当前位置: 仪器信息网 > 行业主题 > >

镓等离子双束系统

仪器信息网镓等离子双束系统专题为您提供2024年最新镓等离子双束系统价格报价、厂家品牌的相关信息, 包括镓等离子双束系统参数、型号等,不管是国产,还是进口品牌的镓等离子双束系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合镓等离子双束系统相关的耗材配件、试剂标物,还有镓等离子双束系统相关的最新资讯、资料,以及镓等离子双束系统相关的解决方案。

镓等离子双束系统相关的论坛

  • 双通道表面等离子体共振系统应用方向

    [b][url=http://www.f-lab.cn/biosensors/2spr.html]双通道表面等离子体共振系统2SPR[/url][/b]用于制药,药物发现,抗体筛选、蛋白的结构与功能、基因表达调控、生物学和系统生物学。双通道表面等离子体共振系统可为科学研究人员提供重要的分子相互作用的全面表征,这些相互作用包括蛋白质、蛋白质肽、蛋白质核酸和蛋白质小分子。除了生物分子相互作用的研究,xantec SPR传感器还可以用来量化非生物系统,甚至在有机溶剂中的后续芯片表面的固相化学反应过程中的吸附和解吸过程。 [img=双通道表面等离子体共振系统]http://www.f-lab.cn/Upload/SPRSYS.jpg[/img]双通道表面等离子体共振系统:[url]http://www.f-lab.cn/biosensors/2spr.html[/url]

  • 高纯度熔融石英圆筒等离子熔融工艺研究——真空度(压强)控制系统

    高纯度熔融石英圆筒等离子熔融工艺研究——真空度(压强)控制系统

    [color=#cc0000]摘要:等离子熔融工艺是目前国际上生产高纯度熔融石英玻璃圆筒最先进的工艺之一,在产品的低羟基浓度、低缺陷浓度、成品率、生产效率和节能环保等方面具有非常突出的优势。本文针对石英玻璃等离子熔融工艺成型设备,设计并提出了一种真空过程实现方案,可进行等离子加热过程中的炉内真空度(气压)实时控制和监测,以满足高纯度熔融石英等离子工艺过程中的不同需要。[/color][hr/][size=18px][color=#cc0000]1.简介[/color][/size] 等离子熔融工艺是目前生产透明和不透明熔融石英空心圆筒坯件最先进的工艺技术,通过此工艺可以一次完成高纯度熔融石英圆筒胚件的制造,在成品率、生产效率和节能环保等方面具有独到的优势。 在等离子熔融工艺过程中,将高纯石英砂注入到旋转炉中,依靠离心力控制成品尺寸。在熔融工艺过程中,旋转炉中的高纯保护气体使得电极间能够激发等离子电弧,所产生的等离子电弧使晶态石英砂熔化为熔融石英。 目前全球唯一采用此独特工艺生产熔融石英空心圆筒的厂家是德国昆希(Qsil)公司,如图 1所示,昆希公司使用这种独有的“一步法”等离子加热熔融工艺生产透明和不透明熔融石英空心圆筒(坯)。[align=center][img=,690,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010262149468212_8828_3384_3.png!w690x438.jpg[/img][/align][align=center][color=#cc0000]图1. 德国昆希(Qsil)公司等离子熔融工艺石英玻璃成型设备[/color][/align] 熔融石英玻璃在生产过程中,熔融态的石英玻璃将发生极其复杂的气体交换现象,此时气体的平衡状态与加热温度、炉内气压、气体在各相中的分压及其在玻璃中的溶解、扩散速度有关。因此,为获得羟基浓度小于50ppm且总缺陷(直径小于20um的气泡和夹杂物)浓度小于50个/立方厘米的高纯度熔融石英玻璃锭,需要根据加热温度选择不同的气体和真空工艺。本文提出了一种真空工艺实现方案,可进行等离子加热过程中的炉内气压实时控制和监测,以满足高纯度熔融石英等离子熔融工艺过程中的各种不同需要。[size=18px][color=#cc0000]2.真空度(气压)控制和监测方案[/color][/size] 与等离子熔融工艺石英玻璃成型设备配套的真空系统框图如图 2所示,可实现成型设备加热桶内的真空度(气压)在0.1~700Torr范围内的精确控制,控制精度可达到±1%以内。 如图2所示,真空系统的设计采用了下游控制模式,也可根据具体工艺情况设计为上游和下游同时控制模式。整个真空系统主要包括气源、进气流量控制装置、真空度探测器、出气流量控制和真空泵等部分。[align=center][color=#cc0000][img=,690,]https://ng1.17img.cn/bbsfiles/images/2020/10/202010262150259848_5706_3384_3.png!w690x345.jpg[/img][/color][/align][align=center][color=#cc0000]图2. 真空系统框图[/color][/align] 来自不同气源的气体通过可控阀门形成单独或混合气体进入歧管,然后通过一组质量流量控制器和针阀来控制进入成型设备的气体流量,由此既能实现设备中的真空度快速控制和避免较大的过冲,又能有效节省某些较昂贵的惰性气体。 成型设备内真空度的形成主要靠真空泵抽取实现,抽取的工艺气体需要先经过滤装置进行处理后再经真空泵排出。 工艺气体的真空度(气压)通过两个不同量程的真空计来进行监测,由此来覆盖整个工艺过程中的真空度控制和测量。 真空度的精确控制采用了一组质量流量控制器、调节阀控制器和阀门,可以实现整个工艺过程中任意真空度设定点和变化斜率的准确控制。 整个真空系统内的传感器、装置以及阀门,采用计算机结合PLC进行数据采集并按照程序设定进行自动控制。[size=18px][color=#cc0000]3.说明[/color][/size] 上述真空系统方案仅为初步的设计框架,并不是一个成熟的技术实施方案,还需要结合实际工艺过程和参数的调试来对真空系统方案进行修改完善。 真空度控制与其他工程参数(如温度、流量等)控制一样,尽管普遍都采用PID控制技术,但对真空度控制而言,则对控制器的测量精度和PID控制算法有很高的要求,而进口配套的控制器往往无法达到满意要求。 另外,如在真空度控制过程中,真空容器中的真空度会发生改变,系统的时间常数 也随之改变,这意味着具有固定控制参数的控制器只能最佳地控制一个压力设定值。如果压力设定值改变,控制器的优化功能将不再得到保证。必须对控制参数进行新的调整,通常是手动进行。

  • 【求购】等离子体光谱诊断系统

    实验室需要直流电弧等离子体光谱诊断系统一套包括单色仪,光电倍增管,a/d相应的计算机及软件需要测量的波长范围为300~800nm联系方式qianjinxue@yahoo.com.cn

  • 【求购】等离子体光谱诊断系统

    实验室需要直流电弧等离子体光谱诊断系统一套包括单色仪,光电倍增管,a/d相应的计算机及软件需要测量的波长范围为300~800nm联系方式qianjinxue@yahoo.com.cn

  • 北京同洲维普科技有限公司刚刚发布了 行业经理-半导体、镀膜、等离子、划片机职位,坐标,敢不敢来试试?

