当前位置: 仪器信息网 > 行业主题 > >

化学品降解测定仪

仪器信息网化学品降解测定仪专题为您提供2024年最新化学品降解测定仪价格报价、厂家品牌的相关信息, 包括化学品降解测定仪参数、型号等,不管是国产,还是进口品牌的化学品降解测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学品降解测定仪相关的耗材配件、试剂标物,还有化学品降解测定仪相关的最新资讯、资料,以及化学品降解测定仪相关的解决方案。

化学品降解测定仪相关的资讯

  • 《化学品 降解筛选试验 化学需氧量》等化学品国标预审
    全国危险化学品管理标准化技术委员会化学品毒性检测分技术委会(SAC/TC251/SC1)在广州召开了对2008年制定的《化学品 降解筛选试验 化学需氧量》等13项化学品国家标准的预审会议。来自全国危标委、中国人民解放军军事医学科学院毒物药物研究所、中国科学院华南植物园、中山大学、暨南大学、中科院广州地球化学研究所、中国检科院多位专家到会出席了此次会议。   与会专家听取了标准编制单位的汇报,审议了提交的标准初稿,对标准预审稿进行了认真地讨论,并按照GB/T1.1-2009有关规定,就标准编制中的有关问题提出了修改意见和建议。请各标准起草单位按照预审专家组提出的要求和建议进行修改,提交技术委员会正式审定。标准分别是:   一、20080040-T-469化学品危险性分类试验方法 鱼类急性毒性试验   二、20080444-T-469化学品 降解筛选试验 化学需氧量   三、20080446-T-469化学品 生物降解筛选试验 生化需氧量   四、20080451-T-469土壤/污泥吸附常数估测试验 高效液相色谱法(HPLC)   五、20080453-T-469土壤中好氧厌氧转化试验   六、20080890-T-469水 沉积物系统中好氧厌氧转化试验   七、20081305-T-469化学品 快速生物降解性通则   八、20080448-T-469化学品 土壤微生物 碳转化试验   九、20081303-T-469 沉积物-水系统中摇蚊毒性试验 加毒于沉积物的方法   十、20081304-T-469沉积物-水系统中摇蚊毒性试验 加毒于水的方法   十一、20080445-T-469化学品 陆生植物测试 生长活性试验   十二、20080447-T-469化学品 土壤微生物 氮转化试验   十三、20080449-T-469化学品 有机化合物在消化污泥中的厌氧生物降解性 气体产量测定法
  • 凯本金威特种化学品--AKF-1型水分测定仪安调完成
    2016年7月13日禾工技术工程师远赴山东济宁,对凯本金威特种化学品AKF-1水分测定仪进行安装调试。 此次安调过程中,实验室领导对仪器的测量结果很满意(所测样品:二氯乙酸、氯乙酸),并表示要将我们的仪器推荐给更多的用户。目前仪器已经投入正常生产使用。 凯本金威特种化学品(济宁)有限公司是由德国凯本、金威煤电以及盐城益泽华共同成立的合资公司,德国凯本拥有其中67%的股份,这也是德国凯本在中国投资的第一家工厂。该公司的产品为氯乙酸,产品将广泛应用于医药、化妆品、农药等不同行业。
  • 我国生物基化学品2020年将形成7000亿元规模
    1月初,中国信息中心相关专家透露,我国计划到2015年开发出40种至50种重要的生物基化学品,培育20家大型集团企业 到2020年形成7000亿元的产业规模,替代传统化学品的比重达到25%。   根据国家发改委发布的《“十二五”国家战略性新兴产业发展规划》,生物制造是我国“十二五”期间重点发展的生物产业之一。生物制造通过动物、植物、微生物等生命体生产相关产品,根本任务之一就是实现对化学工业的工艺路线替代和对化工的原料路线替代。生物制造主要包含生物基新材料、生物基化学品等领域。   “生物基材料是传统化学聚合技术和工业生物技术的结合。目前,世界上合成的高分子材料主要是石油化工材料,与之相比,生物基高分子材料具有可再生、可生物降解等特点,应用前景广阔。”中国化工信息中心产业研究院咨询师戎志梅说。   据了解,我国在生物基化学品领域有较好的产业基础。目前,中国味精和柠檬酸产量居世界第一位,还将建成世界级赖氨酸生产基地。
  • 多参数水质测定仪-一款可实现户外快速检测的仪器2024仪器讲解
    型号推荐:多参数水质测定仪-一款可实现户外快速检测的仪器2024仪器讲解,在环境保护与水资源管理的严峻挑战下,精准、高效的水质监测成为保障水质安全的关键。多参数水质测定仪应运而生,以其全面的检测能力与智能化的操作体验,为水质监测领域带来了革新。这款仪器不仅集成了对COD、氨氮、总磷、总氮等关键水质指标的快速检测能力,还融入了智能数据分析与可视化展示技术,让水质监测工作更加便捷、直观。 一、快速检测 它能够迅速测定水体中多达几十种的浓度指标,包括但不限于COD(化学需氧量)、氨氮、总磷、总氮等关键污染物,为水质评估提供了全面而准确的数据支持。这一特性使得监测工作更加全面,有助于及时发现并应对潜在的水质问题。 二、智能数据分析功能 通过图表、列表等多种形式展示数据,分析结果一目了然,极大地提高了数据处理的效率与准确性。用户无需复杂的操作,即可快速掌握水质状况,为决策提供有力依据。 三、满足不同需求 在硬件配置方面,该仪器同样表现出色。10.1英寸高清晰度彩色液晶触摸显示屏,搭配Android智能操作系统,不仅操作界面友好,还支持中英文切换,满足了不同用户的需求。此外,24孔智能双温区消解仪的加入,使得户外快速检测成为可能,进一步拓宽了仪器的应用范围。 四、功能特点 1、采用全新安卓7.1.1智能系统,人性化中文操作界面,运转速度更快速,稳定性更强。 2、10.1英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、采用精密比色池设计,使用光源一致,可以解决由于光源误差带来的检测结果误差问题,检测结果更加精准。 4、光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准。 5、支持10mm、30mm、50mm皿比色和φ16mm管比色等比色方式,多元选择,确保测量的准确性; 综上所述,多参数水质测定仪以其全面的检测能力、智能化的数据分析与操作体验,以及便携的户外检测功能,成为了水质监测领域的得力助手。它不仅提升了水质监测的精度与效率,更为环境保护与水资源管理提供了强有力的技术支持。在未来的发展中,我们有理由相信这款仪器将发挥更加重要的作用。
  • 【安捷伦】疫情防治中的“双刃剑” | 警惕抗“疫”化学品造成的环境次生灾害
    2 月 1 日,深圳市第三人民医院在确诊患者的粪便中检测出新型冠状病毒 RNA 阳性,意味着新冠病毒感染存在粪口传播可能性。为此,2 月 1 日当晚,生态环境部办公厅发布《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》,特别强调 “强化消毒灭菌、控制病毒扩散”。接到通知后,全国各地的相关部门均加强了对医疗废物废水、市政排水和污水处理中的消毒工作。图片来自:中国政府网医疗废水,尤其是疫情严重地区的医疗废水,除了含有抗生素、激素类药物外,还含有消毒化学品的残留物。目前,我国普遍采用加氯消毒方式处理城镇污水、医疗废水等,在消灭病毒细菌的同时,会与水体中残留的天然有机物和痕量有机污染物发生反应,生成卤乙酸、亚硝胺等具有遗传毒性和致癌性的消毒副产物(DBPs),对人体健康构成潜在威胁。消毒副产物会污染饮用水、食品等,对人体健康构成潜在威胁,还可能造成其它环境次生灾害。因此,需要对水中的消毒副产物严加监控。国家相关部门也在积极制定应急环境监测政策和标准,降低环境次生灾害风险。3 月 11 日,国家自然科学基金委员会对外发布了“重大疫情的环境安全与次生风险防控重大项目 2020 年度项目指南”。项目将资助环境介质中的病毒识别与传播规律、疫情聚集区环境污染及次生风险阻控机制、分散型疫区多点位环境风险的协同控制原理、控疫药品和化学品的环境污染及生态效应、重大疫情的生态环境风险综合评估与防控策略 5 大研究方向,资助期限 5 年。图片来自:国家自然科学基金委员会目前,疫情正在全球范围内肆虐,防疫相关的药品和化学品的使用量大增,可能造成环境污染及次生灾害。因此,政府、科研机构等都十分关心防疫药品和化学品造成的环境问题。安捷伦在环境污染物检测领域,尤其是水中污染物检测领域,积累了诸多解决方案,包括水中抗生素、激素等药物及个人护理品(PPCPs)污染物,消毒副产物检测解决方案等。环境水中的 PPCPs 检测使用 LC/MS/MS 直接进样方式,同时对 377 种 PPCPs 快速准确地筛查和定量分析,包括抗生素类 104 种、兴奋剂类 29 种、激素类 46 种、精神类 48 种、解热镇痛类 28 种、抗过敏类 13 种、心血管类 20 种、农药 48 种以及其它类 41 种。阅读和下载该解决方案:https://www.agilent.com/cs/library/applications/5991-8660ZHCN.pdf 水中的磺胺类药物检测使用 LC/MS/MS 和 SPE 净化富集小柱结合的方法同时测定水中 18 种常见的磺胺类药物和 1 种共生物。阅读和下载该解决方案:https://www.agilent.com/cs/library/applications/application-sulfonamide%20antibiotics-water-spe-lctq-5994-1676zh-cn-agilent.pdf 水中的消毒副产物检测使用 LC/MS/MS 直接进样的方式,测定了饮用水中 9 种卤乙酸(HAAs)、溴酸盐和氯酸盐,该方法快速、简便、灵敏。阅读和下载该解决方案:https://www.agilent.com/cs/library/applications/application-haloacetic-acids-1290-infinity-ii-lc-5994-1275en-agilent.pdf 安捷伦液质联用产品敬请继续关注“安捷伦视界”公众号,获取更多环境污染物检测解决方案。关注“安捷伦视界”公众号,获取更多资讯。
  • 首届低碳化学品发展论坛将召开
    10月27日,记者从中国化工节能技术协会获悉,为帮助工业企业及时抓住低碳发展的机遇,将温室气体变为有用资源,充分利用低碳化学品发展的有利时机,中国化工节能技术协会定于11月12日至15日在贵州省贵阳市林城大酒店召开首届低碳化学品发展论坛。   自国务院做出2020年二氧化碳排放强度降低40%-45%的决定后,以二氧化碳等温室气体为原料的低碳化学品产业迎来了空前的发展机遇。发展低碳化学品将为企业带来多重效益:化工产品销售的效益 采用CDM等碳指标转让或碳税减免带来的额外收益 各级政府的低碳政策奖励 完成减碳指标的政治任务。   在此背景下召开的本届论坛,主题是“立即行动 抢占低碳先机”,将邀请国家发改委气候司、财政部财科所、碳金融机构、清华大学等有关科研院所的领导和专家,介绍最新的低碳政策,低碳化学品生产技术及市场前景,为企业生产低碳化学品、抓住低碳发展机遇献计献策。
  • 中国食品工业协会立项《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准
    近期我会拟组织制定《造纸化学品中氯丙醇含量的测定 气相色谱-质谱法》团体标准,现将立项说明如下:目的:建立一种针对造纸化学品中氯丙醇含量的测试方法,为造纸化学品生产企业提供一种有效的检测技术手段,为食品接触用纸的生产企业在选择原材料和上游供应商时提供技术性参考依据,确保食品接触用纸的安全性,保障消费者健康与安全。意义及必要性:自从新修订的GB 4806.8-2022《食品安全国家标准 食品接触用纸和纸板材料及制品》于2022年6月30日正式发布以来,标准中新增加的氯丙醇水提取物指标受到行业和监管部门的高度关注,因为这个项目不仅在当前的食品接触用纸制品中检出率和不合格率都较高,而且在检测方法上也具有较大的难度和挑战性。因此对于食品接触用纸制品的生产企业来说,如何做好产品中的氯丙醇含量管控、确保产品复合新修订的GB 4806.8-2022产品标准要求、保障消费者健康与安全成为亟待解决的重要任务。对于造纸企业来说,产品中氯丙醇的来源主要有聚酰胺多胺环氧氯丙烷树脂型湿强剂(PAE湿强剂)、聚酰胺多胺环氧氯丙烷树脂型粘缸剂(PAE型粘缸剂)、环氧氯丙烷改性松香、环氧氯丙烷改性淀粉、环氧氯丙烷改性纤维素等造纸化学品,因此确保这些造纸化学品中不含或尽量少含氯丙醇成为确保纸制品中不含或尽量少含氯丙醇的关键。但是到目前为止,国内外对于造纸化学品中氯丙醇的测试方法并没有官方检测标准,这对造纸化学品生产企业有效管控造纸化学品中氯丙醇的残留、以及造纸企业选择尽量低氯丙醇残留的造纸化学品原材料都带来巨大的挑战,也为检测机构对相关产品和原材料提供检测技术服务造成困难。因此亟需尽快建立造纸化学品中氯丙醇含量的检测方法标准,为造纸和造纸原材料生产企业做好各自的产品质量控制提供技术支持。本标准的制定和实施,将有效填补国内尚无造纸助剂氯丙醇检测标准的空白,为造纸和食品包装行业及相关机构提供一种科学有效的定量检测手段,并将在提升企业的产品质量合格率、引领行业发展、保障消费者健康等方面发挥积极作用。我会现就以上立项计划征求意见,如有不同意见,请于2023年7月14日前将意见及理由返回至我会邮箱:cnfia@vip.163.com到期无回复视为同意。中国食品工业协会标准化工作委员会2023年6月30日
