当前位置: 仪器信息网 > 行业主题 > >

简易快速合成系统

仪器信息网简易快速合成系统专题为您提供2024年最新简易快速合成系统价格报价、厂家品牌的相关信息, 包括简易快速合成系统参数、型号等,不管是国产,还是进口品牌的简易快速合成系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合简易快速合成系统相关的耗材配件、试剂标物,还有简易快速合成系统相关的最新资讯、资料,以及简易快速合成系统相关的解决方案。

简易快速合成系统相关的资讯

  • 岛津应用:利用C2P系统快速获得游离碱形态有机合成产物
    本应用使用岛津Crude2Pure 系统*对4 种化合物进行溶剂回收粉末化处理。该系统根据化合物HPLC保留时间划分区带,自动确定各区带对应捕集使用的流动相组成,根据需要得到的化合物游离碱形态确定1%氨水溶液为回收系统的前处理流动相,单个样品在3h内完成粉末化处理过程。该系统提供了一种快速、安全、有效的全新分离制备后处理方法,同传统的样品分离纯化后处理方法相比节省处理时间3倍以上,节省人力,可以成为化学合成和天然产物分离等行业和领域高纯产品获得的一种有效手段。粉末化结果 岛津全自动纯化系统,即Crude2Pure 系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。C2P 系统由捕集系统和回收系统组成。捕集系统根据化合物的极性和疏水特性通过一定比例和组成的流动相将馏分溶液输送通过C2P 捕集柱,目标化合物将被保留在捕集柱中。将该捕集柱转移至回收系统,选择需要的化合物形态(盐,游离碱等)后,回收系统通过冲洗C2P 捕集柱去除多余的流动相添加剂,转化成盐形态,除水等步骤后,以二氯甲烷-甲醇溶剂洗脱目标化合物,同时辅以加热和氮气干燥,进而在3小时内得到目标化合物的固体粉末。 了解详情,请点击《利用C2P系统快速获得游离碱形态有机合成产物》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 北京检验检疫局纺织品水分含量在线快速检测系统项目通过鉴定
    日前,由北京检验检疫局承担的国家质检总局科研计划项目———《纺织品水分含量在线快速检测系统》顺利通过了专家组的鉴定。   该项目完成了纺织品水分含量在线快速检测系统的研制,该仪器由供热系统、水平及垂直减振系统、自动称量系统、夹持及托起系统、数据采集及处理系统等组成,实现了快速烘干、平稳和防振的称量,在水分含量测量原理和装置设计上具有创新性,且操作简单易行、快速高效,准确可靠。   鉴定专家仔细审阅了课题组提交的材料,认真听取了研究工作报告、技术报告及查新报告等。专家们一致认为,该项成果在纺织品水分含量在线测试领域达到国际先进水平,鉴于该研究有较好的经济效益和广泛的社会效益,建议项目组对该仪器在便携化、集成化方面进行进一步研究后,在相关领域推广应用。
  • 新类型合成毒品原料快速检测的利器
    新类型合成毒品原料快速检测的利器 上海舜宇恒平科学仪器有限公司   近年来,甲基苯丙胺、氯胺酮等新类型合成毒品在涉案毒品中的比重逐年上升,新类型合成毒品不断增长的趋势对有效打击毒品犯罪提出了更高的要求。   上海舜宇恒平科学仪器有限公司推出的AD04-03易制毒化学品检测仪是针对新类型毒品合成原料检测的专用仪器,能够对目前国家管制的17种易挥发性易制毒化学品进行有效分析,非常适合车载和现场检测。该仪器通过一次进样,双柱双温、双检测器并联,双通道采集及数据分析,即可完成全部目标化合物的检测。整个分析过程兼顾了低沸点及高沸点化合物的分离检测,分析时间小于5min。仪器专用软件自动获取数据,与样品库中标准数据进行对比,如发现易制毒化学品即自动报警,是从源头上打击合成类毒品的有力工具。 AD04-03易制毒化学品检测仪 检测目标化合物:乙醚、丙酮、氯仿、丁酮、甲苯、醋酸酐、黄樟脑、胡椒醛、麻黄碱、苯乙酸、邻氨基苯甲酸、N-乙酰邻氨基苯甲酸等易制毒化学品及咖啡因、氯胺酮等毒品。主要特点: 可靠性高,便于携带,功耗较低 针对17种易制毒化学品进行快速检测,分析时间小于5分钟 全自动分析-报警软件,做到一次进样,分离、分析数据的全自动处理 集工业控制计算机、分离系统、数据采集于一体 中文操作系统,触摸屏操作,全图形界面,方便操作 仪器扩展性好,可以方便的增加或改变标准库中的样品种类 可现场打印检测报告,满足车载及现场快速检测的要求 联系方式:上海舜宇恒平科学仪器有限公司 地址:上海市虹漕路456号8号楼5~6楼 电话:021-64959872 E-mail:info@hengping.com http://www.hengping.com
  • 【赛纳斯】合成大麻素及电子烟油的快速检测
    毒 品是全人类的公害,毒 品问题治理事关人类前途命运。合成大麻素是一系列具有类似天然大麻素作用的人工合成物质。吸食合成大麻素能产生比天然大麻更为强烈的快感,这导致合成大麻素迅速蔓延,已成为新精神活性物质中涵盖物质种类最多、滥用也最为严重的家族,值得注意的是该类毒 品因具有比天然大麻更容易上瘾、价格低廉、隐蔽性强、不易被检测等特点,常被吸毒者作为传统毒 品的替代品吸食。今年7月1日起,公安部、国家卫生健康委员会和国家药品监督管理局联合发布《关于将合成大麻素类物质和氟胺酮等18种物质列入的公告》,正式将合成大麻素类物质列入管制。 合成大麻素通式【物理性质】该类制品多以香料、花瓣、烟草、电子烟油等形态出现,代表制品包括“小树枝”“香料” “香草烟”等【毒性】一般认为它们的成瘾性和戒断症状类似天然大麻,长期吸食会导致心血管系统疾病以及精神错乱,同时也存在致癌的风险。【滥用方式】合成大麻素类物质一般被喷涂在植物碎末表面,制成植物熏香用于吸食,而且往往是多种合成大麻素混合使用,这使得它们的成瘾性和危害性更难以判断,相关的研究也很有限。小树枝电子烟油本方案中采用SHINS-P700T手持式拉曼光谱仪,针对合成大麻素类物质的七大化学结构通式,再结合拉曼光谱技术反映分子的特征结构的特点,总结出合成大麻素类物质的公共特征,从而实现合成大麻素类物质的整类管控。同时表面增强拉曼光谱技术具有极高的检测灵敏度,同时还能够指纹式识别物质,检测速度快、消耗样品量少等优点,大大满足了法律法规的需求,适用于各种情形下合成大麻素类物质的整类管控。【仪器介绍】SHINS-P700T手持式拉曼光谱仪能够对各种常见毒 品、芬太尼类、易制毒化学品和新精活等物品进行快速检测和准确识别。该设备采用革新技术(表面增强拉曼光谱技术),能够百万倍地增强痕量物种的拉曼信号,从而完美解决执法中遇到的实际样品毒 品浓度低等常规拉曼无法检测的问题。【方法提要】合成大麻素类物质的主要滥用方式是溶于电子烟油或喷涂于烟丝、花瓣等植物表面吸食,主要形态俗称为“小树枝”“电子烟油”“娜塔莎”等。本方案采用简单的前处理方式(①),然后将处理后的样品直接滴于芯片表面(②)。再将芯片插于拉曼光谱仪的检测槽中(③),进行拉曼检测,直接输出结果,检测限低至ppm级别,检测时间数十秒即可。【结论】本方案选用SHINS-P700T手持式拉曼光谱仪,结合拉曼信号增强芯片,针对合成大麻素类物质的公共特征,利用表面增强拉曼光谱技术对其进行整类管制。该方法具有检测灵敏度高、检测速度快、消耗样品量少等优点,适用于各种情形下合成大麻素类物质的整类管控。
  • CEM Liberty全自动微波多肽合成系统在PNA合成上的成功应用
    PNA(肽核酸)是具有类多肽骨架的DNA类似物,PNA的主链骨架是由N(2-氨基乙基)-甘氨酸与核酸碱基通过亚甲基羰基连接而成的。PNA可以特异性地与DNA或RNA杂交,形成稳定的复合体。PNA由于其自身的特点可以对DNA复制、基因转录、翻译等进行有针对的调控,同时作为杂交探针大大提高了遗传学检测和医疗诊断的效率和灵敏度。PNA特异性地识别和结合互补核酸序列被引进用于医学、化学和生物学等多个学科研究,包括药物筛选、基因诊断、分子识别和生命起源等,展示了其独特的生化属性,成为了基因奥秘的探索者。 使用CEM公司生产的Liberty全自动微波多肽合成系统(多肽合成仪)可以非常快速高效的合成PNA。 有关PNA的合成,请咨询010-65528800,EMAIL:sales@pynnco.com, 或浏览我们的网站:www.pynnco.com 。 CEM Liberty全自动微波多肽合成系统
  • 厦大成功研制便携式合成色素快速检测仪
    来自福建人民政府网消息,2012年5月15日,由厦门大学化学化工学院承担的福建省科技计划重点项目“饮品中色素添加剂检测仪器的研制”通过了省科技厅组织的专家验收。验收专家组一致认为该项目已较好完成了任务书规定的各项任务和指标,并取得了重要的研究成果:   1、新建立的六种合成色素的偏最小二乘法变量数学校正模型,对待测色素的浓度矩阵和光谱矩阵,进行回归分析和变量筛选,无需合成色素化学分离,方法操作简便,灵敏度和准确度高。   2、所研制的便携式合成色素快速检测仪,对六种色素的检测下限小于0.1 μg/mL,方法回收率为86-102%,波长分辨率为2 nm,RSD小于5%,与现行国家标准方法比较,具有成本低、快速和便携等特点。该仪器经过了福建省计量科学研究院技术参数符合性验证,并已在工商、质监等部门推广应用,取得了良好的效果。   3、研究成果已发表了SCI源刊论文2篇,申报国家发明和实用新型专利各1项。
  • 人工合成蛋白质可快速检测水中有害金属
    日本研究人员最近人工合成一种可发出荧光的蛋白质,能够用来快速检测地下水等水源中是否含有砷、镉和铅等有害金属。这种检测技术成本低,操作简便,研究人员希望一两年内将其实用化。   日本宇都宫大学副教授前田勇宇在国际学术刊物《生物传感器与生物电子学》网络版上发表论文说,他将容易与有害金属结合的“反式作用因子”与绿色荧光蛋白融合,制造出可发出荧光的人工合成蛋白质“GFP-反式作用因子”。   检测时,让这种人工合成蛋白质与地下水等样品混合,然后使其通过特制的多孔平板进行过滤。约15分钟后,用重蒸馏水清除出平板上与有害金属结合的人工合成蛋白质。样品中的有害金属越多,被清除出的人工合成蛋白质也越多,附着在平板上的荧光的程度也越低,反之则越高。具体荧光数值可使用仪器读取,从而检测出样品中有害金属含量。   这种人工合成蛋白质呈粉末状,容易保存,检测装置可随身携带。前田勇宇说:“利用这种检测技术目前只能检测出砷、镉和铅三种金属。希望今后能够进一步检测出其他有害金属,并把检测时间缩短到5分钟左右。”
  • 合成生物学:创造出“新”的生物系统——访北京化工大学生命科学与技术学院傅鹏程
