当前位置: 仪器信息网 > 行业主题 > >

近场分布式光度计

仪器信息网近场分布式光度计专题为您提供2024年最新近场分布式光度计价格报价、厂家品牌的相关信息, 包括近场分布式光度计参数、型号等,不管是国产,还是进口品牌的近场分布式光度计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近场分布式光度计相关的耗材配件、试剂标物,还有近场分布式光度计相关的最新资讯、资料,以及近场分布式光度计相关的解决方案。

近场分布式光度计相关的论坛

  • 分布式光伏电站迎来一声春雷

    由于可再生能源的分散性、多样性和随机性,分布式发电的网络结构的研究与应用越来越引起人们的重视,尤其是对于单机容量较低的光伏发电系统。独立型的光伏发电系统已经成熟应用,但光伏发电技术在分布式发电系统这一新型电网结构中的应用研究还刚刚起步。“十二五”光伏装机规划尘埃落定,目标21GW。自第一次传出“十二五”光伏装机规划以来,该目标数字已屡次上调,由最初的5GW至10GW,再由10GW至15GW,至今最终定格为21GW,目标数字距离最初版本翻了四倍之多。对当下的中国光伏产业而言,这一规划无疑具有非常现实的意义。在很多人看来,21GW的目标并不算高。国家发改委有官员甚至公开预测,到2015年年底,国内光伏发电装机规模将会超过30 GW。自金融危机以来的短短几年,国内光伏业持续上演着跌宕起伏的惊险剧情,业内企业在“丛林时代”的泥淖中挣扎,遍尝五味,几经生死轮回,依然找不到产业升级的突破口。随着管理层渐次清晰的政策导引,至少在结构和框架上,国内光伏应用市场的发展蓝图,已更加清晰起来。同时,新增规划目标明确鼓励分布式光伏发电,政策导引光伏应用发展方向的意图也显露无疑。国家能源局有官员对此解释,鼓励分布式发展,可以避免并网难问题。由此可见,大力发展国内太阳能光伏发电应用市场的政府意图已明确无误,主攻方向也清晰地指向了分布式利用。自此,国内光伏业或许迎来了由应用市场主导的第一次产业升级时机。但分布式光伏发电的推广难点,仍在并网。尽管分布式发电可以采用用户侧并网、自发自用,但这在电网公司看来,仍属于“变相卖电”,违反了电力法。根据国家能源局已起草的《分布式发电管理办法》和《分布式发电并网管理办法》两份征求意见稿来看,解决光伏发电的并网难和电价补贴问题,已成为管理层关注的焦点,也表明管理层在某种程度上已跳出了现有电力体系的制约,开始从制度层面梳理制约产业发展的因素,以及进行顶层设计。实际上,今年以来,以“金太阳”为代表的分布式光伏发电已加快了布局。今年5月,国家三部委确定了今年的金太阳示范工程总规模为1709MW,这一目标已接近去年装机规模的3倍,远远超过了年初业内的预计。一声春雷,刺破了笼罩在中国光伏业头顶上的沉沉暮霭,分布式光伏发电或将由此迎来春天。文章来源:中国电力电子产业网

  • 分布式光伏环境监测系统自动监测能力

    分布式光伏环境监测系统自动监测能力

    分布式光伏环境监测系统自动监测能力分布式光伏环境监测系统是应用于光伏发电站的环境监测系统,该设备采用新型一体化结构设计,便于携带,测量精度高,使用方便,可采集温度、风速风向、太阳辐射、雨量、气压、电池板背板温度等多项信息并作公告和趋势分析,同时可通过多种通讯方式将气象数据传输到气象中心计算机气象数据库中,便于用户对气象数据的使用、分析和处理,是光伏电站监测环境要素的理想设备。分布式光伏环境监测系统具有停电保护功能,断电后已存储数据不会丢失,当交流电停电后,可自动由充电电池供电。配备太阳能供电系统,由太阳能电池板与蓄电池组联合使用,可用于野外作业,适合无电地区常年使用。环境监测系统提供了有线传输和无线传输两种通讯方式。其中有线传输方式包括:通过标准RS485/USB通讯接口,无线传输方式分为短距离无线传输、中距离无线传输、长距离无线传输三种无线传输方式。通讯方式可由用户根据自身使用要求灵活搭配。[img=分布式光伏环境监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205050913126624_2714_4136176_3.jpg!w690x690.jpg[/img]分布式光伏环境监测系统便于安装,使用方便,测量精度高,集成多项气象要素的高可靠性和高精度观测系统。分布式光伏环境监测系统采用新型一体化结构设计,可采集温度、湿度、风向、风速、太阳辐射、雨量、气压、光照度、土壤温度、土壤湿度、露点和雪深等(任意选择要素参数)多项信息并做公告和趋势分析。分布式光伏环境监测系统分有线站和无线站两种形式,配合软件可以实现网络远程数据传输和网络实时光伏电站气象状况监测,是功能突出的分布式光伏环境监测系统,适用于光伏并网电站项目选址、光伏发电站现场监测和风力及传统发电站等领域。虽然分布式光伏环境监测系统在一个光伏电站中是一个很小的一个设备,被多数人忽略,但它起着很大的作用,提供了电站及周围环境数据,及时预告,便于运维人员及时发现问题和预防问题。[img=分布式光伏环境监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205050913592504_8791_4136176_3.jpg!w690x690.jpg[/img]