  • 广西龙江镉污染事件续:治污化学品告急
    1月30日,柳州水文水资源局工作人员在龙江与融江交汇口测算和取样。   1月29日,在柳州市糯米滩水电站,一股碱性流水注入下游龙江河稀释中和遭遇污染河水。    龙江镉污染事件经过   目前龙江河镉污染高峰值已从超标约80倍降到超标25倍左右 污染团将突破 第三道防线 河池市新增2处中和物投放点 治污化学品告急   1月15日,宜州市环保部门发现龙江河拉浪水电站内网箱养鱼出现少量死鱼现象。经查,龙江河宜州拉浪电站坝首前200米处,镉含量超《地表水环境质量标准》Ⅲ类标准约80倍。   1月30日,龙江河上的最大镉污染团即将突破第3道防线洛东水电站。河池境内新增2处中和物投放点。   1月18日,河池方面将事件通报柳州 河池市政府开始为德胜镇水井镉浓度超标的村民免费运送桶装水。   1月19日,河池市委宣传部通告污染事件,称截至19日17时,龙江河宜州段洛东水电站坝首处镉浓度仍超标3倍,当地正全力确保下游群众饮水安全。   1月20日,柳州启动饮用水水源污染事故应急预案三级响应。   1月23日,柳州出现各种饮用水源污染的谣言,市民抢购瓶装水,24日,柳州通过多种渠道澄清。   1月29日,环保部门监测显示,拉浪水库镉浓度已达标,这说明造成此次镉污染事件的污染源已经被截断,没有新的污染源进入龙江。   1月22日,广西环保厅启动了自治区突发环境事件应急预案,并成立了龙江河突发环境事件应急指挥部,在河池设置5个吸附物投放点,形成5道防线中和吸附污染水域。   1月26日,污染水体进入柳江河柳州市区流域。   记者30日从广西壮族自治区龙江河突发环境事件指挥部了解到,在柳州市区上游57公里的柳城县糯米滩水电站以上的龙江河段,目前有镉浓度超标5倍以上的水体长达100公里。通过采取除镉、调水稀释等综合应对措施,目前龙江河镉污染高峰值已从超标约80倍降到超标25倍左右。   最新监测数据显示,被污染的河水已于29日先期到达柳州的水源保护区,但情况尚在控制范围内,截至目前,自来水厂饮用水质符合国家标准。由于主要污染源团还在柳江上游的龙江河段,并陆续突破了河池市设置的第3道防线,目前柳州市区饮用水仍面临威胁。   昨日下午,广西壮族自治区龙江河突发环境事件应急指挥部召开媒体通气会表示,目前,已对涉嫌违法排污的金城江鸿泉立德粉材料厂等相关企业的7名相关责任人依法刑事拘留,相关责任调查已全面展开。   污染现状   上百公里镉超标5倍   超标倍数趋势图显示,从龙江山脚村监测点到糯米滩电站监测点,长达100公里的河水镉浓度在国家标准临界值5倍以上。专家分析,主要污染团还在宜州市境内的洛东水库附近,并正在往下游移动。龙江镉浓度峰值现位于宜州市洛东水电站附近水域,监测显示此处镉浓度超标在25倍左右。广西河池市长何辛幸称,上游龙江河段设有五道关卡,通过抛洒氧化铝粉、稀释等,大约已经有60%的镉得以降解。到30日12时,糯米滩电站镉浓度超标由29日的8倍降至目前的6倍以下。糯米滩水电站位于柳州市区上游57公里,位于龙江柳城段,是处置龙江污染事件的关键点。   专家预计,按目前的流速,未来10至15天,柳江中的镉浓度将达到峰值。专家称,这些污染水体经洛东电站、三岔电站、糯米滩电站三次削峰后,镉浓度可控制在超标10倍以内,“此时必须在龙江与融江交汇口出,从融江调11倍的清水才能实现稀释达标。”   昨日,早报记者在柳州市柳城县凤山镇龙江与融江交汇口看到,两条分别长约50米的大船在柳江入口处一字排开,沿着船的边缘有一排两头卷有钢条的帆布展开插入河中,构成一道疏导上游流水的软体导流坝,通过软体导流坝的引导,污染的龙江河水将与融江河水充分中和,并达到稀释作用,龙江与融江交汇后并入柳江,在两江交汇口、暨柳江入水口设置软体导流坝,就是柳州市应对上游龙江河镉污染、保护下游饮用水安全建设的一道防线。   随后,早报记者跟随柳州市水文水资源局的工作人员来到龙江与融江交汇口,现场了解他们对龙江、融江和柳江的流量、流速的测算和水质取样工作,根据现场测算,融江的流量、流速明显大于被污染的龙江,“每天进行两次测算,并实时将结果传回指挥部,专家将根据测算数据,控制江水的流量、流速,以达到最佳的稀释效果”,现场参与监测的工作人员告诉早报记者。   记者了解到,目前龙江镉污染的污染物已进入柳州市饮水水源保护地,柳州市河西水厂取水口上游数公里内水体一度接近国家标准临界值,昨日,记者走访凤山镇柳江入口处沿江生活的一些渔民后发现,龙江镉污染已经对他们的生活造成了一定影响,多名渔民称近期将不去龙江河段打鱼,由于上游已经出现不少死鱼现象,渔民对自己用网箱养的鱼表示担忧。   防治措施   治污化学品告急   来自广西河池市应急处置中心的消息称,在广西河池为消除镉污染所设置的5道防线中,目前龙江河上的最大镉污染团即将突破第3道防线,河池新增加2处中和物投放点,以降低龙江河镉浓度。   河池市委副书记秦斌说,据专家测算,河池采取的各项措施效果明显。截至29日晚,河池境内的镉污染团高峰出现在洛东水电站上游附近。为更具针对性降低上游镉浓度,专家提出在河池境内新增2处中和物投放点,其中一处选择在洛东水电站下游6公里处,另一处投放点计划选择在三岔水电站下游附近。   河池市有关负责人表示,已通过专家的意见计算出污染团的总量、位置和流速,优化完善絮凝剂和烧碱等投放、控制龙江上游水电站的出水量等方法,尽量将污染团滞留在河池境内龙江河段处置,尽最大可能保障下游市民饮水安全。   “我们有希望做到柳州市区自来水取水口的柳江水镉浓度不超标。”处置龙江河突发环境事件专家组组长、环境保护部华南环境科学研究所副所长许振成曾向记者表示。   不过,据来自广西河池市应急处置中心的消息称,用于治理广西龙江河镉污染的化学品聚合氯化铝面临紧张局面。   29日晚,河池市副市长李文纲说,目前河池各投放点的聚合氯化铝仅能保障30日的用量,31日便会出现紧张局面 烧碱能保障2至3天的用量,再往后也将出现紧张局面。   目前使用聚合氯化铝将离子状态的镉固化,是目前治理龙江河镉污染最重要的措施之一,而烧碱则是调节河水PH值促进聚合氯化铝发生反应的重要物质。数据显示,截至29日15时,河池方面尚有聚合氯化铝库存256吨,而从20日至29日当地平均每日使用量超过300吨。   河池市市长何辛幸说,这些资源已经有限,目前河池方面已向自治区汇报,请求帮助解决治污物资紧张的难题。目前,河池市正紧急从南宁、湖南、河南等地调运氯化铝、石灰等物资。   广西环保厅巡视员冯振年说,依据总体方案,指挥部制定了科学调水方案。一是合理调控龙江各梯级电站下泄流量,配合除镉措施,减少污染物并控制下移速度。二是调度融江各梯级电站蓄水,满足调水需要。三是水文水利部门加强了对流域内30个断面的水文测验。四是在龙江、融江汇合口以下设置了临时导流挡水幕,提高处置效果。   调查处理   7名责任人被刑拘   昨日下午,广西龙江河突发环境事件应急指挥部召开媒体通气会表示,目前,已对涉嫌违法排污的金城江鸿泉立德粉材料厂等相关企业的7名相关责任人依法刑事拘留,相关责任调查已全面展开。   据了解,事故发生后,河池市对全市所有排污企业和矿场、尾矿库、矿渣堆进行全面排查整治,对环保设施不完善、存在环境风险隐患的企业责令停产整治。截至29日,河池市已排查涉重金属企业和经营户145家,责令整改或关停取缔11家,非法企业和无名无主矿砂场正被摸底登记。冯振年表示,河池市已责令流域内涉重金属企业立即停产,排查整顿。监测情况表明,污染源已被切断。   记者发现,昨日的媒体通气会仅仅公布了一家污染企业名字,“等相关企业”的情况仍不得而知。1月25日,河池市环保部门对外称,污染源已初步查明,污染源来自广西金河矿业股份有限公司。28日,河池市又发布消息称,这家公司废渣堆放场所未达到国家标准,成为污染源嫌疑企业之一,但完全认定这家企业为污染源,仍需取得更充足证据,同时还需要对其他企业一一调查,以全面确定污染源,已经“初步查明”的污染源企业又变成了“嫌疑企业”。至此,污染源头企业仍未明朗。   河池市环保局长吴海悫曾解释说,河池市地形复杂,地下溶洞较多,企业排污容易通过地下溶洞进入河中,这给取证工作带来很大困难,另外发现时间较晚也给取证带来难度。目前,广西壮族自治区环保厅已动员环保监查骨干力量前往河池开展排查工作,包括地质岩溶、水利、水文和环保等多个领域的专家也已来到河池,为排查污染源提供技术指导。
  • 技术更新|介损及体积电阻率测定仪可测介质损耗因数
    如今市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、中高生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。同时安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。绿色发展已经在社会上形成共识,坚持绿色发展是行业必须要强化的理念,一方面要补足以往的环保欠账;另一方面还要针对不断提高环保标准买单,这对行业来说,是一个巨大的挑战。A1170自动油介损及体积电阻率测定仪符合GB/T5654标准,用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括诸如变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1、采用中频感应加热,室温加热至控温(90℃)并恒温自动测量仅需 15分钟。2、同时测量油介损及体积电阻率或任选一项。3、采用大屏幕液晶显示器,只需按照中文菜单提示,输入指令,仪器即可自动工作。4、具有通讯功能,可配置电脑进行实时监测,动态观察油介损值随油温变化并描绘成图。5、自动显示测量结果,并进行数据打印保存。6、具有过压、过流、短路保护,并具有高压指示,还具有报警提示功能。技术参数体积电阻率测量电压:DC500V±10%体积电阻率范围:2.5×106~2×1013Ω.m精度: 高于±10%电阻测量范围:2M~2TΩ介损测量范围:0.00001~1介损值分辨率:0.00001电容测量范围:10.0pF~200.0pF电容值分辨率:0.01pF空杯电容:60±5pF 介损值测量精度:±(1%读值+0.02%)电容值测量精度:±(1%读值+1pF)工作电源:AC220V±10%,50Hz测控温范围:室温~119.9℃测控温稳定度:±0.5 相对湿度:≤85%介损测量电压:1.5kV、2.0kV、2.5kV(常规使用2.0kV)(正接法) 环境温度:-5℃~50℃外形尺寸:480mm×400mm×420mm重  量:25.7kg
  • 全球可再生化学品研发热情高涨
    全球工业分析公司(GIA)日前发表的全球可再生化学品市场分析报告显示,在产品创新、政府支持、能源价格上涨、消费者环保意识增强等因素的驱动下,全球可再生化学品市场份额将快速上升,预计到2015年市场规模将达569亿美元,并将与传统石化产品形成竞争。   政策支持市场乐观   GIA发布的《可再生化学品:全球商业战略报告》显示,以可再生的微生物、农林废弃物、生物质为原料生产的化学品市场份额将激增。尽管金融危机导致全球信贷市场出现衰退,对可再生化工项目的融资和产品需求产生一定负面影响,但该行业的前景依然乐观,替代技术的市场驱动力依然强劲。此外,人口的迅速增长,发展中国家的经济扩张,以及不断上升的能源需求,再加之各个国家的政策,全球众多科研机构和生产企业将持续加强可再生化学品投资,主要用于生产个人消费品、塑料、表面活性剂、润滑剂等,达到环境整治和空气污染控制目标。   在消费领域方面,专家表示,与聚合单体、功能化学品等可再生化学品相比,液体生物燃料存在着生产流程短、技术门槛低、产品性能好等优势,可充分发挥可再生化学品在减少化石燃料消耗、简化生产工艺、降低生产成本方面的巨大潜力,因此目前以可再生原料来生产生物燃料成为生产商的首选。GIA认为,按产品用途来看,交通运输将成为可再生化学品最大的终端市场,占据全球25%的市场份额。此外,食品加工、个人消费品、制药、生物降解塑料等行业也将成为可再生化学品的主要市场。美国和欧洲仍将继续保持在可再生化学品领域的领先地位,将占据全球60%以上的市场份额,而中国、印度、俄罗斯等经济快速发展的国家,由于对化石能源消耗日益增加,未来也将成为可再生化学品的巨大潜在市场。   特种化学品成新宠   分析人士表示,目前全球特种化学品市场已达5000亿美元,该领域将成为可再生化学品大展身手的舞台。越来越多的可再生化工企业已经将业务开发领域转向特种化学品行业,一方面可在竞争中另辟蹊径,另一方面特种化学品附加值高,利润可观。   当很多企业还在为生产玉米燃料能够盈利而与政府、汽油生产商斤斤计较的时候,Elevance公司已经开始用玉米和其他农作物生产化学品。用可再生生物质制造化学品与采用农产品生产乙醇的成本差不多,但是化学品的价格一般可达乙醇燃料的两倍以上。目前玉米燃料的价格是1.65美元/加仑,而以大豆为原料的化学品售价高达4.50美元/加仑。Elevance公司的产品涉及从化妆品到工业润滑油的各个领域,虽然目前销售额仅1000万美元,但预计2016年可增长到10亿美元。   有专家表示,很多生产乙醇燃料的企业目前要依靠国家财政补贴来生存,瞄准特种化学品的发展战略有望使企业彻底摆脱这一困境。可再生化学品不仅为社会提供了新的就业的机会,也为当地农产品开辟了新的市场。   据悉,巴斯夫、川崎化成、安庆和兴等许多化工企业正在探索生物法制备琥珀酸的工业化生产。专家认为,生物基琥珀酸可以用于替代以丁烷为原料生产的马来酸酐,从而广泛地应用于聚合物、多元醇和聚氨酯的生产过程中,同时也可用于绿色溶剂和水处理环保化学品的生产,是一个很有发展前景的可再生特种化学品品种。   扩规模力保竞争力   在整体趋势向好的同时,部分可再生化学品企业对未来前景也存担忧。据专业人士估计,目前可再生化学品装置的产能一般在1000~20000吨/年,要达到569亿美元的市场规模,至少还需新增100个大型生产装置。而生产装置的融资、规划、申批和建设需要时间,这一目标很难在2015年实现。   业内人士指出,目前消费者对可再生化学品缺乏认知度,而业界对可再生化学品生产成本的担忧和产品性能的质疑是这一新兴产业发展的绊脚石。目前发展良好的可再生特种化学品公司屈指可数,成功案例的缺乏导致很多企业和投资公司对该领域望而却步,而投资较少导致可再生产品研究、开发速度放缓。   生物基特种化学品的生产相对较多,但也只是集中在小规模高附加值产品上,摆在可再生化学品生产商面前的难题就是特种化学品的大规模生产。随着可再生化学品产业的发展壮大,不可避免地将与传统石化产品争夺市场,由此将引发两大阵营之间的价格战。据了解。目前包括巴斯夫、嘉吉、雪佛龙、陶氏化学、杜邦、杰能科和诺维信等大型跨国公司已经通过融资、兼并和重组参与可再生化学品的生产。未来在某个领域,可再生化学品的规模或将比肩传统石化产品。