    太阳光、二氧化碳,再加上经过改造过的微生物蓝藻就能制造出生物燃料乙醇,而让这一切变成现实的是一个正在兴起的前沿技术&mdash &mdash 合成生物学。近日,仪器信息网(以下简称为:Instrument)采访了这一项目的研究者,北京化工大学生命科学与技术学院傅鹏程教授。傅鹏程教授给我们讲述了他与合成生物学研究结缘的故事,以及合成生物学如何给我们的生活带来改变、合成生物学面临的挑战等。 北京化工大学生命科学与技术学院傅鹏程   Instrument:请问您是如何与合成生物学研究结缘的?   傅鹏程:我接触合成生物学其实在世界上都算比较早,这个必须衷心感谢美国加州大学伯克利分校退休教授Alex Karu博士。我一直有意识地寻找一些前辈,我可以视为人生导师的良师益友,这样我可以向他们学习到很多宝贵的人生经验。Alex Karu就是其中之一。他退休之后的嗜好就是每天阅读《Nature》和《Science》有关生物学的最新科研文章,然后分门别类做出自己的评语,判定他认为现代生物技术的热点方向,并通过电子邮件把他的归纳总结每天发给我,每天少则十几条,多则几十条,我读后再和他电话讨论。当时我是夏威夷大学教授,每天在一线工作,没有时间天天看生物学的最新文章,但却能轻松跟踪生物学领域的最新前沿研究,这全仗Alex Karu的帮助。   2004年,Alex Karu已经发现合成生物学即将在系统生物学之后成为现代生物学最新研究前沿,希望我能够立即跟进。我听从他的建议,在大多数人还不知道合成生物学为何物时,已经开始进行这方面的研究,发表了系列综述文章。2009年还出版了一本英文专著《系统生物学和合成生物学》,由美国Wiley出版社出版,全球发行,目前欧美很多高校将这本书作为研究生教科书或者教学参考书。但不幸的是Alex Karu在书出版之前于健身房中突发脑溢血猝然去世,没有看到本书的面世。非常遗憾的是,直到他去世,我都没能与Alex Karu见面,只有把感激永远藏在心中。谨此向我的人生导师致敬!   Instrument:请您介绍一下合成生物的理念?合成生物学在哪些方面可以发挥作用?   傅鹏程:合成生物学最关键是借助了工程系统成熟的理念和应用来创造新的生物系统。例如,汽车是由十几万个部件组成,每个零部件的功能都预先设定好了、标准化的,一旦某个零件换了,只要更换即可发挥同样的作用。而对于生物系统而言,原来都是自然而成的,如今我们要借助了工程系统的理念来修改和构建生物系统,通过将设计好的生物元件放入一个生物系统中,从而使其实现预先设定的功能。   合成生物学研究主要有两种,一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能 二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统。   目前,合成生物学已经在医疗保健、能源、环境保护、食品安全等方面发挥作用。例如,治疗疟疾的药物青篙素是从一种产自四川的植物青篙中提取得到,传统的提取方法效率低,成本高。美国伯克利大学的一位教授将青篙素的一些基因作为一个生物元件,构建生物模块并把此生物模块元件置入其他微生物里,再通过发酵便可大规模获得青篙素。此外,在食品安全方面,合成生物学应用最广的是生物传感器,利用合成生物学原理制作的生物传感器可以快速地检测食品中微生物等是否超标。在环境保护方面,有科学家将几个不同的、可降解污染物的基因置于一个微生物里,制造出所谓&ldquo 超级菌&rdquo ,它可以降解污水及土壤里的有机物。   Instrument:请问系统生物学与合成生物学之间是什么关系?   傅鹏程:系统生物学是利用系统信息,包括组学数据让人们更加深入了解生命体的结构、功能及相互作用。在系统生物学研究基础上,人们可以找到某个相应的靶点来改造一个特定的生物环节,从而使改造后的生物系统实现我们事先预设的功能。也就是说系统生物学与合成生物学是相辅相成,两者合用的重点通常是从基因组角度拆分自然生物系统,表征和简化它们,并利用他们作为部件重组工程化生物系统。   系统生物学研究在上世纪90年代兴起,随着组学研究工具及高通量筛查仪器的发展,研究者们得到了大量的数据,从而为系统生物学研究铺平道路。随后,在本世纪初,合成生物学研究才随之跟进、开展开来,立即成为生命科学和生物技术的热门学科。   Instrument:合成生物学面临哪些主要挑战?与国外相比,中国的合成生物学研究处于什么水平?   傅鹏程:合成生物学面临的如下挑战:首先它是一个非常新的领域,合成生物学是本世纪才发展起来的新一代生物学,它的定义、研究范围等都还没有很明晰,这个新兴学科犹如尚未成熟而潜力巨大的操作系统,正在升级换代中。其次,合成生物学是各种学科交叉的结果,所以如何把其它学科成熟的概念和应用实践成功地转化进入生物系统,需要很多的尝试。第三,合成生物学诞生在现代科学技术飞速发展的21世纪,后基因组时代高通量测量产生着海量数据,如何从中挖掘有意义的信息,应用于合成生物学,是一个必须直视的挑战。最后,生物系统的复杂性是系统生物学和合成生物学必须面对的首要问题。细胞等生物是由大量结构和功能不同、相互作用的网络组成的复杂系统,并由大量生物元件非线性的相互作用产生复杂的功能和行为。生物体的复杂性和大量过程的非线性动力学特征对计算科学也是一个新的挑战。但无论如何,合成生物学仍然是一个充满机会的研究领域。   许多发达国家已投入巨资开展相关研究,并在生物能源、医药、环境修复等领域取得了令人瞩目的成绩。与国外的研究比较,中国在合成生物学,以及系统生物学的研究方面处于相对薄弱的状态,但是,我国的科研人员开始意识到这个生物学前沿学科的重要意义。2008年,中国举行了以&ldquo 合成生物学&rdquo 为主题的第322次香山科学会议 2009年,又以&ldquo 合成生物学基础前沿问题&rdquo 为主题召开第144期东方科技论坛。在国家中长期科学和技术发展规划纲要 (2006-2020) 中,明确提出要对交叉学科和新兴学科&ldquo 给予高度关注和重点部署&rdquo ,并将&ldquo 生命体重构&rdquo 列入科学问题&ldquo 生命过程的定量研究和系统整合&rdquo 的研究方向。相信我国会有越来越多的科学家和工程师加入到工程化生物学的研究及应用当中。金秋十月,由我们主办的2014合成生物学国际论坛将在北京召开,届时来自全球顶尖的合成生物学家将与中国学者交流,并为中国学者参与合成生物学研究提供合作及学习的机会。   Instrument:请介绍一下您所进行的以蓝藻为底物进行生物燃料研究的情况?   傅鹏程:蓝藻是一种光合生物,它有一个特点就是能充分利用太阳能,经过光照后,发生光合作用,蓝藻将太阳能转化为化学能。为此,我们通过合成生物学的方式,利用基因工程改造特定的藻类,开发出蓝藻工程菌,再通过光合生物反应过程使藻类用温室气体二氧化碳直接生产燃料乙醇。   这种蓝藻工程菌仅仅需要阳光和二氧化碳作为原料就能够生产出乙醇,因此具有生物质发酵工艺生产乙醇所不具备的种种特点:(1)燃料乙醇生产效率高,耗能小,成本低。(2)就地吸收电厂等单位排放的温室气体。(3)不使用任何农作物作原料,不与人类争夺粮食。(4)生产周期短。蓝藻接种五天后可开始生产燃料乙醇。(5)可稳定连续化大规模生产。(6)生产工序大大简化。(7)不产生固体废弃物及不排放有害气体。(8)没有原材料运输问题。   目前,实验室&ldquo 生产&rdquo 已经不存在问题,但是要实现产业化生产还有许多具体的工程化问题要解决。 实验室使用的50升及15升藻类光合生化反应器   Instrument:在科学研究中,检测工具都扮演着至关重要的角色,请问合成生物学研究主要利用哪些仪器?您是否有研制或改进相关仪器?   傅鹏程:就像前面提到的合成生物学研究与系统生物学是相辅相成的,研究中也要涉及系统生物学。所以在使用的仪器方面,除了利用常规的分子生物学必须的仪器设备,例如PCR仪、凝胶电泳等之外,还需要许多高通量的仪器提供组学的测量,例如基因芯片、核酸合成仪、质谱仪器等。   针对课题组的研究需求,我们还自主研发了微流控装置,该装置是有一个很小的腔体,只能让单细胞通过,这样利用此装置及电子显微镜,我们可以观察单个细胞的信息。   此外,我们的研究中还需使用微反应器阵列及与测定光合作用的有关仪器。这些仪器相对而言较简单,我们有构想,希望找到相关企业能够产业化。   采访编辑:杨娟   附录:傅鹏程教授简介   傅鹏程博士从浙江大学化工系获得学士(1982年) 和硕士(1988年) 学位后,曾在中国石化总公司广州石化总厂工作(任控制工程师),1996年获澳大利亚悉尼大学博士学位,嗣后先后在日本九州工业大学(1996-1997年),美国明尼苏达大学(1998-1999年)和加州大学圣地亚哥分校(1999-2000年)从事生物工程博士后研究。2001年入美国DIVERSA生化公司工作(主要从事生物系统基因表达,代谢工程及发酵技术研究)。2002年应聘至夏威夷大学分子生物科学与生物工程系任教授。2013年5月到北京化工大学生命科学与技术学院工作。本研究室的研究方向为海洋及淡水藻类的开发,重点在蓝藻基因工程改造以利用太阳光和CO2生产燃料乙醇。此项发明已申请了美国专利及国际专利。与瑞士教授Sven Panke合编《系统生物学与合成生物学》,由美国Wiley 出版公司2009年4月出版。傅博士是2005年美国农业部及2009年美国能源部生物能源研究项目基金评审委员会成员。   其他研究兴趣:   1. 土壤生物修复 深海海藻活性物质激活本源土壤微生物种群,降解吸附重金属,分解有机污染物,吸收氮磷等养分,修复土壤,恢复有机碳,氮循环 刺激陆生植物体内非特异性活性因子的产生,并调节内源激素的平衡,对作物具有的促进生长作用。   2. 大数据生物工程 传统的发酵工程,酶工程和细胞工程等传统生物工程能够实时应用基因组,蛋白质组,代谢组,脂质组信息和细胞代谢等等大数据,实现传统生物产业,特别是发酵工程的升级换代。   3. 生物能源与生物燃料 结合合成生物学和藻类生物技术,以太阳能和二氧化碳为输入生产生物能源和生物燃料。
  • 清谱科技携Miniβ 小型质谱分析系统参展“新精神活性物质的现场查验和实验室快速分析及安全防护”培训会
    2020年10月29日,由中国出入境检验检疫协会主办的“新精神活性物质的现场查验和实验室快速分析及安全防护”培训会在杭州召开,北京清谱科技有限公司(以下简称清谱科技)携Mini β小型质谱分析系统参展,清谱科技宋蓓为与会者带来了《芬太尼等新精神活性物质的小质谱现场快检技术》的报告。中国出入境检验检疫协会郗军老师主持了本次大会并为大会致辞,中国药物滥用防治协会张锐敏副会长、清华大学精密仪器系欧阳证教授、杭州市公安局禁毒支队沈坚等为与会者带来了精彩的报告。 会议现场 清华大学精密仪器系欧阳证教授报告题目:毒品现场检测之质谱技术发展欧阳证教授表示新型精神活性物质的管控是一场分析化学家与有机化学家的“对决”。清华大学精密仪器系、上海市公安局物证鉴定中心、上海市刑事科学技术研究院达成三方友好协议,在共同关注领域,比如毒品、管制药品、新精活性物质等快速鉴定技术研究及其它共同关注的领域开展战略性合作。质谱对于毒品检测具有高确定性,尤其是离子阱质谱仪的小型化对毒品的现场快速检测更是利好。欧阳证教授对目前市场上质谱仪中离子分析器的类型、离子阱分析器小型化的技术发展和原位电离技术等进行了讲解,并介绍了小型质谱分析系统在芬太尼监管和术中检测的应用。北京清谱科技有限公司 宋蓓报告题目:芬太尼等新精神活性物质的小质谱现场快检技术本报告就芬太尼等新精神活性物质的小质谱现场快检技术进行了详细的介绍。借助质谱检测的高可拓展性和原位电离技术,清谱科技的Mini β小型质谱分析系统极大的降低了质谱分析的复杂性,突破现场人员、场地的限制,无需样品前处理、第一时间完成芬太尼类及其他管制成分的快速准确识别检测。与此同时,还配备极具官方性的新型合成毒品及新精神活性物质二级质谱数据谱库,其中数据库中包含的芬太尼类物质及其前体远远超过了国家管控的25+3种,且具备检测上万种芬太尼及其变体的能力。Mini β小型质谱分析系统精准可靠,能够快速识别管制成分,支持痕量采样,具有高灵敏度和高可拓展性,提升了现场检测结果的准确性。Mini β小型质谱不仅能看到管控成分的质量信息,还可以推断出结构信息,这种双重保障能够提升定性结果的准确性,减少误判几率。随后,报告也列举了Mini β小型质谱分析系统的部分应用案例,包括食品中管制成分的检测、海关执法现场对通关人员或行李物品表面的痕量样品进行快速采样检测等。清谱科技展台Mini β小型质谱分析系统 Mini β小型质谱分析系统无需样品前处理,约1分钟生成检测报告,突破了检测场地、检测时间和专业人员的限制,实现一键式操作快速自动分析。采用PCS原位电离样品盒进样和非连续大气压接口(DAPI)技术,其精准可靠的质量分析系统提供了高动态范围和多级串联质谱测量能力,性能强劲的射频系统极大拓展了小型质谱的质量范围。纳克级灵敏度为痕量样品检测保驾护航,痕量样品模拟测试达1ng/cm2。串联质谱确保了检测的准确性,除毒品质量信息外,串联质谱还可显示结构信息,避免了传统方法的假阳性问题。芬太尼类新精神活性物质质谱库对于芬太尼检测,通过标准物质建库,已将200余种芬太尼类物质纳入谱库,而专有的算法使Mini β小型质谱分析系统具备检测约5万种芬太尼及其变体的能力。
