推荐厂家
暂无
暂无
初粘性测试仪采用斜面滚球法,通过钢球和测试试样粘性面之间以微小压力发生短暂接触时,胶粘带、标签等产品对钢球的附着力作用来测试试样初粘性。下面分析一下关于初粘性测试仪的试验方法原理如下: 1、用初粘性测试仪的水平仪把滚球装置水平地固定在测试台上,倾斜面取标准角度30°,需要时也可以取20°或40°。 2、在试片的下端分别用定位胶粘带或砝码(质量约500g),将试片以胶粘面向上的方式固定在规定的位置上。把助滚段用聚酯薄膜贴敷在试片胶粘面的规定位置上,在贴敷聚酯薄膜时,应勿使气泡夹杂或起皱,也不要加上大的压力。在固定试片时,注意不要使之发生翘曲或鼓起。若在边缘部分发生鼓起,则应用别的胶粘带把这部分固定在倾斜面上。 3、将保存在防锈剂中的球,用镊子取出,按5所述的试验滚球清洁方法清洗,洗洁后,放置在起始位置上,让球经助滚段滚下去。 4、初粘性测试仪为使助滚段的长度恒定为100mm,根据球的大小,如图1所示,把球中心调整在球的起始位置上。 5、预选最大钢球 调整起始位置,用不同大小的球,重复球的清洗、滚转等一系列操作,从停止在测定段内(球不动达5s以上)的各种球中挑出最大的。拿出同一试片中发现的最大球以及该球号与之相邻的大小两个球,在同一试样上各进行一次测试,以确认最大球号的钢球。在挑出最大球之前,在同一张试片上滚动若干次都可以,但是它不能作为正式试验数据处理。 6、初粘性测试仪试验滚球的清洁试验滚球的表面,用脱脂纱布类材料沾溶剂擦洗清洁。表面干后,再用新的清洁纱布沾溶剂擦洗,反复擦洗三次以上,直至目视检查认为清洁为止。 注: 1)擦洗时无短纤维掉落的纱布、无纺布等织物,并且不含可溶于溶剂的物质。 2)环烷烃、溶剂油、酒精、异丙醇、甲苯等试剂级或没有残留物的工业级的溶剂。 7、正式测试 取三个试样,用最大球号钢球各进行一次滚球测试。若某试样不能粘住此钢球,可换用球号仅小于它的钢球进行一次测试,若仍不能粘住,则须按7.2.6~7.2.7步骤重新测试。 8、试验结果 初粘性测试仪的试验结果以正式测试时三个试样滚球试验结果的钢球号的中位数(球号)表示。
16、 扭矩仪―用于旋转瓶盖的打开或旋紧力测试。 17、 纸箱抗压试验机(纸箱抗压机)-纸箱的耐压,堆码,压溃力,定压力测形变、微控、数显、微打、满足各种试验程序。 18、 初粘测试仪、持粘性测试――测试胶粘剂的初粘性检测指标,斜面滚球法(附标准钢球)。 19、 电子剥离试验机-胶粘剂、胶粘带、复合膜等剥离、拉力试验。 20、 胶粘剂拉伸剪切试验机-应用于粘接强度的剪切、拉伸、扯离、压缩性能试验。
美国科学家使用激光控制住一些超冷冻原子,测出了费米气体(一般被认为是物质的第六种状态)的黏性。结果表明,费米气体可以被用做“标度模型”,测量超高温超导体、中子星内的核物质,甚至大爆炸几微秒后的夸克—胶子等离子体等物质的属性,也有望被用来在实验室测试弦理论。研究报告发表在12月10日出版的《科学》杂志上。 美国杜克大学物理学家约翰·托马斯团队测量了锂—6原子超冷的费米气体的黏性。他们将锂—6原子捕获在一个几毫米大小、由激光制成的盆内,当被冷却并置身于尺寸合适的磁场内时,这些原子之间会产生强烈的相互作用。托马斯表示,相互作用非常强烈的费米气体展示出“令人惊奇的属性”,诸如几乎能毫无摩擦地像液体一样流动等。 在超冷环境下,费米气体的性质由一个标度——原子之间的平均间距来决定。根据量子物理学法则,这种间距会决定所有其他的天然标度,诸如能量、温度和黏性标度等,这就使这种超冷的费米气体能成为测量其他物质的“标度模型”。托马斯之前就已经证明,这种气体能用做标度测量温度的属性,但这是科学家首次用其测试黏性。 托马斯首先在零下459华氏度(约为零下273摄氏度)测量了这种气体的黏性。关掉限制气体的收集器,并接着重新将其捕捉使这种费米气体的半径开始摆动。摆动持续时间越长,黏性就越低。将温度升高一点后,托马斯开始观察当其被从捕捉器中释放出来之后,费米气体从雪茄状变为薄饼状的速度有多快。结果显示,形状改变越慢,黏性就越高。 美国芝加哥大学理论学家凯西·莱文表示,这一研究结果“对凝聚态物理和高温超导性等领域都有重要的意义”。她说,科学家也在凝聚态物质世界中,尤其是被用来制造高温超导体的物质中观察到了这种“完美的流动性”。新数据,尤其是在更低温度下的数据“似乎同科学家之前对高温超导体应该如何流动的预测完全一致”。 杜克大学的科学家伯恩特·密勒认为,费米气体也可以作为一种“标度模型”来研究目前科学家无法在实验室中探测到的宇宙的组成部分。科学家可以使用锂—6原子间距作为标尺,计算中子星上的中子之间的间距,也可以使用对费米气体所做的测量来确定中子星上所蕴含的能源和其他属性。另外,还可对宇宙“大爆炸”之后约几微秒(为百万分之一秒)出现的夸克—胶子等离子体进行测算。 托马斯表示,新的研究结果也可以让科学家通过实验更加透彻地理解弦理论(目前最有希望将经典力学同量子力学统一起来的数学模型)所做的一些预测。如果弦理论学家能专门为费米气体创造出新的运算,他们将能够使用可能比一个桌面大不了多少的实验设备,对弦理论进行精确测试。