配备臭氧发生器;具体规格,欢迎与我公司联系。
    留言咨询
  • 原子层沉积系统 400-860-5168转1729
    仪器简介:此产品广泛应用于:半导体、纳米材料、钠米科技、薄膜材料、薄膜沉积以及航空航天领域。 PICOSUN公司是一个国际化的设备制造商,在全球有销售和服务机构.我们开发和制造原子层沉积反应器用于微米和纳米技术应用。PICOSUN为客户提供用户友好,可靠及多产的ALD工艺工具,提供从研发到生产的工业放大。PICOSUN基地在芬兰的espoo,美国总部在Detroit。SUNALE型ALD工艺工具被用于欧州、美国及亚洲前沿的科学机构、公司。 PICOSUN拥有30多年在芬兰ALD反应器制造而得到的专业技术。Tuomo Suntola博士,于1974年发明了ALD技术,是PICOSUN董事会的成员。我们的首席技术官SVEN LINDFORS从1975年开始连续的设计ALD系统。综合起来讲,PICOSUN拥有了200多年的ALD经验并贡献了100多项ALD专利。我们悠久的历史和广泛的背景使PICOSUN成为ALD技术优质的合作伙伴。技术参数: 技术指标 SUNALE&trade R系列技术特点 基本特点: 晶片尺寸 2-6&rdquo , 50-150 mm (8&rsquo &rsquo = 200 mm on request) 工艺温度 Up to 500° C 反应室体积 小型、中型、大型 反应室材料 316 SS, Ti, Ni, Al (quartz) 前驱体 2-6 气体 / 气体 / 固体 基片装载 气体升降 尺寸: 尺寸 27.6 x 41.3 x 36.4&rsquo &rsquo , 70 x 105 x 92.5 cm (W x H x D) 重量 200 kg 工况: 电源 100-240 V, 50/60 Hz, 1- or 3-phase, 3.7 kW Vac 真空泵 30-80 m3/h 载气 99.999 % N2 / Ar, min. 2 slm 压缩空气 4-5.5 bar 过压 冷却水 反应器不需要 排气 为真空泵及源橱柜配备 样品装载选项: Picoloader&trade 手动样品装载系统,带一个预真空室和闸阀主要特点:特点 多功能的反应器设计 全套的服务
    留言咨询
  • PLD脉冲激光沉积系统 400-860-5168转1729
    仪器简介:Ion Beam Assisted Deposition (离子辅助沉积) 离子辅助沉积已经成为在无规取向的基片或无定形基片上沉积双轴结构薄膜的一种重要技术 高性能的IBAD(离子辅助沉积)系统 离子辅助沉积已经成为在无规取向的基片或无定形基片上沉积双轴结构薄膜的一种重要技术。Neocera开发了离子辅助的PLD系统,该系统将PLD在沉积复杂材料方面的优势与IBAD能力结合在一起。得到无人伦比的技术专家知识的支持Neocera离子辅助的PLD系统会得到重要应用经验的支持。系统开发结合了Neocera的工程和工艺经验,保证了最大的用途和工艺性能。 利用离子辅助的PLD, Neocera在柔性多晶yttria稳定的YSZ基片上,开发了具有下列性能的双轴结构的YBCO薄膜: l X-ray F-scan full width at half maximum of ~7° l 转变温度Tc在88-89K,转变宽度DTc约为约为0.5 K l 77 K零场强时,临界电流密度Jc范围 1.5&mdash 2x106 A/cm2 l 77 K时,磁深入深度l: 284nm l 77 K,10G时,表面电阻Rs等于700mW Continuous Composition Spread (连续组成扩展) 一种基于脉冲激光沉积的、组合材料合成的新型连续组成扩展(CCS)方法。 经济的组合合成 组合合成是材料科学中最激动人心的最新进展。在一次镀膜实验中,生产多种不同材料组成的能力,大大的提高了获得具有期望材料性能的最佳组成的速度。然而,现有组合合成系统的高成本对绝大多数研究预算来说都是不切合实际的。 得到Neocera PLD经验的支持 Neoceora已经应用我们丰富的PLD和开发性能可靠的经济型设备的经验,发明了PLD-CCS(脉冲激光沉积-连续组成扩展)系统。PLD-CCS受益于多层薄膜沉积的方便性和PLD工艺能在基片上改变二元,假二元,或三元体系的组成这一固有特性。 常规沉积条件下的组合合成 PLD-CCS能以连续的方式,而不是间隔的方式改变材料,没有必要使用掩模。这就允许在每一次循环中,以小于一个单分子层的速率,快速连续沉积每一种组份,其结果是基本等同于共沉积法。事实上,该法无需在沉积后进行退火促进内部扩散或结晶,对于生长温度是关键参数的研究或者被沉积的材料或基片不适合高温退火的情况是有用的。 