  • 【转帖】分布式拉曼光纤放大器的应用

    【转帖】分布式拉曼光纤放大器的应用

    摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274815_1759541_3.gif1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274817_1759541_3.jpg(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274818_1759541_3.jpg1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274819_1759541_3.jpg摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://www.gtxren.com/uploads/allimg/100722/0042092A8-0.gif图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://www.gtxren.com/uploads/allimg/100722/0042092b8-1.gif图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。 http://www.gtxren.com/uploads/allimg/100722/0042093501-2.gif图3 使用多泵浦波长获得平坦的宽带增益谱1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://www.gtxren.com/uploads/allimg/100722/00420943T-3.gif图4 简化的后向泵浦的拉曼放大器应用框图图5表示的是采用某个拉曼泵浦模块在G.652光纤中的测试结果,包括增益谱及噪声指数(NF)随泵浦功率变化的情况。从图5中可以看出,在C-BAND范围,增益可以达到14dB以上,增益平坦度可以控制在1dB以内。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181036_274820_1759541_3.jpg2 分布式拉曼放大器(DRA)的应用掺铒光纤放大器是一种成熟、可靠、经济有效的技术,在光网络中的广泛应用已经超过10年。虽然分布式拉曼放大器在很多应用方面可以弥补EDFA的不足,但是也要考虑DRA应用中的各种挑战。(1)激光安全。由于向传输光纤引入了高的泵浦功率,需要关注激光功率安全问题。(2)端面清洁。为了防止光连接器的损伤、烧毁,影响系统性能,端面的清洁非常重要。(3)拉曼增益对传输光纤的特性敏感,例如光纤类型、光纤衰耗系数等。(4)投入成本与运营成本的考虑。因此,在讨论DRA的应用时,应主要考虑体现其重要价值和优越性的应用,而不是使用传统EDFA产品技术也可以满足的应用。广泛地说,DRA的应用可以分为无法在线路中间放大的长距离光纤通信线路的连接和LH,ULH高容量、长距离传输系统中的应用。2.1 单跨段长距离的通信线路对于2个相距遥远的无法在线路中间使用EDFA等中继设备的通信站点而言,选择使用分布式拉曼放大器产品是必须的,如海缆通信链路,偏远无人区站点间的通信链路,不便设立中继站点或中级放大器的通信链路。一般来说,如果光纤线路距离小于160km,在线路两端使用传统的EDFA即可,对于更长距离的线路,需要考虑使用分布式拉曼放大器(DRA)。图6进一步说明了这个问题。从图6可以看出,在不同的拉曼增益下OSNR与链路损耗的关系。假定每个通道的发送光功率为8dBm,前置EDFA的噪声指数为5dB;同时假定系统容量较低,通道数较少,不考虑色散及非线性效应引起的通道

  • 开展分布式光伏接入电网承载力及提升措施评估试点工作

    全国范围选取部分典型省份开展分布式光伏接入电网承载力及提升措施评估试点工作,试点范围选择山东、黑龙江、河南、浙江、广东、福建6个试点省份,每个省选取5-10个试点县(市)开展试点工作。同时,该通知要求电网企业按照“公平开放、应接尽接”原则为分布式光伏项目提供接网服务。

  • GO-CS中心旋转反光镜分布光度计

    产品型号: GO-CS1600(标准型) GO-CS2000(特大型) GO-CS800(灵巧型) GO-CS传统反光镜式分布光度计。系统可保持光源或灯具的自然燃点姿态,但被测光源或灯具需要在一个相当大的空间范围内作准圆周运动,由于运动带来的问题将影响被测光源的发光稳定性。配不同软件,可实现CIE推荐的 B-β、C-γ、A-α测量方案。中心转动反射镜式分布光度计虽已应用40年左右,但一直存在不可克服的原理性问题。由于被测光源要在相当大的空间范围内作准圆周运动,下列因素影响被测光源的发光稳定性:由暗室上下温差带来的环境温度交变;运动中的振动、冲击和向心力;气体放电灯的放电电弧在运动中切割地球磁力线影响灯内的电弧分布;运动产生的气流导致被测光源表面温度发生变化。上述不利因素的影响因被测光源不同而不同,多数气体放电灯,极易产生5%左右或以上的测量误差,严重可达10%以上。而且系统无法进入快速测量状态,否则上述不利因素会进一步加剧。支承灯具的辅助轴必须要与主轴反向同步,分布光度计总体角度精度较难做到较高水平。本系统中为了要实现被测光源的朝上和朝下点燃,需要更高的暗室高度。