    [b]职位名称:[/b] 行业经理-半导体、镀膜、等离子、划片机[b]职位描述/要求:[/b]职位描述:1. 开拓新市场,发展新客户,增加产品销售范围;2. 负责代理商发展与管理;3. 维护及增进已有客户关系;4. 负责销售区域内销售活动的策划和执行,完成销售指标。5.熟悉半导体材料制备领域镀膜、等离子、划片机行业[b]公司介绍:[/b] 北京同洲维普科技有限公司位于北京市昌平区宏福创业园,是一家集制冷、气动技术于一体的技术型企业。公司致力于将产品技术创新应用于环保、科研、医疗、工业生产线等领域中,为推动产业发展而努力。  公司科研队伍由国内知名技术专家带队,通过不断创新,攻克多项技术难关,开发了多项跨行业技术应用系统。  公司的主要产品及研究项目有:实验室冷水机、低温循环机、激光冷水机、工业冷水机、双温冷水机、金属...[url=https://www.instrument.com.cn/job/user/job/position/77333]查看全部[/url]

  • 如何获得谱线的跃迁几率A、上能级统计权重g、分配函数Z,非热力学平衡等离子体中各种温度关系如何

    实验室项目辅助的参数测量,我就半路出家了,许多不懂的地方……请问:1、如何获得谱线的跃迁几率A、上能级统计权重g、分配函数Z?(跃迁几率和统计权重我看有人说看手册查,如果是要查能不能给我个参考文献手册什么的或者提供个学习的网站论坛之类,光学方面几乎两眼一抹黑啊……分配函数Z没有查到是个神马)2、请问非热力学平衡等离子体中 电子温度与激发温度 可以认为是一个温度吗,看论文中说激发温度比电子温度略低这个略低的值可以忽略吗,双谱线法 斜率法什么的是不是求激发温度的?3、saha方程和光强比求电子密度的公式中使用的温度 是电离温度吗,请问电离温度怎么个测法,跟离子温度、激发温度是一个温度吗(因为看到有论文中混用了,不过论文中是局部热力学平衡状态),离子温度跟气体温度是一个温度么?4、看书上写Stark展宽产生的条件是 等离子体中压差至少为10e5V/cm3 ,这个压差是维持等离子体时的吗还是激发等离子体是满足就可以了,我们产生的等离子体里面几乎是等势体是不是意味着不能使用Stark展宽测量电子密度了。问题有点多,拿出全部身家拜求高手解答~会啥米答啥米,答一点是一点~不要羞涩哟~嗯嗯~

  • 如何获得谱线的跃迁几率A、上能级统计权重g、分配函数Z,非热力学平衡等离子体中各种温度关系如何

    实验室项目辅助的参数测量,我就半路出家了,许多不懂的地方……请问:1、如何获得谱线的跃迁几率A、上能级统计权重g、分配函数Z?(跃迁几率和统计权重我看有人说看手册查,如果是要查能不能给我个参考文献手册什么的或者提供个学习的网站论坛之类,光学方面几乎两眼一抹黑啊……分配函数Z没有查到是个神马)2、请问非热力学平衡等离子体中 电子温度与激发温度 可以认为是一个温度吗,看论文中说激发温度比电子温度略低这个略低的值可以忽略吗,双谱线法 斜率法什么的是不是求激发温度的?3、saha方程和光强比求电子密度的公式中使用的温度 是电离温度吗,请问电离温度怎么个测法,跟离子温度、激发温度是一个温度吗(因为看到有论文中混用了,不过论文中是局部热力学平衡状态),离子温度跟气体温度是一个温度么?4、看书上写Stark展宽产生的条件是 等离子体中压差至少为10e5V/cm3 ,这个压差是维持等离子体时的吗还是激发等离子体是满足就可以了,我们产生的等离子体里面几乎是等势体是不是意味着不能使用Stark展宽测量电子密度了。问题有点多,会啥米答啥米,答一点是一点~不要羞涩哟~嗯嗯~

  • 【讨论】等离子体应用相关仪器

    这些是不是算作等离子体还请高手指正!1、等离子体清洗机/刻蚀/灰化/减薄 通过等离子体与固体表面的相互作用,消除固体表面的有机污染物,或者与样品表面的材料反应生成相应的气体,由真空系统排出反应腔,整个过程在样品表面不产生残留物,固体如: 金属、陶瓷、玻璃、硅片等等,同时可以用等离子处理系统对样品表面进行 处理,改善样品表面的特性,如亲水/疏水特性,表面自由能,以及表面的 吸附/粘附特性等等。 2、离子溅射:氩气充入已被低真空泵抽真空的样品室里。多次充入氩气,使不需要的气体排出,特别是水蒸汽。这样,样品室内充满了尽可能多的纯的氩气。然后调节样品室内工作压力为0.05-0.1mbar,这样就可以开始溅射了。 开始溅射时,在靶(阴极)加上高压,在靶和样品台(阳极)之间产生了一个高压区。空间内的自由电子在磁场作用下进入旋转轨道,与空间内的氩原子碰撞。每次碰撞把氩原子外层中的一个电子撞出,使中性的氩原子带正电。这个雪崩效应激发了辉光放电。 带正电的氩离子被阴极吸引撞向阴极靶,撞出阴极靶上的金属原子。释放的金属原子之间以及金属原子与真空室内的其它气体分子之间的碰撞使金属原子四处发散,形成雾状。这样金属原子从各个方向撞击样品表面然后均匀地凝聚在样品表面,在即使是非常多裂缝的样品表面也能覆盖一层均匀的、有足够导电性的金属薄膜。 由于金和银原子表面的高度扩散性,它们容易在样品表面形成岛状,这样,除非金属镀层有10nm厚,否则达不到所需导电性。白金能产生最细腻的镀层。 溅射镀层的细腻程度取决于靶材、工作距离、气体压力和溅射电流以及反应持续时间3、磁控溅射:电子枪发射的电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。4、等离子切割机:等离子切割是利用高温等离子电弧的热量使工件切口处的金属  等离子切割机标准图片部份局熔化(和蒸发),并借高速等离子的动量排除熔融金属以形成切口的一种加工方法。等离子切割机配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区。