  • 我国化学品污染严重 多地区出现癌症村
    因化学污染个别地区出现“癌症村”   环保部近日公开发布《化学品环境风险防控“十二五”规划》(以下简称规划),规划显示,我国化学品污染防治形势十分严峻。   规划表示,我国有3 千余种已化学物质对人体健康和生态环境危害严重 个别地区甚至出现“癌症村”等严重的健康和社会问题。   规划称,“十二五”期间,我国将对化工污染进行全面防治 根据规划,将确定三种类型58种(类)化学品作为“十二五”期间环境风险重点防控对象。   发达国家淘汰毒化学品在我国仍使用   规划透露,发达国家已淘汰或限制的部分有毒有害化学品在我国仍有规模化生产和使用,同时,国家相关部门并不清楚化学品生产和使用种类、数量、行业、地域分布信息。   规划透露,我国现有生产使用记录的化学物质4 万多种,其中3 千余种已列入当前《危险化学品名录》,具有毒害、腐蚀、爆炸、燃烧、助燃等性质。具有急性或者慢性毒性、生物蓄积性、不易降解性、致癌致畸致突变性等危害的化学品,对人体健康和生态环境危害严重,数十种已被相关化学品国际公约列为严格限制和需要逐步淘汰的物质。同时,尚有大量化学物质的危害特性还未明确和掌握。   环保部表示,2010 年,环境保护部开展了沿江沿河环境污染隐患排查整治行动,检查化工石化企业近18000 家。   规划说,目前,我国化学品产业结构和布局不合理,环境污染和风险隐患突出,发达国家已淘汰或限制的部分有毒有害化学品在我国仍有规模化生产和使用,存在部分高环境风险的化学品生产能力向我国进行转移和集中的现象。   化学品环境管理基础信息和风险底数不清   “据2010 年环境保护部组织开展的全国石油加工与炼焦业、化学原料与化学制品制造业、医药制造业等三大重点行业环境风险及化学品检查工作结果显示,下游5 公里范围内(含5 公里)分布有水环境保护目标的企业占调查企业数量的23%,对基本农田、饮用水水源保护区、自来水厂取水口等环境敏感点构成威胁 周边1 公里范围内分布有大气环境保护目标的企业占51.7%,1.5 万家企业周边分布有居民点,对人体健康和安全构成危险。经初步评估,重大环境风险企业数量占调查企业数量的18.3%,较大环境风险企业占22%,环境风险隐患突出。”规划说,化学品环境管理法规制度不健全。化学品环境管理现有制度主要停留在有毒化学品进出口登记和新化学物质环境管理登记,而对于危险化学品的环境管理、释放与转移控制、重点环境风险源管理等方面缺乏规定,对高毒、难降解、高环境危害化学品的限制生产和使用等缺乏措施,针对性、系统性的化学品环境管理法规、制度和政策明显缺失。   此外,化学品环境管理基础信息和风险底数不清。相对于化学品环境管理需求,我国目前存在化学品生产和使用种类、数量、行业、地域分布信息不清,重大环境风险源种类、数量、规模和分布不清,多数化学物质环境危害性不清,有毒有害化学污染物质的排放数量和污染情况不清,化学物质转移状况不清,受影响的生态物种和人群分布情况不清等问题。与发达国家相比,我国化学品环境风险防控意识、水平、能力还存在较大差距。   3年环保部接报突发环境事件568 起   环保部认为,监测监管、预警应急、管理和科技支撑能力不足。   规划称,我国目前仍在生产和使用发达国家已禁止或限制生产使用的部分有毒有害化学品,此类化学品往往具有环境持久性、生物蓄积性、遗传发育毒性和内分泌干扰性等,对人体健康和生态环境构成长期或潜在危害。   规划坦陈,近年来,我国一些河流、湖泊、近海水域及野生动物和人体中已检测出多种化学物质,局部地区持久性有机污染物和内分泌干扰物质浓度高于国际水平,有毒有害化学物质造成多起急性水、大气突发环境事件,多个地方出现饮用水危机,个别地区甚至出现“癌症村”等严重的健康和社会问题。   同时, 近年来,由危险化学品生产事故、交通运输事故以及非法排污引起的突发环境事件频发。2008-2011 年,环境保护部共接报突发环境事件568 起,其中涉及危险化学品287 起,占突发环境事件的51%,每年与化学品相关的突发环境事件比例分别为57%、58%、47%、46%。   规划表示,每年约有数千种新化学物质在我国申报生产和进口,对其造成的人体健康和环境安全危害性尚不能完全掌握,环境管理和风险防控面临越来越大的压力与挑战。  “十二五”说,根据环境风险来源和风险类型的不同,确定三种类型58种(类)化学品作为“十二五”期间环境风险重点防控对象 “十二五”期间以石油加工、炼焦及核燃料加工业,化学原料及化学制品制造业,医药制造业,化学纤维制造业,有色金属冶炼和压延加工业,纺织业等六大行业以及煤制油、煤制天然气、煤制烯烃、煤制二甲醚、煤制乙二醇等新型煤化工产业为重点防控行业。
  • 食品包装含氟化物 人体降解需四年
    新知客2月9日报道 应用了半个多世纪的全氟化合物,由于可能损害人体健康,即将要被终结。   2009年5月9日,联合国环境规划署重新审订《持久性有机污染物名录》,全氟辛烷酸及其盐类(PFOS)和胺类(PFOA)化合物被列入黑名单,成为继滴滴涕之后的又一位上榜者。曾经一度被隐瞒20多年、几年前还在欧美等国就其去留问题引发争吵的全氟辛烷酸,终于被终结了。   北极熊和新生儿之劫   2008年,科学家在格陵兰岛的北极熊肚子里,检测出一种只有在人类化学工业里才使用的致癌物质:全氟辛酸胺(PFOA)。   科学家很快将这消息和之前进行的调查结果联系起来。2007年,约翰霍普金斯医学中心对在该院出生的300名婴儿的血液进行了抽样调查,发现100%的血液样本中含有PFOA,99%含有PFOS。PFOS和PFOA几乎普遍存在于母体子宫中。   这种人工合成的化学物质,在1997至2002这30年间,总产量在10万吨左右,主要用于生产杀虫剂、防护剂以及材料的表面改性。   无论PFOS还是PFOA都属于含氟化合物的一种。但和众所周知的氟利昂不同,这类化合物中的氢被氟全部代替,在碳链的末端形成一层致密的“氟壳”,不仅普通的酸碱对它根本不起任何作用,油、水和高温均奈何不了它,化学性能极其稳定。   但这同样也导致它很难降解。“PFOA在雌鼠体内的降解速度是几个小时,在雄鼠体内几天,在猴子体内是几个月,而在人体内则几乎是4年。”美国环保署污染预防和有毒品办公室的Jennifer Steed指出。动物和人身上表现出毒理实验的差异令科学家困惑。   “我们确实不清楚是什么样的生物学作用造成了这些差异。”美国环保署国家健康和环境影响实验室的首席生物学家Lau说。   更困难的是确定这些化合物的来源。因为这些化合物通常不作为商品出售,它们只是降解产物或制造其他商业化学品过程中的加工助剂,难以追踪。   这种只有化工里使用的成分,究竟是怎样进入人体,并最终漂洋过海袭击北极熊的?   氟从口入?   霍普金斯大学的研究指出,PFOS和PFOA应该是从消费产品渗透并污染整个生态环境,它们普遍存在于家庭用品中。PFOS常用于纺织品、皮革的防污防水涂层,而PFOA则广泛用于各种家具、金属、防火泡沫、包装材料的表面。   最著名的全氟化合物当属杜邦的“特氟龙”系列,这是杜邦公司对其研发的各种碳氢树脂的总称。其中最广泛的是聚四氟乙烯,它被称作“塑料之王”,作为一种最常用的表面涂料,在工业生产和日常生活中几乎无所不在。它由杜邦公司化学师Roy Plunkett在1938年偶然发明,并投入商业化生产。   然而近半个世纪后,这款曾经造福于人类的化工产品却遭到美国环境署的投诉。2006年,该署对杜邦公司提出抗议,称特氟龙的生产过程中添加了PFOA作为助剂,并被广泛用于全世界使用特氟龙涂料的不粘锅上,抗议还称,杜邦公司早在20多年前就已知道PFOA对人有害,却将这一秘密守口如瓶。   全球第一款采用杜邦特富龙不粘涂料的炊具诞生于1962年。除了不粘锅,很多快餐店也在铝质蛋盘上使用这种不粘涂料来降低成本,使得重复涂覆频率大大降低。玉米片制造商则用它涂在切马铃薯的刀面上,降低残渣的集积,使停工时间缩短。   继不粘锅之后,越来越多的线索将焦点指向了食物。科学家发现,一个重要入口就是食品包装。不仅美国人最喜欢的爆米花和比萨的防油包装纸上使用了聚四氟乙烯涂层,而且面包、奶酪以及方糖,从生产过程中的模具,到专卖店里的托盘,到家庭用的包装袋,几乎都离不开这种涂料。   全球狙击   杜邦事件并非孤例。早在2000年,美国3M公司就宣布全球召回PFOS。它曾是该公司著名的斯科奇加德防油防水剂的主要组分。3M的研究人员 .现,PFOS不仅会造成工作人员中毒,还会向环境释放。2 0 0 3年,3M宣布停止生产PFOS。   尽管对其危害性评估和每一个中间环节的整体论证仍需时日,一些国家已经坐不住了。   继美、加、英、挪等国之后,2006年12月27日,欧盟理事会发布限令,禁止PFOS在欧洲范围内生产、销售和使用,并出台了严格剂量标准和检测方法。   杜邦坚称,聚四氟乙烯本身是对人体无毒的,而作为生产助剂的PFOA即使对人体有毒,含量也很微小。在经过380度高温的烧结时,“不到两秒钟就消失了”。   真的如此吗?就算成品完全不含PFOA,在高温下特氟龙仍有可能会分解,释放出PFOA。为此,美国环境署特别对特富龙在高温焚化时大气环境中PFOS和PFOA的含量展开了测试。但目前的实验研究显示,特富龙涂料只会长链降解形成短链聚合物,而不会分解成PFOA或PFOS。   “理论上说很难完全清除”。中科院上海有机化学所的氟化学专家陈庆云院士说。他表示,国内这方面的研究还开展得很少。   据了解,环保部国际合作司正委托中国印染行业协会进行行业调查,至于相关研究,主要还停留在对检测方法的摸索上。这在很大程度上来自于履行国际公约的承诺,及欧盟限令对中国出口贸易的影响。卫生部门则尚未将其纳入近期工作计划。
  • 新品首发|天尔便携式水质毒性测定仪
    随着环境检测需求的不断完善以及加强,天尔仪器为了满足不同行业的检测需求,今年研发生产了一款便携式水质毒性检测仪,仪器小巧携带方便,适用于自来水公司、环境监测站、疾控中心、水文站、水研中心、水研所等部门,运用于环境污染、紧急事故、安检、饮用水检测、生物污染、有毒化学物质、有毒有害废弃物、市政排水、工业废水排放检测、雨水检测、海水检测、钻井液和泥浆检测、工艺水检测、医疗制药产品检测、食品包装检测、个护用品和家用化学品检测、沉积物检测、雨水径流检测、固体样品检测、食品加工水检测等领域中水质毒性快速检测.天尔TE-790 水质生物毒性测定仪依据GB/T15441-1995《水质急性毒性测定发光细菌法》和ISO-11348-3《发光细菌 急性毒性的测定 费氏弧冻干粉法》检测原理设计,根据发光细菌在新陈代谢时发光强度的变化进行定性和定量检测,采用安卓智能操作系统,可视化模块设计,搭载高清彩色液晶大屏,触控式界面设计,操作简单便捷. 可在现场快速的对水质的污染情况进行检测.天尔便携式水质毒性测定仪01. 5寸高清彩色大屏,引导式界面设计,操作简单便捷;02. 运用安卓智能操作系统,可视化模块设计;03. 样品制备后可快速得到测量结果,数据准确可靠;04. 运用硅光电倍增管,可提高灵敏度,性能稳定;05. 具有电池欠压提醒和充电状态提醒功能;06. 内置大容量锂电池,可实现户外流动性作业;07. 一条曲线可做1-20个曲线浓度点,根据用户需求自由选择,保证曲线值更准确;(曲线浓度点可自由输入)08. 存储空间8GB(可扩展),存储数据大于1000万组;09. 配置USB Type-C 双面充电接口,支持充电,也可实现数据传输;10. 标配蓝牙热敏打印机,检测完成可实时打印检测报告;11. 历史数据可实时查询,可选择开始结束时间调取往期检测数据.
