当前位置: 仪器信息网 > 行业主题 > >

光腔衰荡测量系统

仪器信息网光腔衰荡测量系统专题为您提供2024年最新光腔衰荡测量系统价格报价、厂家品牌的相关信息, 包括光腔衰荡测量系统参数、型号等,不管是国产,还是进口品牌的光腔衰荡测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光腔衰荡测量系统相关的耗材配件、试剂标物,还有光腔衰荡测量系统相关的最新资讯、资料,以及光腔衰荡测量系统相关的解决方案。

光腔衰荡测量系统相关的资讯

  • 光腔衰荡光谱法连续自动监测系统运行和质控技术指南 解读
    光腔衰荡光谱法连续自动监测系统运行和质控技术指南 解读2022年9月29日,中国环境监测总站印发环境空气温室气体及其示踪物(CO2、CH4、N2O和CO)光腔衰荡光谱法连续自动监测系统运行和质控技术指南(第一版),江苏海兰达尔环境科技有限公司对其内容进行了解读(文件原文见公众号文章末尾链接)。
  • 利用高频光腔衰荡光谱技术同步观测北京和上海大气氨浓度
    氨气是形成二次气溶胶的重要前体物,也是城市大气环境治理的关键物种。中国科学院大气物理研究所组织实施的全国大气氨观测研究网络(AMoN-China)通过被动离线采样发现,城市已成为大气氨排放热点区域。然而,被动采样周期较长(周-月),难以捕捉大气氨浓度在日尺度上的快速变化。同时,以往研究常观察到大气氨浓度在早上5:00-12:00快速增加,这一早高峰现象是否具有普遍性亟待更多高频观测站点资料的验证。鉴于此,中国科学院大气物理研究所研究员潘月鹏课题组与华东师范大学教授吴电明团队合作,基于高频光腔衰荡光谱技术在北京和上海两个超大城市开展了大气氨浓度同步观测实验(测量频率1Hz,精度0.03ppb,图1)。这两个城市位于华北平原氨排放热点区域的南北边缘,是研究区域传输和局地排放对大气氨浓度叠加影响的理想站点。图1. 基于光腔衰荡光谱法测量北京和上海的大气氨浓度2020年5月观测结果发现,北京大气氨平均浓度(23.1±10.3 ppb)接近上海(12.0±5.0 ppb)的两倍,与卫星观测的氨气柱浓度和自下而上统计的氨气排放量的空间分布一致。研究还发现两个城市同时存在氨气早高峰现象,其发生频率大于50%,机动车排放是导致氨气浓度早高峰形成的主要原因。早晨边界层打破后,随着对流发展,富含氨气的残留层向下传输也对早高峰有一定贡献。上述结果促进了我们对城市大气氨浓度动态变化特征及背后驱动因素的科学认识,其高频观测数据可用于提升大气化学传输模型的模拟精度,有助于评估大气氨污染的生态环境效应并为氨减排策略的制定提供参考。该研究成果发表于Atmospheric Environment (JCR一区,IF=5.755)。中国科学院大气物理研究所2019级硕博连读生孙倩为该论文第一作者,潘月鹏研究员和华东师范大学吴电明教授为共同通讯作者。该研究受到北京市自然科学基金(8232050),国家自然科学基金(42077204)和大气边界层物理和大气化学国家重点实验室开放基金(LAPC-KF-2022-09)的共同资助。
  • 一种频域腔衰荡光谱探测装置”获国家发明专利
    p   在各种超高灵敏度的光谱探测技术中,基于无源谐振腔增强的技术是重要的一类,而谐振腔增强的光谱探测技术又可以分为传统腔衰荡光谱、积分腔输出光谱、腔增强吸收光谱、频率调制光源腔衰荡光谱、光频梳腔衰荡光谱等五类。这些传统技术存在着光电探测难度高、装置价格昂贵、响应速度慢、灵敏度低等缺点。 /p p   中国科学院西安光学精密机械研究所瞬态室王允韬、阮驰等科研人员发明了一种频域腔衰荡光谱探测装置,可以应用于实验室的光谱测定和标准具的精细常数测定,以及现场应用的物质浓度传感、应变及应力传感、温度传感等。 /p p   与传统方法相比,此项发明的优点是:1、利用低速波长调制实现了具有信噪比优势的高频谐波探测。2、在实现谐振腔增强光谱与波长调制光谱完美结合的同时降低了经济成本。3、结合波长调制光谱,消除了光路耦合效率下降、光源平均功率波动、探测电路转换效率下降等背景干扰的影响。4、由于谐振腔精细度下降产生的干扰与光谱吸收产生的信号之间是一个相乘的关系,通过取对数或者计算各次谐波之间的比值,消除了谐振腔精细度下降造成的干扰。 /p p   该装置已获国家发明专利授权,并获2016年度中国公路学会科学技术奖二等奖。 /p p /p
  • 聚光科技携旗下自主孵化子公司灵析光电中榜首批中国气象局“揭榜挂帅”项目
    聚光科技(杭州)股份有限公司(简称:聚光科技)携手自主孵化子公司浙江灵析光电技术有限公司(简称:灵析光电)中榜首批中国气象局“揭榜挂帅”项目——高精度温室气体浓度分析仪研制。灵析光电主要负责高精度温室气体浓度分析仪的开发、测试以及产业化应用。现阶段成果展示(1)自主成功研发的高精度光腔衰荡法温室气体分析仪产品(HGA系列)满足气象、环境等领域的监测、研究需求,其核心关键部件——光腔,为自研自产;(2)拥有全国规模庞大的高端分析仪器产业化生产基地和二十年积累的底层基础共性技术库,成功打造完备的产业链,年产能超300台。 项目背景针对国内高精度温室气体监测技术无法满足世界气象组织/全球大气监测网(WMO/GAW)要求的现状,亟需解决我国在高精度温室气体监测领域的国产化以及产业化问题。 攻克技术壁垒灵析光电是一家聚焦研发光学高精度激光分析仪器,以高精细腔技术为核心的高科技企业,为解决我国在高精度温室气体监测领域面临的关键技术“卡脖子”问题以及监测数据的信息安全问题,基于聚光科技研发团队15年以上的激光分析仪器开发经验,在中国气象局“揭榜挂帅”项目——高精度温室气体浓度分析仪研制中率先在国内攻克了光腔衰荡光谱(CRDS)技术在高精度温室气体监测领域的应用,推出了高精度光腔衰荡法温室气体分析仪产品(HGA系列),打破了进口产品对高精度温室气体监测市场的垄断。 产品型号:HGA-331 测量因子:CO2、CH4、H2O 产品特点:(1)优异的长期稳定性和超低漂移(2)ppb 级别的灵敏度、精度以及准确度(3)三种气体(CO2、CH4、H2O)同时检测(4)测量性能满足WMO标准(5)算法校正水汽稀释效应 技术指标:技术指标CO2CH4H2O测量范围0-1500 ppm0-20 ppm0-7%确保精度范围300-550 ppm1-3 ppm0-3%精度(5min,1σ)≤0.02ppm≤0.2 ppb≤25 ppm漂移(24h,1h 均值)0.1 ppm1 ppb≤100 ppm±5%读数线性拟合优度≥0.9999拟合残差:≤0.1 ppm≤1 ppb-响应时间(90%)光腔尺寸高精度光腔衰荡法温室气体分析仪产品(HGA系列)在上海市环境监测中心、广州市环境监测中心、浙江省生态环境监测中心、中国气象局气象探测中心等多个监测机构测试,指标优于WMO网络兼容性目标的1/2,达到WMO内部再现性要求,性能指标全面达到国际先进水平。 构建国产产业化灵析光电基于聚光科技激光研发团队,拥有15年以上的激光分析仪器开发经验,涵盖精密光学、电子电路、软件工程、机械技术等领域,坚持自主研发、科技创新、攻坚克难,在短短8个月时间内完成国产化产品在高精度温室气体监测领域的开发。灵析光电基于聚光科技全国规模庞大的高端分析仪器产业化生产基地,已经具备独立的机械加工中心,搭建了自己的光腔生产线,因此,核心关键部件——光腔,为自研自产,满足国产化要求。灵析光电基于聚光科技20多年的研发管理体系,积累沉淀了一整套完善的底层基础共性技术库,基于成熟的器件库、代码库、测试用例库等支撑,快速完成项目开发和产品可靠性验证,已实现高精度光腔衰荡法温室气体分析仪产品(HGA系列)产业化,年产能超300台。 灵析光电简介灵析光电是聚光科技自主孵化成立的高科技企业,研发骨干来自聚光科技激光分析技术团队,聚焦于研发光学高精度激光分析仪器,致力于为生态环境、气象、半导体、燃气安全、科研应用等领域提供超高灵敏度、超高精度、超高稳定性、快速、连续、易用的实时在线以及现场原位监测仪器和专业化的解决方案。灵析光电以客户需求为中心,以做高端仪器引领者为愿景,经过长期的产品开发,在温室气体的高精度监测领域已被行业高度认可。独立自主研发的高精度温室气体产品系列拥有良好的口碑,满足环境、气象等领域监测、研究需求。欢迎咨询:陈女士 15071321146
  • 碳中和背景下 温室气体有哪些测量方法标准?