  • 分布式控制系统适用的仪器讨论~

    覆盖全系统的交叉索引,增强了过程控制的智能性,可帮助改进与生产相关的决策。PlantStruxure PES具有以下性能特点:统一数据库PlantStruxure PES 为工厂的设计、运营和维护提供了单个统一的软件环境,使您的自动化系统更简便易用。您可以通过一个统一的管理界面配置过程自动化应用和网络拓扑(控制器、远程输入/输出、操作员工作站和现场设备)。通过采用PlantStruxure PES控制设施过程,您可以访问智能设备和电表中的能耗数据,并根据已完成的生产目标来审核这些数据,从而智能的实现高能效运营。PlantStruxure PES可以自动创建所有的变量、通信、警报和趋势……这项工作非常繁重复杂,以前我们都是手动配置完成,非常耗时耗力,而现在它帮助我们在操作员界面开发方面节省了大量时间。内置能效管理系统通过将能源和过程控制数据整合到一个系统中,PlantStruxurePES实现了过程控制中管理型节能增效的自动化。您可以通过彼此对照的方式查看数据,并在能源消耗过快的地点减少能源浪费PlantStruxure PES中的集成式能源管理库可将来自整个工厂中所有用电设备的数据汇总,通过提供能源使用的全局视图,使您对能耗状况一目了然。并且,根据自定义的负载优先等级,系统在能源成本超出KPI时执行减载。同时,还可利用专门的仪表盘,操作员可以将能源作为一种过程的对象对其进行跟踪。施耐德电气法国执行团队为我们在法国的一个玻璃熔炉工厂选择了PlantStruxurePES ,目的是将能源管理功能嵌入工厂的控制架构中。工厂控制架构改造的开支全部由玻璃熔炉所节省的能源成本支付。对象库PlantStruxure PES提供专门面向特定应用(设备、过程设备)和行业(矿、水泥、食品饮料、水)的预定义、可扩展对象库,减少项目开发的时间、成本和风险。PlantStruxure PES内置了一个标准的对象库,其中包含所有主流的过程对象,如阀门、电机、泵等。您可以在过程中直接使用这些对象,或根据特定要求配置这些对象。PlantStruxure PES还集成了标准的行业过程库,可满足具体行业的需求,包括水泥、食品饮料和水等。这些库是基于我们广泛的过程经验开发而成,可以帮助在多个地点运营的公司保持统一性和一致性。此外,由于我们考虑到了标准的过程要求,因此使开发时间大大缩短。通过对应用中的所有对象实例化,我们生成了90%的项目内容,因此显著缩短了工程设计时间。支持及服务我们遍布全球的支持中心提供全套支持及服务,确保在工厂生命周期的各个阶段都能为PlantStruxure PES提供可靠的支持。我们提供行业领先的创新支持计划,其中的主要服务将为您带来极大获益。这一计划包括一个内容丰富的知识库和经由一个专用的支持门户提供的综合数字化服务。该门户提供在线案例管理以及由我们的支持专家、解决方案架构师和开发团队协作开发的内容,如白皮书和设计指南等。对于技术支持人员可以迅速解决问题,我感到非常满意。通过电话咨询,技术支持立刻给予我正确的解决方案,并告诉我查找所需信息的支持网页,更难得的是,还将这些信息和我需要的其他可下载资料的信息发给我。总之,我对在CSR上获得的这次支持服务非常满意。标准以太网PlantStruxure PES基于标准以太网和EtherNet/IP,将PLC/SCADA 架构的灵活性和开发性优势扩展到了DCS领域。这意味着系统在支持可定制应用的同时,还继续保有其标准化方法和强大的集成功能。水处理和能源管理是施耐德电气的战略性业务领域。西班牙进行的一个脱盐厂项目为我们提供了一次展示自身实力的绝佳机会,借此项目,我们完美展示施耐德电气的一体化分布式控制系统如何控制所有的能源管理子系统。PlantStruxure PES的标准以太网面向所有的核心过程,集成了仪表检测、电机管理和电力管理功能,这最终促使客户选择PlantStruxure PES。施耐德电气开发构建了一种高效的控制系统,并设计了一个使用通用机柜(即服务器机架、通信柜、控制器和输入/输出柜)和全以太网网络架构的解决方案,从而控制并节省了此项目必需的投资开支。对象模型作为新一代的分布式控制系统,PlantStruxurePES提供了一个独特的对象模型,用户可以选择性地使用其结构中的各个组件,更加具有灵活性。而且用户可以只下载必要的组件,因此可以有效优化源程序代码。该模型还支持对象整个生命周期内的变更传播,为未来的扩展和定制预留了充足的空间,此外,还允许同时运行同一对象的不同版本,并支持更改的可追踪性。PlantStruxure PES提供面向对象的数据库,这意味着您可以在开发了一个过程对象之后,根据需要多次重复使用此对象。这样不仅可以节约系统开发的时间和成本,还能确保在整个项目的各个阶段运用和在其他应用的推广。由于以上原因,PlantStruxure PES 为巴西一个覆盖50个城市的大型水资源项目提供了完美的解决方案。PlantStruxure PES最吸引人的地方是在完成对象实例化之后如何在区块之间创建链接;它大大简化了我的日常工作。全面开放性PlantStruxure PES的开放性不只针对于一种标准。您能够以全新方式,开发一个真正开放的过程自动化系统,这其中不仅包括操作人员电脑,还包括对象模型和对象库、控制网络,甚至系统设计与集成的理念。PlantStruxure PES提供所需的一切,使DCS系统达到全新层次的开放性——譬如,您可根据需求调整对象模型,针对过程调节对象库,向第三方系统开放的控制网络,向任何IT 厂商开放的控制室等等。还有很重要的一点是,功能先进、即插即用、向第三方设备和应用开放的平台,借助它,施耐德电气及其联盟合作伙伴能够全方位满足客户需要。在我们的第一个项目部署完成后,我们不禁要由衷地赞叹PlantStruxurePES。有了它,使我们感到一切皆有可能。无论如何,我们都能够部署符合项目规范灵活变通的方案。可扩展硬件平台PlantStruxure PES支持各类不同的控制器,满足您的过程需要。这些控制器平台采用模块化、可扩展和冗余设计,能够在线增删硬件。它们支持多种输入/输出模块,以及专用通信模块和现场总线模块,提供电机控制,并