  • 岛津Crude2Pure系统在有机合成化合物纯化中的应用
    制备液相分离技术广泛应用于合成化合物分离纯化,天然产物制备,代谢产物研究和生物制品纯化等领域。目前一般的操作流程是待分离的样品溶液经过高效液相制备系统,以紫外吸收特性或者质谱响应作为触发信号,在信号超过设定参数时引起馏分收集器收集,得到含有目标产物的溶液,后续通过旋转蒸发或者冷冻干燥等手段使得含有目标化合物的溶液浓缩、干燥,最终得到目标产物的固体状态。这种传统的工作流程在相关领域得到广泛使用。 然而,相对于前期的制备纯化工作,目标馏分的后处理经常是费时又费力的过程。含有大量水的样品往往需要12-24小时甚至更长的时间进行处理。流动相中加入的甲酸、三氟乙酸、氨水、乙酸铵等添加剂会与化合物上的官能团成盐或者以游离态存在而不能完全去除进而影响目标产物的纯度和后续生物活性实验的结果。并且更为严重的是,由于化合物的结构特性和制备色谱柱的柱效影响,在制备纯化过程中往往需要在流动相中添加易挥发的酸或者碱来调节流动相的pH 值以改善色谱峰峰形进而提高分离效率。但在分离完成后对馏分进行旋转蒸发或者冷冻干燥的过程中,随着溶剂的逐渐去除,剩余溶液中的酸或碱的浓度相对提高,当pH 变化到超过目标化合物能够稳定存在的条件时,化合物结构发生变化,造成目标产物损失,使得前期的分离工作功亏一篑。 岛津公司的全自动纯化系统Crude2Pure系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 C2P 系统由捕集系统和回收系统组成(图1)。捕集系统根据化合物的极性和疏水特性通过一定比例和组成的流动相将馏分溶液输送通过C2P 捕集柱,目标化合物将被保留在捕集柱中。将该捕集柱转移至回收系统,选择需要的化合物形态(盐,游离碱等)后,回收系统通过冲洗C2P 捕集柱去除多余的流动相添加剂,转化成盐形态,除水等步骤后,以二氯甲烷-甲醇溶剂洗脱目标化合物,同时辅以加热和氮气干燥,进而在3小时内得到目标化合物的固体粉末。 图1 C2P 系统的捕集系统(左)和回收系统(右) 岛津Crude2Pure 系统提供了一种快速、安全、有效的全新分离制备后处理方法。使用Crude2Pure 系统,可以在3 小时内快速完成目标化合物馏分的自动粉末化操作,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;该系统对样品的处理过程不受样品结构特点和性质的影响,实验证明可以适合大多数化合物的处理;样品回收过程是针对每个样品的独立过程,减少转移操作,避免了相互污染的产生;待制备样品被捕集的同时,馏分溶液中的流动相添加剂在回收过程中被有效的去除,不仅可以消除阻碍粉末化的因素并且可以根据样品最终回收形态的需要选择前处理溶剂,最终得到高纯度的化合物粉末,平均回收率在90%以上。基于以上特点,C2P 系统在天然产物提取分离纯化和合成有机化合物的研究中有广泛的应用前景。 了解详情,请点击《Crude2Pure 系统在有机合成化合物纯化中的应用》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 糖肽固相合成的利器——Liberty全自动微波多肽合成系统
    糖肽是指糖蛋白和蛋白聚糖中,糖与氨基酸或多肽链以共价键相连而形成的区域。糖链与氨基酸之间的连接称为糖肽键。由于含有糖肽键的物质具有多种重要的生物功能,因此人们对糖肽的合成非常感兴趣,而且,合成的糖肽还可作为研究天然活性糖蛋白结构与功能关系的模型物。 由于糖键氨基酸极易卷曲,活性位点被隐藏,因此糖肽合成的主要困难在于耦合效率非常低。同时,合成时间也是从事糖肽固相合成研究人员所面临的一大考验。 CEM公司生产的Liberty研究型全自动微波多肽合成仪目前已经成为多肽合成研究领域的王牌产品,Liberty采用了CEM公司研发的环形聚焦电磁场技术,多肽链在这种环形电磁场的作用下可以充分的伸展开,因此可以非常方便的在头部氨基酸上进行去保护、缩合和切割反应,在合成时间和纯度上突破了常规方法的极限。 有关Liberty研究型全自动微波多肽合成仪在糖肽合成方面的卓越表现,详情请与我们联系。电话:010-65528800,EMAIL:sales@pynnco.com, 或浏览我们的网站:www.pynnco.com. 高效微波多肽合成系统
  • 广东医科大学合成新型探针材料可快速检测贫血症
    日前从广东医科大学药学院获悉,该学院通过国际合作,成功合成了2个罕见的纳米孔稀土金属—有机骨架材料,该材料可作为荧光探针高效检测铁离子等金属离子浓度,可为皮肤病和贫血症等疾病中Fe3+的定量分析以及环境中Fe3+的监测提供简单、高效的检测方法。  “传统荧光探针存在荧光信号不强、选择性差、灵敏度低、回收困难等问题,而金属—有机骨架荧光探针在用于金属离子检测方面,具有方法简单、灵敏度高、选择性好及响应速度快等优点。”刘建强说。  刘建强说,该研究以分子工程学为依据,通过简单的溶剂热方法合成了2个罕见的纳米孔稀土金属—有机骨架材料,该新型材料对不同浓度的离子进行探测后,对于铁离子和重铬酸根离子表现出了特殊的敏感性,荧光强度出现了快速的降低,并对二氧化碳有选择性吸附作用。  在探索合成纳米孔稀土金属—有机骨架材料规律的基础上,该团队将该材料应用于荧光探针领域,对金属离子可进行高效检测。“检测极限值越低代表灵敏度越高,检测效果也越好。以铁离子的检测而言,纳米孔稀土金属—有机骨架材料做成的荧光探针检测限度,远优于传统材料。”刘建强说。  “纳米孔稀土金属—有机骨架材料作为探针材料,表现出对铁离子良好的选择性和灵敏性,在荧光探针和生物标记等领域具有广泛的应用前景和发展空间。”广东医科大学药学院院长李宝红说。  此研究由该学院博士刘建强和西北大学博士侯磊、澳大利亚莫纳什大学博士斯图尔特巴顿等完成。相关科研成果近期发表在国际期刊《ChemPlusChem》上。
  • 美国CEM Liberty微波多肽合成系统一次性合成长达111-mer的多肽
    美国CEM Liberty微波多肽合成系统(多肽合成仪)一次性合成长达111个氨基酸的多肽,创造单次合成多肽的最长记录! CEM 高超的微波技术,第一次被用到多肽合成,开辟了多肽合成的新纪元。合成速度比传统提高20倍,多肽产物达到前所未有的纯度和产量,使得许多合成反应可免去纯化步骤。标准的10肽ACP序列合成纯度竟达到98%。Liberty优异的性能令人惊讶和难以置信。2004年美国多肽协会推荐荣获国际应用科学R&D100发明奖,并被美国纽黑文国家实验室、安进公司应用于艾滋病和SARS病毒的药物研究。 在环形微波作用下,聚焦能产生超高耦合效果,使卷曲的肽链结构充分展开,强化反应的效果和速度。样品在优化的温度下利用微波能量,促进反应速度比传统方法快至20倍,多肽反应更快、产率更高,产物更纯。 Liberty的主要优势: 1)可以使卷曲的肽链结构充分展开! 2)防止长链多肽聚合! 3)消除双重耦合,消除外消旋现象,从而可以合成更长、更困难的多肽! 4)降低树脂的要求! 5)极快的合成时间,一天完成一个月的工作! 6)更高的多肽纯度! 7)高难多肽的合成,一次自动合成12个多肽。 (详情请参阅英文文献) Investigation of the Structure of the N-terminal Region of PrionProtein (PrP) via the Microwave Synthesis of Peptide Fragments up to 111 Amino Acids in Length CEM Liberty 微波多肽合成系统
  • 安捷伦推出新型快速制备纯化系统
    2011 年 3 月 15日,北京 — 安捷伦科技公司(纽约证交所:A) 今日推出了 Agilent 971-FP Flash LC纯化系统,这是一款为药物化学工程师量身打造的个人快速制备纯化色谱仪,能够对新合成的化合物进行快速、简单以及可靠的纯化。   该仪器具有新的软件界面,操作简单方便,且易于跟踪样品。“Guide Me”向导简化了系统设置,还免去了大量繁琐的方法开发设置。“Six-Clicks”触摸屏对话框进一步提高了分离的便利性,以前繁琐的步骤如今变得简单便捷。化学工程师通过该新系统能够利用薄层色谱结果来优化快速制备的分离方法,甚至还可以在运行过程当中进行更改,进一步缩短方法开发的时间。   Agilent 971-FP 快速制备纯化系统的设计, 旨在短短几分钟内从几十克目标化合物中以最大回收率和纯度获得毫克级样品。仪器的若干特征的设计都是为了确保珍贵样品的回收率。   脉冲式氙灯比标准紫外检测器的预热时间减少了大约十分钟,从而提高了效率。独特的气泡探测器能够降低溶剂灌注时间,进一步加快分析速度。   安捷伦液相分离事业部市场经理 Helmut Schulenberg-Schell 说:“我们非常高兴能够为药物化学工程师提供与分析液相色谱和气相色谱相同水平的质量和售后支持的Flash LC色谱。今后,我们用于药物发现的产品系列里又增加了一名优秀成员。”   有关 Agilent 971-FP 快速制备纯化系统(Flash LC)的更多信息,请访问 www.agilent.com/chem/flash:cn 。   关于安捷伦科技公司   安捷伦科技公司(NYSE : A)是世界领先的测量仪器公司,同时也是化学分析、生命科学、电子测量和通讯领域的技术引领者。公司现有 18500 名员工,为超过 100 个国家的客户提供服务。安捷伦科技公司在2010财年的净收入为54亿美元。有关安捷伦科技公司的更多资讯请访问公司官网www.agilent.com.cn。
  • CEM Liberty微波多肽合成系统在欧洲多肽合成论坛上备受关注
    第三十届欧洲多肽论坛于2008年8月31日&mdash &mdash 9月5日,在芬兰首都赫尔辛基举办。在会议上许多世界知名的化学家都表示,为了提高反应产率和速度,微波多肽合成是大势所趋。在过去的五年里,有关微波多肽合成的文献有显著的增加,许多文献都集中在这种方法的速度以及这种方法促进了困难多肽合成的结果上,包括那些用传统方法无法合成的困难多肽。有关多肽合成的设备也得到了不断的创新和改良,自动化的程度得到不断的提高。 在本届会议上,共发表26篇有关微波多肽合成的论文,研究范围从多肽疫苗(synthesis of peptide vaccines)、珠上二硫键形成(on-bead disulfide bond)、非自然的氨基酸的合成(synthesis of non-natural amino acids),水性环境下合成多肽(peptide synthesis in an aqueous environment),糖代多肽的合成(syntheses of glycosylated peptides)以及病毒多肽(viral peptides)的合成,树脂上环肽的合成(on-resin ring closing etathesis)。最新有一份报告提出了一个成功利用微波合成111-mer长的多肽的案例。 意大利弗罗伦萨大学的著名学者Dr. Anna Maria Papini, PhD, 鉴于其在多肽化学上的杰出贡献,获得了Leonidas Zervas奖。在她的获奖演讲&ldquo 利用多肽免疫检测来探索生物标识物&mdash &mdash 转化研究的挑战&rdquo 中, Papini博士提及了她利用微波合成多肽方面的工作。她成功地在她的研究中利用了CEM LIBERTY微波多肽合成系统合成了困难的糖代多肽。 9月2号星期二,三百人参与了一个CEM公司组织的午宴。宴会上,有七位学者在会议上讲述了他们利用微波来合成多肽方面的工作进展。 