  • 电感耦合等离子体质谱仪ICP-MS 2000

    电感耦合等离子体质谱仪 (简称ICP-MS),是20世纪80年代发展起来的一种新的微量(10-6)、痕量(10-9)和超痕量(10-12)元素分析技术。可测定元素周期表中大部分元素,极低的检出限、极宽的动态线性范围、谱线简单、干扰少、精密度高、分析速度快、可提供同位素分析。性能优势1、分析速度快、操作简单、灵敏度高、背景噪音低、消除干扰效果更佳、维护方便。 2、一键式等离子体设置使得等离子体的优化更为简便具有极好的重现性。 3、先进等离子体屏蔽技术,极大地提高仪器的灵敏度,改善低质量数元素的检出限,达到ppt水平。 4、具有独特的活动接口门结构,可在真空下替换和装卸采样锥与截取锥,便于日常维护。 5、全新六级杆碰撞反应池,提高离子传输效率和消除多原子离子干扰能力。 6、无需数/模切换,由计算机全自动设定和控制,实现9个数量级的浓度动态范围。7、新型真空腔体结构,无任何导线连接,各个组件采用不对称安装和插入式安装。软件优势ICP-MS2000提供最便捷的操作软件,非常直观,全面。软件囊括了目前所有分析方法,包括特殊的同位素比值和同位素稀释法。 智能选择方法、智能仪器调谐、QC质量控制、多种分析方法组合功能、序列分析、自动监测功能、自定义报告格式。仪器配置进样系统:敞开式进样系统结构,使用外部安装的雾化器,自我定位,无需调整。 蠕动泵:计算机控制3通道12滚轴低脉冲蠕动进样泵,转速可调。 雾化器:石英玻璃同心雾化器(0.8 mL/min)。 雾化室:小体积,低记忆效应,采用半导体制冷装置高纯石英雾化室,单通道梨型带撞击球。 炬管:整体型石英炬管,1.5 mm口径喷射。 ICP源:27.12 MHz固态技术,水冷,最大功率1600 W。计算机控制功率,自动点火与熄火。 炬位调整系统:计算机全面控制x、y、z三维炬管精确位置,所有调整参数存入分析方法内。 气体控制系统:3个计算机控制的质量流量计,用于雾化气,辅助气,等离子体气的全部气流量控制。 断电保护系统:在意外停电发生时,安全自行关机,而不损坏仪器系统。 接口:镍锥,具有独特的活动接口门结构,易于替换和装卸采样锥与截取锥。 活动阀门:计算机控制阀门,保护仪器真空,便于在真空系统工作时拆装和清洗采样锥和截取锥。 离子透镜系统:配有高效率六极杆离子导向系统,在全质量范围内获得最佳的离子传输效率,全自动的离子聚焦调谐过程,真空室内的透镜使用非对称安装,方便拆装定位。 四极杆特征:钼四极杆,主极杆180 mm×12 mm,预四级杆20 mm×12 mm,开盖即可安装,拆装。 四极杆RF发生器:风冷2.0 MHz,质量轴稳定性108多通道信号分析器:65000道多通道信号分析器,适应瞬间信号分析要求。 信号采集模式:跳峰,扫描,分段扫描,同时跳峰和扫描混合型。 软件:提供自动控制仪器及其附件的能力,Windows 2000/XP/vista/win7(32位或64位)专业操作系统。 水循环系统:温度控制:10~40℃;最小流速:5升/分钟,压力控制:0~600 kPa。技术参数质量数量范围:2~255 amu测量范围:≥108 灵敏度: Be≥2×106 ; In≥35×106 ; U≥30×106 单位(cps/mg/L) 检出限: Be≤10;In ≤2;U≤2 单位(ng/L) 分辨率:0.6~0.8 amu信噪比:≥50×106 背景噪音:≤2 cps(全质量范围) 质量轴稳定性:≤0.05 amu/24 h稳定性RSD: 短期≤3%;长期≤4%氧化物离子:CeO+/Ce+≤3%双价离子:69Ba2+/138Ba+ ≤3% 同位素比:(107Ag/109Ag)≤0.3%丰度灵敏度:≤1×10-6低质量端;≤5×10-7高质量端应用领域1、环境领域:饮用水、海水、环境水资源食品、卫生防疫、商检等。 2、半导体领域:高纯金属,高纯试剂,Si 晶片的超痕量杂质,光刻胶等。 3、医药及生理分析领域:头发、全血、血清、尿样、生物组织等医药研究,特别是全血铅的测定。 4、核工业领域:核燃料的放射性同位素的分析,初级冷却水的污染分析等。5、其他领域:如化工,石化、地质等。

  • 如何优化提高等离子体温度呢?

    1.如何提高等离子体温度呢? 射频功率是热焰而言是固定的,等离子气体所需氩气是否也是固定的呢?2.如何对所有元素选择合适的等离子体温度呢?其温度升高,有利于第一电离能大的元素降低甚至消除多原子离子干扰,而对第二电离能较低元素则因产生双电核干扰而导致结果偏低。如何兼顾所有元素而设置等离子体温度(或条件)呢?

  • 【分享】电感耦合等离子体原子发射光谱分析信息系统

    电感耦合等离子体原子发射光谱分析信息系统, 刘思东 张卓勇 郭黎平 陈杭亭 曾宪津 胡钢东北师范大学-------------谁知道以上几位老师的联系地址?何处可以下载到该分析系统?请回帖。-------------下载分享该论文的网友请主动回帖,这对你是有好处的,因为回帖就会增加你的积分!

  • 北京同洲维普科技有限公司刚刚发布了 行业经理-半导体、镀膜、等离子、划片机职位,坐标廊坊市,敢不敢来试试?