  • 二手杭州远方GO-R5000全空间快速分布光度计出售

    二手杭州远方GO-R5000全空间快速分布光度计出售

    代发,如有需要请与肖先生联系[b]【仪器名称】:[/b]杭州远方GO-R5000全空间快速分布光度计[b]【新旧程度】:[/b][font=&]9成新[/font][b]【价格范围】:协商【质保期限】:【交易地点】:深圳【联 系 人】:肖先生【联系方式】:[/b][font=&]13794487910(微信、电话同步)[/font][b]【信息有效性】:[/b]产品图:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/07/202007201654128866_5490_1622715_3.jpg!w690x517.jpg[/img]

  • 荧光分光光度计和紫外可见分光光度计的区别

    1、荧光分光光度计有两个单色器,而一般紫外可见分光光度计只有一个单色器。2、荧光分光光度计的光源和检测器是成直角分布的,而紫外可见分光光度计是成一条直线的。3、荧光分光光度计是以氙灯做为光源,而紫外可见分光光度计是以氘灯作为紫外区光源,钨灯或卤钨灯作为可见光区的光源。4、荧光分光光度计的比色皿是四壁均为光学面,而紫外可见分光光度计仅为两面为光学面。

  • 【转帖】光度计 选购指南

    [color=#00008B]分光光度计简单原理:由光源产生复合光,通过色散系统,分解为波长连续的单色光,单色光通过生化样品时,生化样品会吸收单色光,通过检测出射光的强度S和入射光的强度R,透射率T=S/R,如果连续调整波长(即扫描),就可以得到在生化样品关于波长分布的透射率,其透射率关于波长的分布和样品的成分和浓度相关。从而判断样品的成分,浓度。可见分光光度计是以全新的设计理念,博采众家之长,充满现代气息的外型设计,卓越的数据处理和控制功能为该仪器鲜明的特点[/color]

  • 分光光度计选购指南

    在经销商与厂家的大力攻势下,“公说公有理,婆说婆有理”,用户在选购分光光度计时感觉很迷茫,不知道如何选择。给大家选购时提些建议:   1.品牌(质量):一个好的品牌深得人心,它的历史悠久,质量稳定,这是使用者最关心的问题。近几年在分光光度计市场上许多新的品牌不断涌现,有些鱼目混杂的样子,所以大家在选购时一定要先认识和了解这个品牌,最好选择老品牌,放心。  2.厂家资质和实力:分光光度计是计量器具,生产厂商必须具有“制造计量器具许可证”,否则其产品为非法产品,质量也就没有保障。当然还有其他一些资质文件也可以关注一下,比如ISO等。  3.售后服务能力:看厂家的售后服务网络分布及售后响应时间,服务网络的多寡决定了其响应时间的长短。并且可以在行业中多方了解厂家的售后服务口碑。  4.仪器的技术指标和功能:分光光度计最重要的两个指标是带宽和杂散光,原则上是越小越好,当然带宽可根据实际工作需要而定;杂散光对分析误差影响较大,尽量选择杂散光低的仪器;做定性分析时仪器需具备扫描功能,做DNA/蛋白时选择有DNA/蛋白测试功能的仪器;对于光学系统,双光束优于单光束,但现在市场上出现了一些准双光束(或双光束比例检测)这种说法,就分析原理而讲,这种系统并不被推崇。  5.价格:这就要根据自己的购买能力,选择性价比最优的产品。(选自网络,侵删)