    碳达峰、碳中和是目前和未来一段时间内生态文明建设工作的热点和重点。环境及污染源排放温室气体的直接测量是核算和评估等工作的基础和数据支撑,仪器信息网对我国现行温室气体测量方法标准进行了梳理。  国家标准  《大气二氧化碳(CO2)光腔衰荡光谱观测系统》(GB/T 34415-2017)由中国气象局提出,规定了基于光腔衰荡光谱观测系统观测本底大气中二氧化碳(CO2)浓度的安装环境、原理及系统组成、性能要求,适用于光腔衰荡光谱法在线观测本底大气CO2浓度。  《温室气体 甲烷测量 离轴积分腔输出光谱法》(GB/T 34287-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体甲烷浓度的方法概述、测量条件、测量准备、测量方法和标校方法等,适用于开展温室气体甲烷浓度的测量。  《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。  《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由中国气象局提出,规定了本底大气二氧化碳和甲烷浓度气相色谱在线观测方法,包括观测环境、观测系统组成、性能要求、观测流程以及系统维护等,适用于气相色谱法在线观测本底大气二氧化碳和甲烷浓度。  《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中一氧化碳、二氧化碳和碳氢化合物的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。  行业标准  《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法 》(QX/T 429-2018)是气象行业标准,规定了利用离轴积分腔输出光谱法观测二氧化碳、甲烷浓度的测量方法及观测系统、安装要求、检漏与测试要求、日常运行和维护要求、溯源以及数据处理要求等,适用于温室气体二氧化碳、甲烷浓度的离轴积分腔输出光谱法的在线观测和资料处理分析等。  《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是环保行业标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。  《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。  地方标准  《畜禽舍二氧化碳快速检测技术规程》(DB 37/T 2143-2012)是山东省地标,规定了畜禽舍二氧化碳快速检测采样点的设置、二氧化碳的采集、检测与结果判读,适用于畜禽舍在养殖过程中产生和排放的二氧化碳的快速检测。  团体标准  《气体中甲烷、氧化亚氮和二氧化碳浓度测定 气相色谱法》(T/LCAA 005-2021)是北京低碳农业协会团体标准,规定了气体中甲烷、氧化亚氮和二氧化碳浓度测定相关的术语和定义、测量步骤和气体浓度计算等技术要求,适用于各类气体样品中的二氧化碳、甲烷和氧化亚氮的浓度测定。  《火力发电企业二氧化碳排放在线监测技术要求》(T/CAS 454-2020)是中国标准化协会团体标准,规定了火力发电企业烟气二氧化碳排放在线监测系统(简称CDEMS)中的主要监测项目、性能指标、安装要求、数据采集处理方式、数据记录格式以及质量保证,适用于火力发电企业产生的二氧化碳排放量的在线监测。采用化石燃料(煤、天然气、石油等)为能源的工业锅炉、工业炉窑的二氧化碳排放量在线监测可参照执行。  综上,我国气象、环保、石油化工、农业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法以及快速检测法等。这些方法根据原理、采用方式及特性不同,适用于各类应用场景。
  • 十亿分之一测量灵敏度——聚光科技高精度温室气体分析仪
    为什么需要高精度温室气体分析仪?2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和”。2021年9月12日,生态环境部发布《碳监测评估试点工作方案》,要求开展重点行业、城市、区域三个层面的碳监测评估试点工作,建立碳监测技术方法和评估体系,为应对气候变化工作成效评估提供数据支撑。温室气体监测是研究温室气体浓度变化趋势以及源和汇的构成、性质和强度等的基础,也是温室效应评价的依据和减排措施制定的标尺,它的准确监测与评估将成为降碳目标的根本前提。城市大气温室气体浓度低,变化幅度小,为准确获得其浓度水平及变化趋势,这就需要高灵敏度和高精密度的自动监测技术和仪器。新品介绍聚光科技推出的高精度温室气体分析仪(HPGA-3301)是当今国内最优异的同时测量CO2、CH4、H2O三气体浓度的高精度仪器,具有无可比拟的卓越性能。仪器界面友好,操作简单,坚固耐用,是空气质量监测和科学研究的理想工具。01高达十亿分之一的测量灵敏度HPGA-3301遵从世界气象组织 ( WMO )设立的关于大气监测站的性能规格。测量灵敏度达到十亿分之一( ppb ),在数月运行中的漂移可以忽略不计。仪器采用专有算法来校正样气中水汽的稀释效应,并输出 CO2 和 CH4 的干摩尔分数。02稳定到极致的测量体验HPGA-3301采用光腔衰荡光谱(Cavity Ring Down Spectroscopy, CRDS)技术,可在有限的光腔内实现长达20千米的有效测量光程,因此分析仪虽然尺寸小却能达到优异的精度与灵敏度。仪器独有的内部控温、控压算法,让分析仪具备了优异的精度、准确度、低漂移性能,为客户提供稳定到极致的测量。城市环境监测区域环境监测行业碳排放检测“聚靠谱”课堂(气博士篇)“十四五”是实现我国碳排放达峰的关键期,也是推动经济高质量发展和生态环境质量持续改善的攻坚期。那么,什么是碳中和,碳达峰呢?我们又可以通过制定并实施哪些方案来实现碳中和碳达峰的远景呢?我们在碳排放,碳交易,碳足迹,低碳,甚至零碳中所说的“碳”,指的是人类生产生活中排出的各类温室气体,为了便于统计计算,人们把这些温室按照影响程度不同,折算成二氧化碳当量(CO2e),所以大家常用二氧化碳表示温室气体而碳达峰是指某个地区或行业年度二氧化碳排放量达到历史最高值,然后经历平台期进入持续下降的过程,是二氧化碳排放量由增转降的历史拐点。标志着经济发展由高能耗,高排放,向清洁低能耗模式的转变。碳中和是指某个地区在一定时间内人为活动直接和间接排放的温室气体,与其通过植树造林,工业固碳等吸收的二氧化碳相互抵消,实现二氧化碳“净零排放”碳达峰与碳中和相辅相成,但植树造林,工业固碳等所能吸收的碳量相对固定,远少于工业排放产生的碳量,那么,我们可以通过制定并实施哪些方案来实现碳中和碳达峰的远景呢?聚光科技“算、估、管、评“一体化碳排放管理体系,实现碳的摸底核算、达峰预估、路径管控和成效评估,可服务于发改委、环保局、园区和企业等客户,应用于碳账户、减污降碳,碳交易等多个双碳应用场景助力于城市实现碳达峰、碳中和。与此同时,我们还可以通过如下四个途径实现达峰远景:一、碳减排:比如减少一次性物品的生产和使用,使用清洁能源,发展风能、光能、核能、太阳能等二、碳捕集:用生物捕集,让植物吸收大气中二氧化碳;还可以用技术捕集,给城市工厂烟囱装上吸附装置。三、碳封存:可以将捕获的碳排放物,储存到地下或海底的碳库中。四、碳利用:收集的二氧化碳还可以通过转化,再利用,做成建筑材料,饲料,肥料等等具体视频见聚光科技公-众号
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • UoW FTIR 多要素温室气体分析仪引导温室气体在线测量技术最前沿
    温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。 UoW FTIR 多要素温室气体气体分析仪由澳大利亚Wollongong 大学研发,由ECOTECH 合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体气体分析仪应用多光程&mdash &mdash 傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线精确连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其同位素丰度,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。 自第一台Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:澳大利亚的Wollongong 大学、Melbourne 大学、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的Heidelberg大学、Bremen 大学、Max Planck 研究所,韩国的国家标准研究所、中国气象局(CMA)等。 下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 仪器特点 @ 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 1 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中&delta 13C、水汽中&delta D 和&delta 18O 的丰度。 2 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度; 3 可在测量塔不同高度采集样品,进行温室气体(包括水汽和CO2 的同位素)的垂直廓线测量; 4 可车载连续监测; 5􀁺 连接静态箱进行土壤中温室气体的通量测量; 6􀁺 在实验室中批量测量采样瓶或采样袋中的空气样品; 7􀁺 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体。 8 其他气体成分的测量 9􀁺 在中红外谱段有已知吸收光谱的任何气体都可以用本仪器定量测量,如:NH3、碳氟化合物、HF 和SiF4 等。 10 根据气体物种不同,最低检测限为1-20ppbv。 @ 全自动运行,可遥控,维护成本低、消耗量少 1 五合一测量(一台仪器同时测量5 个物种/要素),综合运行成本低2􀁺 日常观测只需要参照气(洁净空气)每天一次检测,无需高等级标准气; 3􀁺 无需液氮或深冷除湿; 4􀁺 随机携带采样气体干燥器和多进样口 5􀁺 全自动运行,并可通过网络遥控运行 UoW FTIR 多要素温室气体气体分析仪 中文样本下载链接:http://www.instrument.com.cn/netshow/SH101597/C131047.htm http://www.instrument.com.cn/netshow/SH101597/C131047.htm UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。 