宴会上的一些亮点: Athanassios Galanis (Institute for Research in Biomedicine at Barcelona Science Park) 水性环境中利用微波辅助合成固相多肽 他的重点研究方向是如何利用较便宜、环保的溶剂(比如:水)来代替传统较为昂贵的有机溶剂实现固相多肽合成。他同时也探讨了微波能量对于一系列的常见的氨基酸衍生物以及耦合反应物在水性环境下对固相多肽合成的优化。他成功地证明了在同时利用微波能量和水的条件下,可以很有效地降低固相多肽合成的成本,并且更为环保。 Marilena Androutsou (University of Patras) 利用微波能量在CLTR&mdash CL树脂上有效率地合成髓鞘抗源MOG35&mdash 55和MOG97-108。 Marilena研究了髓鞘少突神经胶质细胞的糖蛋白(MOG)是一种多发性硬化症的自身抗体。她准备了两种免疫显性的抗源表位,MOG35&mdash 55和MOG97-108。她对于在2-chlorotrityl树脂上合成多肽非常感兴趣,而这种方法对于合成fully protected peptides是异常地重要,然而,这种方法在微波合成的条件可能会不稳定,MARILAN成功地展示了利用微波能量有效地在短时间内合成出高纯度的MOG35&mdash 55和MOG97-108。 Denis Scanlon (University of Melbourne) 利用微波能量合成长达111-mer的多肽片断来对朊病毒的N末端的区域结构进行研究。 Denis致力于探索正常细胞蛋白normal cellular protein(PrPc)到病源性的亚型细胞蛋白pathogenic isoform PrPsc(PrPsc)的转变机理,而后者正是导致阮病毒疾病prion disease的祸手。为了对这种阮病毒作出深入的研究,它需要合成PrPc的N末端部分,而他利用CEM Liberty全自动多肽合成系统成功地合成了一系列的多肽片断,从蛋白序列位置1-144到20-111个氨基酸。这也是有史以来利用微波技术单次成功合成的最长多肽。这些合成的多肽全都被成功地表征、分析及评估。 Alessandra Di Cianni (Laboratory of Peptides and Proteins of the University of Florence) 微波能量辅助闭环副分解反应来合成奥曲肽(synthesis of Octreotide dicarba- Analogues) 除了固相多肽合成以外,利用微波能量同时也被应用在合成后的修饰(post-synthetic Modifications)。闭环反应的机理可以用于在一个多肽链上加入一个二硫键而因此使得肽链在氧化物或还原物存在的情况下更为稳定。传统的方法都需要极端的反应条件包括惰性反应环境和很长的反应时间,而Alessandra成功地展示了利用微波能量在短时间内合成高纯度的奥曲肽。 多肽合成仪 有关详情请浏览培安公司的网站www.pynnco.com,电子邮件:sales@pynnco.com, 电话:010-65528800。
  • 创新通恒首创国内大型核酸药物合成系统
    创新通恒Kilotide500 DNA合成仪是国内首创的大型核酸药物合成系统,它的诞生弥补国内核酸药物生产设备的空白。 2010年,北京创新通恒科技有限公司和国内某著名研究所共同承接国家&ldquo 十一五&rdquo &ldquo 重大新药创制&rdquo 中的《核酸药物规模化制备与靶向修饰关键技术研究》的重大新药项目,并根据国家重大新药项目需求,独立研发,制造出Kilotide500 DNA合成仪。 整套系统由泵系统、反应柱系统、阀系统、检测系统、收集系统及计算机集成控制系统等组成,其制备(合成和纯化)规模高达500mmol(约2kg)以上,纯度达到95%以上,比国际同类产品具有更高的性价比。 查看 Kilotide500 DNA合成仪 详细信息 Kilotide500 DNA合成仪系统研发成功后,主要用于核酸药物的生产使用。Kilotide500 DNA合成仪系统应运而生,为核酸类药物生产厂家提供性价比优良的生产设备,为核酸药物研究开发中的关键技术提供完善的技术支撑,对于加快我国自主知识产权核酸药物的产业化进程,促其早日进入临床和市场起到重要的推动作用。同时为建立核酸药物产业联盟,制订相关行业标准等发挥重要作用,促进核酸产业联盟的发展。 现阶段,北京创新通恒科技有限公司制造的大型核酸药物合成仪系统Kilotide500已经交付客户使用。 欢迎登陆 www.bjcxth.com了解更多信息!
  • CEM公司微波多肽合成系统新产品推介
    2011年6月27日,全球领先的微波实验室仪器的供应商CEM公司隆重推出新产品 Discover® SPS Plus&trade ,成为微波多肽合成系统最畅销产品线的新成员。Discover SPS Plus 是一款很强大的半自动研发工具,使多肽科学家们在微波增强反应的条件下,以极快的速度合成高品质的多肽。此款产品的特点是集成了一个清洗和产品输送系统,能够更轻松地添加关键的脱保护、耦合、裂解试剂。 &ldquo 微波使半自动合成方式更为强大,化学家不必再因为使用传统的方法而等待太长的时间,&rdquo CEM的总裁和首席执行官Michael J.Collins说,&ldquo Discover SPS Plus一个循环小于10分钟,化学家完成10肽的反应小于2个小时。这使许多小的实验室可以在短的时间内以传统的方法合成高纯度的多肽。&rdquo Discover SPS Plus的一个独特的优势就是在任何时间都可以升级到CEM全自动微波多肽合成系统Liberty。Liberty&trade 和Liberty1&trade 微波多肽合成系统已成为当今市场上最畅销的多肽合成仪,在世界范围内有数以百计的实验室都在使用。只有CEM系统拥有专利技术,能够以微波辅助方法完成脱保护和耦合反应。 微波技术是一个发展速度最快的多肽合成方法,科学家可以更快地合成更高质量的多肽。CEM的专利微波多肽合成技术可以合成更长更困难的多肽,这是以往采取传统技术难以实现的。 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 镁伽:抢占合成生物学自动化领域先机
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大用户及时了解合成生物学的市场概况、解决方案及相关活动,仪器信息网本次特别邀请了苏州镁伽科技有限公司(以下简称“镁伽”)谈一谈他们的看法:仪器信息网:您如何看待当前合成生物学产业及市场发展现状?镁伽:合成生物学,重新定义生物制造。合成生物学是继“DNA双螺旋结构的发现”和“人类基因组计划”之后,以工程化的手段设计合成基因组为标志的第三次生物技术革命。作为一门交叉学科,促进了生命科学从基于观测、描述及经验的科学跃升为可预测、可定量及可工程化的科学,并在医疗、能源、工业、农业、环境、信息等领域的应用日益广泛。合成生物学作为一个战略性新兴产业技术,其本质指人们将“基因”连接成网络,让细胞来完成设计人员设想的各种任务,该领域近年来得益于合成生物技术突破、政策支持等因素取得了快速发展。同时,合成生物学是近年来很热门的一个研究方向,全球范围内,合成生物学受到不同国家的关注和政策支持。2022年,美国发布《国家生物技术和生物制造计划》;同年,中国发改委明确将合成生物学列入《“十四五”生物经济发展规划》;欧盟在《面向生物经济的欧洲化学工业路线图》中,提出在 2030年将生物基产品或可再生原料替代份额增加到25%的发展目标。日、韩、以色列等国家也出台了相关政府报告或指导,推动合成生物学技术及应用快速发展。仪器信息网:合成生物学产业将给科学仪器行业带来哪些市场机会? 镁伽:在高通量和规模化的发展中,合成生物学的未来势必离不开自动化的设备和整体解决方案。如果将合成生物学的产业链按照上、中、下游分类,上游则包含可以驱动产业发展的技术生态系统,如DNA/RNA合成、测序及编辑,以及相关自动化企业的产品与服务;中游产业涉及对生物系统和生物体进行设计、开发的技术平台;下游产业则是涉及多个行业的应用开发和产品落地。如果上中游产业通过不断地技术革新、提高生产效率及构建解决方案,在未来可能会占据产业链的核心位置。合成生物学、人工智能/机器学习和自动化的结合将释放生物科技的力量,帮助解决健康、能源、可持续发展等全球性的挑战,而镁伽科技正是这个新趋势的领导者之一。在合成生物学自动化领域镁伽已嗅到先机,开始利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。仪器信息网:贵单位针对合成生物学领域推出了(或将要推出)哪些解决方案?可以应用到哪些环节?解决了什么样的痛点? 镁伽:镁伽合成生物学方案,通过DBTL(Design-Build-Test-Learn)这一闭环,深入掌握基因线路的设计原理,构建集成的自动化分子克隆工作流程,利用高通量自动化设备及试剂赋能质粒构建和菌种筛选过程。最大限度地减少DNA序列分离过程中的错误和污染,提高目标蛋白的产量,真正做到解放科学家的同时,保证数据质量的可靠性、一致性和重现性。镁伽全自动质粒构建系统在合成生物学领域,主要针对质粒构建这一实验流程,我们将其中最基础但又非常繁琐的质粒构建工作在我们的自动化系统中去实现全流程自动化操作,提高通量的同时标准化整个流程,为合成生物学领域的前进贡献力量。同时这套系统的落地稳定运行,也很好的代表了镁伽在生命科学自动化方面的能力与经验。仪器信息网:如何看待合成生物学的未来发展前景? 镁伽:随着合成生物技术的快速发展,不断催生出位于产业上、中、下游的工具型、平台型和产品型公司。镁伽依靠鲲鹏实验室的科研能力,持续助力为行业带来高附加值的生产力工具和服务,提供一站式智能化合成生物学解决方案。可根据客户需求搭建高通量、自动化、信息化的合成生物学实验室,包括整体设备、试剂配套方案,及数据验证参数建议等。
  • 德祥:自动化化学引领绿色高效合成
    &mdash &mdash Vapourtec流动合成仪亮相Analitica China Vapourtec参展Demo Vapourtec Flow Chemistry: Vapourtec连续流动合成仪。在进入中国市场以来,我们关注每一位拜访客户对这款仪器的肯定、批评与建议。突破传统,是我们流动化学的出现形式;带来进步,是流动化学之所以出现的本质。我们期待这款全自动的流动合成仪器能为您的研发和生产带来质的飞跃! 应用微通道反应的原理,结合自动化的高效泵和产物收集装置,加上调节精确的温控系统,可以使用少量、纯试剂连续进行一系列化学反应的合成。让您的化学反应在安全、快速、少浪费的宗旨下轻松完成。 整个合成仪主要溶剂泵送模块、反应加热模块、系统控制模块及产物收集装置及适合各种不同反应类型的多种反应器组成。 其中泵送模块可以根据研究者的试剂需求增添;标配的反应加热模块具有四个独立温控加热位点,从而满足无间歇多步反应和同时进行不同条件的反应;系统控制模块应用高效智能软件,使我们的多个反应程序化进行、无人值守,自带热量转换公式给出传统反应模式基础上的流动反应条件参考;各种不同类型反应器的设计满足了化学合成反应中会出现的液液、液固、气液等多种反应类型。 目前国内已有两家购买者,有多位使用者和意向购买客户。我们期待Vapourtec流动合成仪能在中国的化学合成仪器市场上占有一席之地,更希望这款仪器能真正为您的科研生产提供帮助。 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 联系我们(直接用户) 联系我们(经销商) 邮箱:info@tegent.com.cn
  • 瑞士科学家宣布突破成果:快速合成新冠病毒株克隆体!