Laser MBE (激光分子束外延) 一种纳米尺度薄膜合成的理想方法,PLD和原位高压RHEED的结合, 为单分子水平上的薄膜生长提供了精确控制。 使用激光MBE是纳米技术研究的理想工具 激光MBE是普遍采用的术语,定义了高真空下的PLD与在线工艺监测的反射高能电子衍射(RHEED)的联合应用。该法为用户提供了类似于MBE的薄膜生长的单分子水平控制。随着更多的PLD研究受到纳米技术的驱动,激光MBE变得对用户更加有益。 正确的设计是成功使用RHEED和PLD的重要因数 RHEED通常在高真空(10-6 torr)环境下使用。然而,因为在某些特殊情况下,PLD采用较高的压力,差动抽气是必要的,维持RHEED枪的工作压力,同时保持500 mTorr的PLD工艺压力。同时,设计完整的系统消除磁场对电子束的影响是至关重要的。 Neocera的激光MBE系统为用户在压力达到500mTorr时所需的单分子层控制。技术参数:一种用途广泛的、用于薄膜沉积和合成纳米结构和纳米粒子的方法。 PLD是一种复杂材料沉积的创新方法 激光脉冲镀膜(PLD)是一种用途广泛的薄膜沉积技术。脉冲激光快速蒸发靶材,生成与靶材组成相同的薄膜。PLD的独特之处是能量源(脉冲激光)位于真空室的外面。这样,在材料合成时,工作压力的动态范围很宽,达到10-10 Torr ~ 100 Torr。通过控制镀膜压力和温度,可以合成一系列具有独特功能的纳米结构和纳米颗粒。另外,PLD是一种&ldquo 数字&rdquo 技术,在纳米尺度上进行工艺控制(A° /pulse)。 Neocera Pioneer系列 PLD系统 &mdash 基于卓越经验的有效设计 Neocera利用PLD开展了深入广泛的研究,建立了获得最佳薄膜质量的临界参数,特别适用于沉积复杂氧化物薄膜。这些思考已经应用于Pioneer系统的设计之中。 很多复杂氧化物薄膜在相对高的氧气压力(100 Torr)下冷却是有利的。所有Pioneer系统设计的工作压力范围从它们的额定初始压力到大气压力。这也有益于纳米粒子的生成。 Pioneer PLD系统的激光束的入射角为45° ,保持了激光密度在靶材上的最大均匀性,同时避免使用复杂而昂贵的光学部件。浅的入射角能够拉长靶材上的激光斑点,导致密度均匀性的损失。 为了避免使用昂贵的与氧气兼容的真空泵流体,消除担心油的回流对薄膜质量的影响,所有Pioneer系统的标准配置都采用无油泵系统。 所有的系统都可以按完整PLD实验室的方式获得,包括248nm激光器,激光气体柜,激光和光学器件台,光学器件包。 我们的研究表明靶和基片的距离是获得最佳薄膜质量的关键参数。Pioneer系统采用可变的靶和基片的距离,对沉积条件进行最大的控制。主要特点: Pioneer240 Pioneer180 Pioneer120 Pioneer80 最大wafer直径 4&rdquo 2&rdquo 1&rdquo 0.5&rdquo 最大靶材数量 6个1&rdquo 或3个 2&rdquo 6个1&rdquo 或3个 2&rdquo 6个1&rdquo 或3个2&rdquo 4个1&rdquo 压力(Torr) 10-8 10-6 10-6 10-6 真空室直径 24&rdquo 18&rdquo 12&rdquo 8&rdquo 基片加热器 4&rdquo ,旋转 3&rdquo ,旋转 2&rdquo , 平板 1&rdquo ,平板 最高样品温度 850 ° C 850 ° C 950 ° C 950 ° C Turbo泵抽速 (liters/sec) 800 260 260 70 计算机控制 包括 包括 包括 包括 基片旋转 包括 包括 - - 基片预真空室 包括 选件 选件 - 扫描激光束系统 包括 选件 - - 靶预真空室 包括 - - - IBAD离子束辅助沉积 选件 选件 选件 - CCS连续组成扩展 选件选件 - - 高压RHEED 选件 - - - 520 liters/sec 泵 a/n 选件 - -
    留言咨询
  • 碳纳米管制备系统 400-860-5168转1431