    [b]职位名称:[/b] 行业经理-半导体、镀膜、等离子、划片机[b]职位描述/要求:[/b]职位描述:1. 开拓新市场,发展新客户,增加产品销售范围;2. 负责代理商发展与管理;3. 维护及增进已有客户关系;4. 负责销售区域内销售活动的策划和执行,完成销售指标。5.熟悉半导体材料制备领域镀膜、等离子、划片机行业[b]公司介绍:[/b] 北京同洲维普科技有限公司位于北京市昌平区宏福创业园,是一家集制冷、气动技术于一体的技术型企业。公司致力于将产品技术创新应用于环保、科研、医疗、工业生产线等领域中,为推动产业发展而努力。  公司科研队伍由国内知名技术专家带队,通过不断创新,攻克多项技术难关,开发了多项跨行业技术应用系统。  公司的主要产品及研究项目有:实验室冷水机、低温循环机、激光冷水机、工业冷水机、双温冷水机、金属...[url=https://www.instrument.com.cn/job/user/job/position/77332]查看全部[/url]

  • 科学家首次对极热致密等离子体进行受控研究

    实验结果推翻了沿用半个世纪的理论模型 中国科技网讯 据物理学家组织网8月7日(北京时间)报道,一个由英、美、德等国家研究人员组成的国际研究小组利用美国斯坦福直线加速器中心(SLAC)的直线加速器连贯光源(LCLS),首次对极热、致密物质进行了受控研究,实验结果推翻了50年来人们广泛接受的模型,此模型用于解释致密等离子体内的离子行为及其相互影响。从研究核聚变作为能源到理解恒星内部的运行机制,这一结果将对许多领域产生重要影响。相关论文发表在本周出版的《物理评论快报》上。 研究人员利用LCLS的X射线检测了极热致密等离子体的详细属性,首次实现了等离子物理学中的基本实验。实验结果与目前科学家用了半个世纪的模型并不符合。“X射线激光非常关键,我们无法在别的地方进行这种实验。”研究小组领导、牛津大学的贾斯廷·瓦克说。 LCLS为实验提供了特需条件:用于检测极端现象的严格受控的环境,能量可精确调整的激光束和精确检测特殊固体密度的等离子体属性的方法。改变X射线的光子能量,能生成等离子体并对其进行探测。研究人员用X射线射击超薄铝箔,生成了固体密度的铝等离子体,并用复杂的算法和计算机代码来模拟超热物质行为,构建出聚变过程模型。论文作者、牛津大学奥兰多·希瑞克斯塔说,我们将这些代码用于1966年以来就一直在用的旧模型中,模拟等离子环境产生的效果,发现模型预测与我们的实验数据不符。但返回到更早的1963年的模型时,却符合得相当好。可这一模型并没有得到广泛接受。 在此过程中,他们还确定了将电子击出等离子体的高电荷原子需要多少能量。“这个问题以前没有人能准确地测出来。”希瑞克斯塔说。 研究人员指出,最新分析解释了在聚变实验和有着超浓聚联合原子内核的恒星释放能量过程中的一些重要问题,这一过程中,随着相关电子轨道的重叠,紧压在一起的原子会失去自主能力。随着深入研究获得更多细节,可能对聚变模型的某些方面带来改进。 瓦克说,希望这一发现能在等离子物理学界产生“重要影响”。在许多领域中,用1963年的模型更容易做出改进。“我们不能说,当前的每个模型在任何条件下对任何事物都管用。希望人们能回顾这一问题,看它们是否符合更精细的条件。”(记者 常丽君) 总编辑圈点 等离子态在宇宙中最为常见,因为恒星中的物质普遍处于等离子态——气体在极度高温下,电子脱离了原子核的束缚,等离子体就产生了。但对于遍布宇宙的这种物质状态,人们对之的理解还非常有限。等离子体太变幻莫测了,科学家几乎无法预知,稍长一点的时间段里,它会如何变化。正因为如此,研发实用的托卡马克核聚变装置,很大程度上就是对等离子体的研究和利用。此次新技术手段的应用,帮助科学家确定了几个关键的物理值,让人们对等离子体的运动规律更有把握。 《科技日报》(2012-8-8 一版)

  • 走近电感耦合等离子体质谱仪(ICP-MS)

    走近电感耦合等离子体质谱仪(ICP-MS)

    (转帖)近些年来食品重金属污染事件时有曝光,在人们关注这类食品安全事件的同时,电感耦合等离子体质谱仪(ICP-MS)作为检测食品中重金属的主力设备也慢慢走入了人们的视线。ICP-MS基本介绍 ICP-MS全称是电感耦合等离子体质谱仪,它是一种将ICP技术和质谱结合在一起的分析仪器。ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。   ICP-MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素,被广泛应用于半导体、地质、环境以及食品检测等行业中。http://ng1.17img.cn/bbsfiles/images/2015/11/201511121054_573215_1947624_3.jpgICP-MS的组成及工作条件  ICP-MS由ICP焰炬,接口装置和质谱仪三部分组成;若使其具有好的工作状态,必须设置各部分的工作条件。 ICP工作条件:主要包括ICP功率,载气、辅助气和冷却气流量。样品提升量等。ICP功率一般为1KW左右,冷却气流量为15L/min,辅助气流量和载气流量约为1L/min,调节载气流量会影响测量灵敏度。样品提升量为1ml/min。  接口装置工作条件:ICP产生的离子通过接口装置进入质谱仪,接口装置的主要参数是采样深度,也即采样锥孔与焰炬的距离,要调整两个锥孔的距离和对中,同时要调整透镜电压,使离子有很好的聚焦。  质谱仪工作条件:主要是设置扫描的范围。为了减少空气中成分的干扰,一般要避免采集N2、O2、Ar等离子。进行定量分析时,质谱扫描要挑选没有其它元素及氧化物干扰的质量, 同时还要有合适的倍增器电压。   事实上,在每次分析之前,需要用多元素标准溶液对仪器整体性能进行测试,如果仪器灵敏度能达到预期水平,则仪器不再需要调整;如果灵敏度偏低,则需要调节载气流量,锥孔位置和透镜电压等参数。http://ng1.17img.cn/bbsfiles/images/2015/11/201511121055_573216_1947624_3.jpgICP-MS的日常维护及使用注意事项进样系统 - 雾化器 (1)由于雾化器中心的毛细管口径非常小,要求样品要溶解的彻底,不得含有沉淀或漂浮物,如果有少量沉淀要用滤膜进行过滤,否则容易堵塞雾化器。(2)在用普通进样系统时,不得含有HF或氟化物,否则容易损坏矩管和雾化器,如果需要分析此类样品。需更换耐HF进样系统。 进样系统 - 雾化室和蠕动泵 (1)雾化室一般很少出现问题,基本属于免维护部件。 (2)蠕动泵部分主要是泵管长期受到挤压和磨损容易消耗,所以当上机结束后要将泵夹松开以延长泵管的使用寿命。 离子源 - 矩管 (1)矩管是ICP-MS中比较容易积碳和积盐的位置,如果发生堵塞,可以将堵塞部位浸入浓硝酸中煮沸。 (2)如果矩管的气体连接管周围变为黄褐色,这主要是有机物沉淀(气体管路中的增塑剂在高温下流失),对仪器性能没有影响。可以将矩管放入马弗炉中500℃烘烤几小时,以去除这些褐色沉淀物。 接口 - 双锥 (1)采样锥和截取锥的清洗首选用棉棒蘸超纯水轻轻擦拭锥的正反两面,再用超纯水冲净后晾干使用。注意清洗时控制力度,不能破坏锥孔。 (2)洗净后检查锥孔的形状和大小,观察圆形锥孔是否变形、是否光滑,同时注意锥孔尺寸大小,如果采样锥孔径超过1mm,截取锥孔径超过0.4mm,则需要更换相应的锥。 冷却水系统 (1)定期更换冷却水,约每半年更换一次,同时滴加抑菌剂。 (2)每年检查一次水接头,防止漏水,必要时及时更换。 (3)定期清理水循环的散热器,三年左右检查制冷量。 机械泵  每个月都应该检查机械泵油,以保证泵油液面处于最大、最小刻度线之间,而且泵油颜色正常、洁净。如果泵油脏了,需要及时更换以保证仪器始终能维持良好的真空状态。 气路系统的维护 (1)定期检查外气路,看是否有漏气。 (2)定期检查内气路,看是否有漏气。 (3)注意养成良好的用气习惯:  开机前要确认气瓶的压力是否在正常范围内,一般为0.6-0.8MPa。  增压阀当上机结束后要及时关闭,以免造成泄压。