温室气体观测技术 温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利 昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐 射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球 大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005 年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270 ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保 持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境 带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。 为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度 及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。 温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技 术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测 量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光 谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的 激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是 后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪 内部的红外光源和测量腔。
  • 2023 Advanced Science吕宥蓉& 阙居振如何缓解准二维钙钛矿光电二极体效率衰减
    AdvancedScience(IF:20.7)吕宥蓉&阙居振_缓解准二维钙钛矿光电二极体效率衰减的新策略随着全球能源转型的迫切性不断增强,太阳能已成为一种重要的替代能源。在众多可用技术中,特别是钙钛矿光电二极体(PeLEDs)这类太阳能光伏技术已在科学界广受关注。值得注意的是,准二维钙钛矿材料作为PeLEDs的一个子类别,由于量子限制效应和不同n相之间的有效能量传递,展现出良好的光学特性。然而,这些有前途的材料常常受到导电性差、载流子注入不佳以及在高电流密度下效率衰减严重等问题的困扰,限制了它们在太阳能转换中的应用潜力。来自中研院副研究员吕宥蓉与中国台湾大学化工系副教授阙居振等研究学者所共组团队最近发表了一篇研究,该研究旨在改善准二维钙钛矿光电二极体(PeLEDs)的性能。此团队致力于提高亮度、减少陷阱密度以及减缓高电流密度下的效率衰减问题。研究团队提出了一种创新方法,以增强这些准二维PeLEDs的性能,主要集中在提高亮度、减少陷阱密度和降低效率衰减等方面。PeLEDs的概念理解及其限制这项技术的核心在于钙钛矿材料的特性。这些材料通常是混合有机无机铅或锡卤化物,对于光伏应用具有良好的光吸收、载流子迁移率和发射特性等诱人特性,然而当这些材料在PeLEDs的准二维配置中应用时,它们的性能却受到一系列限制因素的限制。然而准二维钙钛矿材料,尽管具有良好的稳定性、可调节能隙和较高的光致发光量子产率,但导电性降低且载流子注入减少,这些问题导致在增加的电流密度下出现显著的效率衰减,降低了亮度和整体器件性能。解决准二维PeLEDs效率衰减问题本研究探索了一种新方法,通过在钙钛矿和电子传输层之间的界面添加一层薄的导电胆碱氧化物来缓解这些缺点。这种创新方法出人意料地并未增强钙钛矿膜中不同准二维相之间的能量传输。相反,它显著改善了钙钛矿界面的电子特性,引入这一额外的层次解决了两个关键难关。首先,它对钙钛矿膜中的表面缺陷进行了去活化处理。其次,它促进了电子注入并限制了界面上的空穴泄漏。结果,经过优化的纯Cs基准二维器件展现出超过70,000cdm&minus 2的亮度、10%以上的最大外部量子效率(EQE)以及在高偏压下显著降低的效率衰减,这些数据与对照组器件相比呈现出明显的改善,显示了所提出技术的有效性。实验方法与材料研究中探索了在准二维钙钛矿中引入导电胆碱氧化物PPT和PPF以减少光电器件效率衰减的潜在优势,重点放在在沉积电子传输层(ETL)之前,在钙钛矿膜上添加PPT或PPF额外层次的应用上,这个过程被认为可以增强载流子注入并去活化表面缺陷,从而抑制非辐射复合。对修改过的钙钛矿膜进行初步研究时,未观察到结晶度或相分布的明显变化。X射线衍射(XRD)和紫外可见吸收光谱(UV-Vis)证实了修改对相分布和膜质量没有影响,此外,PPT和PPF的应用并未显著改变膜的形态,这一点得到了扫描电子显微镜(SEM)的确认。为了了解这些修改对载流子动力学的影响,使用稳态光致发光(PL)光谱和时间分辨光致发光(TRPL)测量。在修改后的两个膜中观察到明显的PL熄灭,表明钙钛矿层和PPT/PPF层之间发生了载流子传输。此外,修改后的两个膜中的平均载流子寿命增加,表明有效去活化。作为对这些修改与钙钛矿相互作用的补充,使用核磁共振(NMR)、静电势(ESP)图和X射线光电子能谱(XPS)检测了PPT/PPF和钙钛矿之间的相互作用。这些测试的数据确认了后处理过程中PPT/PPF层成功旋涂到钙钛矿膜上。结果表明,磷酸胆碱氧化物中的P=O基团成功地与表面缺陷和空位协同作用,形成优势的去活化效应。在令人期盼的发现之后,基于修改过的钙钛矿膜制作了PeLEDs并与对照器件进行了比较。PPT和PPF的修改都显著提高了性能,防止了从钙钛矿层向ETL的空穴泄漏,并促进了电子传输。修改后的器件亮度是对照器件的两倍以上,并在高电压下显著降低效率衰减。这些结果突显了在纯Cs基准二维钙钛矿PeLEDs中使用PPT和PPF磷酸胆碱氧化物的潜力。总之,引入导电胆碱氧化物以去活化准二维钙钛矿材料在提高光电器件性能方面提供了令人寄予厚望的策略,未来进一步的研究将有助于优化这些材料在未来器件结构中的应用。在这项研究中,研究团队使用了EnlitechLQ100X-PL光致发光和发光量子产率测试系统,光焱科技这一款PLQY量测设备具有紧凑设计和NIST可追踪性的优势,其设备仅有502.4毫米(长)x322.5毫米(宽)x352毫米(高)的尺寸,提供了一个节省空间的解决方案,与手套箱集成再也不是难题,这种手套箱集成能力对一就实验尤其重要,可以在避免水解或氧化的情况下进行精确测量,避免测试物品的效率因水氧而降低应有的效率。LQ-100X-PL的先进仪器控制软件使其能够进行原位时间光致发光光谱分析并同时生成2D和3D图形。这种能力加速了材料表征过程,快速获得对样品的洞察。此外,LQ-100X-PL的光学设计将光谱波长范围从1000纳米扩展到1700纳米,并且与多种样品类型兼容,包括粉末、溶液和薄膜。这些特点凸显了该系统的多功能性,并在成功完成本研究中发挥了关键作用。本研究总结性地证明了策略性界面工程能够显著提高准二维PeLEDs的性能。通过在钙钛矿/电子传输层界面处引入薄的导电胆碱氧化物层,能够减少表面缺陷并促进载流子动力学的改善。这种增强的电子注入和改善的空穴阻挡效应使得器件亮度提高并在高电流密度下减少效率衰减。这项研究揭示了界面特性在PeLEDs性能中的关键作用,为未来在该领域的研究和开发开辟了新的途径。a)PPT和PPF的化学结构,后处理过程的示意图以及界面工程的插图。b)原始、PPT处理和PPF处理的钙钛矿薄膜的PL发射光谱,c)PLQYs,d)TRPL曲线,其中PLQYs是通过368nm激光测量的。31PNMR谱图,包括a)PPT和b)PPF及其与不同钙钛矿前体成分的混合物。c)PPT分子的ESP图。d)Pb4f信号的XPS谱图,涵盖原始的、PPT修饰的和PPF修饰的钙钛矿薄膜。e)表示PPT在钙钛矿表面的钝化功能的示意图。a)制造的PeLEDs的结构和b)能级图。c)J&minus V&minus L特性,d)归一化EQE电压曲线,e)归一化EQE电流密度曲线和f)制造的器件的EQE亮度曲线。使用可见区域的瞬态吸收(TA)颜色图,分别展现a)原始的、b)PPT修改的和c)PPF修改的钙钛矿薄膜。原始的、PPT修改的和PPF修改的钙钛矿薄膜的超快时间分辨TA谱分别为d)、e)和f)。在505nm的探测波长下,展示了g)原始的、h)PPT修改的和i)PPF修改的钙钛矿薄膜的功率依赖载流子动力学。a)对控制、PPT修饰和PPF修饰器件进行的EIS分析和b)电容-电压曲线。c)原始、PPT修饰、PPF修饰钙钛矿薄膜和TPBi的能级。d)修饰器件中更好的载流子动力学的示意图。
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p   日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。 /p p   根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   strong   /strong a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target=" _blank" strong 1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明 /strong /a /span /p p   本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。 /p p   基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。 /span /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target=" _blank" strong 2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target=" _blank" strong 3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p   联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373 /p p   邮编:100089 /p p   联系电话:010-6896 2373 /p p   传 真:010-6896 3156 /p p   邮件地址: a href=" mailto:bzsbjw@126.com" bzsbjw@126.com /a /p
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
  • 红外光谱的测量极限在哪里?