  • 分光光度计1

    分光光度计 一、概述 分光光度计是利用物质对光的选择吸收现象,进行物质的定性和定量分析的光电式分析仪器,也是一种光谱仪器。根据电磁辐射原理,不同的物质具有不同的选择吸收,也即具有不同的吸收光谱。通过对吸收光谱的分析可方便的判断物质的内部结构和化学组成。随着工业生产和科学技术的不断发展,以及人们对物质认识的不断深化,,迫切要求发展新的先进的分析技术和仪器,分光光度计就是在这种历史条件下问世和发展的。 分光光度计是分光仪器和光度计的一种组合。按工作光谱原理的不同,分光光度计可分为研究物质分子吸收光谱的分光光度计、研究物质中[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计、研究物质分子荧光发射的荧光分光光度计和研究物质原子荧光发射的原子荧光分光光度汁、研究分子喇曼散射光谱的喇曼光谱仪等。由于分光光度法具有分析精度高、测量范围广、分析速度快、样品用量少等优点,分光光度计已成为探索自然、改造自然、发展科学技术和生产的强有力的工具,是现代化分析实验室必备的常规仪器之一。二、分光光度计的基本组成 分光光度计主要构成部分有光源部分、光度计部分、单色器和接受记录部分。分光光度计的主要组成部分可以用图1表示:光源 单色仪 样品池 接受放大系统 显示记录系统 图1 分光光度计框图下面分别叙述这几个部分的光学系统的特性。1光源系统分光光度计的光源系统由光源和照明系统组成。1.1光源 分光光度计中对光源有一定要求,理想的辐射光源应具备以下一些特性: (1)在所使用的被长范围内提供连续辐射,即光源应发射连 (2)辐射能量随波长的变化尽可能小,且有足够的强度。 (3)使用寿命较长。 (4)要有良好的稳定性,特别是对单光束仪器。 在190一360nm波长范围紫外波段,常用的光源是氢弧灯和氘弧灯,氘灯的紫外光发射强度比氢灯强。在360一2500nm波长范围可见和进红外波段,常用白炽钨灯作为光源。图2为氢灯、钨灯的光谱能量分布图。在2—50µ m波长的中远红外波段内,常用的光源是能斯脱和硅碳棒,其光谱能量分布如图3所示。另外,对于要求较低的仪器,灼热的金属丝(如镍铬丝)可以作为红外光源;而在远红外区高压汞灯也是一种常用的光源。 图2 光源能量分布 图3 红外辐射光源A-氢灯,B一钨灯,C一不同温度T的黑体辐射 A-能斯脱,B-硅碳棒1.2照明系统 光源系统的照明系统一般有两中:单光束照明系统和双光束照明系统。光源系统中的反射镜的作用是把光源发出的光线集中在单色器的入缝上,使整个狭缝照明均匀并充满单色器的孔径。在照明系统为单光束的仪器,只要求光源反射镜引入一个高通量的光束即可,对光源的成像质量要求不高。图4为一种单光束照明系统光路图。在双光束照明系统的分光光度计中,光源系统并不直接照明单色仪的狭缝,如图5所示。光度系统处于单色器和光源之间,而在光度系统中,有一个梳形减光楔,光源必须首先成像在减光楔上。减光楔通过光度系统要求清晰地成像在单色器的入缝上。 图4单光束照明系统 图5双光束照明系统2单色器系统单色器是分光光度计的核心部分,仪器的主要光学特性和工作特性基本上由单色器决定。它的作用是将光源发出的白光色散成各种波长的单色光,从出射狭缝中导出,照于样品上。分光光度计中的单色器是一个完整的色散系统,除了色散元件——棱镜或光栅外,还有入射和出射狭缝以及一组反射镜。根据工作光谱范围、色散率、分辨串等性能指标的要求,可分别选用棱镜或光栅分光的单色器,双联单色器,也可采用滤色片分光的单色器等。2.1虑光片滤光片是最简单、最廉价的单色装置。由于它的单色性不好,使测定精度大大受到限制。它的特性可以用最大透光波长(或称中心波长)和谱带半宽度(有效带宽)来表征。最大透光波长是指在此波长光源的辐射最强。有效带宽是指最大透光度值的一半处的谱带宽度。在分光光度计中,滤光片一般用来消除单色器的杂散光。滤光片可分为五种:中性滤光片,截止滤光片,通带滤光片,干涉滤光片以及校正滤光片(标准滤光片)。