    联合日本科学与技术研究所(JST)开发,并且在多个国家注册了该项技术的专利!该设备用于制备纳米碳材料,如碳纳米管粉、碳纳米管薄膜和定向碳纳米管制备;采用封闭式管式炉,石英反应管直径50mm/70mm~110mm*1000mm,基底尺寸60mm*60mm到120mm*120mm;气源包括氢气、氮气、甲烷、酒精等;MPCVD是一种碳纳米管化学汽相沉积综合系统,具备一个水平石英管式炉,该系统可以大量稳定生产垂直对齐的CNT和各种粉末CNT。成熟稳定的工艺保证了制备质量和数量,也可用于三维形状的CNT制备。乙醇注入装置配备一个滴定法流量控制系统,气体输入端口配备三通道质量流量气体控制器(惰性气体,碳氢化合物气体,氢气)。真空排气系统使得该系统能够在一个广泛的气压下运行,从大气到低压(10 Pa),也可用作为热处理系统,例如:真空炉、大气炉、氮化炉。 相关产品:1. 纳米颗粒制备系统; 2. ZnO纳米带制备系统; 3. 碳纳米管制备系统:用于高质量碳纳米管制备、纳米颗粒或薄膜制备、ZnO纳米带制备等; 4. 碳纳米管生产系统CVD:用于粉末碳纳米管、nanofiber, nanocoil, and film-type CNTs 等; 5. 催化剂薄膜制备系统:可沉积催化剂薄膜在各种材料上,用于高性能碳纳米管的指标;技术特点: *成熟的碳纳米材料制备工艺和丰富的经验 *乙醇和碳氢化合物作为碳源 *用于SWCNT 合成 *具备催化剂前体供应功能 *可以合成较长长度 ( ~500 um)垂直对齐的CNT和粉末状的CNT *具备三通道气体质量控制器 *体积小,基座稳定 *高温度:1200度; *价格优惠; *运行成本低;技术参数:基底尺寸60mm*60mm到120mm*120mm;粉末碳纳米管、nanofiber, nanocoil, and film-type CNTs 等;
    留言咨询
  • 超小型桌面式平片原子层沉积系统原子层沉积(Atomic layer deposition)是通过将气相前驱体脉冲交替地通入反应腔体内并在沉积基体上化学吸附并反应而形成沉积膜的一种技术,具有自限性和自饱和。原子层沉积技术主要应用是在各种尺寸和形状的基底上沉积高精度、无针孔、高保形的纳米薄膜。 产品描述厦门韫茂科技公司研发的超小型桌式 ALD 原子层沉积设备是先进材料研究的有力设备之一,它可以在4寸晶元(向下兼容)和微纳米粉体上实现均匀可控的原子层沉积,具有广泛的应用领域,设各配有独立控制的300℃完整加热反应腔室系统,保证工艺温度均匀,该系统具有专利粉末样品桶、晶元載盘,全自动温控制、 ALD 前驱体源钢瓶、自动温度控制阀、工业级安全控制,以及现场 RGA 、 QCM 、臭氧发生器、手套箱等设计选项,是先进能源材料、催化剂材料、新型纳米材料研究与应用的最佳研发工具主要技术参数Mini Desktop ALD 技术参数 Technical Specifications (HfO2, ZnO, Al2O3, TiO2等制备)特色 Feature结构紧凑,世界上极小尺寸的桌式ALD World Smallest Footprint Desktop ALD功能 Function高端制造,功能强大,操作简易,维护方便样品最大尺寸Ф100mm (其他尺寸可定制)硅片或几克粉末样品反应温度 HeatingRT-450℃前驱体 Max Precursor最大可4组液态或固态反应前驱体, Max 4 Liquid/Solid Precursors,可定制 Can Be Customized 前驱体加热最高温度 Max Precursor Heating RT-200℃包覆均一性 Uniformity1% (Al2O3)成膜速率 Deposition Rate1A/Cycle (Al2O3)臭氧发生器Ozone Generator可选配,生产效率15g/h人机界面 HMI全自动化人机操作界面安全Safety工业标准安全互锁Industry Safety Interlock,报警Alarm,EMO
    留言咨询
  • 1. 产品概述AD-230LP是一种原子层沉积(ALD)系统,能够在原子水平上控制薄膜厚度。有机金属原料和氧化剂交替供给反应室,仅通过表面反应进行薄膜沉积。该系统具有负载锁定室,且不向大气开放反应室,因此能够实现薄膜沉积的优良再现性。2. 设备用途/原理氮化膜(AlN、SiN)的形成和低温形成的氧化膜(AlOx、SiO2)。电子设备的闸门绝缘子。半导体、有机EL等的钝化膜。半导体激光器的反射面。在MEMS等3D结构上的沉积。石墨烯上的沉积。碳纳米管保护膜粉末涂层。3. 设备特点可以在原子层水平上实现均匀的层控制。可实现高纵横比结构的共形沉积。具有优良的平面内均匀性和再现性,实现了稳定的工艺。采用独特的反应室结构,优化了原料的气路和气体流,抑制了粒子。通过采用电容耦合等离子体(CCP)系统,使反应室体积小化,缩短了气体吹扫时间,加快了一个循环的速度。
    留言咨询