    p style=" text-indent: 2em " span style=" text-indent: 2em " 3月3日消息,瑞士伯尔尼大学(University of Bern)的研究人员完善了一种技术,以更快的速度合成出新的冠状病毒株的克隆体。 /span br/ /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/pic/10783a6e-f627-48a4-9981-5caf061916ea.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 疾病控制与预防中心(CDC)于2020年1月发布2019-nCoV图片 /span /p p style=" text-indent: 2em " 病毒学和免疫学实验室的Volker Thiel在周一晚上告诉瑞士公共电视台SRF:这种方法可以让研究人员去激活Covid-19病毒的个别基因并研究其影响。这将使科学家能够确定复制病毒所需的基因,这将是一个有希望的药物靶点。 /p p style=" text-indent: 2em " Thiel补充说,该团队正在收到许多有关病毒克隆的请求。 /p p style=" text-indent: 2em " 他的团队于2月初在德国收到了第一批被新型冠状病毒感染的人的样本。目前正在伯尔尼州米特尔豪森(Mittelhä usern)的实验室对样品进行分析,这是世界上少数能够进行此类研究的设施之一。 /p script src=" https://p.bokecc.com/player?vid=45AD988C801B8B3C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 瑞士实验室制造了Covid-19的第一个合成克隆 /span /p p style=" text-indent: 2em " strong Dubochet的研究 /strong /p p style=" text-indent: 2em " 正如《Scienceexternal》杂志所描述,另一位瑞士研究人员,诺贝尔奖获得者Jacques Dubochet的工作也与正在进行的对该病毒的研究密切相关。 /p p style=" text-indent: 2em " Dubochet的研发开发了冷冻电镜外部链接,使得克萨斯大学的一个团队得以快速鉴定Covid-19中的关键蛋白,这是寻找疫苗的关键步骤。 /p p style=" text-indent: 2em " “到目前为止,测定分子结构的主要方法是X射线衍射,这需要难以置信的很长的时间,” Vaudois在周一晚上向瑞士公共电视台(RTS)解释说。然而,在冷冻电镜下,“你只需要非常纯净的蛋白质& #8230 & #8230 它进入薄层,这就足够了”。 /p p style=" text-indent: 2em " 根据RTS,这种方法可以通过冷冻来研究生物样品。 /p p style=" text-indent: 2em " 美国科学家能够复制该蛋白质的3D图像,从而使该病毒在发现新病毒后仅两个月即可进入细胞。如果使用以前的技术,则可能需要长达10年的时间。 /p p style=" text-indent: 2em " 去年年底,新的冠状病毒在中国武汉爆发,此后已感染了超过89000人,其中大部分在中国。但是,现在看来它在中国以外的传播比在国内的传播要快得多。全球死亡人数超过3000,该病毒传播到60多个国家。在中国境外,目前有8700多人被感染,超过125人死亡。 /p p style=" text-indent: 2em " 科学家表示,这种病毒可能导致肺炎,目前还不清楚,这种疫苗可能需要长达18个月的研发时间。 /p p br/ /p
  • 能合成任何有机化合物的机器有望重塑化学
    我认为,建造一台合成机器完全可行,能够制造出需要的小分子。 图片来源:Ryan Snook   在拍摄自上世纪60年代的一张褪色相片中,有机化学实验室看上去就像炼金术的天堂。架子上有成排的试剂瓶 玻璃器皿被摆放在木头货架上 科学家俯在案边忙碌地制造着分子。   经过50年的快速发展,该场景在逐步改变。2014年的实验室拥有一连串通风橱和分析仪器。但是研究人员工作的真谛是一样的。有机化学家通常在纸上计划自己的工作,不断描绘六边形和碳链直到他们想出合成给定分子所需要的反应顺序。然后,他们试着遵循这一顺序用手进行操作:煞费苦心地混合、过滤和蒸馏,以及缝合分子。   不过,化学家目前正试图通过创造能自动制造有机分子的设备,将双手从该领域中解放出来。&ldquo 我认为,建造一台合成机器完全可行,能够制造出需要的小分子。&rdquo 英国南安普顿大学化学家Richard Whitby说。《自然》杂志报道称,确实,这样一台机器能提供惊人的多样化合物,以便研究人员开发药物、农药或物质。   &ldquo 一台合成机器将是变革性的。&rdquo 美国麻省理工学院(MIT)化学家Tim Jamison说,&ldquo 我可以看到每一个领域的挑战,但我不认为这不可能做到。&rdquo   一个名为&ldquo 呼叫分子&rdquo 的英国项目正在为此奠定基础。Whitby领衔的该项目耗资70万英镑,始于2010年,目前运营会持续到2015年5月。到目前为止,该项目主要致力于找出这台设备所需要的组件,并集合450多位研究人员和60家企业帮助实现这个点子。Whitby表示,大家希望这个平台能够帮助团队成员吸引完成该任务所需要的长期支持。   项目成员也认为,即便这些努力有可能功亏一篑,合成机器的早期工作也仍将改变化学研究。它将能在持续过程中完成大量化学反应,而非一次一步 计算能预测将分子编织在一起的最佳方式等。或许最重要的是,它能通过鼓励化学家记录和分享更多化学反应数据触发文化的彻底改变。   &ldquo 如果拥有充足资金,5年,我们能做到。&rdquo 也拥有自己的合成机器建造计划的美国西北大学化学家Bartosz Grzybowski说。   电气梦   如果化学家有机会建成他们的梦想设备,那必须将3个核心能力结合在一起。首先,机器必须能够访问有关分子如何被建造的现有知识数据库。第二,它必须能将这种知识反馈给一种算法,以便规划合成步骤。最后,它必须能自动按顺序使用机器反应器中的试剂。   最后一步的技术进步最快。许多实验室已经拥有生产DNA和多肽的专用机器,在过去10年间,适应性强的机器人化学家在商业药学研究中变得越来越重。但现存的机器能力有限:DNA或蛋白质序列生成机器通常只能结合少数分子,少于6个反应使用的分子。更多样化的合成机器对大多数学术团体而言太过昂贵&mdash &mdash 花费从3万英镑到5万多英镑,并仍趋向于制造化学特性狭窄的分子。   现在,一些化学家在试着开发连续流动合成机器。这能提高速度和产量,并更适合自动化。   例如,Jamison目前在诺华&mdash MIT连续生产中心研发流动化学系统,他也是去年首次报告端对端、完全连续的合成和制药规划(阿利克仑半富马酸盐,用于治疗高血压)研究小组的成员。Jamison和同事建造了一台7米多长、2.5米高和深的机器。&ldquo 在4年的时间里,&lsquo 所有会出错的东西最终都会出错&rsquo 。&rdquo MIT 中心主任、该项目负责人Bernhardt Trout说。   他表示,在进行了反复试验后,研究人员意识到自己需要做的只是扳动开关,以及填入新鲜的试剂和原料。这台机器在精疲力竭地搅拌化学品的时候,会像大型空调设备那样发出嗡嗡声,过滤装置进行滴水和挤压,螺旋输送器会将固体送过2米长的干燥管进行注塑。最后,在经历了14道工序和47小时后,完成的药片会掉落到斜槽上。   Jamison认为,这在适应连续流动反应方面会有巨大潜力:&ldquo 我认为这最终将实现(所有反应的)50%,可能甚至75%。&rdquo   化学脑   &ldquo 呼叫分子&rdquo 合作成员、葛兰素史克公司(英国制药公司)自动化专家Yuichi Tateno提到,尽管自动化设备正变得更万能,但教导一台计算机设计自己的合成工序仍然是个大问题。&ldquo 硬件一直在那里,但软件和数据是问题。&rdquo 他说。   化学家在规划一个合成体,趋向于使用一种名为逆向合成分析的方法。他们画出最终的分子,然后将其分离。这将让他们得以确定需要从原料中获得的化学拼图碎片,然后在实验室里设计出策略将碎片结合起来。   如果有需要的话,他们也能从SciFinder和Reaxys等商业数据库中寻求灵感。将一个分子结构或一个反应输入数据库中,就能生成文献上的案例。但Tateno表示,即便有在线帮助,人们的合成工作也经常会失败。&ldquo 在那里,没有人能无所不知。&rdquo   Whitby提到,人们希望一台合成机器终有一天能做到更好,尤其是因为计算机能更快速地扫描兆兆字节的化学数据,以确定明确的化学反应。他补充道,更大的挑战是计算机更难计算出该反应是否将在合成过程中真正起作用,当目标物质之前从未制造时尤为困难。   这个问题让哈佛大学化学家Elias Corey十分困惑。Corey于上世纪60年代确定了逆向合成规则。在接下来的10年间,Corey开发出LHASA软件(应用于综合分析的逻辑和启发式方法),该软件能使用这些规则提示合成步骤的顺序。   但LHASA和后续者都未能成功,Grzybowski提到,数据库包括的反应太少而错误太多,或者算法无法适当评估推荐反应能否与分子内的所有功能团和谐共处。&ldquo 如果我们一次只能制造一个化学键,那化学将微不足道。&rdquo 他说。于是Grzybowski花费10年时间创建了Chematica系统来解决这些问题。   更强、更快、更便宜   当Grzybowski在2005年首次公开Chematica背后的网络后,&ldquo 人们说那是胡说八道&rdquo 。他笑道。但到2012年,情况发生了变化,他与同事发表了3篇里程碑式的文章,展示Chematica的效用。例如,该项目发现大量的&ldquo one pot&rdquo 合成体,在这里,试剂能够从一个容器进入另一个容器,不用在每一步之后进行麻烦的分离和净化。该研究小组测试了Chematica的建议,结果显示许多建议比传统方法更有效。   Chematica还能查阅初始材料的成本信息,以及评估每个反应的劳动力,以便预测最便宜的方法。Grzybowski实验室检测了该系统推荐的51个廉价合成法,结果将成本降低了45%。   Grzybowski希望该系统能够商业化,而且他向波兰政府出价230万美元,将Chematica用作合成机器的大脑,以证明其能自动计划和执行至少3种重要药物分子的合成工作。   但也有人对此表示怀疑。CatScI 公司商业总监Simon Tyler提到,对于可预知的未来,&ldquo 总有对人为干预的重要需要&rdquo 。要建造一台合成机器,&ldquo 我们需要预测一个反应何时能起作用,但更重要的是我们需要预测何时会失败&rdquo 。   另一方面,资金也是一大障碍。自动化机器的费用意味着很少有学者能熟悉它们。当有大量的研究生劳动力时,实验室也没有动力使用这些设备。Whitby正在游说相关方面主持建造最先进的自动合成设备和软件。在目标实现之前,他希望&ldquo 呼叫分子&rdquo 能让新一代化学家信奉数据共享和自动化操作。