2.2单色器从波长范围宽广的光源辐射中分出波长单一的单色光的光学装置称为单色器。单色器是由入射狭绕、准直元件、色散元件(常用核能或光栅)、和出射狭绕组成。棱镜可以作为从紫外到中红外区的合适的色散元件。在紫外范围,常用的材料是硅、矾土和人造蓝宝石。矾土和人造蓝宝石能用于200到4000nm,但昂贵,所以常用熔融石英作棱镜材料。在可见范围,硅的色散次于光学玻璃,所以可见分光光度计常用廉价的光学玻璃作棱镜材科。玻璃和石英棱镜担色器的色散特性模式图见图6。为了便于比较,将显示线性色散的光栅单色器的色散特性也列在一起.图6 三种材料单色器的色散特性棱镜单色器的光谱纯度主要决定于棱镜的色散特性和光学设计。通常使用两种形式的棱镜单色器——本生(Bunsen)单色器和利特罗(Littrow)单色器。光栅是一种十分重要、应用范围很广的色散元件,可以用于紫外、可见、近红外范围的色散。光栅分透射光栅和反射光栅。透射光栅是在一块玻璃上或其它透明材料上刻一系列平行的和紧紧相靠的凹槽。生产这样的母光栅需要精密的装置,比较昂贵。复制光栅比较便宜,虽在性能上次于母光栅,但能满足应用。反射光栅是在复制光栅的表面上喷涂铝的薄膜制成的。也可在抛光的玻璃表面或金属表面镀铝,然后在铝表面上刻大量的平行线制成的。光栅的刻线越多,分辨率越高,每单位长度的刻线越多,它的色散就越大。闪耀波长是闪耀光栅的另一个重要的参数,在闪耀波长,光栅有最大能量输出。光栅的主要缺点是有次级光谱干扰分析,且杂散光的影响比棱镜更大,故常配虑光片以去除杂散光。棱镜的主要缺点是色散波长的非线性分布。光栅单色器有几种排列方式,通常用的一种是埃伯特(Ebert)式(图7),是埃伯特1889年发明的。它用一个球面镜准直和聚焦,并对称地放置两个狭缝,波长选择是通过旋转光栅实现的。后来采尼(Czerny)和特纳(Turner)对其进行了改进,用两个小的球面镜来代替大而昂贵的埃伯特球面镜(如图8),使得结构紧凑,后为现代仪器所常采用。图7 埃伯特衍射光栅单色器 图8采尼和特纳衍射光栅单色器入射和出射狭缝狭缝是单色器的重要组成部分之一,关系到分辨率的优劣。它是由具有很锐刀口的两片金属片精密加工制成的。刀口相互之间是严格平行的,并且是在相同的平面上。狭缝宽度有两种表示方法,一是用狭缝的两刀口之间的实际宽度表示,单位是毫米(mm);另一是用从单色器出来的有效带宽表示,单位是纳米(nm),通常用后者表示。3光度系统 紫外可见和近红外分光光度计的光度系统分为单光束和双光束两种。3.1单光束的光度系统单光束的光度系统简单,如图9所示。此系统在采用比较法测量样品的光谱透过率或反射率时,通常有两种方式:图9 单光束的光度系统方式1:在整个工作波段测定完标准后,再测样品,得出的结果进行比较。此方式的缺点:波长的重复性不高,这是由于两次测量标被及样品的时间间隔长,光源的不稳定,波长的重复性、接收系统的不稳定等因素造成的。方式2:在待测的每一波长处标准和样品依次快速地替换,分别进行测量,进行比较。此方式的优点是严格保持标准和样品完全相同的照明及测试条件,但却使样品和标准不断地处于运动状态,因此采用较小。现代的自动分光光度计多采用双光束法来实现比较测量。3.2双光束的光度系统双光束光度系统的显著的特点和最基本要求是保持光路对称。即两光路中的反射次数和相应的反射角、透射次数和相应透射面的曲率以及射入接收器的角度和照射面积等,尽量要求做到对称,并且光路应尽量缩短,光学零件也应尽量减少。图10所示是在紫外——可见和近红外分光光度计中常用的双光束光度系统。图10 紫外—可见和近红外分光光度计中常用的双光束光度系统红外分光光度计中光学系统的基本要求与紫外一可见分光光度计相同。但在光学平衡法测定中,应用减光器Wl改变参考光束的强度来实现零点平衡。为了校正仪器的100%透过率,在样品光路中设有减光器W2。图11为红外分光光度计的光度系统图。图11 对称式红外分光光度计光度系统