  • 原子层沉积技术可沉积材料:氧化物: Al2O3, ZrO2, HfO2, Ta2O5, SnO2, RuO2, ZnO, SrTiO3等氮化物: TiN, NbN, TaN, Ta3N5, MoN, WN, TiSiN, SiN等 单一物质: Si, Ge, Cu, Mo, W, Ta, Ru等 半导体材料: GaAs, Si, InAs, InP, GaP, InGaP等原子层沉积系统可以广泛应用于: 半导体领域:晶体管栅极电介质层(高k材料),光电元件的涂层,晶体管中的扩散势垒层和互联势垒层(阻止掺杂剂的迁移),有机发光显示器的反湿涂层和薄膜电致发光(TFEL)元件,集成电路中的互连种子层,DRAM和MRAM中的电介质层,集成电路中嵌入电容器的电介质层,电磁记录头的涂层,集成电路中金属-绝缘层-金属(MIM)电容器涂层。 纳米技术领域:中空纳米管,隧道势垒层,光电电池性能的提高,纳米孔道尺寸的控制,高高宽比纳米图形,微机电系统(MEMS)的反静态阻力涂层和憎水涂层的种子层,纳米晶体,ZnSe涂层,纳米结构,中空纳米碗,存储硅量子点涂层,纳米颗粒的涂层,纳米孔内部的涂层,纳米线的涂层。技术参数:1. 腔室专为R&D设计和优化,样品尺寸达直径4’’,支持扩展6‘’;2. 反应腔温度可控范围:RT-350℃;3. 前驱体源温度可控范围:RT-150℃;4. 腔室处理压力可控范围:0.1-1.5 torr;5. 源扩展多达5个;6. 快速循环处理功能;7. 气路最优化设计、腔体小型化设计;8. 一分钟多达6-10;9. 成熟的薄膜Recipes内置程序;10. 触屏PLC控制;11. 可配套手套箱使用;12. 可配备臭氧发生器;
    留言咨询
  • 原子层沉积系统(Atomic Layer Deposition System,ALD)产地:美国Angstrom 主要产品系列:1.ALD (传统的热原子层沉积);2.PEALD (等离子增强原子层沉积);3.Powder ALD (粉末样品的原子层沉积); 仪器简介:原子层沉积(Atomic Layer Deposition,ALD),也称为原子层外延(Atomic Layer Epitaxy,ALE),或原子层化学气相沉积(Atomic Layer Chemical Vapor Deposition,ALCVD)。原子层沉积是在一个加热反应的衬底上连续引入至少两种气相前驱体源,化学吸附至表面饱和时自动终止,适当的过程温度阻碍了分子在表面的物理吸附。一个基本的原子层沉积循环包括四个步骤:脉冲A,清洗A,脉冲B和清洗B。沉积循环不断重复直至获得所需的薄膜厚度,是制作纳米结构从而形成纳米器件极佳的工具。ALD的优点包括:1. 可以通过控制反应周期数精确控制薄膜的厚度,从而达到原子层厚度精度的薄膜;2. 由于前驱体是饱和化学吸附,保证生成大面积均匀性的薄膜;3. 可生成极好的三维保形性化学计量薄膜,作为台阶覆盖和纳米孔材料的涂层;4. 可以沉积多组份纳米薄层和混合氧化物;5. 薄膜生长可在低温下进行(室温到400度以下);6. 可广泛适用于各种形状的衬底;7. 原子层沉积生长的金属氧化物薄膜可用于栅极电介质、电致发光显示器绝缘体、电容器电介质和MEMS器件,生长的金属氮化物薄膜适合于扩散势垒。 技术参数:基片尺寸:4英寸、6英寸、8英寸、12英寸;加热温度:25℃—400℃(可选配更高);均匀性: 1%;前驱体数:4路(可选配6路);兼容性: 可兼容100级超净室;尺寸:950mm x 700mm;ALD,PE-ALD,粉末ALD技术; 原子层沉积ALD的应用包括:1) High-K介电材料 (Al2O3, HfO2, ZrO2, PrAlO, Ta2O5, La2O3);2) 导电门电极 (Ir, Pt, Ru, TiN);3) 金属互联结构 (Cu, WN, TaN,Ru, Ir);4) 催化材料 (Pt, Ir, Co, TiO2, V2O5);5) 纳米结构 (All ALD Material);6) 生物医学涂层 (TiN, ZrN, TiAlN, AlTiN);7) ALD金属 (Ru, Pd, Ir, Pt, Rh, Co, Cu, Fe, Ni);8) 压电层 (ZnO, AlN, ZnS);9) 透明电学导体 (ZnO:Al, ITO) 10) 紫外阻挡层 (ZnO, TiO2) 11) OLED钝化层 (Al2O3) 12) 光子晶体 (ZnO, ZnS:Mn, TiO2, Ta3N5) 13) 防反射滤光片 (Al2O3, ZnS, SnO2, Ta2O5);14) 电致发光器件 (SrS:Cu, ZnS:Mn, ZnS:Tb, SrS:Ce) 15) 工艺层如蚀刻栅栏、离子扩散栅栏等 (Al2O3, ZrO2) 16)光学应用如太阳能电池、激光器、光学涂层、纳米光子等 (AlTiO, SnO2, ZnO) 17) 传感器 (SnO2, Ta2O5) 18) 磨损润滑剂、腐蚀阻挡层 (Al2O3, ZrO2, WS2); 目前可以沉积的材料包括:1) 氧化物: Al2O3, TiO2, Ta2O5, ZrO2, HfO2, SnO2, ZnO, La2O3, V2O5, SiO2,...2) 氮化物: AlN, TaNx, NbN, TiN, MoN, ZrN, HfN, GaN, ...3) 氟化物: CaF2, SrF2, ZnF2, ...4) 金属: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ...5) 碳化物: TiC, NbC, TaC, ...6) 复合结构材料: AlTiNx, AlTiOx, AlHfOx, SiO2:Al, HfSiOx, ...7) 硫化物: ZnS, SrS, CaS, PbS, ...