  • 依赖微生物的负碳化学品生产能否助力碳中和?
    首先请大家回答个问题:石油、煤、天然气… … 除了做燃料,还有什么用?答案:从石油和天然气中提取的数千种化学物质,影响着你的生活。它们组成了柏油马路、汽车的轮胎、塑料制品、衣物纤维、甚至是你使用的牙膏和护肤品… … 可以说,这些来自化石能源的化学品给人类生活带来了巨大的便利,但传统石油化工行业也一直戴着“高耗能、高排放”的帽子,在各国纷纷提出碳中和路线图的今天,这个行业需要更多新的技术探索。在2月21日Nature Biotechnology发表的一项工作中,来自美国西北大学和朗泽公司的生物工程师们开发了一个新的依赖微生物的负碳化学品生产过程:他们以工业废气CO2、CO和H2为原料,一种细菌为“工人”来生产重要化学品,甚至能实现负碳生产(生产过程反而会吸收碳,而不是排放碳)。(论文题为:Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale )微生物如何生产石油化工产品?也许你很难想像,石油化工产品,怎么能让微生物去生产呢?发酵出来一堆粘乎乎的大肠杆菌?但其实有一个非常常见的例子,那就是乙醇(也就是俗称的酒精)。用石油化工生产的乙醇也叫工业酒精,乙醇含量一般为95%和99%。工业乙醇的生产常见原料是乙烯(来源于石油裂解后的产品),成本低,产量大,但是不能饮用。其中乙烯直接水化法过程,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应,生产乙醇。而我们的老祖宗几千年前就学会了酿酒,粮食放一段时间后,就会发酵产生酒精。本质上,这是微生物代谢活动的产物。在微生物作用下,淀粉降解为小分子的糖类,然后在酵母体内经过一步步的反应(每一步的反应是经过特定酶的催化),最终生产出乙醇。目前,全世界每年的二氧化碳排放量大概是400亿吨,其中包含石油、煤碳及天然气在内的化石资源的利用贡献了排放量的86%,而化石资源的利用主要分为两类,一类是作为燃料,一类是作为化工原料。化石燃料使用和化工行业共同的特点是过程都会释放大量二氧化碳,而短期之内还没办法将它们固定,为了从源头解决这样的问题,生物燃料和生物化工的研究领域应运而生:通过构建一些能够糖原料转化成能源和化工产品的微生物细胞工厂,之后将再将这些细胞工厂的培养放大到工业规模,也就是一个个巨大的发酵罐组成的“钢铁森林”里,让它们持续稳定的运行。目前商业化运行的微生物细胞工厂大部分是依赖于糖原料,由于原料是可再生的,所以整个过程是一种近乎碳中性的生产过程。不过,需要指出的是,对于大气中已经过多的温室气体,这些过程是无能为力的。给微生物换口粮:用废气替代玉米当前生物化工行业糖原料主要来源于一些粮食作物,比如玉米。让微生物吃这个类型的原料会存在一些潜在的问题,比如可能会遭遇到与人争粮的隐忧;另外从过程经济的角度看,如果糖原料在原料成本中占主导地位,也会拉高过程的成本,从而阻碍生产方式的推广。C1废气是指包含CO2和CO的工业废气,这些废气中往往也包含H2。C1废气对细胞工厂的一个优点是便宜,甚至使用这些原料的过程就是降低生产成本和减排的过程。更便宜、更“低碳”的原料有了,那怎么用它们呢?一种是像利用CO2合成淀粉那样,人工从头设计出一条从CO2到终端产品淀粉的合成线路。另一种是寻找能“吃”它们的微生物,然后以这些微生物为出发点进行再创造,赋予这些微生物新的能力,确保它们能“吐”出来好东西。上面提到的美国工程师选的是后一种。比较幸运的是,一些自养的梭菌可以利用C1废气,废气中的CO和H2可以作为能源物质,CO和CO2也可以作为这些梭菌的碳源物质。之前生物工程师们已经赋予了这些微生物生产能力了,能够生产超过50多种人类所需的化学品、但是大部分都因为生产性能不好,难堪重用,只有一个产乙醇的梭菌细胞工厂能在工业化规模运行,每年能够利用废气产生超过90000吨的乙醇,可谓是微生物界的“劳模”了。这次,工程师们想让“劳模”更进一步。“劳模”的再就业之路一种技术或过程要想实质性的助力碳中和,必须要能大规模部署和发光发热。尽管产乙醇梭菌细胞工厂现在每年已经能将数万吨废气的C1气体再利用了,但考虑到社会对特定化学品的需求是一定的,如果想让产乙醇梭菌发挥更大的能量,就必须再给它开拓一些新的天地。丙酮(acetone)和异丙醇(IPA)是两种非常重要的化工产品,前者是工业溶剂和丙烯酸玻璃和双酚A的前体。后者广泛用于制药、化妆品和个人护理产品,并可以作为溶剂和清洁剂。目前都只能由高耗能和排放的石油化工过程所产生,两者每年的全球市场超过600亿人民币。能不能用之前的梭菌“劳模”来生产的呢?产乙醇梭菌这个“劳模”并不是一个很好改造的微生物,但是生物工程师通过一系列高级的合成生物学技术和工具大大的缩减了要进行改造的次数,整个过程经历了三个阶段。从0到1:为了建立从C1气体到丙酮和异丙醇的生产线,他们首先在“明星菌株”大肠杆菌中测试了超过250种设计方案,最终经过筛选把最优的改造方案在产乙醇梭菌“劳模”身上进行了实施,成功赋予它们产丙酮和异丙醇的能力,与之前基于其它梭菌构建的最好的菌株相比产率提高了20多倍。从1到10:一些组学手段和动力学模型的运用使得生物工程师们能对产乙醇梭菌“吃”进去的碳的去向有相对较为直观的了解,从而找到了一些可能会进一步提高生产丙酮和异丙醇能力的潜在改造靶点。而基于无细胞体系的“巨星修炼场”可以快速对这些潜在改造靶点进行初步的评估。最终根据这些认知进行的改造,又将“劳模”产丙酮和异丙醇的产率提高了大约27倍,同时还大幅提高了生产不同产物的选择性。从10到… … :将之前的改造在基因组层面稳定下来,工程师们又进一步提高了两个产物的产率和生产的选择性。最终在中试规模,120L的反应器中对最终版“劳模:的测试结果显示:产乙醇梭菌产丙酮和异丙醇的产率能达到大概3g/L/h,产不同产品的选择性达到90%。而整个生产过程稳定运行的时间也能达到三周,整个过程估算的产能达到每年4万多吨。 作者也对传统生产过程和这项工作所创造的新生产过程的碳足迹进行了估算。估算结果显示,传统的生产方式产丙酮和异丙醇的碳足迹分别为2.55和1.85 kgCO2e/kg(CO2-equivalent in 100-year global warming potential per kilogram of product),而新创造的生产过程的两个数字分别为-1.78kgCO2e/kg acetone和-1.17kgCO2e/kg IPA。根据估算的结果,这个利用梭菌生产丙酮和异丙醇的新过程确实是一个实至名归的负碳生产过程,最终生成的化学品和菌体生物质则是负碳的体现形式。梭菌的负碳生产潜力有多大?面对新技术,所有人都会提出这样的问题:这种负碳生产过程能为碳中和贡献多大的力量?这些工程师将产一种化学品的细胞工厂重构成产其它化工产品的细胞工厂,仅从这种改造过程来看,这项工作是可以被视作一个典范的。但是这项工作最后的落脚点只是在中试规模进行了测试,只能说是为了负碳生产化学品开了个好头,最终能不能真正被大规模应用、能在多大规模被应用,其实还要经历很多考验。
  • 东南科仪成功引进红外快速水分测定仪专用玻纤膜片
    使用红外快速水分测定仪测定固体水分是快速而稳定的水分测定方法,在农业生产,经济作物,化学品,食品工业质量监控和中间体质控中应用广泛,塞多利斯MA系列产品是此类仪器的典型代表,在世界范围内得到了广泛的应用,但是,由于半固体和固体物质加热过程中容易结块,挥发不完全,所以,膏状物和液体的水分测定使用红外快速水分测定仪就不太方便,现在,这个问题已经成功解决,东南科仪引进一种玻璃纤维海绵状薄膜,可以将液体比如:牛奶,豆奶,巧克力等均匀吸附,借助表面张力完美分散,有利于水分的挥发,对测定膏状物质:比如:巧克力,酸奶,奶酪等产品的水分也非常方便。 这种玻璃纤维片本身含水量在0.1%以下,性质惰性,只产生表面粘附和径向分散作用,不会永久吸附,不会对测定结果造成不利影响,切割直径为~90mm,可满足赛多利斯MA系列和其他品牌的水分测定仪的使用需要。包装:100片/包(销售和价格咨询: 13380008123) 相关链接:[赛多利斯产品简介] 德国赛多利斯电子称量器具和红外快速水分测定仪,其先进的超级单体传感器, 优质可靠的集成电路和显示器件技术, 精湛的制造工艺,使其能长年稳定可靠地工作而勿须特别维护, 与其它同类产品相比, 可以一当十, 由东南科仪向用户推荐并经销的MA系列红外快速水份测定仪正在烟草行业数十家企业和质监站中应用, 积累了丰富的使用经验, 被使用者誉为 "是对该行业的一大贡献"。 德国赛多利斯MA系列红外水分测定仪是先进的红外干燥器(模拟电烘箱)和精密电子天平及数据处理技术相结合的智能型产品, 其测定水分的原理基于干燥失重法, 与国标方法测定水分的过程具有原始的相关性, 因此, 与重现性和准确度均无法保证的电容法, 电阻法相比, 其测定结果准确, 可靠, 快速, 操作简便, 仪器本身勿须标定,测定结果勿须修正。为保证测定精度, MA-45,MA-50, MA-100均采用电子反馈系统自动调整加热功率, 使干燥加热的温度波动能够控制在± 1℃内。 赛多利斯全部中高端产品内置标准的RS-232C数据传输接口和打印驱动程序, 配打印机或电脑可不需要硬件改动实现结果的输出和统计数据,对数据进行集中统一管理, 实现测定与数据管理现代化。
  • 安全无小事 论化学品安全技术说明书的正确使用
    p style=" text-align: justify "   化学品安全技术说明书(Safety data sheet for chemical products, SDS)是涵盖化学品基本特性、燃爆性能、健康及环境危害、安全处置和储存、泄露应急处理以及法规遵从性等信息的综合文件,共包括16部分内容。GB/T 17519-2013《化学品安全技术说明书编写规定》对每部分内容进行了规范。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/5d67db2d-e0d4-46b8-b4e8-84215bbf2e7c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify "    span style=" color: rgb(79, 129, 189) " strong 实验安全无小事,1997-2016年间全国高校实验室共发生110多起典型事故。这些事故中有相当一部分是由于实验人员不规范操作造成的或者是由于对化学试剂性质不了解,在事故发生时处理不当使得事态进一步扩大。对这类事故的一个有效预防手段就是合理使用SDS。 /strong /span /p p style=" text-align: justify "   首先,对每一个进入实验室进行实验操作的工作人员在进入实验室之前都应该经过专门培训,熟知常用化学试剂的性质,掌握一般事故发生时的处理措施 其次,每一个实验室都应该配备一份本实验室所有试剂的SDS或者制作成化学品安全周知卡,如图1所示,摆放在实验室中最容易被拿到的地方以备事故发生时实验人员可以第一时间找到该化学品危险性概述、急救措施和消防措施。确保实验人员能有针对性的采取正确的措施将事故损失降到最低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/79dcf67e-e0dd-4a92-9500-96aaad674a15.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 图1 实验室化学品安全周知卡 /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 16部分内容进行简单介绍 /strong /span /p p style=" text-align: justify "    strong 第一部分,化学品及企业标识。 /strong /p p style=" text-align: justify "   主要描述化学品的中英文名称、俗名、生产企业的具体信息。 /p p style=" text-align: justify "   strong  第二部分,成分/组成信息。 /strong /p p style=" text-align: justify "   主要描述化学品的有害成分、含量及CAS号。 /p p style=" text-align: justify "    strong 第三部分,危险性概述。 /strong /p p style=" text-align: justify "   主要描述化学品危险性类别、侵入人体的途径、健康危害、环境危害以及燃爆危险。如western blot常用的丙烯酰胺是一种蓄积性的神经毒物,主要损害神经系统。中毒主要因皮肤吸收引起。该物质可燃,有毒,为可疑致癌物。 /p p style=" text-align: justify "    strong 第四部分,急救措施。 /strong /p p style=" text-align: justify "   人体在没有防护措施的情况下暴露于大量的化学品时应该采取的紧急处理措施,如苯酚进入眼睛时应立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟,就医。 /p p style=" text-align: justify "    strong 第五部分,消防措施。 /strong /p p style=" text-align: justify "   主要描述化学品的危险特性,如甲醇遇明火、高热能会引起燃烧爆炸 其蒸汽比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃,灭火剂可用抗性泡沫、二氧化碳、干粉、砂土扑救。再比如盐酸能与一些活性金属粉末发生反应,放出氢气,如遇火情,灭火时应选用碱性物质如碳酸氢钠、碳酸钠、消石灰等中和,也可用大量水扑救。 /p p style=" text-align: justify "    strong 第六部分,泄露应急处理。 /strong /p p style=" text-align: justify "   描述化学品泄露之后的应急处理措施。该部分描述了各种化学品小量泄漏及大量泄漏时针对性的处理措施。 /p p style=" text-align: justify "    strong 第七部分,操作处置与储存。 /strong /p p style=" text-align: justify "   主要描述了操作注意事项与储存注意事项:比如盐酸应贮存于阴凉、通风的库房,库温不超过30℃,相对湿度不超过85%,由于盐酸易与胺类、碱金属、易(可)燃物发生反应,因此存放时应与这些物质分开存放,同时储存区应备有泄露应急处理设备和合适的收容材料。 /p p style=" text-align: justify "    strong 第八部分,接触控制/个体防护。 /strong /p p style=" text-align: justify "   描述了化学品最高容许浓度、监测方法以及呼吸系统、眼睛、身体、手的防护。