  • ICP-OES等离子体,SPARK-OES等离子体,LIBS等离子体有何异同?

    对发射光谱而言,光源的分析特性决定其分析性能(如灵敏度,线性范围,分析方法的建立等),可见光源在光谱分析中所占的地位是何等重要.ICP-OES等离子体,SPARK-OES等离子体,LIBS等离子体子这三种等离子体中或许ICP-OES及SPARK-OES等离子体研究的最为透彻,而LIBS等离子体则相对不是那么成熟,大家谈谈这三种等离子体有何异同...

  • 【资料】-微波等离子体及其应用

    【资料】-微波等离子体及其应用

    关键词: 化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积 微波等离子体CVD法 微波等离子体热处理仪 金刚石薄膜 微波烧结 新材料 纳米催化剂 一、微波等离子体简介等离子体的研究是探索并揭示物质“第四态” ——等离子体状态下的性质特点和运行规律的一门学科。它是包含足够多的正负电荷数目近于相等的带电粒子的非凝聚系统。等离子体的研究主要分为高温等离子体和低温等离子体。高温等离子体中的粒子温度高达上千万以至上亿度,是为了使粒子有足够的能量相碰撞,达到核聚变反应。低温等离子体中的粒子温度也达上千乃至数万度,可使分子 (原子)离解、电离、化合等。可见低温等离子体温度并不低,所谓低温,仅是相对高温等离子体的高温而言。高温等离子体主要应用于能源领域的可控核聚变,低温等离子体则是应用于科学技术和工业的许多领域。高温等离子体的研究已有半个世纪的历程,现正接近聚变点火的目标;而低温等离子体的研究与应用,只是在近年来才显示出强大的生命力,并正处于蓬勃的发展时期。微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积技术原理是利用低温等离子体(非平衡等离子体)作能量源,工件置于低气压下辉光放电的阴极上,利用辉光放电(或另加发热体)使工件升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在工件表面形成固态薄膜。它包括了化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积的一般技术,又有辉光放电的强化作用。 金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1. 在药瓶内镀上金刚石薄膜,可以避免药品在瓶内起反应,延长药品的保 全寿命; 2. 可作为计算机硬盘的保护层。目前的计算机硬盘,磁头在不用时要移到硬盘旁边的位置上,如果硬盘包有金刚石薄膜,则磁头可以始终放在硬盘上,这样就提高了效率; 3. 在切割工具上镀上金刚石薄膜,可以使工具在很长时间内保持锋利; 4. 用于制造带有极薄金刚石谐振器的扬声器; 5. 涂于计算机集成电路块,能抗辐射损坏,而一般硅集成块却易受辐射损坏。它能将工作时产生的热迅速散发掉,使集成块能排列得更紧凑些; 6. 用于分析X射线光谱的仪器,透过X射线的性能较别的材料好。 金刚石膜沉积必须要有两个条件: 1. 含碳气源的活化; 2. 在沉积气氛中存在足够数量的原子氢。 由于粒子间的碰撞,产生剧烈的气体电离,使反应气体受到活化。同时发生阴极溅射效应,为沉积薄膜提供了清洁的活性高的表面。因而整个沉积过程与仅有热激活的过程有显著不同。这两方面的作用,在提高涂层结合力,降低沉积温度,加快反应速度诸方面都创造了有利条件。 微波等离子体金刚石膜系统应由微波功率源,大功率波导元件、微波应用器及传感与控制四部分组成。应用器是针对应用试验的类型而设计,其微波功率密度按需要而设定,并按试验需要兼容各种功能,具有较强的专用性质。微波功率源、大功率波导元件及传感和控制三种类型的部件,是通用的部件,可按需要而选定。反应器必须可以抽成真空;且可置于高压。因此微波传输必须和反应器隔离开来。反应器中可以通入其他气体。下面是一个反应器图。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221201_18795_1613333_3.jpg[/img]半导体生产工艺中已经采用微波等离子体技术,进行刻蚀、溅射、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积、氧化硅片;还可用于金属、合金、非金属的表面处理;用于等离子体光谱分析,可检测十几种元素。 二、微波等离子体源 目前国内微波离子体源的研究工作,大部分在2450MHZ这个频段上进行,部分还可能采用915MHZ频段。这两个频段均采用连续波磁控管,并做成连续波功率微波源。但实际情况均具有较大的波纹因素,说得确切一些是三相全波整流或单相全波整流的波形被磁控管锐化了波纹状态。家用微波炉的电路结构实际上是可控的单相半波倍压整流电路,其波纹因素更大。 这种工作状态受电网波动的影响,平均功率不断变化,具有很大的不稳定性,造成功率密度的不确定。在微波等离子体金刚石膜制作系统要求很严格的情况下,会造成实验结果重复性不满意。因此需要稳定且纹波系数小的微波源是系统成功关键。 另外,近来微波等离子体的研究首先发现这些问题,电源的不稳定性会造成等离子体参数的变化。但用毫秒级的脉冲调制连续波磁控管,在许多实验中取得了良好的实验效果。理论分析调制通断时间的选定可以获得改善效果。 1. 物料介电损耗的正温度系数锐化了不均匀的加热效果,造成局部点的热失控现象。必要的周期停顿,利用热平衡的过程,可以缓解这些不均匀因素,抑制热失控现象的建立。 2. 避免了微波辅助催化反应过程中若干不需要副反应的累积。周期性的停顿可以避免这些副反应累积增强,停顿就是副反应的衰落,再从新开始,这样就避免了副反应的过度增长。 三、微波等离子体的应用 微波等离子体的应用技术主要用来制造特种性能优良的新材料、研制新的化学物质,加工、改造和精制材料及其表面,具有极其广泛的工业应用——从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源等。等离子体技术已开辟的和潜在的应用领域包括:半导体集成电路及其他微电子设备的制造;工具、模具及工程金属的硬化;药品的生物相溶性,包装材料的制备;表面上防蚀及其他薄层的沉积;特殊陶瓷(包括超导材料);新的化学物质及材料的制造;金属的提炼;聚合物薄膜的印刷和制备;有害废物的处理;焊接;磁记录材料和光学波导材料;精细加工;照明及显示;电子电路及等离子体二极管开关;等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等)。 微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制备纳米催化剂的研究等。 微波等离子体的应用前景广阔。来源于汇研微波