    留言咨询
  • 原子层沉积(Atomic layer deposition)是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。但在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只沉积一层原子。应用领域:原子层沉积技术由于其沉积参数的高度可控型(厚度,成份和结构),优异的沉积均匀性和一致性使得其在微纳电子和纳米材料等领域具有广泛的应用潜力。该技术应用的主要领域包括:1) 晶体管栅极介电层(high-k)和金属栅电极(metal gate)2) 微电子机械系统(MEMS)3) 光电子材料和器件4) 集成电路互连线扩散阻挡层5) 平板显示器(有机光发射二极管材料,OLED)6) 互连线势垒层7) 互连线铜电镀沉积籽晶层(Seed layer)8) DRAM、MRAM介电层9) 嵌入式电容10) 电磁记录磁头11) 各类薄膜(100nm)技术参数:基片尺寸:4英寸、6英寸;加热温度:25℃~350℃;温度均匀性:±1℃;前体温度范围:从室温至150℃,±2℃;可选择加热套;前驱体数:一次同时可处理多达 5 个 ALD 前体源;PLC 控制系统:7英寸16 位彩色触摸屏HMI控制;模拟压力控制器:用于快速压力检测和脉冲监测样品上载:将样品夹具从边上拉出即可;压力控制装置:压力控制范围从0.1~1.5Torr两个氧化剂/还原剂源,如水,氧气或氨气;在样品上没有大气污染物,因为在沉积区的附近或上游处无 Elestamor O 型圈出现 氧化铝催化剂处理能力:6-10 次/分钟或高达 1.2 纳米/ 分钟(同类最佳)高纵横比沉积,具有良好的共形性曝光控制,用于在 3D 结构上实现所需的共形性;预置有经验证过的 3D 和 2D 沉积的优化配方;简单便捷的系统维护及安全联锁;目前市面上占地最小,可兼容各类洁净室要求的系统;可以为非标准样品而订制的夹具,如 SEM / TEM 短截线原子层沉积ALD的应用包括:1) High-K介电材料 (Al2O3, HfO2, ZrO2, PrAlO, Ta2O5, La2O3);2)导电门电极 (Ir, Pt, Ru, TiN);3)金属互联结构 (Cu, WN, TaN,Ru, Ir);4)催化材料 (Pt, Ir, Co, TiO2, V2O5);5)纳米结构 (All ALD Material);6)生物医学涂层 (TiN, ZrN, TiAlN, AlTiN);7) ALD金属 (Ru, Pd, Ir, Pt, Rh, Co, Cu, Fe, Ni);8)压电层 (ZnO, AlN, ZnS);9)透明电学导体 (ZnO:Al, ITO) 10)紫外阻挡层 (ZnO, TiO2) 11) OLED钝化层 (Al2O3) 12)光子晶体 (ZnO, ZnS:Mn, TiO2, Ta3N5) 13)防反射滤光片 (Al2O3, ZnS, SnO2, Ta2O5);14)电致发光器件 (SrS:Cu, ZnS:Mn, ZnS:Tb, SrS:Ce) 15)工艺层如蚀刻栅栏、离子扩散栅栏等 (Al2O3, ZrO2) 16)光学应用如太阳能电池、激光器、光学涂层、纳米光子等 (AlTiO, SnO2, ZnO) 17)传感器 (SnO2, Ta2O5) 18)磨损润滑剂、腐蚀阻挡层 (Al2O3, ZrO2, WS2);目前可以沉积的材料包括:1)氧化物: Al2O3, TiO2, Ta2O5, ZrO2, HfO2, SnO2, ZnO, La2O3, V2O5, SiO2,...2)氮化物: AlN, TaNx, NbN, TiN, MoN, ZrN, HfN, GaN, ... 3)氟化物: CaF2, SrF2, ZnF2, ...4)金属: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ... 5)碳化物: TiC, NbC, TaC, ... 6)复合结构材料: AlTiNx, AlTiOx, AlHfOx, SiO2:Al, HfSiOx, ... 7)硫化物: ZnS, SrS, CaS, PbS, ...