  • 光谱分析仪与分光光度计的区别?

    1)区别:  光谱分析仪:用于测量发光体的辐射光谱,即发光体本身的指标参数。   分布光度计:用于产生单色光,并对某物质对该单色光的吸收进行分析。即 使用某种发光体通过单色仪产生某一波长的单色光,并将该单色光照射于被测量物质上,再通过光电传感器接收照射在物质后的光信号,根据此光信号分析该物质。2)应用:  光谱分析仪:照明灯具厂家(节能灯\LED\白炽灯\荧光粉\紫外光源\红外光源等等的发光参数)。  分布光度计:医药环境等的物质检定(纯度检验\推测化合物的分子结构\氢键强度的测定\络合物组成及稳定常数的测定等等)。3)精度:  与仪器的配置有关,无法做简单比较,包括单色仪的分光精度\光电传感器的灵敏度等\电路放大等等。

  • 光谱仪、单色仪、摄谱仪、分光光度计的区别

    光谱仪简单说来就是通过光栅等分光器件,将光线按不同波长进行分离,形成按波长划分的光线能量分布。光谱仪用于纯光学特性分析,只需要测量和输出被测源的相对光谱能量分布。单色仪和光谱仪其实是一样的,只是根据使用目的不同而有不同的名称。摄谱仪只是在光谱基础上加上了感光底片,便于实时获得光谱图像,在现在电脑普及的情况下,图像已经不需要实时打印出来,摄谱仪不具有应用前景,但在地质勘探等领域仍有很大市场。分光光度计是能从含有各种波长的混合光中,将每一种不连续的单色光分离出来,用作采样反射物体或透射物体,并测量其强度的仪器。由于不同物体分子的结构不同,对不同波长光线的吸收能力也不同,因此,每种物体都具有特定的吸收光谱。可见,分光光度计实际上是包含光谱仪的系统,是光谱分析的应用,需要测量显示被测源光谱光度参数的绝对值。另外,分光光度计是对不同波长的光线进行扫描,速度比光谱仪要慢很多。这几种仪器其实原理基本相同,只是面向不同的使用范围而已。(来自网络,侵删)

  • 【分享】分光光度计选购指南

    [在一个专家blog中转来与大家分享] 在经销商与厂家的大力攻势下,“公说公有理,婆说婆有理”,用户在选购分光光度计时感觉很迷茫,不知道如何选择。本人有多年分光光度计的使用和开发经验,给大家选购时提些建议:1.品牌(质量):一个好的品牌深得人心,它的历史悠久,质量稳定,这是使用者最关心的问题。近几年在分光光度计市场上许多新的品牌不断涌现,有些鱼目混杂的样子,所以大家在选购时一定要先认识和了解这个品牌,最好选择老品牌,放心。2.厂家资质和实力:分光光度计是计量器具,生产厂商必须具有“制造计量器具许可证”,否则其产品为非法产品,质量也就没有保障。当然还有其他一些资质文件也可以关注一下,比如ISO等。3.售后服务能力:看厂家的售后服务网络分布及售后响应时间,服务网络的多寡决定了其响应时间的长短。并且可以在行业中多方了解厂家的售后服务口碑。4.仪器的技术指标和功能:分光光度计最重要的两个指标是带宽和杂散光,原则上是越小越好,当然带宽可根据实际工作需要而定;杂散光对分析误差影响较大,尽量选择杂散光低的仪器;做定性分析时仪器需具备扫描功能,做DNA/蛋白时选择有DNA/蛋白测试功能的仪器;对于光学系统,双光束优于单光束,但现在市场上出现了一些准双光束(或双光束比例检测)这种说法,就分析原理而讲,这种系统并不被推崇。5.价格:这就要根据自己的购买能力,选择性价比最优的产品。以上意见仅代表个人观点,尚有不足的地方,往大家补充。

  • 【原创】再谈分光光度计的发展趋势

    【原创】再谈分光光度计的发展趋势

    随着各行业技术发展,除了使用光谱学原理同类的仪器([url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url],荧光等),传统的分光光度计也在不断进步。2004年倪一,黄梅珍等比较全面地综述了当时分光光度计的发展状况,但根据近几年的情况,除了全息闪耀光栅、PDA/CCD、发光二极管(LED) 光源、组合式氘灯和钨灯、双单色器分光、光纤、模块化设计和制造、以及高级软件,我认为有些技术也将对分光光度计的发展产生不可忽视的推动,提出来供仪器开发人员参考。1. 光学振镜。这是一种高速扫描的器件,在激光打标设备上早已成熟应用。它机构简单体积小(根本不需要一大堆什么正弦机构之类),定位精度高(定位角偏差约2秒),扫描速度极快(ms级),成本也并不高。据有关资料介绍,核聚变中高速多波段紫外光谱检测已有使用。光学振镜是一种很成熟的光路扫描器件,现在一些双光束分光光度计中有应用,主要用于光路切换,速度极快。工作时步进动作看上去象在高速振动,大概因此叫振镜吧。最成熟的应用是激光扫描,象舞台激光图案显示等演出场合。主贴下面的图片就是它的外形和驱动电路。本帖下面的图是它用于激光打标的原理图。光学振镜[img]http://ng1.17img.cn/bbsfiles/images/2009/01/200901231633_130272_1633752_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625531_1633752_3.jpg[/img]2. 闪光型氙灯。氙灯发光效率高,强度大,而且光谱范围宽,包括紫外、可见和近红外,一个灯可全面覆盖。使用期长,闪光次数可在数十万次到一百万次,一般可使用到仪器同期报废为止,免去通常换灯泡的麻烦。闪光型氙灯光源,就是高稳定性的闪光灯,和照相机上的类似,使用寿命特长。我们有一台该类光源的分光型测色仪(透射、反射都能测),十年多,用了近10万次测试。现在用标准样校验,基本如故。仪器的电路板倒坏过一次,但光源依旧很好。3. 光纤探头。我已在另外几个帖子中提到的几种光线探头,可很方便地在各种场合使用。除此以外,现在已有人在开发真正微型的光纤探头,可直接插入活体细胞中,检测药物浓度的变化情况。这对药物在生物体内的分布及富集过程研究有重要的意义。