其中手防护是我们实验过程中最常使用,也是最容易做到的一种防护措施。但是不同性质的化学物质需要使用相应材质的手套才能达到防护效果,比如使用盐酸时应佩戴橡胶耐酸碱手套 使用乙腈时应佩戴橡胶耐油手套,实验室常用的丁腈手套就属于橡胶耐油手套。选购手套时最好看清材质与说明,不要乱用一通。 /p p style=" text-align: justify "    strong 第九部分,理化特性。 /strong /p p style=" text-align: justify "   主要描述了化学品的外观与性状、熔沸点、闪点、爆炸上限以及溶解性和主要用途。 /p p style=" text-align: justify "    strong 第十部分,稳定性和反应性。 /strong /p p style=" text-align: justify "   主要描述了化学品的稳定性、禁配物、避免接触的条件、聚合危害以及分解产物信息。 /p p style=" text-align: justify "    strong 第十一部分,毒理学资料。 /strong /p p style=" text-align: justify "   主要描述了引起化学品急性、亚急性、慢性中毒的中毒剂量,中毒表现以及致癌、致畸、致突变特性。 /p p style=" text-align: justify "    strong 第十二部分,生态学资料。 /strong /p p style=" text-align: justify "   主要描述化学品的生物降价性、非生物降解性以及生物富集性。例如,汞是常见的重金属污染物之一,主要以颗粒物、元素蒸汽、二氯化汞蒸汽、无机亚汞、甲基汞化合物等形式释入环境。大部分汞以无机的和苯基的形态进入水环境、通过细菌的甲基化活动进入水生生物链,进一步在鱼虾类动物体内发生生物蓄积,最终通过这些生物的食用进入人体。 /p p style=" text-align: justify "    strong 第十三部分,废弃处理。 /strong /p p style=" text-align: justify "   主要描述了化学品的废弃物性质以及废弃处置方法。一般情况下实验室废弃试剂都是交由有专业资质的部门统一回收处理,实验室工作人员通常只需做好废弃物保管工作即可。 /p p style=" text-align: justify "    strong 第十四部分,运输信息。 /strong /p p style=" text-align: justify "   主要描述化学品的危险货物编号、包装标志、包装方法以及运输注意事项。每一种化学试剂根据其理化特性的不同,包装是有一定区别的,比如高氯酸的包装方法有以下几种:玻璃瓶或塑料桶(罐)外全开口钢桶 磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱 安瓿瓶外普通木箱。 /p p style=" text-align: justify "    strong 第十五部分,法规信息。 /strong /p p style=" text-align: justify "   主要描述相关法律法规中对该化学品安全生产、使用、储存、运输、装卸等方面的相应规定。 /p p style=" text-align: justify "    strong 第十六部分,其他信息。 /strong /p p style=" text-align: justify "    strong 化学品安全技术说明书的获取方式: /strong /p p style=" text-align: justify "   1、生产企业应随化学品向用户提供该文件,所以您可以在购买产品时向化学品供应商索要 /p p style=" text-align: justify "   2、将要查询的化学品输入以下网址即可查询http://www.somsds.com/msds.asp(这个网址还是挺实用的哦)。 /p p style=" text-align: justify "   (本文作者:杨慧 河北医科大学) /p
  • 贺莒南县污水处理厂选购冠亚污泥含水率测定仪
    莒南县污水处理厂污泥处置中心采购冠亚牌污泥含水率测定仪。 冠亚水分测定仪因检测速度快、结果准确,得到了污水处理厂相关领导及技术人员的一致认同! ●自主研发生产、核心技术产品,SFY商标8931081●可广泛应用于环保、污泥加工企业●测试准确度符合污泥行业标准●质量过硬、仪器零耗材●操作简单,无需辅助设备●CMC计量许可证00000018号(生产许可证)●污泥行业快速水分检测仪●SFY系列红外线/卤素快速水分测定仪器(专利号:2005301013706)●是目前行业中通过ISO 9001:2008质量管理体系认证的产品。 ●“GY"商标证书,商标证书编号7927649号。●“SFY"商标证书,商标证书编号8931081号。《冠亚牌》SFY-50污泥快速水分测定仪是由深圳市冠亚公司研发并生产,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代卤素快速水分测定仪器。引进进口自动称重显示系统,人性化系统操作, 无需特殊培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。客户可根据所测样品状态不同而调整测试空间,片状、颗粒、粉末一机操作,且检测效率、测试准确度远远高于**标准方法。计算机、打印机连接功能可即时打印或者记录、储存终点自动判定模式锁定的终水分值。 《冠亚牌》污泥快速水分测定仪是生产和科研中理想的水分测定仪器,目前已被广泛引用于各个行业水分监控及院校科研等领域,如各种生物污泥、化学污泥、化学混合污泥、脱水污泥等各种样品的水份检测。冠亚污泥含水率测定仪技术指标 1、称重范围:0-150g 2、水分测定范围:0.01-** ★★JK称重系统传感器 3、样品质量:0.1-150g ★★可调试测试空间为3cm 4、加热温度范围:起始-250℃ ★★加热方式:应变式混合气体加热器 ★★微调自动补偿温度15℃ 5、水分含量可读性:0.01% 6、显示7种参数: ★★ 水分值,样品初值,样品终值,测定时间,温度初值,终值,恒重值 ★★红色数码管独立显示模式 7、双重通讯接口:RS 232 8、外型尺寸:380×205×325(mm) 9、电源:220V±10% 10、频率:50Hz±1Hz 11、净重:3.7Kg 2004年冠亚在深圳成立 2005年上海分公司成立 2009年长春分公司成立 2012年沈阳分公司成立 2014年哈尔滨公司成立 仪器自购之日起,保修一年,终身维护。我司目前在深圳、上海、长春、沈阳、哈尔滨均有公司,可就近发货和售后。 部分用户西环保局 (27台)南京环保局通辽污水处理厂陕西中电投太阳能电池废水污泥合肥王小郢污水处理有限公司深圳深南电环保有限公司温州污水处理厂温州水务集团深圳市水务集团上海绿嘉环保科技有限公司南海发电一厂有限公司深圳深南电环保有限公司上海南市污水厂 深圳市水务技术有限公司 天津城市建设学院巴斯夫造纸化学品(江苏)有限公司新乡污水处理厂山东潍坊污水处理厂宁德师范大学无锡污水厂东南大学深圳东江环保股份有限公司
  • 持久性有机污染物论坛2018暨化学品环境安全大会通知
    p style=" text-align: center " img width=" 613" height=" 222" title=" 12.jpg" style=" width: 562px height: 219px " src=" http://img1.17img.cn/17img/images/201803/noimg/87fb37c0-8fb0-4e13-bb66-39a8c3fb85c2.jpg" / /p p strong   论坛介绍 /strong /p p   “持久性有机污染物论坛暨化学品环境安全大会”(以下简称“POPs论坛”)是2006年由清华大学持久性有机污染物研究中心发起,并与中国环境科学学会持久性有机污染物专业委员会、中国化学会环境化学专业委员会共同主办的系列年会,到2017年已经成功地举办了12届!POPs论坛已经成为我国POPs领域学术界、管理界和产业界集思广益和共谋对策、纵览POPs履约国际动态和我国进展、研讨POPs研究热点和发展趋势、展示POPs分析和控制的高新技术与先进产品的高层次交流平台。 /p p   为了更好地服务于国家的生态文明和美丽中国建设,POPs论坛2018在保持原有特色的基础上,将研讨对象扩展到药物和个人护理品、环境内分泌干扰物等优先关注的化学品,将研讨主题提升到环境安全,将组织模式转变为扁平化的多方参与??一个继承和发展兼具的新版“POPs论坛”即将和新老朋友见面! /p p   持久性有机污染物论坛2018暨化学品环境安全大会(POPs论坛2018)将于2018年5月17日至19日在四川省成都市召开,大会主题是“化学品环境安全与控制”。论坛主办单位热忱欢迎从事POPs、化学品环境安全及相关工作的各界人士相聚在美丽的天府之国——成都! /p p   strong  主办单位 /strong /p p   清华大学持久性有机污染物研究中心 /p p   中国环境科学学会持久性有机污染物专业委员会 /p p   中国化学会环境化学专业委员会 /p p   环境模拟与污染控制国家重点联合实验室 /p p   新兴有机污染物控制北京市重点实验室 /p p   清华苏州环境创新研究院 /p p strong   承办单位 /strong /p p   清华大学环境学院环境化学研究所 /p p   江苏省(宜兴)环保产业技术研究院化学品环境安全十人会 /p p   中持新兴环境技术中心(北京)有限公司 /p p   四川省绿色发展促进会 /p p   协办单位 /p p   沃特世科技(上海)有限公司 /p p   安捷伦科技(中国)有限公司 /p p   岛津企业管理(中国)有限公司 /p p   中持依迪亚(北京)环境检测分析股份有限公司 /p p   北京联众行贸易有限公司 /p p   (征集中)?? /p p    strong 参展单位 /strong /p p   赛默飞世尔科技(中国)有限公司 /p p   上海安谱科学仪器有限公司 /p p   北京博赛德科技有限公司 /p p   上海磐合科学仪器股份有限公司 /p p   美资力可仪器(上海)有限公司 /p p   (征集中)?? /p p strong   论坛议题和专题 /strong /p p   议题1、 POPs替代品和替代技术 /p p   议题2、 POPs分析方法与污染水平 /p p   议题3、 POPs迁移行为与转化归趋 /p p   议题4、 POPs降解机理与控制技术 /p p   议题5、 副产物类POPs减排技术与实践 /p p   议题6、 化学品毒性效应与环境风险分析 /p p   议题7、 有毒有害化学品环境行为 /p p   议题8、 有毒有害化学品废物处置技术 /p p   议题9、 有毒有害化学品污染土壤修复技术 /p p   议题10、 化学品环境安全管理政策与方法 /p p   专题A. 重点行业二恶英减排技术与方法(中持新兴) /p p   专题B. 新增列POPs(短链氯代石蜡、多氯萘、六氯丁二烯等)分析方法 /p p   专题C. 药物和个人护理品(PPCPs)污染水平与控制技术 /p p   专题D. 环境内分泌干扰物(EDCs)的污染水平与控制技术 /p p   专题E. 太湖流域化学品污染状况与控制对策 /p p   专题F. 安捷伦POPs Forum卫星会(安捷伦) /p p   专题G. PFOS/PFOA替代国内外趋势与关键技术(氟理事会) /p p    span style=" color: rgb(255, 0, 0) " strong 重要日期 /strong /span /p p   2018年04月09日:论文提交截止 /p p   2018年04月24日:优惠缴费截止 /p p   2018年04月24日:住宿及考察预订截止 /p p   2018年05月12日:会议日程公布 /p p   2018年05月16日:注册报到 /p p   2018年05月17日:论坛开幕 /p p strong   日程安排 /strong /p p img title=" 21.jpg" src=" http://img1.17img.cn/17img/images/201803/noimg/301bde9d-0864-49d1-993f-a098c4d3f2fe.jpg" / /p p   strong  重要活动 /strong /p p   高层报告:邀请国内外负责POPs公约履约和化学品环境安全领域的高级官员、从事POPs及化学品环境安全研究的知名专家学者、优秀企业人士作大会报告,纵论一年来国内外履约动态、化学品环境安全最新研究进展和产业 /p p   研讨热点:针对POPs污染和化学品环境安全问题,在环境存在、毒理效应、降解行为、代替技术、处置技术、减排实践、履约政策等方面进行交流探讨 /p p   履约论坛:结合正在开展的POPs履约省市示范工作,针对地区特点、实施计划、地方法规、意识增强等议题展开讨论 /p p   表彰先进:颁发“2018年度消除持久性有机污染物杰出贡献奖”,表彰为我国POPs事业做出重要贡献的杰出人士 /p p   青年交流:评选“POPs论坛2018优秀研究生论文奖”、“POPs论坛2018优秀研究生墙报奖”,激励POPs领域优秀青年成长 /p p   企业展示:国内外知名POPs和化学品环境安全企业将通过最新技术和产品推广报告介绍最新的设备、产品和技术,并解答应用方面的问题 /p p   宣传教育:发放POPs公约、化学品环境安全方面的宣传材料,开展科普教育活动,增强意识。 /p p    strong POPs专业委员会二届五次会议同期举行,专业委员会组成如下: /strong /p p   顾问: /p p   魏复盛 中国工程院院士、中国环境监测总站研究员 /p p   蔡道基 中国工程院院士、环保部南京环科所研究员 /p p   江桂斌 中国科学院院士、中科院生态环境研究中心研究员 /p p   任南琪 中国工程院院士、哈尔滨工业大学教授 /p p   朱利中 中国工程院院士、浙江大学教授 /p p   洪华生 厦门大学教授 /p p   罗高来 国家履行斯德哥尔摩公约工作协调组专家委员会副主任 /p p   Heidelore Fiedler 瑞典厄勒布鲁大学教授、UNEP Chemicals原高级科学顾问 /p p   主任: /p p   余 刚 清华大学教授 /p p   副主任: /p p   郑明辉 中科院生态环境研究中心研究员 /p p   胡建信 北京大学教授 /p p   丁 琼 环保部固体废物与化学品管理中心研究员 /p p   孙阳昭 环保部对外合作中心POPs项目处处长 /p p   委员: /p p   曾永平 暨南大学教授/院长 /p p   陈宝梁 浙江大学教授/院长 /p p   陈会明 中国检验检疫科学研究院研究员/所长 /p p   陈吉平 中科院大连化物所研究员 /p p   陈景文 大连理工大学教授/院长 /p p   戴家银 中科院动物研究所研究员 /p p   邓述波 清华大学教授 /p p   董 亮 国家环境分析测试中心研究员 /p p   高士祥 南京大学教授 /p p   海 景 环保部华南环境科学研究所研究员 /p p   黄 俊 清华大学副教授 /p p   黄启飞 中国环境科学研究院研究员/所长 /p p   黄业茹 国家环境分析测试中心研究员/主任 /p p   李爱民 南京大学教授/副院长 /p p   李朝林 卫生部疾病预防研究所研究员 /p p   李东浩 延边大学教授/主任 /p p   李金惠 清华大学教授 /p p   李晓东 浙江大学教授 /p p   林志芬 同济大学教授/所长 /p p   刘国光 广东工业大学教授/院长 /p p   刘国瑞 中科院生态环境研究中心副研究员 /p p   刘建国 北京大学副教授 /p p   刘维屏 浙江大学教授/院长 /p p   牛军峰 北京师范大学教授 /p p   潘学军 昆明理工大学教授 /p p   彭 政 环保部对外合作中心高级工程师 /p p   齐 虹 哈尔滨工业大学教授 /p p   全 燮 大连理工大学教授/学部党委书记 /p p   邵春岩 沈阳环境科学研究院研究员/院长 /p p   史江红 南方科技大学教授 /p p   孙红文 南开大学教授/院长 /p p   田洪海 环保部标准样品研究所研究员/所长 /p p   王 斌 清华大学副教授 /p p   王铁宇 中科院生态环境研究中心研究员 /p p   王新红 厦门大学教授 /p p   王亚韡 中科院生态环境研究中心研究员 /p p   韦朝海 华南理工大学教授 /p p   吴永宁 中国疾病预防控制中心研究员 /p p   薛南冬 中国环境科学研究院研究员 /p p   殷浩文 上海市检测中心教授 /p p   尹大强 同济大学教授/副院长 /p p   张 干 中科院广州地化所研究员/副所长 /p p   张效伟 南京大学教授 /p p   朱丽华 华中科技大学教授 /p p   注册方式 /p p   通过POPs论坛官网:forum.china-pops.net /p p   会议论文、版式与格式 /p p   1.论文集 /p p   POPs论坛2018贯彻绿色理念,会议论文集分有纸质和光盘两种形式。为节约资源,保护环境,组委会鼓励参会代表选择光盘(论文集电子版)作为会议资料 如选择纸质论文集需在提交会议申请时注明(2018年4月30日前,逾期会务组将只提供电子版会议论文集),并额外交纳300元工本费。 /p p   2.论文格式 /p p   请登录会议网站下载论文、墙报格式模板文件,请注意: /p p   (1)论文各部分完整,内容简洁,总字数(含图表)不宜超过2000字,篇幅不超过2页。A4纸排版,左、右页边距各2.6厘米,上下页边距各2.4厘米。 /p p   (2)重要图表需列出,图的标题位于图下,小5号字 表的标题位于表上,5号字,表文小5号字,用三线表。图片请采用png\jpg\tiff等格式,请勿使用软件直接粘贴。 /p p   (3)墙报规格90cm× 120cm,录用的墙报需自行打印,会务组提供展板及粘贴材料。 /p p   论文经审查后决定是否录用,并及时通告作者。提交的文章无论录用与否恕不退还,请作者自留底稿。 /p p   3.提交方法 /p p   请在论坛网站首页注册、登录后提交论文。 /p p strong   参会费用 /strong /p p strong   /strong  1.注册费 /p p strong img title=" 26.jpg" src=" http://img1.17img.cn/17img/images/201803/noimg/7080128f-5f3e-4001-b709-2f9db57a4e3d.jpg" / /strong /p p   注1:注册费优惠截止日期指汇款汇出日期 /p p   注2:因认款手续严格,请勿用现金ATM机转账参会费用。 /p p   2.退费办法 /p p   如有已交费但因故不能参会的情况,请通过邮件及时向会务组财务负责人提出申请,申请截止2018年4月30日。在此之前提交的申请,退还所交注册费的100% 在此之后恕不退费,因为会议各项安排已经签约。会务组将会在论坛结束后七个工作日内统一办理退费手续。 /p p   付款方式 /p p   1.银行汇款: /p p   开户银行:工行北京分行海淀西区支行 /p p   汇款帐号:0200 0045 0908 9131 550 /p p   收款单位:清华大学(备注:POPs论坛+参会人姓名) /p p   2.在线支付 /p p   登录到会议系统后,点击:我的订单 - 注册费订单 - 支付 - 人民币支付 - 在银行列表下点击“立即支付” - 跳转页面后可选择银行进行支付,完成在线缴费。 /p p   3.邮政汇款: /p p   收款单位:清华大学环境学院 /p p   收款人名:薛海宁(备注:POPs论坛+参会人姓名) /p p   联系电话:010-62771637 (邮编:100084) /p p   4.现场缴费: /p p   POS机刷卡或现金(发票会后邮寄) /p p strong   联系方式 /strong /p p   清华大学环境学院环境化学研究所 /p p   联系人:郑烁、薛海宁(财务) /p p   地 址:北京市海淀区清华园1号清华大学环境学院504室 /p p   电 话:010-627 94006/71637,传 真:010-627 94006 /p p   电 邮: popspc@tsinghua.edu.cn 、xuehn@tsinghua.edu.cn /p p   江苏省(宜兴)环保产业技术研究院化学品环境安全十人会秘书处 /p p   联系人:李延玮、李素君 /p p   地 址:北京市海淀区西直门外大街168号腾达大厦1201室 /p p   电 话:010-885 77078-8011/8017 /p p   传 真:010-885 77355 /p p   电 邮:li.yanwei@jiei.org.cn、 a href=" mailto:li.sujun@jiei.org.cn" li.sujun@jiei.org.cn /a /p p br/ /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/05c8b31b-3f64-4b76-8570-13cff36b141c.pdf" POPs论坛2018会议通知.pdf /a /p p style=" line-height: 16px " br/ /p p   论坛微信公众号 /p p style=" text-align: center " img width=" 231" height=" 234" title=" 11.jpg" style=" width: 207px height: 204px " src=" http://img1.17img.cn/17img/images/201803/noimg/3d38dc8f-43b8-4385-9908-401498d2b916.jpg" / /p
  • NanoTek 2000 便携式重金属测定仪护驾水质安全
    进入21世纪以来,中国经济快速稳步发展,与此同时,环境压力也日趋严重,环境污染事件频发:北江镉污染、松花江化学品泄漏以及汀江铜污染……;面对一次次的突发事故,深圳市朗石生物仪器有限公司的环保卫士们第一时间赶到现场,克服万难,组织实施支援工作。 朗石作为国内水质检测行业的知名企业,在加快发展取得自身经济效益的同时,更有带动全行业发展、把企业技术创新的成果直接回馈社会的责任,其自主研发生产的NanoTek2000便携式重金属测定仪便是以顶尖的品质及卓越的性能,在2010年广州亚运会、2011年深圳大运会,以及全国各级环境监测部门的应急监测中都得到了大量的应用,为确保水质安全发挥着重要的作用。 作为水质监测方案服务专家,朗石公司秉着“确保水质安全”的己任,践行优秀企业公民的责任,多次承担和参与大型赛事和各种突发事件应急监测任务,为构建和谐社会贡献力量。 图一:工作人员在应急监测现场使用朗石 图二:朗石NanoTek2000便携式重金属测定仪 NanoTek2000便携式重金属测定仪 在应急监测现场 关于朗石 深圳朗石生物仪器有限公司(www.szlabsun.com)主要致力于水质监测仪器的研究、开发、生产和销售,目前公司主要有应急监测、在线监测、实验室仪器和配套试剂四大系列产品,其中便携式发光细菌毒性检测仪LumiFox 2000、在线发光细菌毒性监测仪LumiFox 8000、便携式重金属测定NanoTek 2000、多参数重金属在线分析仪NanoTek 9000(阳极溶出法)、多参数重金属在线分析仪PhotoTek 6000(光学法) 一直在国内处于领先地位。
  • 福建省日用化学品商会立项《化妆品抗皱紧致功效评价—体外I型胶原含量测定紫外线诱导人成纤维细胞测试方法》等2项团体标准
    各相关单位:根据《福建省日用化学品商会团体标准管理办法》的相关规定,福建日化商会于2023年3月组织专家对《化妆品抗皱紧致功效评价—体外I型胶原含量测定紫外线诱导人成纤维细胞测试方法》、《婴童化妆品用山茶籽油》团体标准进行评审。经表决通过了2项团标立项。现将通过评审的项目信息在全国团体标准信息平台网(http://wwwttbzorgcn)予以公示,公示期为5个工作日(4月19日-4月25日)。公示期间如有任何建议和要求,请与福建日化商会秘书处联系。联系人:钟惠娜联系电话:0596-2301381邮箱:fjrhjcksh@163.com地址:福建省漳州市芗城区厦门路15号楼江滨花园沿江二层步行街15-26.27室 福建省日用化学品商会二〇二三年四月十九日
  • 中国化学品安全协会完成换届
    11月9日,中国化学品安全协会第二次会员代表大会暨二届一次理事会议在北京举行。此次会议选举产生了新一届理事会,中国石油天然气集团公司副总经理廖永远当选为第二届理事会理事长,国家安全生产监督管理总局监管三司司长王浩水等15人当选为副理事长,樊晶光继续担任中国化学品安全协会秘书长。   国家安监总局副局长孙华山在会上说,“十一五”时期,全国石油、石化、化工企业累计发生事故近1700起,死亡近2300人。因此,业内企业要正确认识全国化学品领域的安全生产形势,进一步增强做好企业安全生产工作的责任感、使命感和紧迫感。他希望中国化学品安全协会要切实履行好服务职能,进一步推动化学品领域安全生产形势持续稳定好转。   新当选的协会理事长廖永远表示,“十二五”期间,国内危险化学品安全生产工作除了要面对一些历史遗留的问题外,还要接受经济社会的发展对危险化学品行业安全生产带来的新的挑战,安全生产面临的形势依然复杂。中国化学品安全协会将按照第二届理事会工作规划,切实做好化学品安全生产服务工作,履行好为企业、社会、政府开展化学品安全生产服务的使命。
  • 09年12月发布的食品、化学品等国家标准
    中华人民共和国国家标准批准发布公告   Announcement of Newly Approved National Standards of P.R.China   2009年第15号(总第155号) 序号 标准号 标准名称 代替标准号 发布日期 实施日期 1 GB/T 24828-2009 穿刺根腐线虫检疫鉴定方法 2009-12-15 2010-06-01 2 GB/T 24829-2009 毛刺线虫属(传毒种类)检疫鉴定方法 2009-12-15 2010-06-01 3 GB/T 24830-2009 拟毛刺线虫属(传毒种类)检疫鉴定方法 2009-12-15 2010-06-01 4 GB/T 24831-2009 香蕉穿孔线虫检疫鉴定方法 2009-12-15 2010-06-01 5 GB/T 24832-2009 饲料添加剂 半胱胺盐酸盐β环糊精微粒 2009-12-15 2010-03-01 6 GB/T 3780.10-2009 炭黑 第10部分:灰分的测定 GB/T 3780.10-2002 2009-12-15 2010-06-01 7 GB/T 9858-2009 片基与胶片耐折度的测定方法 GB/T 9858-1988 2009-12-15 2010-06-01 8 GB/T 12683-2009 片基与胶片拉伸性能的测定方法 GB/T 12683-1990 2009-12-15 2010-06-01 9 GB/T 24762-2009 产品几何技术规范(GPS) 影像测量仪的验收检测和复检检测 2009-12-15 2010-09-01 10 GB/T 24768-2009 工业用1,4 -丁二醇 2009-12-15 2010-07-01 11 GB/T 24769-2009 工业用丙烯酰胺 2009-12-15 2010-07-01 12 GB/T 24770-2009 工业用三甲胺 2009-12-15 2010-07-01 13 GB/T 24771-2009 工业用叔丁胺 2009-12-15 2010-07-01 14 GB/T 24772-2009 工业用四氢呋喃 2009-12-15 2010-07-01 15 GB/T 24773-2009 乌索酸纯度的测定 高效液相色谱法 2009-12-15 2010-07-01 16 GB/T 24774-2009 化学品分类和危险性象形图标识 通则 2009-12-15 2010-07-01 17 GB/T 24775-2009 化学品安全评定规程 2009-12-15 2010-07-01 18 GB/T 24776-2009 化学物质分组和交叉参照法 2009-12-15 2010-07-01 19 GB/T 24777-2009 化学品理化及其危险性检测实验室安全要求 2009-12-15 2010-07-01 20 GB/T 24778-2009 化学品鉴别指南 2009-12-15 2010-07-01 21 GB/T 24779-2009 化学品性质(Q)SAR模型的验证指南 卫生毒理性质 2009-12-15 2010-07-01 22 GB/T 24780-2009 化学品性质(Q)SAR模型的验证指南 理化性质 2009-12-15 2010-07-01 23 GB/T 24781-2009 化学品性质(Q)SAR模型的验证指南 生态毒理性质 2009-12-15 2010-07-01 24 GB/T 24782-2009 持久性、生物累积性和毒性物质及高持久性和高生物累积性物质的判定方法 2009-12-15 2010-07-01 25 GB/Z 24783-2009 氰化钠安全规程 2009-12-15 2010-07-01 26 GB/Z 24784-2009 黄磷安全规程 2009-12-15 2010-07-01 27 GB/T 24792-2009 摄影 加工废液 氰化物分析 用光谱法测定六氰合亚铁酸盐(Ⅱ)和六氰合铁酸盐(Ⅲ) 2009-12-15 2010-06-01 28 GB/T 24793-2009 摄影 加工废液 银含量的测定 2009-12-15 2010-06-01 29 GB/T 24794-2009 照相化学品 有机物中微量元素的分析 电感耦合等离子体原子发射光谱(ICP-AES)法 2009-12-15 2010-06-01