    留言咨询
  • 原子层沉积(Atomic layer deposition)是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。但在原子层沉积过程中,新一层原子膜的化学反应是直接与之前一层相关联的,这种方式使每次反应只沉积一层原子。应用领域:原子层沉积技术由于其沉积参数的高度可控型(厚度,成份和结构),优异的沉积均匀性和一致性使得其在微纳电子和纳米材料等领域具有广泛的应用潜力。该技术应用的主要领域包括:1) 晶体管栅极介电层(high-k)和金属栅电极(metal gate)2) 微电子机械系统(MEMS)3) 光电子材料和器件4) 集成电路互连线扩散阻挡层5) 平板显示器(有机光发射二极管材料,OLED)6) 互连线势垒层7) 互连线铜电镀沉积籽晶层(Seed layer)8) DRAM、MRAM介电层9) 嵌入式电容10) 电磁记录磁头11) 各类薄膜(100nm)技术参数:- 基片尺寸:最大直径为4英寸;- 腔室温度: 40℃~315℃;- 温度均匀性:±1℃;- 前体温度范围:从室温至150℃,±2℃;可选择加热套;- 前驱体数:一次同时可处理多达 5 个 ALD 前体源,三种有机金属或其他金属控制源,最高可达150℃,两个氧化剂/还原剂源,如水,双氧水,氧气或氨气等;- PLC 控制系统:7英寸16 位彩色触摸屏HMI控制;- 压力控制装置:压力控制范围从0.1~1Torr;- 模拟压力控制器:用于快速压力检测和脉冲监测;- 样品上载:将样品夹具从边上拉出即可;- 快速循环能力 流线型腔体设计和小腔体体积350cm3; 氧化铝催化剂处理能力:高达6次/分钟或高达0.7纳米/分钟;- 高纵横比沉积,具有良好的共形性 曝光控制,用于在 3D 结构上实现所需的共形性; 预置有经验证过的 3D 和 2D 沉积的优化配方;- 简单便捷的系统维护及安全联锁;- 目前市面上占地较小,可兼容各类洁净室要求的系统;- 可以为非标准样品而订制的夹具,如 SEM / TEM 短截线原子层沉积ALD的应用包括:1) High-K介电材料 (Al2O3, HfO2, ZrO2, PrAlO, Ta2O5, La2O3);2)导电门电极 (Ir, Pt, Ru, TiN);3)金属互联结构 (Cu, WN, TaN,Ru, Ir);4)催化材料 (Pt, Ir, Co, TiO2, V2O5);5)纳米结构 (All ALD Material);6)生物医学涂层 (TiN, ZrN, TiAlN, AlTiN);7) ALD金属 (Ru, Pd, Ir, Pt, Rh, Co, Cu, Fe, Ni);8)压电层 (ZnO, AlN, ZnS);9)透明电学导体 (ZnO:Al, ITO) 10)紫外阻挡层 (ZnO, TiO2) 11) OLED钝化层 (Al2O3) 12)光子晶体 (ZnO, ZnS:Mn, TiO2, Ta3N5) 13)防反射滤光片 (Al2O3, ZnS, SnO2, Ta2O5);14)电致发光器件 (SrS:Cu, ZnS:Mn, ZnS:Tb, SrS:Ce) 15)工艺层如蚀刻栅栏、离子扩散栅栏等 (Al2O3, ZrO2) 16)光学应用如太阳能电池、激光器、光学涂层、纳米光子等 (AlTiO, SnO2, ZnO) 17)传感器 (SnO2, Ta2O5) 18)磨损润滑剂、腐蚀阻挡层 (Al2O3, ZrO2, WS2);目前可以沉积的材料包括:1)氧化物: Al2O3, TiO2, Ta2O5, ZrO2, HfO2, SnO2, ZnO, La2O3, V2O5, SiO2,...2)氮化物: AlN, TaNx, NbN, TiN, MoN, ZrN, HfN, GaN, ... 3)氟化物: CaF2, SrF2, ZnF2, ...4)金属: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ... 5)碳化物: TiC, NbC, TaC, ... 6)复合结构材料: AlTiNx, AlTiOx, AlHfOx, SiO2:Al, HfSiOx, ... 7)硫化物: ZnS, SrS, CaS, PbS,
    留言咨询