  • 紫外可见分光光度计测定原理分享

    紫外可见分光光度计测定的是蛋白浓度,X射线晶体衍射测的才是蛋白质结构。紫外分光光度计测蛋白浓度原理:组成蛋白质的氨基酸里,有三种氨基酸:苯丙氨酸,酪氨酸,色氨酸具有苯环的共轭结构,它们对特定波长的紫外线具有吸收光谱,也就是说:它们对紫外线是有颜色的。每种蛋白质根据苯环的数量和分布都有一定的吸收强度,总的吸收值和分子的浓度呈正比。根据蛋白质溶液对280nm紫外线的吸收强度,可以测定出蛋白质的浓度。X射线晶体衍射测蛋白结构原理:蛋白质的肽链不是杂乱无章的,按照一定的规则盘曲成了特定的形状(蛋白质高级结构),每个碳-碳键都有它特定的构象,这种特定的结构是蛋白质作为分子机器的基础。结晶的蛋白质中,分子排成了空间重复的有序的结构,而原子之间的间隙与X射线的波长类似,构成了X射线的衍射光栅。当用X射线照射这种重复性的天然光栅时,通过波的衍射形成了有规则的干涉条纹,分析这些条纹就可以解析出蛋白质分子中每个原子的位置。

  • 便携式分光光度计与台式分光光度计一样吗?

    实验室常用的分光光度计可以分为可见分光光度计和紫外-可见光分光光度计。各种类型分光光度计的结构和原理基本相同,一般包括光源、单色器、比色皿、检测器和显示器。台式分光光度计通常在实验室内部使用,不随意挪动位置,利于多种参数的测定。[url=http://www.hach.com.cn/product/dr1900]便携式分光光度计[/url]的原理、结构基本和台式分光光度计一样,只是各组成部分更加精密,大大减小了仪器的体积,便于携带,通常在野外和户外使用。

  • 【我们不一YOUNG】+哪些因素有可能影响紫外可见分光光度计准确性?

    紫外可见分光光度计是一种常用的分析仪器,广泛应用于化学、生物、医药等领域。然而,其准确性受到多种因素的影响,下面将从光源、样品、仪器本身等方面进行分析。首先,光源是影响紫外可见分光光度计准确性的重要因素之一。光源的稳定性和光谱分布均会影响测量结果。如果光源不稳定,会导致测量结果的波动,影响准确性。而光源的光谱分布不均匀,则会导致不同波长的光强度不同,从而影响测量结果。因此,在使用紫外可见分光光度计时,应选择稳定的光源,并定期进行校准和维护。其次,样品的性质也会影响紫外可见分光光度计的准确性。样品的吸收特性、浓度、温度等因素都会对测量结果产生影响。例如,如果样品的吸收特性与所选的波长不匹配,则会导致测量结果的偏差。而样品的浓度过高或过低,则会使测量结果失真。此外,样品的温度也会影响其吸收特性,因此在测量时应控制好样品的温度。仪器本身的性能也会影响紫外可见分光光度计的准确性。例如,光栅的分辨率、检测器的灵敏度、光路的稳定性等都会影响测量结果。如果光栅的分辨率不够高,则会导致不同波长的光无法分辨,从而影响测量结果的准确性。而检测器的灵敏度不够高,则会使测量结果的信噪比降低,从而影响准确性。此外,光路的稳定性也会影响测量结果的稳定性,因此在使用仪器时应注意维护光路的稳定性。综上所述,影响紫外可见分光光度计准确性的因素很多,包括光源、样品、仪器本身等。在使用仪器时,应注意选择稳定的光源、控制好样品的性质和温度、维护好仪器本身的性能等,以保证测量结果的准确性。

  • 谁用过便携式的光度计?

    谁用过便携式的光度计?有时候出去采样几天需要现场分析的就用得到便携式的光度计,我想咨询一下大概价格!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制