  • 岛津用于合成化学新型HPLC制备系统问世
    最适于功能性分子材料、手性化合物分离精制 岛津针对有机功能性分子材料及手性化合物的合成化学用途,推出了新型HPLC(高效液相色谱)制备系统及其专用软件。通过使用HPLC进行制备精制,可以使在有机合成领域广泛应用的开放色谱柱的制备精制流程更加效率化。此外,通过反复把样品导入分离色谱柱,提高了循环制备性能,从而实现了在大幅度改善分离效果的同时进行制备精制。现在,岛津制备液相产品线已同时拥有LC-6AD循环半制备系统和LC-20AP循环大量制备系统,可广泛对应从半制备到试验室规模的大量制备。 此外,岛津还推出了循环制备专用软件Recycle-Assis。该软件是和京都大学工学研究科的有机合成化学研究室合作,听取了从合成研究的研究者的意见之后,按照用户需求开发的。使用该软件,无需进行复杂设定即可轻松完成循环制备。本制备系统,可应用于功能性聚合物、有机电子等有机材料的合成化合物及手性化合物的高分离精制。<开发背景> 在以功能性分子、有机电子为首的新有机材料的开发和实际应用进程中,由于应用开放色谱柱的传统制备精制不适于合成过程中的中间流程及最终流程的分离精制自动化,因此研究者越来越重视应用HPLC进行制备精制。此外,反复导入样品的循环制备方法,既能更加有效的分离宝贵的合成样品,又能削减分离色谱柱和流动相成本,因此,适合用于大学合成研究室研究用途的分离精制。在循环制备备受关注的同时,为方便HPLC使用经验并不丰富的合成研究者,还推出了可实现简单操作的软件系统。本系统,可对应分析规模的研讨、普通的制备精制到循环制备精制。同时,还通过专用的循环制备精制软件为用户提供直观的、操作简便的循环制备操作环境。本产品特长如下:(1) 可对应从分析、普通制备直至循环制备的整个制备精制流程 LC-6AD循环半制备系统及LC-20AP循环大量制备系统,可对应从分析规模条件研讨、到样品的制备精制、循环制备精制的整个流程。利用自动进样系统自动注入样品和馏分收集器丰富多彩的分割参数,可使制备精制流程更加有效,并且还能把宝贵的合成材料的目标化合物准确的分割出来。此外,小型的系统设计,在循环制备时既可有效控制色谱柱扩散、提高分离效果,又可有效节省装置设置场所。(2) 通过循环分离同时实现高分离精制和成本降低 作为提高制备精制分离效果的手段之一,常会把多根色谱柱串联以达到延长色谱柱长度的目的。但制备用色谱柱成本非常高,并且色谱柱通常都有耐压限制,所以,可串联色谱柱的根数有限。而循环制备可利用一根色谱柱反复多次的导入样品。这样既能达成高分离的效果,又能控制色谱柱的成本。并且还无需担心耐压的问题。此外,在制备分离中,由于流动相能循环利用,因此,还可降低溶剂的使用量。通过循环制备,可对构造类似体、合成不纯物、手性异性体等用普通方法很难分离的化合物进行分离精制。(3) 通过专用软件Recycle-Assist可提供简单直观的循环制备操作环境 专用软件Recycle-Assis是和京都大学工学研究科的有机合成化学研究室合作,采纳了实际从事合成研究的研究者的意见之后,以提供更加简单的循环制备操作环境为理念而开发的软件。通过视觉性的用户操作界面,可实现简单直观的循环制备操作。另外,还能通过简单操作追踪从循环制备条件研讨到精制的整个工作流程。无需学习复杂操作,即使是HPLC的使用经验并不丰富的合成化学者也能轻松进行循环制备。既可进行边看谱图边设定循环时机的手动循环制备,又可进行预先设定条件的自动循环制备。并且,手动和自动之间还可以轻松转换。 LC-6AD循环半制备系统及LC-20AP循环大量制备系统,可应用于以功能性分子、有机电子等广泛的有机合成化合物的分离精制。有望广泛应用于大学的化学系研究室及化工企业。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 博纳艾杰尔推出新一代中压快速制备系统
    “博纳艾杰尔科技中压快速制备系统科技成果鉴定会”召开     作为专业开发、生产分离材料及其派生产品的高科技企业,博纳艾杰尔科技最新推出了CHEETAHTM中压快速纯化制备系统。受其委托,中国分析测试协会于2009年11月6日在天津开发区创业中心组织召开了“博纳艾杰尔科技中压快速制备系统科技成果鉴定会”。中国分析测试协会张渝英秘书长、汪正范研究员、北京理工大学傅若农教授、中科院化学所刘国诠研究员、军事医学科学院钱小红研究员、依卡化学品公司黄骏雄博士、北京大学刘虎威教授及中国医药研究开发中心殷文娟研究员等出席了会议。仪器信息网应邀参会。 鉴定会现场 CHEETAHTM中压快速纯化制备系统操作演示   快速纯化制备色谱是FLASH色谱(或称中低压制备色谱)的一种,主要用于天然产物、有机合成产物等体系的分离纯化,较传统的柱层析方法来说,制备的纯度提高、分离速度加快、可控制性加强、重现性大大提高。目前,国内生产全自动快速纯化制备色谱的厂家较少,博纳艾杰尔科技是其中之一。   中国分析测试协会张渝英秘书长讲话 中国分析测试协会汪正范研究员主持会议   博纳艾杰尔科技梁萍董事长在致辞时说:“在欧美等国,中压快速纯化制备色谱已经成为常规的纯化分离设备,这种产品在国内市场的年销量尚未突破百台,因此市场发展空间巨大。当前,中压快速纯化制备色谱所用的分离介质的种类还较为单一,限制了该技术的应用范畴,而我们尤为擅长开发新型分离介质。另外,我们的现有客户十分支持我们开发出质优价廉的产品,从而摆脱对国外技术的依赖。这些因素促使博纳艾杰尔科技从2005年开始着手研发中压快速纯化制备系统。”   就CHEETAHTM中压快速纯化制备系统的技术及市场优势而言,博纳艾杰尔科技汪群杰博士总结道:“(1)通过采用新型亲水正相分离介质,突破了流动相的使用范围,系统除能使用传统的有机正相流动相外,还能使用含水流动相,因而可以分离某些目前传统层析色谱较难分离的强极性、强水溶性药物或中间体。(2)操作灵活性高,如用户可以自定义馏分收集方式、选用不同规格或种类的纯化柱等,使得不同复杂产物的提取和分离更加方便。(3)价格远低于国外品牌同类产品。(4)凭借专业、本地化的团队,提供强有力的应用支持,服务响应速度快。” 博纳艾杰尔科技梁萍董事长致辞 博纳艾杰尔科技汪群杰博士作研制工作报告   专家讨论问题   经过听取博纳艾杰尔科技公司的研制工作报告、检测报告、用户使用报告、查新报告以及审查企业标准、进行现场质疑和讨论之后,专家组给出了鉴定意见:CHEETAHTM中压快速纯化制备系统是一款具备分离、纯化和制备功能且操作方便的新型中压制备色谱系统,能满足有机合成、制药等行业的相关需求;该系统通过了计量部门的检测,结果表明各项功能和性能指标符合设计要求;该系统的主要特点是自主创新和集成创新相结合、自动化程度高,已经申请中国发明专利三项,获授权一项,系统整体性能达到国内先进水平。
  • “合成生物学技术及应用进展”嘉宾报告大放送
    合成生物学的快速发展正在改变生物技术行业的产业布局。目前,合成生物技术已经广泛应用于食品、农业、医疗等多个领域。伴随我国《“十四五”生物经济发展规划》的颁布,被誉为“第三次生物科技革命”的合成生物学研究热度高涨,但当前构建合成生物系统的内在逻辑尚处于摸索阶段,整个合成生物学领域正处于发展初期,需要先进的使能技术及解决方案推动合成生物学产业快速发展。为帮助广大科研工作者及时了解合成生物技术的最新研究及应用进展,仪器信息网将于2023年10月10 日-11日举办第一届“合成生物学技术及应用进展”网络会议。届时将邀请业内专家做精彩报告,为广大用户搭建一个即时、高效的交流和学习的平台。~~~~~报告嘉宾~~~~~报告题目:《高效细胞工厂构建及产业应用》【摘要】 化学品绿色生物制造是实现人类社会可持续发展的重要路径,人工高效细胞工厂构建是实现绿色生物制造的核心。本报告介绍了现阶段细胞工厂构建存在的科学、技术问题及挑战,从新生化反应发现、非天然途径设计构建、稳定自调控共培养系统建立及群体感应调控原理及应用等角度阐述了高效细胞工厂构建的新技术及策略,为化学品的绿色生物制造提供了参考。报告题目:《HMOs的生物“智”造以及产业化》【摘要】 人乳寡糖(HMO)对婴幼儿消化系统、肠道健康及免疫系统完善具有不可替代的作用。因此,生物合成HMOs,形成规模化生产被市场所期待。 本项目中,我们通过“HLBrain”的计算云平台,形成了自主技术路线,实现了产业化,产品纯度达到了98%以上,实现了我国在HMOs领域的突破。报告题目:《赛默飞合成生物学中的高分辨质谱策略》【摘要】 合成生物学是近年来迅速发展的一门综合性交叉学科,涉及了生物工程、制药工程、食品工程、生物学、化学等多领域多学科内容。在合成生物学中核心内容即构建DBTL循环,赛默飞Orbitrap高分辨质谱仪是将扫描速度,高分辨率,高灵敏度,谱图质量,质量精度完美融合,将高性能定性和定量能力有机的统一,助力合成生物学难题攻克!报告题目:《利用合成生物学方法增加小分子结构多样性》【摘要】 天然产物长期以来一直是小分子药物的宝贵来源,但它们在自然来源中的含量通常很低,且其化学结构复杂,这使得它们的提取或化学合成变得十分困难和成本高昂。异源生物合成复杂天然产物已成为一种有吸引力的方法,因为它们成本低且供应稳定。