  • 电弧等离子体沉积系统日本ADVANCE RIKO公司致力于电弧等离子体沉积系统(APD)利用脉冲电弧放电将电导材料离子化,产生高能离子并沉积在基底上,制备纳米薄膜镀层或纳米颗粒。电弧等离子体沉积系统利用通过控制脉冲能量,可以在1.5nm到6nm范围内控制纳米颗粒直径,活性好,产量高。多种靶材同时制备可生成新化合物。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管 形成新的纳米颗粒催化剂。主要应用领域制备新金属化合物,或制备氧化物和氮化物薄膜(氧气和氮气氛围)制备非晶碳,纳米钻石以及碳纳米管的纳米颗粒形成新的纳米颗粒催化剂(废气催化剂,挥发性有机化合物分解催化剂,光催化剂,燃料电池电催化剂,制氢催化剂)用热电材料靶材制备热电效应薄膜技术原理在触发电上加载高电压后,电容中的电荷充到阴(靶材)上。真空中的阳和阴(靶材)间,电子形成了蠕缓放电,并产生放电回路,靶材被加热并形成等离子体。通过磁场控制等离子体照射到基底上,形成薄膜或纳米颗粒。适用性APD适用于元素周期表中大部分高导电性金属,合金以及半导体。所用原料为直径10mmX17mm长圆柱体或管状体,且电阻率小于0.01 ohm.cm。下面的元素周期表显示了可制备的材料,绿色代表完全适用,黄色代表在一定条件下适用。 产品特点1. 系统可以通过调节放电电容选择纳米颗粒直径在1.5nm到6nm范围内。2. 只要靶材是导电材料,系统就可以将其等离子体化。(电阻率小于0.01ohm.cm)3. 改变系统的气氛氛围,可以制备氧化物或氮化物。石墨在氢气中放电能产生超纳米微晶钻石。4. 用该系统制备的活性催化剂效果优于湿法制备。5. Model APD-P支持将纳米颗粒做成粉末。Model APD-S适合在2英寸基片上制备均匀薄膜。APD制备的Fe-Co纳米颗粒的SEM和EDS图谱系统参数1. 真空腔尺寸:400X400X300长宽高2. 抽空系统:分子泵450L/s3. 电弧等离子体源:标配一个,多3个4. 沉积气压:真空或者低气压气体(N2, H2,O2,Ar)5. 靶材:导电材料,外径10mm,长17mm6. 靶材电阻率:小于0.01欧姆厘米7. 电容:360uF X5 (可选)8. 脉冲速度:1,2,3,4,5 Pulse/s9. 操作界面:触摸屏10. 放电电压:70V-400V (1800uF下大150V) APD-P 粉末容器:直径95mm 高30mm形成粉末的速度:13-20cc (随颗粒尺寸和密度变化)旋转速度:1-50rpm 产品对比测试数据■ 利用APD制备氧化铁纳米颗粒图1 三种不同碳基支撑物表面获得的氧化铁颗粒的HAADF-STEM图像及粒径分布统计图表1 铁负载量、纳米颗粒粒径与电弧脉冲次数的关系引用资料:Yumi Ida, et al. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.■ 利用APD制备Fe-Co纳米颗粒APD制备的Fe-Co纳米颗粒的SEM和EDS图谱发表文章20211. Kamal Prasad Sharma, Aliza Khaniya Sharma, Toru Asaka, Takahiro Maruyama. Transmissible Plasma-Evolved Suspended Graphene for TEM Observation Window. ACS Appl. Nano Mater. 2021, XXXX, XXX, XXX-XXX.2. Ai Misaki, Takahiro Saida, Shigeya Naritsuka, Takahiro Maruyama. Effect of growth temperature and ethanol flow rate on synthesis of single-walled carbon nanotube by alcohol catalytic chemical vapor deposition using Ir catalyst in hot-wall reactor. Jpn. J. Appl. Phys., 2021, 60, 015003. 2020 1. Yumi Ida, Atsushi Okazawa, Kazutaka Sonobe, Hisanori Muramatsu, Tetsuya Kambe, Takane Imaoka, Wang-Jae Chun, Makoto Tanabe, Kimihisa Yamamoto. A useful preparation of ultrasmall iron oxide particles by using arc plasma deposition. RSC Adv., 2020, 10, 41523.2. K Miyazawa, T Nagai, K Kimoto, M Yoshitake, Y. Tanaka. HRTEM-EELS cross-sectional characterization of HOPG substrate with platinum nanoparticles deposited using