    [导读] Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! 为了多方位展现我国在红外光谱领域的新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的新技术及应用情况,并探寻红外光谱的测量限。   红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?韩铁柱博士:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。仪器信息网:目前红外光谱的测量限发展到了什么程度?可以给大家带来什么样的体验?韩铁柱博士:目前,传统红外光谱的空间分辨测量限在几微米到几十微米,时间分辨测量限在几十毫秒的量,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us,如果将超快激光引入pump-probe体系,时间分辨可以达到fs别。仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?韩铁柱博士:相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术有特点,使得其应用范围进一步拓宽。红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。Quantum Design红外产品着眼红外光谱测量限仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些具优势(里程碑式)的技术(技术,有技术)? 韩铁柱博士:我们公司一直贴合新研究前沿和热点课题,结合红外光谱的应用与现代科学研究的需要,专注新、先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,大推动了红外光谱测量限。 nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 瑞士IRsweep公司推出的IRis-F1微秒时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“新品奖”,它是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。仪器信息网:贵公司红外光谱仪应用具优势的领域?主推的解决方案?韩铁柱博士:我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs的红外光谱测量表征。美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。2、当红外光谱空间分辨率要求在亚微米量,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。3、为描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒时间分辨超灵敏红外光谱仪解决方案。斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。未来:通用型和专用型红外光谱协同发展 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? 韩铁柱博士:当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? 韩铁柱博士:针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率;2)简化样品制备过程,避免样品污染和接触引发的红外赝相;3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等;4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。后记:习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登科技高峰的必由之路”,“当今科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。
  • Picarro分析仪用于室内氨气测量及贡献研究
    Picarro分析仪用于室内氨气测量及贡献研究江苏海兰达尔 2023-02-17 16:45 发表原文链接:https://pubs.acs.org/doi/10.1021/acs.est.9b02157摘要氨气通常在室外的浓度为1~5ppb,但室内的浓度可能要高得多。室内的清洁剂、烟草烟雾、建筑材料和人体都能排放大量氨气。由于氨气的高反应性、极易溶于水且易吸附到各种表面,因此很难测量,对于室内氨浓度的综合评价仍然是一个有待研究的课题。HOMEChem是一项在实验室进行的综合室内化学研究,使用了光腔衰荡光谱法的仪器测量了室内氨气的实时浓度,同时对室内氨气的来源及影响氨气浓度变化的原因进行了分析。HOMEChem实验2018年6月在得克萨斯大学奥斯汀分校进行了4周以上的实验室测量,这项测试的目标是在UTest住宅内进行一系列活动和实验,测量一些气体和气溶胶的浓度,从而分析室内家庭环境中的日常化学成分。实验期间,使用各种仪器和方法记录了温度、相对湿度(RH)、暖通空调系统参数、室内人数等。HOMEChem进行的活动可以分为三种类别,它们反映了常见的日常室内活动:清洁、烹饪和家庭居住。测量仪器氨气的测量使用的是Picarro G2103气体浓度分析仪,尽管分析仪有更高级别的时间分辨率,但实验中使用的是30秒的平均浓度,30秒测量精度为0.10ppb+0.1%读数。G2103分析仪被放置在UTest住宅的厨房内,在冰箱上方,高度约2米,距离炉子和烤箱约4米。仪器的进气口很短,约5cm长,带有一个内置的Teflon过滤器,以防止颗粒物的侵入,同时在这次实验中还用到了Picarro G2401温室气体分析仪用到测量室内的二氧化碳。温度和RH数据由Picarro分析仪旁边的一个数据记录器记录,分辨率为1分钟。研究结果(部分)图1中将以往研究测量室内氨气浓度的数值按照测量季节和测量地点进行分类,几乎所有数值都高于10ppb,其中学校和办公室的氨气浓度最高,分别为440ppb和103ppb。家庭氨气的浓度范围在8.1~67.7ppb之间,这与HOMEChem中测量数据的直方图结果一致。HOMEChem实验及以往研究中测量的室内氨气浓度室内氨气浓度对室内温度有很强的依赖性,图2显示了不同两天的温度、RH和氨气浓度。夜间高温条件使室内氨气浓度增加了一倍,增加量达到了33.5ppb,这些氨气的水平与夏季有空调的家庭相似。尽管这两天的平均氨浓度明显不同,但它们都显示出相同的精细尺度下氨气浓度的温度依赖效应,根据室内温度和空调运行的波动以及冷凝水的存在,在短时间尺度内氨气增加和减少。室内空置以及夏季高温条件下氨气浓度、温度、相对湿度的变化图3显示了室内活动期间的氨气浓度、温度和相对湿度变化。在上午10点空调关闭后,温度持续上升,氨气的浓度也有所增加,每次连续恢复实验的起始浓度都更高。白天达到的最高浓度91.6ppb,但在室内冲洗期间,当打开门窗迅速通风时,氨浓度都迅速下降,同时室内测量的氨气从未下降到典型的室外值,这也表明了室内氨气排放的连续性。由于在所有门窗被打开的过程中,氨气的浓度仍然很高,这表明室内表面有大量的氨来源,可以迅速释放到气相中以保持平衡。室内活动期间氨气浓度、温度、相对湿度的变化总结在HOMEChem实验中测量的氨气浓度显示,与典型的室外氨气浓度值相比,室内氨气浓度值明显更高。这一数值与其它室内氨浓度研究一致,但是研究人员建议还需要在不同气候区和不同季节进行额外的测量,以评估观测到的室内氨水平和其它室内环境以及暖通空调系统条件下的适用程度。总的来说,室内氨浓度似乎受到气体-表面平衡的强烈控制,室内较高的氨气浓度可能是化学反应的重要驱动因素,以氨气为限制的反应会随着室内浓度的增加而增强,室内氨气的存在也可以作为酸性气体(如HCl,HNO3)与铵盐反应生成颗粒相的途径。此次在HOMEChem期间进行的氨气浓度测量是第一次进行的高时间分辨率的室内氨气测量,能够很清楚识别室内环境中氨气的不同来源和浓度的变化过程。编辑人:陆文涛审核人:史恒霖
  • PPMS精彩案例分享丨定制化输运测量为量子材料研究提供有力手段!