  • 【原创大赛】激光诱导击穿等离子体光谱简述

    【原创大赛】激光诱导击穿等离子体光谱简述

    激光诱导击穿等离子体光谱简述1 引言激光诱导击穿光谱技术(laser induced breakdown spectroscopy,LIBS)是一种基于原子发射光谱和激光等离子体发射光谱的元素分析技术。该技术利用激光为激发源,使高能激光聚焦在物体表面的微小区域,使分析物挥发、原子化并被激发,从而释放出包含有元素特征的发射谱线,根据谱线信息,即可实现对样品的定性与定量分析。相比于其他的原子光谱方法,该方法具有很多特点,但最为突出的是无需样品前处理,可以用于在线和现场分析。自从1962年,Brech 1在第十届国际光谱学论文集中首次提出用激光作为原子发射光谱的激发源,将元素的原子发射光谱应用于测定固体、气体和液体基质中元素组份,这就是LIBS技术的前身。经过五十多年的发展,LIBS技术已经越来越成熟,越来越多的应用在环境监测、空间探测、化学成像以及过程控制等多个领域,因此,LIBS的研究也愈来愈成为一个热点,曾被著名的光谱学家Dr.James Winefordner 2 称为原子光谱领域的“super star”。在过去的20年里,与LIBS相关的出版文献表现出强劲的增长趋势(图1)。http://ng1.17img.cn/bbsfiles/images/2015/07/201507021538_553069_2791515_3.png 图1 近20年LIBS相关出版文献数量(统计到本文写作为止,数据来自ISIWeb of Knowledge)2 LIBS发展历史自从1962年LIBS技术被首次提出,在这五十年内,无论是基础理论的研究,还是实验方法的创新,亦或是LIBS仪器的创新与发展,均出现了里程碑式的重大事件(表1),LIBS本身也有了较大的发展。表1 LIBS技术发展过程中的重大事件 年代里程碑事件1962激光被首次作为激发源1963首篇关于激光击穿气体产生等离子体的报道1983激光诱导击穿等离子体光谱首次以“LIBS”形式出现1990s商品化LIBS仪器开始出现2000NASA对LIBS用于火星探测进行论证2000首届LIBS会议举行(意大利,比萨)2002第二届国际LIBS会议举办(美国,奥兰多)2004第三届国际LIBS会议举办(西班牙,马六甲)2004LIBS技术被列入火星探测计划2006第四届国际LIBS会议举办(加拿大,蒙特利尔)20082010第五届国际LIBS会议举办(德国,柏林)第六届国际LIBS会议举办(美国,田纳西州)2011中国首届LIBS会议举办(中国,青岛)2012第七届国际LIBS会议举办(埃及,卢克索)2012中国第二届LIBS会议举办(中国,合肥)2014第八届国际LIBS会议举办(中国,北京)2014首届国际激光光谱前沿会议(中国,成都)2015首届亚洲LIBS会议举办(中国,武汉) 从表中可以看出,最近几年,中国LIBS团队得到了飞速的发展,已然成为与欧洲、美洲并列的三大LIBS研究中心,并日益引起国际同行的关注。而LIBS技术这颗原子光谱新星,也将随着其研究热度的逐步提高获得更为广阔的发展,成为一种日后不可或缺的物质特征分析手段3 产生原理输出激光通过传输光路被聚焦在样品表面,脉冲激光的持续时间一般为10ns,到达样品表面的激光能量密度可以达到GW•cm-2,因此被测物表面很快就有样品被剥蚀,该过程称为激光剥蚀。同时一个寿命很短、具有高瞬态温度(10000K)的发光等离子体在材料表面形成,在逐渐冷却的过程中,处于激发态的原子和离子的电子从激发态跃迁回基态,并释放出具有特征波长的光辐射,通过光检测器等的探测和分析发射光谱就能达到对样品的定性与定量分析。图2系统地表述了在激光剥蚀产生等离子的过程中涉及到的各个单元对最终结果的影响,包括有激光参数(脉宽、脉冲方式等)、样品性质以及等离子体的性质等。 http://ng1.17img.cn/bbsfiles/images/2015/07/201507021539_553070_2791515_3.jpg图2(引自参考文献3)激光剥蚀过程的整体视图一般而言,LIBS分析装置一般由光源系统、光路传输系统、触发系统、信号收集系统以及数据处理系统等五大部分组成(图3),在实际的分析测试过程中,常常需要综合考虑样品的特点(如样品成分组成的复杂程度及均一程度)、样品的形态(主要包括固态、液态和气态样品)、测定元素的种类(一种或多种、金属或非金属元素)以及检出指标(定性分析或定量分析、常量分析、微量分析、痕量分析等)等因素,来最终确定硬件的选型。http://ng1.17img.cn/bbsfiles/images/2015/07/201507021540_553071_2791515_3.jpg图3(参考文献 4)典型的LIBS装置系统组成图4 LIBS光谱技术的应用自从激光诱导击穿等离子体光谱技术在1983年首次被以LIBS的缩写形势出现以来,LIBS技术就被科研工作者用于各个领域的研究。国内LIBS应用研究开展相对比较广泛,涉及有煤质分析、钢铁冶金、地质勘探、油品开采、农产品检测、中药材检测、深海探测等多个应用领域。更值得一提的是,LIBS技术检测对样品没有特殊要求,可以是任何形态,任何性质,这也从另一方面彰显了LIBS技术在众多领域中极大的应用前景和潜力(图4所示)。 http://ng1.17img.cn/bbsfiles/images/2015/07/201507021541_553072_2791515_3.png图4 LIBS技术应用领域此外,随着对现场测试、快速在线分析的需求程度的提升,分析仪器向便携式、在线现场分析发展的趋势越来越明显。随着激光器、光谱仪以及光导纤维技术的逐步成熟,LIBS技术将越来越成为解决恶劣环境下物质信息探测的重要工具,也将会使LIBS的应用前景更加广阔。现在已经商业化的手持式仪器则是以牛津仪器公司推出的mPulse手持式激光诱导击穿光谱合金分析仪为代表。5结论与展望LIBS技术从起源至现在,已经经历数十年的发展,但是至今尚未开展普遍应用,限制其发展的主要因素是其检测水平如检出限、灵敏度以及检测重复性等,因此,旨在提高其检测水平的方法学研究将越来越成为研究热点。近年来在国内外光谱工作者的努力之下,激光诱导击穿等离子体光谱分析技术的研究取得了可喜发展。随着科学的不断进步,科研人员对LIBS技术的进一步深入系统的研究和应用,相信LIBS技术必定会在光谱探测技术中大放异彩,成为原子光谱分析领域中的一个“superstar”。Reference(1) Brech, F.; Devaney, J.;Tabe1-ing, R. OPTICAL MIC