a coaxial arc plasma gun. Diam. Relat. Mater., 2020, 101, 107623.3. Xiao Zhao, Yutaka Hamamura, Yusuke Yoshida, Takuma Kaneko, Takao Gunji, Shinobu Takao, Kotaro Higashi, Tomoya Uruga, Yasuhiro Iwasawa. Plasma-Devised Pt/C Model Electrodes for Understanding the Doubly Beneficial Roles of a Nanoneedle-Carbon Morphology and Strong Pt-Carbon Interface in the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2020, 3, 6, 5542–5551.4. Naoto Todoroki, Shuntaro Takahashi, Kotaro Kawaguchi, Yusuke Fugane, Toshimasa Wadayama, Dry synthesis of single-nanometer-scale Ptsingle bondSi fine particles for electrocatalysis. J. Electroanal. Chem., 2020, 876, 114492.5. Hiroshi Yoshida, Yusuke Kuzuhara, Tomoyo Koide, Junya Ohyama, Masato Machida. Pt-modified nanometric Rh overlayer as an efficient three-way catalyst under lean conditions. Catal. Today, (On line, in press).6. Takahiro Maruyama, Takuya Okada, Kamal Prasad Sharma, Tomoko Suzuki, Takahiro Saida, Shigeya Naritsuka, Yoko Iizumi, Toshiya Okazaki, Sumi Iijima. Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Appl. Surf. Sci., 2020, 509, 145340.7. Teppei Ikehara, Zhiyun Noda, Junko Matsuda, Masamichi Nishihara, Akari Hayashi, Kazunari Sasaki. Porous Metal Support for Gas Diffusion Electrode of PEFCs. ECS Trans., 2020, 98, 573.8. D. Kawachino, M. Yasutake, Z. Noda, J. Matsuda, S. M. Lyth, A. Hayashi, K. Sasaki. Surface-Modified Titanium Fibers as Durable Carbon-Free Platinum Catalyst Supports for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc., 2020, 167, 104513.9. Masahiro Yasutake, Daiki Kawachino, Zhiyun Noda, Junko Matsuda, Stephen M. Lyth, Kohei Ito, Akari Hayashi, Kazunari Sasaki. Catalyst-Integrated Gas Diffusion Electrodes for Polymer Electrolyte Membrane Water Electrolysis: Porous Titanium Sheets with Nanostructured TiO2 Surfaces Decorated with Ir Electrocatalysts. J. Electrochem. Soc., 2020, 167, 124523.用户单位北海道大学日本产业技术综合研究所东北大学(Tohoku University)韩国科学技术研究院九州大学京都大学大阪大学山梨大学东京理科大学东京工业大学
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制