    近代量子力学和凝聚态物理学的建立,大地扩展了人类对材料的认识,将材料研究从力学性能等宏观尺度拓展到了电子行为主导的微观尺度,超导、拓扑材料等新奇物态被相继发现,催生了量子材料器件研究及应用的新领域。电输运性质是材料基本的物理属性之一,量子材料新奇宏观物理效应如Shubnikov-de Haas(SdH)量子振荡、量子霍尔效应、反常量子霍尔效应等,都需要通过电输运测量来研究。此外电输运测量也是一种广泛、有力的研究手段,通过调控外界参量(如温度、磁场、压力等)和材料属性(如掺杂浓度、薄膜厚度等),可实现材料输运性质的可控调节,从而进一步揭示宏观物性背后的微观机理。Quantum Design公司的综合物性测量系统PPMS电输运选件为用户的输运测量提供了一个高效稳定可拓展的平台,助力用户获得高质量数据。Mn掺杂Dirac半金属Cd3As2的可调SdH量子振荡研究中科院金属所张志东、刘伟研究组及其合作单位对不同Mn掺杂浓度的拓扑Dirac半金属(Cd1-xMnx)3As2的SdH量子振荡特性展开系统研究,发现SdH振荡规律随掺杂浓度显著变化,说明材料费米面位置严重依赖Mn掺杂浓度,此外Mn原子在Dirac半金属中诱发了反铁磁性,因而可通过控制反铁磁序参量来调控材料拓扑性质[1]。*数据获取:14T磁场范围的综合物性测试系统(PPMS, Quantum Design),纵向电阻通过标准四端法测量[1]。SdH量子振荡是表征拓扑材料量子输运性质的有力工具,其振荡信号与材料的费米面结构直接相关。从上图不同Mn掺杂浓度的Cd3As2合金的电磁输运测试结果中可以看出,纵向磁阻随磁场演变存在明显振荡行为,且主要振荡随温度升高迅速衰减,振荡频率随Mn掺杂浓度增加迅速降低,表明Mn掺杂浓度严重影响材料费米面位置。SdH量子振荡规律在不同温度(如2K,4K)的横向对比对系统的温度控制提出了很高要求,不仅需要温度值准确,更依赖于控温稳定,PPMS系统控温稳定性高,在20K以上温度控制精细可达±0.02%,20K以下则为±0.2%。此外,根据SdH振荡数据分析费米面面积等物理参量,需要振荡数据光滑,才能进行高品质拟合,PPMS系统超导线圈激励磁场线性平稳的演变对高度的数据获取尤为重要。电场调控大掺杂浓度铱氧化物Mott缘体的电子相图研究元素掺杂可以实现对材料输运性质的调控,但受化学互溶性限制,载流子浓度调控一般在很小范围(几个%)。相较之下,栅压电场调控载流子浓度具有更多优势,原则上它可以在不影响材料有序程度的基础上可控可逆的改变载流子浓度,且不受互溶度限制,可以较大程度影响载流子水平。清华大学物理系于浦教授课题组及合作者通过电场调控下的电输运研究,次刻画了大掺杂浓度范围内铱氧化物Mott缘体的电子态的演化情况,全面描绘材料的电子相图,对关联材料的研究具有广泛启发性意义[2]。*数据获取:全新一代综合物性测试系统(PPMS DynaCool, Quantum Design),测量结构霍尔棒利用光刻技术,尺寸为1.6 mm*0.4 mm,并溅射一层Pt膜作为栅电,整个结构浸入DEME-TFSI离子液体中,原位测量栅电压调控下的输运行为[2]。 在本文中,作者通过电场调控方法先将质子注入到 [SrIrO3/SrTiO3] 超晶格中,基于电中性原理,等量电子会被吸引并填充到靠近费米能的能带上,从而借助质子插入,实现对特定能带的电子填充。通过栅压电场调控下电输运的实时测量数据发现,随着电子掺杂浓度的增加,材料先会从一个反铁磁Mott缘体被调控到一个高温区显示金属态、低温区显示弱缘化的电子态,继而又重新回到缘态,并随着整个能带的填满而变为一个能带缘体。不同掺杂浓度的电子相图的全面刻画,源于不同电场调控下输运数据的详细测量。PPMS测量系统不仅提供高效准确的输运数据测量,而且用户可根据测量需要设计实验,增加栅压电等,从而实现定制化测量。二维磁性纳米片CrSe2的层厚依赖可调磁序研究除载流子浓度调控获得可调输运性质之外,低维量子材料物性的层厚依赖也是一个重要的研究方向。湖南大学段曦东教授及其合作单位在对二维磁性纳米片CrSe2的研究中发现,性质稳定的CrSe2纳米片可以很容易生长到无悬挂键的WSe2衬底上,其厚度可以可控地调节到单层限。性质稳定、厚度可调的CrSe2纳米片将在大程度上拓展二维磁性材料的实际应用前景,有望用于构建高自旋注入效率的自旋电子器件[3] 。*数据获取:全新一代综合物性测试系统(PPMS DynaCool, Quantum Design),配备有一个或两个锁相放大器(SR830, Stanford)[3]。 本文提出的在二维WSe2上气相外延生长的二维范德华磁性CrSe2纳米片,具有良好的范德华接触界面,厚度可调并具有良好的空气稳定性。从上图不同层厚纳米片的反常霍尔电阻的对比可以看出:随层厚增加,材料霍尔电阻幅值明显提升,表明材料由弱铁磁性变化到强铁磁性;另一方面随温度增加,反常霍尔电阻信号明显减弱,并在居里温度完全消失。纳米片在空气中放置六个月其电磁输运性质几乎没有变化,进一步验证了该材料的空气稳定性,同时也可以看出PPMS系统电输运测量的稳定性与可重复性,一个稳健的精细可控平台是输运实验研究的重要基础。电输运测量选件是Quantum Design综合物性测量系统PPMS广泛使用选件之一,因为制样简单、测试通道多以及自动化程度高而深受用户欢迎。电输运样品托享有技术,全自动测量电阻率、霍尔系数等参量,配合基系统的变温(1.8-400K)和变磁场(PPMS大磁场16T, PPMS DynaCool大磁场14T)环境,可实现材料电磁输运特性的全面刻画。PPMS的电输运测量不仅是一个高度自动化的平台,也是一个开放的平台:结合van der Pauw-Hall选件,方便快捷的采用van der Pauw法测量形状不规则但厚度均匀的样品电阻率和霍尔性质;结合转杆选件,搭配不同样品板,可以测量面内面外各向异性磁阻;结合高压腔,可以开展压力依赖的电输运研究。PPMS的电输运测量也是一个可拓展的平台,在基本配置的基础上,用户可以根据自己的需要,定制化的增加电流源、电压源以及锁相放大器等设备。为满足客户定制化需求,Quantum Design公司也推出了多种型号的多功能样品杆,允许用户将外界仪表电源引线、光纤或者波导通过定制板引入样品空间,进行栅电场调控、光电输运特性等定制化测量。为方便用户对多种样品杆的制样情况进行外部检测,Quantum Design公司新推出了一系列针对外接仪器仪表的测试台和接线盒设备,欢迎各位用户咨询采购。 参考文献:[1]. J. Guo et al., Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2. Journal of Materials Science & Technology 76, 247-253 (2021).[2]. M. Wang et al., Manipulate the Electronic State of Mott Iridate Superlattice through Protonation Induced Electron‐Filling. Advanced Functional Materials, 2100261 (2021).[3]. B. Li et al., Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nature Materials, 20, 818-825 (2021).
  • 合肥蜀山:光谱“听诊器”,精准捕捉温室气体