我们已经建立了几种不同的方法,用于在细菌和酵母中异源生物合成各种天然产物,包括抗生素和抗癌药物。更重要的是,我们通过理性设计或定向进化及高通量筛选,成功的改造了途径中的酶,以实现天然产物类似物的生产,这显著扩展了当前天然产物的化学空间。我们还开发了自动化系统来辅助酶进化和菌株构建,这将有助于发现具有多种结构、靶向选择性和药代动力学特性的天然产物或其类似物。报告题目:《优化“启动子-RNA聚合酶”以实现目标产物的高产》【摘要】 启动子及RNA聚合酶是转录水平的两个关键调控元件,控制细胞内代谢流量的分配。目标产物的合成与宿主细胞的生长竞争利用有限的RNA聚合酶。启动子招募过多或过少RNA聚合酶都不利于高产目标产物。研究发现,适度串联的启动子能明显提高3-羟基丙酸和吡咯喹啉醌的产量,而过度消耗RNA聚合酶导致宿主细胞生长变慢,从而阻碍目标产物3-羟基丙酸的生成。此外,受诱导的CRISPRi可协调和切换细胞生长和产物合成,从而高产目标产物。报告题目:《岛津最新色谱质谱技术在合成生物学中的应用》【摘要】 主要介绍岛津分析方法包及LCMSMS、LCMS-QTOF、MALDI-TOF等仪器在合成生物学质量控制中的应用。报告题目:《人工智能驱动的合成生物制造创新模式》【摘要】 当前合成生物制造产业发展瓶颈是如何从无到有构建生物合成途径,我们开发了全球最大的生物合成反应/途径数据库,进而构建了全球领先的合成生物设计技术体系,创建了人工智能驱动的合成生物制造研发链条,正在打造人工智能驱动的合成生物制造创新模式。报告题目:《基于DNA纳米框架结构的仿病毒分子工具》【摘要】 利用DNA折纸技术构建框架核酸纳米结构,可以指导各类分子在纳米尺度的精确空间排布和组装,构建纳米器件并实现功能化,为合成生物学提供了全新的研究工具和应用平台。受到病毒启发设计的三维框架核酸被用于组装具有明确尺寸形状的磷脂膜囊泡;组装仿病毒被动侵染颗粒和抑制侵染颗粒等。报告题目:《基于液滴微流控技术氧化还原酶分子改造及其合成生物学应用研究》【摘要】 液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴液滴微流控超高通量筛选技术,基于互不相溶的两液相产生分散的油包水微液滴,可以在短时间内生成大量的液滴,大小均匀、互不干扰、性能稳定且一致,每个液滴可作为独立的单位进行培养,筛选通量高达10^7个/天,广泛应用于酶定向进化研究。本项目基于酿酒酵母表面展示技术液滴微流控高通量筛选氧化还原酶,获取高性能突变体,为生物医药酶定向进化及合成生物学代谢途径关键酶性能优化提供了技术平台。报告题目:《安捷伦高通量自动化流程在合成生物学领域的创新应用》【摘要】 安捷伦高通量自动化流程在合成生物学领域的创新应用。报告题目:《Hamilton自动化移液工作站在合成生物学领域的应用和卓越技术》【摘要】 合成生物学领域需要严谨准确无交叉污染的DNA基因合成、基因克隆、微生物或细胞的克隆挑选与培养、发酵培养以及产物纯化鉴定等步骤,且往往需要较高的通量。Hamilton以其卓越的自动化移液技术及先进的台面内设备,为合成生物学领域的各个步骤均提供了优秀的硬件和自动化解决方案,其中多种设备和技术是业内独有,且对合成生物学关键步骤的长时间稳定准确运行至关重要。本报告将通过合成生物学的各种实验需求介绍Hamilton公司的解决方案和技术优势,为科学家和企业研发人员的相关研发工作提供助力。报告题目:《创建可视化高通量策略定向筛选酚羟基化合物合成途径中关键羟化酶》【摘要】 酶作为生物合成中的催化剂,其活性高低决定了目标产物能否高产。蛋白质工程介导的酶改造需快速简易的筛选方法。由此,以高值化合物没食子酸合成途径中羟化酶PobA为例,基于催化产物的独有特性,建立了一种肉眼可视化筛选方法,并从突变库中筛选到高活性突变体。高活性突变体的引入实现了没食子酸从葡萄糖起始的高效生物合成。报告题目:《植物二萜的合成生物学研究》【摘要】 二萜类化合物广泛存在于自然界,因其化学结构的多样性和良好的生物活性,在工业、医疗等领域具有广阔的应用前景。二萜合酶以及糖基化酶、羟基化酶等后修饰酶是二萜化合物生物合成过程中影响其化学结构多样性的主要因素。在过去几年,本课题组针对三尖杉烷二萜、贝壳杉烷二萜为代表的二萜化合物的合成过程进行了深入的研究。如通过对柱冠粗榧(Cephalotaxus harringtonia)转录组基因的挖掘,报道了三尖杉属植物二萜生物合成途径的关键萜类环化酶,揭示了三尖杉烷型二萜前体骨架三尖杉-12-烯的生物合成过程,为裸子植物二萜代谢多样性的起源和演化提供了深入见解;通过对冬凌草(Isodon rubescens (Hemsl.)Hara)基因组学的研究,揭示了贝壳杉烷二萜冬凌草甲素的氧化修饰机制;通过对甜叶菊等转录组学的挖掘,揭示了贝壳杉烷二萜糖基化修饰过程中底物识别专一性和产物生成特异性的分子机制。基于这些研究,本课题组以大肠杆菌为底盘高效地实现了11种不同氧化形式的对映-贝壳杉烷类二萜化合物的从头生物合成,实现了多种稀有二萜糖苷的高效合成,并实现了产业化推广。报告题目:《技术瓶颈的突破—BioLector高通量微型生物反应器助力合成生物学科研与产业化》【摘要】 1.合成生物学科研与产业化流程与技术痛点 2.技术瓶颈的突破性新技术 3.应用案例介绍。报告题目:《过程数据驱动下的精准高通量筛选技术》【摘要】 合成生物学的DBTL研究循环中,T环节急需要开发高通量、自动化和在线多参数测控技术的新型生物反应器,规避过去基于三角瓶培养方式测试菌种和工艺的结果误判和漏选现象。建立基于过程多尺度参数相关分析方法的高通量菌种筛选和工艺开发平台,形成过程数据驱动的理性决策方法。报告题目:《翻译机制启发的氨基酸高产菌株筛选策略》【摘要】 氨基酸是构成蛋白质的基本单元,也是动物生长和生产所需的大量营养素之一,全球市场总量已接近300亿美元。商业化的氨基酸主要由微生物发酵法制成,然而,除了谷氨酸、赖氨酸等少数大宗氨基酸品类,大多数氨基酸的发酵产量仍处于较低水平,部分氨基酸生产菌株与国外存在代差,因此,选育优良的生产菌株已成为填补氨基酸产能与需求差距的关键。基于自然界普遍存在的“密码子偏好性”规律及氨酰化反应的动力学特征,报告人开发了基于稀有密码子和人造tRNACUA的氨基酸高产菌株筛选策略,实现了对20种标准氨基酸乃至非蛋白质类氨基酸的快速指征,解决了长期困扰氨基酸生物制造的菌株选育难题,促进了氨基酸高产新机制的发现。扫码报名~~~~~赞助单位~~~~也欢迎各位对合成生物学感兴趣的小伙伴进群交流~扫码进群
  • 平行合成:加速化合物发现与工艺优化的关键技术
    什么是平行合成?平行合成,一种在化学研究中同时进行多项实验的方法,显著节约了时间并提高了化合物筛选的效率。这一技术在加速新化合物发现的过程中扮演着关键角色,并被广泛应用于筛选更优化的工艺条件。在制药行业,平行合成技术是发现和开发潜在候选药物的重要工具。它能同时合成多种化学结构的化合物库,为筛选具有潜在生物活性的化合物提供了便利。 平行合成的应用范围涵盖了从线索生成、线索优化到筛选最佳反应条件等多个不同规模的过程。它使得研究人员在放大生产与开发过程中,能更深入地理解反应因素(如溶剂系统、最佳温度与浓度、正确的试剂选择、反应时间以及催化剂的选择)对结果的影响,从而加速了工艺的优化。英诺德 INNOTEG EasySyn-12平行合成仪在这一前沿领域,德祥旗下自研品牌英诺德INNOTEG推出了EasySyn-12平行合成仪。作为一款高效、节省时间和劳力的化学反应工作站,该仪器具有以下特点: 多点位反应:最高支持12个反应位点,反应体积从1ml至20ml,适应不同规模的实验需求;强力搅拌功能:搅拌速度50-2000转,保证实验中混合均匀;快速加热:能快速加热至220&ring C,为实验提供必要的温控环境;用户友好操作:快速设置,易于使用,降低操作难度;清晰观察口:方便实验过程中监控管内内容物;可拆卸水冷回流系统:有效控制实验温度;惰性气体环境下操作:适用于敏感反应;耐化学性涂层:含氟聚合物涂层,具有耐化学性和易清洁性;特殊设计的PTFE盖帽:具有1/4“快速螺纹”,可快速且轻松地连接到玻璃管上;方便的可拆卸设计:所有反应管都可同时拆卸,便于快速后合成冷却。英诺德INNOTEG EasySyn-12平行合成仪能在高度一致的反应条件下,同时对多个反应容器进行加热、搅拌和冷凝回流。此外,它还能在惰性环境中进行反应,具有多功能性、高效率和使用方便等特点。该仪器适用于化学、药物科学、新材料开发、生物科学、环境科学以及检验检疫等多个研究领域。 通过EasySyn-12平行合成仪,科研人员能够更高效地进行实验,加速从实验室到市场的过程,这对于科研进展和新药物的开发具有重大意义。如果你对上述产品感兴趣,欢迎随时联系德祥科技/英诺德INNOTEG,可拨打热线400-006-9696或在线留言咨询英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • “Apex常压微波合成/萃取系统” 全新发布