  • 等离子体自动熄灭

    用的是Agillent 7700,上周在做实验时,等离子体总是点火没多久就熄灭,系统提示:IF/BK压力太小。查维护文件,里面解释说可能是锥孔堵塞了,大家有碰到这样的问题没?

  • IRIS等离子体光谱仪操作指南之一:日常工作检查表

    序 言IRIS系列光谱仪是电感耦合氩等离子体发射光谱仪(ICAP-AES)一族。它采用中阶梯光栅光学系统和独特的(CID)固体检测器来提供完整的和全波长复盖的分析谱图。典型的发射光谱仪(AES)能够分析从几个ppb到百分之几乃至百分之几十的样品浓度。IRIS ICAP光谱仪可分为以下几种:.IRIS- 采用垂直观测,一般用于分析基体较复杂的样品,干扰较小。.IRIS AP- 采用水平观测,能够改善仪器的检出限,一般用于分析基体简单的样品,对于基体复杂的样品干扰较大。.IRIS Duo- 采用双向观测,实际上以水平观测为基础,利用辅助光学系统进行垂直观测,可弥补水平观测的易电离干扰,拓宽分析线性范围。.IRIS Ad- 高分辨率IRIS,其波长范围减小,换之以高分辨率,是标准仪器的两倍。在此型号中所有的观测方式都可选择使用。日常工作检查表 此方法开始于光谱仪停机状态。.证实有足够的氩气用于连续工作。.证实废液收集瓶有足够的空间来容纳分析时产生的废液。若循环水和CID冷却系统没有单独的开关。.打开氩气,检查吹扫气体系统工作是否正常。.15分钟后,打开主电源开关,光学恒温系统(FPA)开始升温,大约几小时后,达到恒温状态。若循环水和CID冷却系统具有单独的开关,并确保开关是闭合的。.打开主电源开关,光学恒温系统(FPA)开始升温,大约几小时后,达到恒温状态。.打开氩气,检查吹扫气体系统工作是否正常。.15分钟后,打开循环水和CID冷却系统开关。这样可以节省氩气的消耗。(对于半导体制冷来说,CID几分钟即可达到所需温度,对于冰箱制冷来说,所需时间可能会达15-30分钟。).将作用于蠕动泵管上的塑料夹压紧,并将样品管放入去离子水中。.在ICP控制面板上,为光谱仪作硬复位(Hard Reset),检查CID和FPA的温度是否工作正常。通常,CID的温度为-40℃左右, FPA的温度为30℃左右..点燃等离子体。.让光谱仪预热15分钟,即可进行分析工作。.当所有的分析工作结束后,用去离子水清洗进样系统至少3分钟。.熄灭等离子体。.松开作用于蠕动泵管上的塑料夹。若循环水和CID冷却系统具有单独的开关。.关闭循环水和CID冷却系统。.只有CID温度达到+15℃或更高温度时,才可以关闭氩气。若循环水和CID冷却系统没有单独的开关。.关闭光谱仪的主电源,待60分钟后,才可以关闭氩气。 警 告若在CID检测器处于冷却状态时,关闭或没有打开吹扫气体,可能会使CID检测器结霜,对其造成不可挽回的损坏。 -----------------转载自 热电工程师带的ICP教程

  • 【原创】等离子清洗技术

    等离子原理概述:等离子体是物质的一种存在状态,通常物质以固态、液态、气态三种状态存在,但在一些特殊的情况下可以以第四中状态存在,如地球大气中电离层中的物质。这类物质所处的状态称为等离子体状态,又称为物质的第四态。等离子体中存在下列物质:处于高速运动状态的电子;处于激活状态的中性原子、分子、原子团(自由基);离子化的原子、分子;分子解离反应过程中生成的紫外线;未反应的分子、原子等,但物质在总体上仍保持电中性状态。 等离子清洗/刻蚀技术是等离子体特殊性质的具体应用。等离子清洗/刻蚀机产生等离子体的装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这些离子的活性很高,其能量足以破坏几乎所有的化学键,在任何暴露的表面引起化学反应。等离子清洗技术在金属行业中的应用:金属表面常常会有油脂、油污等有机物及氧化层,在进行溅射、油漆、粘合、健合、焊接、铜焊和PVD、CVD涂覆前,需要用等离子处理来得到完全洁净和无氧化层的表面。等离子清洗技术在电子电路及半导体领域的应用:等离子表面处理这门工艺现在正应用于LCD、LED、 IC,PCB,SMT、BGA、引线框架、平板显示器的清洗和蚀刻等领域。等离子清洗过的IC可显著提高焊线邦定强度,减少电路故障的可能性;溢出的树脂、残余的感光阻剂、溶液残渣及其他有机污染物暴露于等离子体区域中,短时间内就能清除。PCB制造商用等离子处理来去除污物和带走钻孔中的绝缘物。对许多产品,不论它们是应用于工业还是电子、航空、健康等行业,其可靠性很大一部分都依赖于两个表面之间的粘合强度。不管表面是金属、陶瓷、聚合物、塑料或是其中的复合物,经过等离子处理以后都能有效地提高粘合力,从而提高最终产品的质量。等离子处理在提高任何材料表面活性的过程中是安全的、环保的、经济的。等离子清洗技术在塑料及橡胶(陶瓷、玻璃)行业中的应用:聚丙烯、PTFE等橡胶塑料材料是没有极性的,这些材料在未经过表面处理的状态下进行的印刷、粘合、涂覆等效果非常差,甚至无法进行。利用等离子技术对这些材料进行表面处理,在高速高能量的等离子体的轰击下,这些材料结构表面得以最大化,同时在材料表面形成一个活性层,这样橡胶、塑料就能够进行印刷、粘合、涂覆等操作。 等离子清洗/刻蚀机处理材料表面时,处理时的工艺气体、气体流量、功率和处理时间直接影响材料表面处理质量,合理选择这些参数将有效提高处理的效果。同时处理时的温度、气体分配、真空度、电极设置、静电保护等因素也影响处理质量。因此,对不同的材料要制定选用不同的工艺参数。等离子表面清洗:金属 陶瓷 塑料 橡胶 玻璃等表面常常会有油脂油污等有机物及氧化层,在进行粘接 绑定 油漆 键合 焊接 铜焊和PVD、CVD涂覆前,需用等离子处理来得到完全洁净和无氧化层的表面。等离子清洗技术在半导体行业、航空航天技术、精密机械、医疗、塑料、考古、印刷、纳米技术、科研开发、液晶显示屏、电子电路、手机零部件等广泛的行业中有着不可替代的应用