    如何从大气中精准检测温室气体?这个问题,来到中国环境谷的安徽岑锋科技有限公司就能得到解答。该企业基于激光光谱检测分析技术开发出了不同类型高精度分析仪器,让光谱监测仪像一个个“听诊器”,把大气中蕴含的温室气体数据精确传感,提升监测敏感度、精确度。自主研发 实现“精度”突破10月26日,在安徽岑锋科技有限公司,车间里的工作人员正在加紧组装、测试专门订制的高精度温室气体光腔衰荡光谱监测仪(CRDS)。设备内密密麻麻分布着不同的线路,还未安装的电子屏显示着上一轮测量的数据。这个不到1米长的长方体盒子里有精心设计的光学腔室,在国内率先实现自主设计及产业化推广,解决了高精度温室气体测量领域仪器设备的“卡脖子”问题。“该类自研的光学腔室会‘魔法’,可让光束在光腔内形成共振反射,即在光腔内实现来回振荡传播,在传播的过程中,遇到目标气体分子后会被吸收。简单地说,这种仪器就像光谱‘听诊器’一样,光在设备内传播的过程犹如气体分子的‘诊断’过程,‘听诊时间’越长,‘诊断’结果越精准越细致,所反映的气体浓度检测也越精确。”工作人员崔芳生一边演示设备一边介绍,传统的检测技术在气体浓度低的情况下可能检测不出来,而这个仪器让多种温室气体实现同步测量,等效光程可达60km,具有高精度、高准确度等特点。公司自主研发生产的另一款基于激光吸收光谱技术(TDLAS)的开路式温室气体分析仪,体积小、重量轻,除了高精度还可保证高频响应。“目前国内或者国外的技术测量频率在20赫兹,我们这款产品能达到100赫兹,就是检测频率每秒钟达到100次,能更加精准的捕捉气流在大气环境下的微弱变化。”崔芳生介绍。技术向国际看齐,应用也日益广泛。高精度温室气体监测仪已经实现量产,目前有二十余台应用在我国西北、西南、东南等区域,用于气象环保、环境监测等实际需求。“追光”不止 做光学仪器设备拓荒者前不久,使用了光腔衰荡光谱技术(CRDS)的高精度温室气体监测仪代表安徽岑锋科技有限公司“出战”,获得了第十二届中国创新创业大赛安徽赛区三等奖。产品凝结着研发团队的技术结晶,也代表着企业的技术成果。这个成立一年多的公司已经获得了3项发明专利、1项实用新型专利,1项外观设计专利和多个软件著作权登记证书,发展势头强劲。该企业核心成员是6位来自中国科学院的光学专业博士,在40余名员工中,研发人员占比在50%左右。“公司是由6位博士组成的技术型团队,大家志同道合,有着共同的理想,就是做好国产光学仪器设备,实现相关领域自主知识产权。”总经理何俊峰博士介绍,产业化之所以能顺利实现,来源于团队每个成员深厚的技术沉淀,“我自己从事激光光谱研究十几年,其他老师也都在相关行业工作多年,公司能在研发、生产、销售整个链条上平稳运行离不开大家长期的技术积累。”开拓领域 面向更广市场成熟的产品、领先的技术,需要合适的平台,才能走向更大的舞台。最近,安徽岑锋科技有限公司向蜀山经开区申请了相关场地,准备在园区内搭建温室气体检测系统,等设备齐全后,将试点进行温室气体检测的实际应用。“线上申请后,工作人员就上门帮助我们在辖区范围找各个部门协调,两三天就找到并且批下来了,效率很高。”何俊峰说。中国环境谷现已聚集环境领域重点企业370余家,通过举办相关论坛、沙龙、学术交流会等方式,向政府部门和行业组织推介企业,积极为园区企业寻找应用场景。“政策宣传、用工用人、融资需求等企业需要的各类服务,我们都有配套的制度。”蜀山经开区相关部门的工作人员表示,园区企业还可以在“政企直通车”线上提交诉求,线上派单,线下完成后及时反馈。“我们的产品专业性很强,在市场上是相对被动的。但是蜀山区积极帮助我们对接应用场景,给予我们充分的发挥空间。”何俊峰表示,公司和中国环境谷共生长,看到了环境谷内不断完善的创新创业生态体系,越来越多优质企业、科研平台加速落地集聚,自己和团队对未来发展充满信心。除现有产业布局外,该企业将继续深耕技术创新,深化市场应用,为生态环境监测、工业化工监测、安全预警及医疗诊断等领域贡献技术和方案。何俊峰说,“希望借助‘中国环境谷’这一平台,乘上产业集群的东风,实现公司业务量增长,携手助力环境产业的高质量发展。”
  • 微型光谱仪之LIBS光谱系统
    1、技术简介  在高强度的激光作用 下,被测材料表面就会有几微克的物质被喷射出来,这个过程通常被称为激光剥离,同时材料表面还会产生寿命短但亮度很高的等离子体,其瞬间温度可达 10,000℃ 。在这个热等离子体中,喷射出来的物质离解成激发态的原子和离子。在激光脉冲结束后,由于等离子体以超音速向外扩展所以迅速地冷却下来。在这段时间内, 处于激发态的原子和离子从高能态跃迁到低能态,并发射出具有特定波长的光辐射。用高灵敏度的光谱仪对这些光辐射进行探测和光谱分析分析,就可以得到被测材料的元素构成信息。  激光诱导击穿光谱(LIBS)是一种原子发射光谱。可以对固相、液相和气相基体中几乎所有元素进行定性和定量的分析。不同于传统的检测方法,LIBS在检测过程中无需进行复杂的样品制备。为了达到这个目的,LIBS激光脉冲发射并汇聚于样品表面一点,样品被激光加热到气态继续吸收能量成为等离子态,等离子体背景辐射快速衰减导致等离子特征谱线突出,光谱仪开始积分获得测量结果。对产生的对应元素发射谱进行分析。元素发射谱的波长与元素的种类直接相关,而元素谱线的强度则和元素的含量相关。图1 激发诱导击穿光谱检测原理图 图2 激发等离子体与能级图  2、应用说明  激光诱导击穿光谱技术系统在进行元素分析的时候,需要样品量极少,对样品的破坏性小,可以对固相,液相,气象的样品进行测量 具有自清洁能力,几乎不需要样品制备 可以实现快速实时在线分析 具有遥测能力,可实现有毒、强辐射等恶劣环境中的远距离、非接触性测量 具有宽光谱多种元素同时测量,ppm量级探测灵敏度,可对痕量元素进行探测。多通道光谱仪,凭借其高效的外部同步时钟,完美的协同了所有通道实现精确的延迟采集,准确的在原子激发辐射突出时采集到完整的原子谱线信号。同时,多通道光谱仪可以应客户的需求在180-1037nm的范围内自由的配置光谱仪的通道数量和盖范围,系统自带的高效时钟可以完美的同步所有通道,并同时实现精确触发两台外部设备。  自然环境:土壤污染分析,工业生产环境监测,金属、煤炭等材料分析,宝石鉴定等   安防检测:爆炸物分析,生化武器分析   基础研究:等离子体发光测量,生物柴油火焰分析   航空航天:火星探测应用   医学诊断:骨骼,牙齿等相关分析分析癌症细胞,抗糖尿病药物分析等。  3、典型产品和配置  LIBS光谱技术系统配置:  1. 多通道光谱仪:超宽光谱范围,优异的紫外响应方便轻元素测量 短时间,最短1ms积分时间,通道间积分抖动± 10ns以内 高分辨,最高可达0.035nm光谱分辨率,精准延时触发控制 多扩展,两路可控延时触发接口。图4 多通道光谱仪  2. 样品仓:安全防护具有1064nm激光安全防护窗、电动激光安全锁、仓门自动安全锁、E-stop 双光纤收集光路,支持两路45度收集通道。可单独使用抗紫外光纤作为紫外通道,,同时选择使用普通可见光纤作为可见通道,增强系统的紫外探测能力。气氛保护机制能够自动充气开关控制和流量调整。能够排出测量产生的烟尘污染,延长光路寿命并且提高测试稳定性。图5 样品仓  3. 激光器  4. 采样附件(光纤等)  5. 光谱仪控制软件图6 LIBS典型配置  典型配置  典型产品:多通道光谱仪,样品仓,激光器  4、应用文章  4.1 土壤与农作物污染检测图7 土壤与农作物检测光谱图  4.2 古玩真伪鉴定图8 LIBS古玩真伪检测  4.3 金属和煤炭测量图9 金属煤炭检测光谱  4.4 等离子体发光测量图10 等离子体发光  4.5 生物柴油火焰检测图11 生物柴油检测图  4.6 检测抗糖尿病药物中的有效成分图12 抗糖尿病药物成分检测  4.7 LIBS在火星探测中的应用图13 LIBS检测火星元素光谱图  4.8 珠宝真伪的检测图14 真伪珠宝检测光谱图  4.9 工业废水检测图15 工业废水检测光谱图  4.10 爆炸物检测图16 爆炸物检测  4.11 核废料/放射性物质检测(来源:海洋光学)
  • 聚光科技携5款明星产品3大行业解决方案 重磅亮相国家会议中心