    上海屹尧微波化学技术有限公司于2007新年之际在全国范围正式发布 全新“Apex常压微波合成/萃取系统”。该系统是目前国内唯一采用专用工业级微波谐振腔、高精度高频光纤温度传感器并配合高频闭环反馈人工智能控制的常压式微波化学实验仪器。拥有尖端技术和卓越性能的APEX将为广大微波萃取、微波合成领域的实验工作者提供了一个具备高精度控制能力且应用面广泛的专业微波实验平台。 “Apex常压微波合成/萃取系统”突破性4大核心技术: 1. 独创设计专用工业级微波谐振腔(专利)——有别于传统家用微波炉炉腔,其针对微波化学实验的实际要求独特设计,采用整体全钢一体式高强度设计,谐振腔内壁喷涂特氟隆防腐涂层,可防止各种酸碱及有机溶剂的侵蚀,同时耐温高达350℃,保证仪器长时间稳定工作和整机更长的使用寿命。 2. 高精度插入式温度测控系统——沿袭了我公司在微波化学领域高精度温度测控系统的一贯技术优势优化设计而成,采用铂金电阻温度传感器或高频光纤温度传感器直接插入反应釜测量反应物中心温度,测温精度最高可达0.1℃,较红外等非接触式测温能更大程度保证所测得温度的精确性及真实性,避免由于温度误差所导致实验结果上的差异。 3. 高频闭环反馈PID控制系统——利用高精度的温度传感器把密闭系统中反应数据以1/100秒的采集速度实时检测传输到CPU进行处理,比较后发生调整微波发射功率大小指令,以精确控制反应过程中的实时温度,使微波化学反应过程始终按认定程序进行并适时显示温度曲线。此技术的应用能实现对反应物实际工作温度控制在± 1℃范围内,同时反应全程微波功率大小自动调整,并连续发射,微波作用不间断,因此,该技术与高精度插入式温度测控系统的结合使用能在根本上保证微波化学实验结果的准确性、均一性和数据的重现性。 4. 人性化软件控制及显示系统——针对用户实际需求开发而成,将控制显示屏和操作系统一体化集成无须外接控制设备;可完成100种方法编辑、储存、调用、反应控制、温度显示(包括冷却过程)数据及曲线储存等全功能;同时可通过摄像显示装置(选配)并配合TFT彩色液晶显示器观察或录像容器内反应过程,掌握实时反应情况。此外还将可选配微波化学工作站软件,该软件系统配合电脑可任意编辑、存储、修改和删除温度、微波功率、时间等各项参数,并可实现远程反控仪器,同时其还具备了无限量存储每次实验过程,任意打印输出实验数据及温度曲线图表的能力,大大方便了实验记录和数据处理等工作,真正做到人性化设计。 此外,为满足各类用户不同的使用需要,该微波反应系统还配备了磁力搅拌、机械搅拌双重搅拌系统,实现0~2000 r/min连续无级调速,并提供标准接口的反应容器,容积10ml~2000ml反应釜、冷凝回流、加液、惰性保护气体接口等各种附件,以满足不同用户的需求。 上海屹尧微波化学技术有限公司作为一家国内专业研发、生产微波化学实验仪器的设备供应商,一直致力于发展和提升微波化学制样技术在国内的应用,并陆续推出了具有国际领先水平的 EXCEL微波化学工作平台和 WM-1 微波马弗炉。此次 APEX的推出更进一步稳固了我公司在国内微波化学领域的技术领先地位,相信必能得到广大微波萃取、微波合成领域实验工作者的接受及认可。
  • 专家呼吁:应加强我国合成生物学研究力度
    “合成生物学是21世纪初新兴的生物学研究领域,是在阐明并模拟生物合成的基本规律之上,达到人工设计并构建新的、具有特定生理功能的生物系统,从而建立药物、功能材料或能源替代品等的生物制造途径,我国必须重视和加强这一领域的研究与开发。”近日,在以“合成生物学基础前沿问题”为主题的第144期东方科技论坛上,来自全国各地60多位两院院士和专家学者发出呼吁。   大会执行主席邓子新院士认为:“在合成生物学在全世界蓬勃发展的历史性机遇面前,探讨在我国开展合成生物学的研究对象与最佳切入点,发展和建立合成生物学新理论、新方法及相应的技术支撑体系,这对提升我国现代化生物技术水平、抢占合成生物学研究制高点有极大的意义。”与会专家结合国际合成生物学发展动态及我国相关领域的研究基础,探讨我国开展合成生物学的可行性、现阶段的主要目标和任务,就合成生物学中核心元件(如基因线路、酶、代谢途径等)的标准化以及合理组装方式,建立具有可预测性和调控性的代谢途径,构建具有特定功能的新生物体等进行了深入研讨。   自2000年《自然》(Nature)杂志报道了人工合成基因线路研究成果以来,合成生物学研究在全世界范围引起了广泛的关注与重视,被公认为在医学、制药、化工、能源、材料、农业等领域都有广阔的应用前景。国际上的合成生物学研究发展飞速,在短短几年内就已经设计了多种基因控制模块,包括开关、脉冲发生器、振荡器等,可以有效调节基因表达、蛋白质功能、细胞代谢或细胞间相互作用。2003年在美国麻省理工学院成立了标准生物部件登记处,目前已经收集了大约3200个BioBrick标准化生物学部件,供全世界科学家索取,以便在现有部件的基础上组装具有更复杂功能的生物系统。   大会执行主席杨胜利院士在报告中指出,2006年以来,合成生物学发展又进入了新阶段,研究主流从单一生物部件的设计,快速发展到对多种基本部件和模块进行整合。通过设计多部件之间的协调运作建立复杂的系统,并对代谢网络流量进行精细调控,从而构建人工细胞行为来实现药物、功能材料与能源替代品的大规模生产。   2008年,美国Smith等人报道了世界上第一个完全由人工化学合成、组装的细菌基因组。今年8月份,他们又成功地将该基因组转入到Mycoplasma genitalium宿主细胞中,获得了具有生存能力的新菌株。该研究使人工合成生命这一合成生物学终极目标取得了历史性突破,为创造可用于生产药物、生物燃料、清理毒性废物等方面的人工基因组奠定了基础。   “与国际上合成生物学的飞速发展相比,我国在此领域的研究还处于起步阶段。在国际上有影响的相关重大成果仍不多见。但是,我国在合成生物学所需的相关支撑技术研究方面并不落后于国际主流水平,如大规模测序、代谢工程技术、微生物学、酶学、生物信息学等方面均有良好的基础。”杨胜利认为,“如何对现有研究力量进行整合,充分发挥在相关领域已有的良好研究基础,从医药、能源和环境等产业重大产品入手,抓住合成生物学的核心科学问题,创建可控合成、功能导向的新代谢网络和新生物体,引领我国合成生物学的原创研究和自主创新,是目前亟待解决的问题。”   大会执行主席赵国屏院士在以《合成生物学——从科学内涵到工程实践》为题的报告中提出,合成生物学是继系统生物学之后,生物学研究思想在从“分析”趋于“综合”、从“局部”走向“整体”的认识基础上,上升至复杂生命体系“合成、构建”的更高层次 也是继以“原位改造与优化”为目的的基因工程技术和以“数据获取与分析”为基础的基因组技术之后,生物技术上升至以工程化“模型设计与模块制造”为导向的更高台阶。   “利用合成生物学实现‘人造生命’,是通过学科交叉,进一步发展系统生物学的一次科学思维革命,将为生物学基础研究提供崭新的思想武器。”赵国屏反复强调这样的观点,利用合成生物学方法和理论,对生命过程或生物体进行有目标的设计、改造乃至重新合成,创造解决生物医药、环境能源、生物材料等问题的微生物、细胞和蛋白(酶)等新“生命”,可能带来新一轮技术革命的浪潮,对于解决与国计民生相关的重大生物技术问题有着长远的战略意义和现实的策略意义。“它有助于人类应对社会发展中面临的严峻挑战,从而从根本上改变经济发展模式,在带来巨大社会财富的同时,促进社会的稳定、和谐发展。”赵国屏说。   中国科学院微生物所研究员马延和、清华大学教授林章凛、南开大学教授王磊、山东大学教授祁庆生和复旦大学/西藏大学教授钟扬等专家建议,针对我国在能源、环境、健康等方面的需求与挑战,要聚焦若干重要的生物学体系,实施面向生物医药、生物能源和生物基产品等重要生物产品的合成生物学理论与技术的基础研究,设计并合成相关的细胞工厂和分子机器。“在具体实施中,一方面要建立合成生物学工程技术平台和研究实验体系,实现关键工程科学问题的重大突破,另一方面要揭示细胞工厂和分子机器的运行机理和构造原理,实现优化设计,提高元件、网络的合成能力和调控能力,尽早拿出实在的成果来。”赵国屏强调。
  • 具二维亚铁磁性石墨烯系统首次合成
    俄罗斯圣彼得堡国立大学的科学家与外国同事合作,在世界上首次在石墨烯中创造出二维亚铁磁性,所获得的石墨烯的磁性状态为新的电子学方法奠定了基础,有望开发出不使用硅的替代技术设备,提高能源效率和速度。描述被调查系统中霍尔效应的图表。图片来源:圣彼得堡国立大学石墨烯是碳的二维改性形式,是当今所有可用的二维材料中最轻、最坚固的,而且具有高导电性。2018年,圣彼得堡国立大学的研究人员与托木斯克州立大学、德国和西班牙的科学家一起,首次对石墨烯进行了修饰,并赋予了它钴和金的特性,即磁性和自旋轨道相互作用(在石墨烯中的运动电子与其自身磁矩之间)。当与钴和金相互作用时,石墨烯不仅保留了自身的独特性质,而且部分具有了这些金属的特性。作为新研究的成果,研究团队合成了一个具有亚铁磁性状态的石墨烯系统。这是一种独特的状态,在这种状态下物质在没有外部磁场的情况下具有磁化作用。他们使用了与之前类似的基底,该基底由一层薄薄的钴和表面的一种金合金制成。在表面合金化过程中,位错环在石墨烯作用下形成。这些环是钴原子密度较低的三角形区域,金原子更靠近这些区域。此前,人们知道单层石墨烯只能以均匀的方式完全磁化。然而,新研究表明,通过与基底结构缺陷的选择性相互作用,可以控制单个亚晶格的原子的磁化强度。“这是一个重大发现,因为所有的电子设备都使用电荷,并在电流流动时产生热量。我们的研究最终将允许信息以自旋电流的形式传输。这是新一代电子产品,一种根本不同的逻辑,以及一种降低功耗和提高信息传输速度的技术开发新方法。”圣彼得堡国立大学纳米系统电子和自旋结构实验室首席副研究员阿尔特姆雷布金解释说。此次合成的石墨烯的一个重要特征,就是强烈的自旋轨道相互作用,这种加强可以通过石墨烯下金原子的存在来解释。在磁性和自旋轨道相互作用参数的一定比例下,石墨烯有可能从熟悉的状态转变为一种新的拓扑状态。研究结果发表在最近的《物理评论快报》上。
  • 纺织品水分含量在线快速检测系统通过鉴定
    日前,由北京检验检疫局承担的国家质检总局科研计划项目———《纺织品水分含量在线快速检测系统》顺利通过了专家组的鉴定。   该项目完成了纺织品水分含量在线快速检测系统的研制,该仪器由供热系统、水平及垂直减振系统、自动称量系统、夹持及托起系统、数据采集及处理系统等组成,实现了快速烘干、平稳和防振的称量,在水分含量测量原理和装置设计上具有创新性,且操作简单易行、快速高效,准确可靠。   鉴定专家仔细审阅了课题组提交的材料,认真听取了研究工作报告、技术报告及查新报告等。专家们一致认为,该项成果在纺织品水分含量在线测试领域达到国际先进水平,鉴于该研究有较好的经济效益和广泛的社会效益,建议项目组对该仪器在便携化、集成化方面进行进一步研究后,在相关领域推广应用。
  • 299万!中国海洋大学快速纯化液相色谱系统等采购项目
    项目编号:HYHAQD2022-0511项目名称:中国海洋大学快速纯化液相色谱系统、多功能可视化合成纯化与定量分析系统等设备采购项目预算金额:299.0000000 万元(人民币)最高限价(如有):299.0000000 万元(人民币)采购需求:详见附件合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止。本项目( 不接受 )联合体投标。采购内容及项目要求.docx
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制