  • 如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    如何去除透射样品腔长期累积的碳氢化合污染物?(透射等离子清洗机和等离子清洗透射样品杆的应用)

    透射系统拍高分辨,或者进行EELS等高端分析工作经常会遇到很麻烦的污染物,这些一部分是样品本身带有的可通过外置的等离子清洗机处理,另一部分也是现在比较难处理的就是透射系统样品腔内本身长期的碳氢化合物。等离子透射样品杆可以达到清洗效果,同时对样品以及透射系统本身没有任何的影响。 而非传统意义上等离子清洗用的是高能量的离子对样品特别是脆弱样品的破坏损伤,加热损伤等。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062250_303575_1757238_3.jpg而透射使用的外置式等离子清洗机不但可以对市场上不同透射样品杆进行清洁外,还可以进行特殊样品的真空储存。这样怕氧化的样品或特殊样品不但可以进行等离子清洁外还可以进行真空保存。http://ng1.17img.cn/bbsfiles/images/2011/07/201107062257_303576_1757238_3.jpg

  • 关于稳定的等离子体火焰

    电感耦合高频等离子(ICP)光源  等离子体是一种由自由电子、离子、中性原子与分子所组成的在总体上呈中性的气体,利用电感耦合高频等离子体(ICP)作为原子发射光谱的激发光源始于本世纪60年代。 ICP装置由高频发生器和感应圈、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。应用最广泛的是利用石英晶体压电效应产生高频振荡的他激式高频发生器,其频率和功率输出稳定性高。频率多为27-50 MHz,最大输出功率通常是2-4kW。  感应线圈一般以圆铜管或方铜管绕成的2-5匝水冷线圈。  等离子炬管由三层同心石英管组成。外管通冷却气Ar的目的是使等离子体离开外层石英管内壁,以避免它烧毁石英管。采用切向进气,其目的是利用离心作用在炬管中心产生低气压通道,以利于进样。中层石英管出口做成喇叭形,通入Ar气维持等离子体的作用,有时也可以不通Ar气。内层石英管内径约为1-2mm,载气载带试样气溶胶由内管注入等离子体内。试样气溶胶由气动雾化器或超声雾化器产生。用Ar做工作气的优点是,Ar为单原子惰性气体,不与试样组分形成难解离的稳定化合物,也不会象分子那样因解离而消耗能量,有良好的激发性能,本身的光谱简单。  当有高频电流通过线圈时,产生轴向磁场,这时若用高频点火装置产生火花,形成的载流子(离子与电子)在电磁场作用下,与原子碰撞并使之电离,形成更多的载流子,当载流子多到足以使气体有足够的导电率时,在垂直于磁场方向的截面上就会感生出流经闭合圆形路径的涡流,强大的电流产生高热又将气体加热,瞬间使气体形成最高温度可达10000K的稳定的等离子炬。感应线圈将能量耦合给等离子体,并维持等离子炬。当载气载带试样气溶胶通过等离子体时,被后者加热至6000-7000K,并被原子化和激发产生发射光谱。

  • 【转帖】世界首个三维等离子标尺研制成功

    据美国物理学家组织网6月16日报道,最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。   随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。

  • 【分享】表面等离子体激元学

    众所周知,电子回路提供了控制电子输运和储存能力。但是,现在利用电路进行数字信息保真传送时,面临着相当大的限制,而光子学 (Photonics)给出了一个解决难题的有效途径,构筑基于光纤和光子回路的光通信系统,便是一个很好的方案。不幸的是,光子元件的尺寸是微米量级,而电子元件和回路尺寸要小的多(纳米量级),因此,不可能将它们二者集成一体于纳米尺度的芯片中。表面等离子体激元学(plasmonics)的诞生,使基于表面等离子体激元 (Surface Plasmon Polarifons,,SPPs)的元件和回路,具有纳米尺度,从而可能实现光子与电子元器件,在纳米尺度上完美的联姻。本文简单介绍表面等离子体激元学的原理,目前现状,各种应用,例如等离子体激元芯片,新新型光源,纳米尺度光刻蚀术,突破衍射极限的高分辨率成像等,以及面临的挑战和未来前景.

  • 电感耦合高频等离子体光源(ICP)

    电感耦合高频等离子光源(ICP)是本世纪60年代出现的一种新型的光谱激发光源。等离子体是一种由自由离子、电子、中性原子与分子所组成的在总体上呈中性的气体。在近代物理学中,把电离度大于0.1%,其正负电荷相等的电离气体称为等离子体。ICP装置由高频发生器和感应器、炬管和供气系统、试样引入系统三部分组成。高频发生器的作用是产生高频磁场以供给等离子体能量。感应圈一般为以圆铜管或方铜管绕成的2-5匝水冷线圈。等离子炬管由三层同心石英管组成。ICP焰明显地分为三个区域:焰心区、内焰区和尾焰区。内焰区温度约6000-8000K,是分析物原子化、激发、电离与辐射的主要区域。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制