  • 聚焦“长江大保护与化学品环境安全” 第十五届POPs论坛在上海召开
    p & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 2020年11月11日,“第十五届持久性有机污染物论坛暨化学品环境安全大会”(以下简称:“第十五届POPs论坛”)在上海富悦大酒店隆重开幕。本届大会主题为“长江大保护与化学品环境安全“。出席论坛的专家学者包括中国工程院院士/中国环境科学学会副理事长/中国环境科学研究院研究员吴丰昌、中国环境科学学会副秘书长侯雪松、同济大学校长助理/教授童小华、中国环境科学学会POPs专委会副主任/北京大学教授胡建信、中国环境科学学会POPs专委会副主任/中科院生态环境研究中心研究员郑明辉,以及中国环境科学学会POPs专委会50多位委员。本次大会采取线上、线下同时进行的方式,由于受疫情防控等影响,部分专家报告采取远程连线的方式进行,现场出席人数近600人。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/3fd340ab-ce59-4924-a38a-2d19886b767a.jpg" title=" 大会现场.jpeg" alt=" 大会现场.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 会议现场 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/54090542-db4a-4fe4-b47d-8ee388201b12.jpg" title=" 余刚.jpeg" alt=" 余刚.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 清华大学教授/中国环境科学学会POPs专委会主任余刚主持开幕式 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/b88c6fb8-1f7a-41b1-9f8b-2fe9ba3e7f27.jpg" title=" 童小华.jpeg" alt=" 童小华.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 同济大学校长助理/教授童小华致欢迎词 /strong /p p & nbsp & nbsp & nbsp & nbsp 作为此次论坛的承办方代表,同济大学校长助理童小华教授首先致欢迎辞,并在致辞中提到,同济大学作为全国高等院校中最早开展环境教育和科学研究的机构之一,在环境污染研究和化学品环境安全方面作出了巨大的贡献,在环境学科建设、人才培养、国家交流与合作方面取得了卓越的成效。与此同时,同济大学围绕长江水环境与化学品污染开展研究,在2004年成立长江水环境教育部重点实验室,在长江环境化学品胁迫与生态效应、新型化学品处理技术、化学品污染风险管控等方面取得了重要进展,为长江化学品污染长期监测建设了长江环境样品库和有关基地,开展了中瑞、中德等国际合作项目,为全球合作共同促进化学品污染控制提供了案例。最后,童小华教授祝贺此次论坛圆满成功。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/785c607c-a10c-4686-9bb0-138896669bde.jpg" title=" 侯雪松.jpeg" alt=" 侯雪松.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 中国环境科学学会副秘书长侯雪松致辞 /strong /p p & nbsp & nbsp & nbsp & nbsp 侯雪松副秘书长在致辞中提到,POPs论坛已经成功走过15届,中国环境科学学会POPs专委会也已经成功运转了13年,两者相互支撑、共同发展,到今天已经汇聚了我国POPs领域学术界、管理界和产业界最精英的人士,形成了一个共聚的交流平台,在学术交流、科学普及、人才智库、以及技术成果转化方面为我国POPs问题的解决,包括政策的制定、技术创新以及国家履约工作的推进与发展都做出了非常好的工作和服务。今年6月,生态环境部将POPs纳入全国生态环境监测体系,给POPs科技人员提出了更高的要求。我国和全球消除POPs任务虽然取得了很大的进展,但依然面临着不少实际阻拦和困难,工作任务依然艰巨。从根本上消除POPs,需要以科学理性的公众认知为基础,以持续不断的科技创新为支撑,要始终坚持科学研究与科学普及并重,科技创新与产业并举的方针。 /p p & nbsp & nbsp & nbsp & nbsp 为表彰在POPs领域做出杰出贡献的科学家,POPs论坛每年会颁发“消除持久性有机污染物杰出贡献奖”。今年此奖颁给了同济大学教授尹大强,中科院生态环境研究中心研究员/中国环境科学学会POPs专委会副主任郑明辉宣读了颁奖词,中国工程院院士/中国环境科学研究院研究员吴丰昌和中国环境科学学会副秘书长侯雪松为尹大强颁奖。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/5f0eac3c-a4bd-48a8-9405-bb4997601760.jpg" title=" WechatIMG758.jpeg" alt=" WechatIMG758.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国工程院院士/中国环境科学研究院研究员吴丰昌(右)和中国环境科学学会副秘书长侯雪松(左)为尹大强(中)颁奖& nbsp /strong /p p & nbsp & nbsp & nbsp & nbsp 颁奖仪式之后,大会还与同日举办的生态环境部对外合作与交流中心履约技术协调会开启了片刻的远程互动交流,就双方正在召开的会议情况进行了简单介绍。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/97101069-e19a-4ac0-b528-8438d7cab746.jpg" title=" 连线.jpeg" alt=" 连线.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 生态环境部对外合作与交流中心履约技术协调会远程互动交流 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/3885c469-c10b-46e6-a70b-bcedbb47571d.jpg" title=" 吴丰昌.jpeg" alt=" 吴丰昌.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国工程院院士/中国环境科学研究院研究员吴丰昌 /strong /p p & nbsp & nbsp & nbsp & nbsp 吴丰昌院士做了“我国环境基准发展战略初步思考”的大会主旨报告,介绍了环境基准的定位与目标、国际环境基准发展现状与趋势,我国环境基准发展主要设想与进展,以及环境基准建设下一步的计划与建议。环境基准是环境要素对生物和人体健康的理论阈值,是基于科学实验,科学数据和科学判断,不考虑社会经济条件,希望维持的标准、自然控制标准,是一门新兴交叉学科,涉及环境科学、效应、风险、健康和生态。近30年来,为制定国家环境标准、保障生态环境安全,世界各国持续开展环境基准研究。我国的环境基准研究面临技术层面、管理层面和应用层面的多种问题与挑战,需要建立支撑我国环境标准和风险管理的环境基准工程科学体系。这是一项长期的基础性科技工程,涉及大量科学问题和关键技术,需要国家层面的持续科技投入和稳定长期支持,因此建议设立环境基准重大研究计划。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/0327f772-db1c-40fd-865f-59295dcfa3c1.jpg" title=" 郑明辉.jpeg" alt=" 郑明辉.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中科院生态环境研究中心研究员/中国环境科学学会POPs专委会副主任郑明辉主持大会报告 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202011/uepic/bd3eeca2-4221-49e2-9cec-926c4698ec07.jpg" title=" 尹大强.jpeg" alt=" 尹大强.jpeg" width=" 500" height=" 333" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 同济大学教授/中国环境科学学会POPs专委会委员尹大强 /strong /p p & nbsp & nbsp & nbsp & nbsp 尹大强教授做了“长三角地区化学品污染胁迫与风险研究”的报告,并在报告中介绍了中瑞重大科技合作项目“长三角地区化学品污染胁迫与风险研究”,该项目历时10年,经过双方的密切交流和紧密合作,在长三角地区化学品暴露、毒理与健康效应以及方法学建立等方面取得了实质性研究成果和进展,发现了长三角地区需要迫切关注的环境化学品污染新问题,如新型污染物在长江流域有全面分布的态势等。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b2094320-270e-49b6-a46d-7147cf40a2f0.jpg" title=" 任永.jpeg" alt=" 任永.jpeg" / & nbsp /p p style=" text-align: center " strong 生态环境部对外合作与交流中心履约三处副处长/中国环境科学学会POPs专委会副主任任永 /strong & nbsp /p p & nbsp & nbsp & nbsp & nbsp 任永副处长在会上通过远程连线做了“中国履行《斯德哥尔摩公约》进展与展望”的报告,从履约行动、履约成效、2020年履约重要进展以及履约的挑战与展望等方面详细介绍了我国《斯德哥尔摩公约》的履约进展。我国履约行动自开展以来,取得了一系列重要的成效与进展,但履约工作依然面临严峻挑战,其中包括受控物质增加,监管难度增大,POPs替代与污染控制等核心技术不成熟,不遵守履约风险,履约保障资金缺口等。尽管履约工作面临诸多挑战和压力,但作为负责任的发展中国家,我们继续坚持以习近平生态文明思想为指引,积极参与全球环境治理进程,加强与各机构、各部门、各行业协调合作,共同推动国家公约履约工作。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/66bdc064-64d6-4261-a21e-982f707027c9.jpg" title=" 冉晓蓉.jpeg" alt=" 冉晓蓉.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 安捷伦科技(中国)有限公司/博士冉小蓉 /strong /p p & nbsp & nbsp & nbsp & nbsp 冉小蓉博士在会上做了“代谢组学、代谢流整合细胞分析助力环境暴露与疾病研究”的报告,从代谢组学、代谢流整合细胞分析的相关背景介绍、整合方案、环境暴露与疾病研究示例等方面进行了介绍,并介绍了一种用来评估环境水细胞毒性的实时无标记细胞检测系统,该系统可提供监测环境水细胞毒性的高通量筛查。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/2a29c33a-6ef4-4f85-8879-e9cebd1ee7a8.jpg" title=" 胡建信.jpeg" alt=" 胡建信.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / & nbsp /p p style=" text-align: center " strong 北京大学教授/中国环境科学学会POPs专委会副主任胡建信 /strong /p p & nbsp & nbsp & nbsp & nbsp 胡建信教授在会上做了“受控短链卤代烃管控进展与挑战”的报告,从受控短链卤代烃管控的定义、重要进展以及未来面临的挑战等方面进行了介绍。2013年习近平主席访问美国,与当时的美国奥巴马总统达成推动全球减排氢氟碳化物(HFCs)的协议,2016年10月全球达成减排HFCs的《基加利修正案》,按照相关科学评估报告,实现修正案目标可以避免全球约0.4℃升温,而中国将是实现上述目标最大的贡献者,也将在科学和技术方面为这一全球环境治理作出重大贡献。公约受控卤代烃如消耗臭氧层物质(ODS)的排放直接涉及臭氧层的破坏和全球气候变化问题,研究受控短链卤代烃排放、归趋和减排技术是当前国家的重大战略需求,是实施全球治理的重要基础之一。未来受控短链卤代烃面临的挑战主要包括履约长效机制的建立、全球环境治理责任原则的落实以及相关替代技术的发展等。 /p p & nbsp & nbsp & nbsp & nbsp 11月11日下午共举办11场分会报告,报告主题围绕:“有机污染物环境分析与污染特征”、“有机污染物环境行为与迁移转化”、“环境污染物毒理效应及健康与生态风险”“二噁英等副产物类POPs减排技术与实践”、“药物和个人护理品(PPCPs)环境风险与控制”、“POPs履约战略与行动”。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/32eb9e2a-f0ff-4e98-a076-3919ca7756fe.jpg" title=" 未命名_meitu_1.jpg" alt=" 未命名_meitu_1.jpg" / /p p style=" text-align: center " strong 分会场 /strong /p p & nbsp & nbsp & nbsp & nbsp 此次会议还得到了多家厂商的支持,其中协办企业包括北京联众行贸易有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、沃特世科技(上海)有限公司、安捷伦科技(中国)有限公司、中持依迪亚(北京)环境监测分析股份有限公司、江苏微谱检测技术有限公司、上海仪真分析仪器有限公司、热耳科技(上海)有限公司、捷欧路(北京)科贸有限公司、上海安谱实验科技股份有限公司、北京博赛德科技有限公司、北京普立泰科仪器有限公司、青岛腾龙微波科技有限公司、北京安易世纪科技有限公司、上海汇析精密仪器有限公司等。