    仪器信息网讯 2023年10月23日-25日,第31届中国国际测量控制与仪器仪表展览会在北京国家会议中心召开。展会期间,聚光科技(展位A326)智慧工业板块携自主孵化子公司灵析光电盛装出席,为大家带来了五款明星产品,展示了三大行业解决方案,吸引众多与会代表驻足参观。聚光科技展位(一)五款明星产品齐亮相此次展会,聚光科技ProGC-3600工业在线气相色谱分析仪、UTS-2000紫外荧光总硫分析仪、LGA-8100激光气体分析仪,灵析光电HGA-331高精度温室气体分析仪、HGA-335h高速高精度燃气分析仪等产品重磅亮相,展示了聚光科技在石油化工、天然气、煤化工、钢铁冶金等领域气体检测分析的强大创新研发力量。ProGC-3600工业在线气相色谱分析仪工业在线气相色谱分析仪采用自动化的取样、前处理和进样系统,防爆和防护设计,可以广泛用于石化、煤化工、天然气、冶金、制药和电力领域各个生产阶段的气体和可气化的液体成分的浓度的在线分析。工业色谱因为其测量稳定、准确、可以可靠并长时间连续运行,已经成为工业过程控制中的核心分析仪。聚光科技积累十二载色谱技术研究基础,获得科技部重大研发计划的专项资助,研发出具有自主知识产权的工业色谱系列产品。攻关研发的色谱柱箱技术可以在环境温度-30℃到55℃范围内均保持高精度控温,整体正压防爆和IP65防护等级设计,搭配小屋实现就近安装的在线分析测量。其中,ProGC-3600工业在线气相色谱分析仪具有“模块化设计,现场更换色谱柱从3天缩短到3小时”、“可就近取样点安装,滞后短,损失小,取样故障率低”、“软件智能诊断各核心部件健康状态”等特点。UTS-2000紫外荧光总硫分析仪在天然气、煤化工、钢铁冶金、石油化工、食品工业等领域的过程气体中不仅含有如H2S和SO2等无机硫化物,还含有如羰基硫、二硫化碳、甲醇硫等有机硫化物,这些硫化物的存在会严重影响催化剂的使用寿命和产品品质。聚光科技开发的UTS-2000型在线紫外荧光总硫分析仪采用灵敏度高、测量范围宽、选择性好、不受其他物质干扰等优点的紫外荧光技术原理,可以实时测量并输出测量结果,具有检测速度快、测量准确性高、安全性高,系统可靠、低损耗取样等特点。非常适合用于天然气,冶金副产煤气,CO2和H2等高纯气体等介质中的微量总硫含里分析,主要应用于石油化工、煤化工、钢铁冶金、天然气、食品工业等。LGA-8100激光气体分析仪聚光科技LGA-8100激光气体分析仪采用一体化隔爆结构设计,具有响应速度快,安全性能高、隔爆设计,无需正压气、智能化设计,实时自诊断、内置光谱基准,实时锁定激光波长等特点,主要应用于石化、化工、冶金、煤化工、天然气、精细化工等领域。产品技术中引入"功能安全“理念,根据GB/T20438和IEC 61508标准,增加了软硬件安全机制,提高系统失效诊断能力,系统通过S1L2安全完整性等级的专业认证,适用于对产品可靠性、稳定性和安全性要求高的应用场景。目前已获得国家科技进步二等奖、中国专利金奖、浙江省科学技术一等奖等。HGA-331高精度温室气体分析仪灵析光电HGA-331高精度温室气体分析仪是基于光腔衰荡光谱(CRDS)技术自主研发、生产的高精度分析仪,具有优异的长期稳定性和超低漂移,ppb级别的灵敏度、精度以及准确度,可三种气体(CO2、CH4、H2O)同时检测,产品性能同时满足世界气象组织(WMO)和欧洲综合碳观测系统(ICOS)对温室气体检测要求。其独有的内部控温、控压算法,可提供稳定到极致的测量,测量灵敏度达到十亿分之一(ppb),在数月运行中的漂移可以忽略不计。分析仪测量水汽,采用专有算法来校正样气中水汽的稀释效应,并输出CO2、CH4的干摩尔分数。此款仪器主要应用于城市环境监测、区域环境监测、行业碳排放定量检测等场景中的气体浓度在线实时监测。HGA-335h高速高精度燃气分析仪灵析光电HGA-335h高速高精度燃气分析仪,具有优异的长期稳定性和超低漂移,无需现场校准,实现超高灵敏度的两种气体(CH4、C2H6)同时测量,准确分辨燃气泄漏源,也具有ppb级别的灵敏度、精度及准确度,复杂背景测量无交叉干扰,小体积腔设计实现快速气体置换,结构坚固可靠,为燃气泄漏检测提供一种先进、高效的测量选择。其采用光腔衰荡光谱(CRDS)技术,与传统非分散红外(NDIR)和激光遥测(TDLAS)技术相比,具有检测灵敏度高、测量速度快、不受雨雪大风影响等优势。该分析仪可放至特定位置以实现固定持续监测,也可放至移动平台中进行走航监测和溯源,同时,主要应用于燃气泄漏检测、燃气管线常规巡检等隐患排查,以及应急抢修、大型活动和重要会议保障、恶劣天气或灾后快速巡查等多种场景。(二)三大解决方案齐推出除此之外,聚光科技还展示了其在冶金行业、石化行业和高精度监测行业的解决方案,体现了聚光科技在行业中强劲的实力与竞争力。冶金行业解决方案:包括工业过程分析和加热炉燃烧优化系统解决方案等。聚光科技工业过程分析覆盖全流程,从气体监测、污染源治理到智能运维,可在各个工艺段提供安全、稳定、绿色的定制化解决方案,助力企业实现优化生产、产业升级的目标。加热炉燃烧优化系统解决方案是基于加热炉激光燃烧分析仪+加热炉智能燃烧控制系统相结合的解决方案,同时,也基于世界前沿的湾光实时在线检测技术,检测出有效的相关数据进行运算,输出实时动态空燃比/过剩系数的解决方案,故该解决方案是有数据支持的燃烧优化控制系统解决方案。冶金行业解决方案 展板展示石化行业解决方案:包括天然气行业解决方案、氯碱行业解决方案、石油化工行业解决方案、煤化工行业解决方案等。天然气行业解决方案是公司通过不断的技术创新,开发的激光分析技术、紫外分光技术、紫外荧光技术可以测量痕量级的气体含量,大大提高测量精度,充分满足天然气行业测量微量气体的需求。为适应天然气行业高压、多烷烃内物质的测量环境,聚光科技开发了相应的取样预处理系统,保证气体分析系统的长期可靠运行。氯碱行业解决方案基于激光吸收光谱和紫外分光光谱的独特技术特点,专注于满足氯碱企业在生产过程中的气体监测需求。为客户提供全方位的在线监测解决方案,旨在确保工艺安全、提高生产效率以及保护过程设备。石油化工行业解决方案为企业提供切合实际需要的整体解决方案。从现场勘测到方案设计,从安装调试到开机投运,从客户培训到售后支持,聚光科技可提供周到的客户服务和交钥匙工程。煤化工行业解决方案充分考虑了煤化工生产的现场应用环境,结合公司现有产品为企业提供切合实际需要的整体解决方案。石化行业解决方案 展板展示高精度监测行业解决方案:灵析光电聚焦研发光学高精度激光分析仪器,目前已率先在国内攻克了光腔衰荡光谱(CRDS)技术在高精度温室气体监测领域的应用,推出了自研自产的高精度光腔衰荡法温室气体分析仪(HGA系列),凭借产品优异性能,中标中国气象局“揭榜挂帅”科技项目,广泛应用于城市、区域环境监测,行业碳排放定量检测等场景的气体浓度在线实时监测。同时,其研发的高精度痕量气体分析仪,具有探测下限低、相应速度快、无需耗材、更优的长期稳定性和低维护性等显著优势,是半导体行业AMC连续监测的理想选择等。高精度监测行业解决方案 展板展示关于聚光科技:聚光科技(杭州)股份有限公司成立于2002年,总部位于中国杭州,是一家以高端仪器装备产品技术为核心的高科技平台型企业。聚光科技用感知分析技术与数字化管理持续守护地球环境与人类生命的健康与安全。公司业务涵盖智慧 环境、智慧工业、智慧实验室、生命科学等领域,为环境、水利水务、应急安全、冶金、石化、化工、水泥、半导体、材料、能源、地矿、食药、疾控、生命科学等众多行业客户提供分析仪器、试剂耗材、信息化软件、运维检测服务、咨询服务等创新产品组合与解决方案。关于灵析光电:浙江灵析光电技术有限公司是聚光科技(杭州)股份有限公司自主孵化成立的高科技企业,聚焦于研发光学高精度激光分析仪器,致力于为生态环境、气象、半导体、燃气安全、科研应用等领域提供超高灵敏度、超高精度、超高稳定性、快速、连续、易用的实时在线以及现场原位监测仪器和专业化的解决方案。
  • 自主研发实现精度突破 光谱监测仪精准捕捉温室气体
    合肥蜀山:光谱“听诊器”,精准捕捉温室气体如何从大气中精准检测温室气体?这个问题,来到中国环境谷的安徽岑锋科技有限公司就能得到解答。该企业基于激光光谱检测分析技术开发出了不同类型高精度分析仪器,让光谱监测仪像一个个“听诊器”,把大气中蕴含的温室气体数据精确传感,提升监测敏感度、精确度。自主研发 实现“精度”突破10月26日,在安徽岑锋科技有限公司,车间里的工作人员正在加紧组装、测试专门订制的高精度温室气体光腔衰荡光谱监测仪(CRDS)。设备内密密麻麻分布着不同的线路,还未安装的电子屏显示着上一轮测量的数据。这个不到1米长的长方体盒子里有精心设计的光学腔室,在国内率先实现自主设计及产业化推广,解决了高精度温室气体测量领域仪器设备的“卡脖子”问题。“该类自研的光学腔室会‘魔法’,可让光束在光腔内形成共振反射,即在光腔内实现来回振荡传播,在传播的过程中,遇到目标气体分子后会被吸收。简单地说,这种仪器就像光谱‘听诊器’一样,光在设备内传播的过程犹如气体分子的‘诊断’过程,‘听诊时间’越长,‘诊断’结果越精准越细致,所反映的气体浓度检测也越精确。”工作人员崔芳生一边演示设备一边介绍,传统的检测技术在气体浓度低的情况下可能检测不出来,而这个仪器让多种温室气体实现同步测量,等效光程可达60km,具有高精度、高准确度等特点。