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/57633c6f-8459-4c0c-92a9-4d615bb8ee1a.jpg" title=" 赛默飞.jpeg" alt=" 赛默飞.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 赛默飞世尔科技(中国)有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/b889aa25-7dc5-447c-bfe7-3eaf695f32c5.jpg" title=" 岛津.jpeg" alt=" 岛津.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 岛津企业管理(中国)有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/886f9818-34ee-4043-aff2-77a54299c633.jpg" title=" 沃特世.jpeg" alt=" 沃特世.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 沃特世科技(上海)有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/e30227ee-8b6a-4612-823c-fb1eb8f06ea1.jpg" title=" 安捷伦.jpeg" alt=" 安捷伦.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 安捷伦科技(中国)有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/826beb07-617f-4b92-9686-999809c4d805.jpg" title=" JEOL.jpeg" alt=" JEOL.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 捷欧路(北京)科贸有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/a202aca6-a69d-410b-81cf-2f0ab7ecaa89.jpg" title=" 安谱.jpeg" alt=" 安谱.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 上海安谱实验科技股份有限公司 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 334px " src=" https://img1.17img.cn/17img/images/202011/uepic/86af22c2-baf6-4f7a-9b28-f39f098d77ef.jpg" title=" 仪真.jpeg" alt=" 仪真.jpeg" width=" 500" height=" 334" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 上海仪真分析仪器有限公司 /strong /p
  • 300万种化学品将进入欧盟首份有害物清单
    据环境新闻网报道,欧洲化学品管理局(European Chemicals Agency)日前宣布,按照欧盟新规定的分类办法,该机构已经收到逾三百万种化学品的信息。新的分类方法将确定某种化学品是否对人体健康或者环境具有危害性,进而决定在劳动者以及消费者所使用化学品的标识上提供何种信息。   这些分类数据将帮助该局建立起欧洲第一份有害化学品清单以及与之相符的分类体系,并在今年晚些时候将其发布。   欧盟委员会副主席安东尼奥・ 塔亚尼(Antonio Tajani)同时也是欧盟负责工业与企业的专员,他说:“欧盟历史上第一份涵盖所有危险化学品清单的出炉将确保包括小业主在内的所有公司、消费者在安全使用化学品的同时获得必要的信息。”他还说,新规定“还将提高欧洲化学工业的可持续性以及竞争能力”。   欧盟环境专员亚内兹・ 波托奇尼克(Janez Potocnik)说:“危险化学品清单以及相应分类能够改善所有接触化学品人员的安全条件,同时能够使得下游产品使用者和消费者按其所需选择更小危害的化学品。”   这项新规定包含在《欧盟化学品分类、标识与包装规程》(EU Regulation on Classification, Labelling and Packaging of chemicals)之内,该规定使得欧盟的分类体系与联合国的全球协调体系相配合,可以确保同样危害的化学品能够在全球范围内以一致的方式加以描述和标识。   欧洲化学品管理局此前要求所有从事生产和进口危险化学品的公司都要在2010年12月1日前完成分类工作并向该管理局报告。最后,欧洲化学品管理局共收到3,114,835份。通过数量最多的欧盟国家是德国,超过80万份,英国提交了逾50万份,法国则接近30万份,超过6600家公司至少报告了一种化学品。   欧洲化学品管理局首席执行官格尔特・ 丹塞特(Geert Dancet)说:“这对于作为国际化学品年的新一年来说是一个完美的开端,分类标识清单将在今年晚些时候公开发布,通过就每天欧盟市场上出现的所有危险化学品提供有关最新信息,化学品的使用危险性将会显著降低。”   按照规定,凡是在2010年12月1日及以后进入欧盟市场的危险化学品,以及按要求在2013年或者2018年的截止期限前提交注册的化学品,生产商或者进口商必须在其第一次进入欧盟市场后一个月之内向管理局申报。相关企业有责任与化学品分类体系保持一致。   不过对于具有严重危害的化学品,例如有可能导致癌症、遗传突变或者具有毒性复制能力的化学品,欧盟27个成员国政府以及欧洲化学品管理局将披露所有相关信息,欧盟委员会也将通过立法方式强制将之纳入协调分类体系。
  • 康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会邀请函
    康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会邀请函尊敬的客户您好:我们诚挚邀请您参加8月24日晚19:00-19:40举行的康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会。含氟化学品的合成一般有直接氟化法和间接氟化(如氟交换)。使用氟气直接氟化属于强放热反应,放出大量的热可使反应物分子结构遭到破坏,在传统间歇釜中容易发生失控。连续流技术,由于微反应器具有超强换热效率,可以从源头提高本质安全水平,实现稳定连续化生产。 现阶段连续氟化反应、含氟化学品连续合成研究与工业化应用,已成为业内普遍关注的热点。 为了帮助行业客户及朋友能够深入了解连续流技术在含氟化学品研发和生产的整个流程的应用,特别推出此次分享会。8月24日晚7点伍博士与您相约线上!我们用心准备内容,本次分享会伍博士将和您讲解以下内容:连续流氟化工工艺研究进展使用连续流技术进行绿色氟化工艺开发的难点和解决方案光催化连续流氟化工艺应用含氟化学品工业化生产案例分享会议时间:8月24日晚上19:00-19:40报名方式:1.关注微信公众号“康宁反应器技术” 2.打开8月14日发布的文章《叮咚,请查收康AFR在七夕发给您的“氟”利邀约或通过本商铺联系方式咨询
  • 涟水新源生物科技--AKF-1型水分测定仪安调完成
    2016年7月5日禾工技术工程师远赴江苏淮安市,对涟水新源生物科技有限公司AKF-1水分测定仪进行安装调试。 涟水新源生物科技有限公司成立于2010年3月,注册资本金2300万元,处于涟水薛行化工园区,占地面积33333平方米。该公司生产和销售表面活性剂产品,主要为下游日用化学品、洗涤剂、化妆品等行业提供关键原料,2015年实现销售收入1.12亿元。 此次安调过程中,实验室领导对仪器的测量结果很满意,并表示要将我们的仪器推荐给更多的用户。目前仪器已经投入正常生产使用。
  • 节能环保自动化仪器----绝缘油氧化安定性测定仪
    近年来世界石油市场的主要特点:一是美国西德克萨斯轻质原油(WTI)与布伦特原油价格倒挂日渐频繁 二是轻质原油和重质原油价差缩小 三是石油的金融属性更加明显,投机商继续青睐石油期货市场 四是石油需求大幅下降,但降幅逐季收窄 五是欧佩克减产履约率呈现前高后低走势,剩余产能大幅增加 六是石油库存居高不下。通过对市场、贸易、油价、运输和劳动成本等方面的分析,鉴于欧美严格的环保要求,以及市场的成熟度,欧美等地区对基础化学品和大宗石化产品的需求已趋于饱和,这就迫使西方发达国家紧缩本国石化生产,全球化工行业发展的重心逐步向原料产地(中东)和产品市场(亚洲)转移。中东和包括中国在内的亚太地区将是全球炼油和石化产能增长最快的地区,亚洲将成为世界较大的石化市场。同时,世界石化工业发展趋向大型化、基地化和炼化一体化,产业集中度越来越高。A1250绝缘油氧化安定性测定仪适用标准:SH/T0811-2010和SH/T0206-1992。适用于测定绝缘油的氧化安定。绝缘油氧化安定性测定仪是变压器油的生产、使用单位,各相关院校、科研部门等测试变压器油的氧化安定性能稳定的一种自动化仪器。仪器特点1、采用金属浴加热,无需加油,节能环保,使用简便。2、PID 控制能够在达到目标温度后快速的保持稳定 ,节省等待时间。3、内置超温保护装置,使用可靠。4、配置皂泡流量计可准确检测气体流量。5、配置计时器可自动计时。6、可提供计量检定证书。技术参数工作电源:AC220V±10%,50Hz功 率:≤1100W控温范围:室温~160℃控温精度:±0.5℃试样数量:6路
  • 普洱咖啡协会发布《咖啡中7种农药残留及相关化学品残留物的测定 气相色谱-质谱联用法》等3项团体标准征求意见稿
    各有关单位:普洱茶协会3项团体标准《咖啡中7种农药残留及相关化学品残留物的测定 气相色谱-质谱联用法》《咖啡中毒菌酚等3种农药残留量的测定 液相色谱质谱联用法》《咖啡中溴甲烷的测定 顶空/气相色谱质谱法》已完成征求意见稿,遵照开放、公平、透明、协商交流的原则,为充分听取各方意见,现向社会公开征集意见和建议,欢迎社会各界对标准内容提出宝贵意见和建议。如有单位或个人对5项团体标准征求意见稿存在异议,请在公告之日起将意见反馈至我会秘书处。相关意见和建议征集截止日期为2023年11月30日。附:5项团体标准征求意见稿;普洱咖啡协会征求意见表。普洱咖啡协会2023年10月30日团体标准《咖啡中7种农药残留及相关化学品残留物的测定 气相色谱-质谱联用法》(征求意见稿).docx团体标准《咖啡中毒菌酚等3种农药残留量的测定-液相色谱质谱联用法》(征求意见稿).docx团体标准 《咖啡中溴甲烷的测定 气相色谱-质谱法》(征求意见稿).docx普洱咖啡协会团体标准征求意见表.doc关于征求3个团体标准的通知.pdf
  • 化学试剂结晶点测定仪成功研发上市
    在科学技术一日千里的当下,科学仪器的开展不仅仅是仪器行业自身的表现,更直接表现了一个国家在科技上的实力和水平。同时,科学仪器的开展还会推动与之相关范畴的开展,例如医疗设备的革新可能会推动医疗工作的进一步开展,勘探设备的改良也会带动资源动力发现、发掘… … 总而言之,科学仪器对国家立异开展、科技进步有着重要的含义。 人类的开展是在不断的认知社会、改造社会中得到实现的。在这个过程中,科学仪器也是人类不行缺少的重要工具,尤其是现代高、精、尖的科学仪器和设备,使得人类得到的信息更多、更快、更深入、更精确,同时也正是这些科学仪器,在支撑着各个领域的科学家们不断纵深探究。北京得利特迈着创新的步伐走在了油品分析仪器行业的前端,我公司引进先进人才大力研发新产品,化学试剂结晶点测定仪是我公司新研发的一款产品. A2103化学试剂结晶点测定仪适用标准:GB/T618,主要用于化学试剂结晶点的分析测定。技术参数• 冷槽控温: -35~30℃• 分辨率: 0.1℃• 加热功率: 600W• 制冷功率: 800W• 试样搅拌: 60次/分钟• 浴液搅拌: 自动搅拌(功率6W,1200r/min)• 环境温度: ≤30℃• 相对湿度: ≤85%• 储运温度: (-25~55)℃• 供电电源:交流220V±10% 50Hz±10%• 功 率: 2kw创新点: 数码控温、操作方便 采用**压缩机Danfoss(Secop),制冷快速、稳定可靠 自动搅拌,大大降低工作强度 德国**温度传感器(PT100) 双层真空玻璃浴,严格控温,便于观察.
  • 国庆期间重点危险化学品将加强安全管理
    中新网9月4日电 国家安全监管总局、公安部、工商总局日前联合发布公告,要求进一步加强重点危险化学品的安全管理,以进一步做好新中国成立60周年庆祝活动期间危险化学品安全生产工作,创造稳定良好的安全生产环境,确保相关庆祝活动顺利举办。   公告要求,地方各级人民政府有关监管部门要切实加强危险化学品日常监管,实行重点危险化学品购买实名登记制度,严格控制加油站成品油的罐装零售。   各地要切实加强危险化学品日常监管。地方各级人民政府有关监管部门要加强对危险化学品经营单位的监督和检查,未取得危险化学品生产企业安全生产许可证或危险化学品经营许可证、营业执照的单位不得销售危险化学品。   加强对重点危险化学品的管理。重点危险化学品的经营、储存、使用单位要建立健全管理规章制度和管理台账,如实记录重点危险化学品的销量、储存量和流向 采取可靠的保安措施,妥善保管,防止被盗、丢失或者误售、误用。重点危险化学品使用单位应当到取得安全生产许可证的危险化学品生产企业、取得危险化学品经营许可证的销售单位购买重点危险化学品,严禁倒买倒卖。   实行重点危险化学品购买实名登记制度。购买重点危险化学品的单位要持营业执照复印件、购买人居民身份证、购买剧毒化学品的还需提供公安部门出具的准购证原件等相关证明材料到取得危险化学品生产企业安全生产许可证或危险化学品经营许可证的单位购买。销售单位必须严格执行销售登记制度,如实查验购买单位的营业执照和购买人的居民身份证,详细记录购买单位的名称、地址、联系方式和购买人员的姓名、居民身份证号码、住址、购买日期及所购买重点危险化学品的品名、数量、用途等情况,并连同购买单位营业执照复印件、购买人居民身份证、准购证复印件等相关证明材料存档备查。凡无营业执照、居民身份证、准购证的,任何单位不得对其销售重点危险化学品或剧毒化学品。   公告强调,凡购买、销售重点危险化学品的,必须按照本公告的有关规定执行。对违反本公告规定的,尤其是因疏于管理、玩忽职守而导致发生事故、事件的,由安全监管、公安、工商等部门依法予以查处,构成犯罪的,依法追究有关单位及有关人员的刑事责任。   各地安全监管、公安、工商部门可以根据本辖区的具体情况,制订实施细则和增加重点危险化学品品种。   本公告自发布之日起施行,2009年10月9日废止。   附件:重点危险化学品名单
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制