公司自主研发生产的另一款基于激光吸收光谱技术(TDLAS)的开路式温室气体分析仪,体积小、重量轻,除了高精度还可保证高频响应。“目前国内或者国外的技术测量频率在20赫兹,我们这款产品能达到100赫兹,就是检测频率每秒钟达到100次,能更加精准的捕捉气流在大气环境下的微弱变化。”崔芳生介绍。技术向国际看齐,应用也日益广泛。高精度温室气体监测仪已经实现量产,目前有二十余台应用在我国西北、西南、东南等区域,用于气象环保、环境监测等实际需求。“追光”不止 做光学仪器设备拓荒者前不久,使用了光腔衰荡光谱技术(CRDS)的高精度温室气体监测仪代表安徽岑锋科技有限公司“出战”,获得了第十二届中国创新创业大赛安徽赛区三等奖。产品凝结着研发团队的技术结晶,也代表着企业的技术成果。这个成立一年多的公司已经获得了3项发明专利、1项实用新型专利,1项外观设计专利和多个软件著作权登记证书,发展势头强劲。该企业核心成员是6位来自中国科学院的光学专业博士,在40余名员工中,研发人员占比在50%左右。“公司是由6位博士组成的技术型团队,大家志同道合,有着共同的理想,就是做好国产光学仪器设备,实现相关领域自主知识产权。”总经理何俊峰博士介绍,产业化之所以能顺利实现,来源于团队每个成员深厚的技术沉淀,“我自己从事激光光谱研究十几年,其他老师也都在相关行业工作多年,公司能在研发、生产、销售整个链条上平稳运行离不开大家长期的技术积累。”开拓领域 面向更广市场成熟的产品、领先的技术,需要合适的平台,才能走向更大的舞台。最近,安徽岑锋科技有限公司向蜀山经开区申请了相关场地,准备在园区内搭建温室气体检测系统,等设备齐全后,将试点进行温室气体检测的实际应用。“线上申请后,工作人员就上门帮助我们在辖区范围找各个部门协调,两三天就找到并且批下来了,效率很高。”何俊峰说。中国环境谷现已聚集环境领域重点企业370余家,通过举办相关论坛、沙龙、学术交流会等方式,向政府部门和行业组织推介企业,积极为园区企业寻找应用场景。
  • 能量天平激光干涉测量系统闲区长度测量方法研究
    自2019年5月20日起,新的国际单位制正式实施,其中质量的单位千克启用了基于普朗克常数的新定义。能量天平是我国自主的千克新定义复现方案,该方案由中国计量科学研究院张钟华院士提出。能量天平利用电磁力做功与电磁场能量变化之间的转换与平衡,建立普朗克常数与被测砝码质量之间的桥梁。图1 能量天平结构示意图与测量原理电磁力做功量的测量涉及电磁力大小的测量和线圈相对位移测量两方面。因此,悬挂线圈与激励磁体的相对位移测量系统至关重要。它不仅实现了能量天平对于“米”的量子化基准的溯源,而且在保证能量天平积分区间的一致性上也发挥了关键作用。能量天平采用外差激光干涉测量系统对悬挂线圈与激励磁体的相对位移进行测量(图2),但该干涉测量系统存在较大的光学闲区(图3),进而影响了能量天平在空气环境中运行时位移测量的准确性。图2 能量天平激光干涉测量系统图3 能量天平光学闲区示意图近日,发表于《计量科学与技术-中国计量科学研究院专刊(2022)》的文章“能量天平激光干涉测量系统闲区长度测量方法研究”,对能量天平干涉测量系统中闲区长度测量方法进行了分析与讨论。主要成果(1)提出了基于真空/空气环境光程差测量的光学闲区长度测量方法。该方法利用能量天平的真空系统改变光学闲区的空气折射率;利用激光干涉系统测量折射率改变过程中的光程变化,进而测得光学闲区的长度,将原毫米量级的闲区长度测量不确定度抑制至4 μm,大大提高了光学闲区长度的测量能力。(2)利用光学闲区长度表征的绝对距离,实现了对能量天平激励磁体与悬挂线圈间相对零位的测量,以保证悬挂线圈系统位于磁体的均匀区范围。该相对零位的标准测量不确定度达到了54.2 μm。此项研究得到了国家自然科学基金青年基金项目(51805507)的支持。能量天平科研团队简介重新定义千克曾被《Nature》列为世界性的科研难题。张钟华院士向这一科研难题发起了挑战,提出了基于全静态测量的能量天平方案,该方案被《Metrologia》列为国际三种千克量子化定义与复现方法之一。目前,能量天平由李正坤研究员带领的年轻团队接力攻关。该团队连续攻克了高匀场激励磁体设计、准静态磁链差测量、外磁屏蔽方法优化、真空超精密几何量测量、能量天平准直误差理论与技术、超高直线度重载驱动方法与装置等一系列科研难题,建立了第二代能量天平装置NIM-2,其实物图如图5所示。该装置于2019~2020年间,代表中国参加了千克新定义后的首次千克复现方法国际关键比对(CCM.M-K8.2019)。经国际计量局对各国的数据综合评定,能量天平的测量结果与比对参考值(KCRV)的相对偏差为1.17E-8,相对标准不确定度为4.49E-8,比对结果如图6所示。该测量数据已成功用于首个国际质量共识值(the Consensus Value)的评定,进而用于SI新定义后全球质量量值传递。能量天平的研究工作,为建立我国自主的质量量子化基准装置提供了重要的技术支撑。图5 能量天平装置实物图图6 首次千克复现方法国际关键比对(CCM.M-K8.2019)比对结果
  • 首次同台!聚光科技智慧环境板块多品牌矩阵联合亮相环保展
    仪器信息网讯 由中国环境保护产业协会主办,生态环境部、北京市人民政府等部门支持的第二十一届中国国际环保展览会于2023年4月13日至15日在北京中国国际展览中心(朝阳馆)举办,聚光科技携智慧环境板块多品牌矩阵(聚光科技、谱育科技、希思迪、美境数科、灵析光电、双谱科技)联合亮相。其中,谱育科技设立独立展台,双展台相辅相成,全面展示了聚光科技在生态环境领域一系列领先的创新产品组合与解决方案。聚光科技展台据了解,本次环保展是聚光科技智慧环境板块多品牌矩阵的首次联合亮相。聚光科技推出了数字双碳、大气环境协同管控、水环境管控、污染源管控、园区综合管控、应急执法能力建设及实验室能力建设七大解决方案,旨在以科技创新助力生态环保产业的创新发展。在本次环保展上,聚光科技展示了全线创新产品,共有38款产品参展,其中17款新品备受关注,这些产品都掌握着核心技术。聚光科技大气环境协同管控展台2021年,生态环境部发布《“十四五”全国细颗粒物与臭氧协同控制监测网络能力建设方案》,强调要进一步加强细颗粒物(PM2.5)和臭氧(O3)协同控制监测能力建设,并且,要掌握PM2.5与O3的主要来源、浓度水平、生成机理、传输规律等。紧跟国家方案,聚光科技着力加强颗粒物与臭氧协同控制监测技术的同时,部署环境空气质量评价、减污降碳协同治理、移动污染源防治、环境空气质量达标管控服务等业务,助力我国进行大气环境领域的协同管控。在大气环境协同管控展台,聚光科技旗下自孵化子公司谱育科技推出了EXPEC 2200 环境空气含氧类挥发性有机物(OVOCs)自动监测系统。该产品基于国标和美国DNPH衍生-液相色谱法,实现了OVOC(醛酮化合物)的精准自动测量,准确度与精密度优于5%,可监测100多种VOCs组分,完全满足环境空气、园区在线监测的需求。EXPEC 2200 环境空气含氧类挥发性有机物(OVOCs)自动监测系统在阳光照射下,挥发性有机化合物可经由光化学反应生成臭氧、甲醛、乙醛等多种二次污染物。光化学污染物监测方面,聚光科技推出了AQMS 350臭氧分析仪(化学发光法),从原理上避免了挥发性有机物、细颗粒物等其他物质的干扰,检出限达到0.4nmol/mol,优于紫外吸收法臭氧分析仪;此外,EXPEC 2400 气态亚硝酸(HONO)分析仪采样单元采取电子控温结合空气浴控温方式,无漏液风险且无需运维。AQMS 350臭氧分析仪(化学发光法)、EXPEC 2400 气态亚硝酸(HONO)分析仪黑碳气溶胶是目前大气科学监测与研究的重要参数。黑碳分析方面,聚光科技本次推出新品:A570 黑碳分析仪。据悉,该产品可实现多波段监测,丰富黑碳来源信息,并可实现智能人机交互,测量校准自动完成。A570 黑碳分析仪同时,作为我国“十四五”规划的另一重要布局,国家特别强调:“我国生态环境领域科技创新面临新的挑战,其中温室气体减排压力空前突出,支撑碳达峰碳中和目标如期实现和应对气候变化面临重大技术挑战。”在当前大热的“碳达峰,碳中和”领域,聚光科技一直大力推广着其自主研发的高、中精度温室气体监测、车载温室气体走航监测系统、数智双碳平台等相关产品,为我国的温室气体监测贡献力量。数字双碳展台上,聚光科技旗下灵析光电展出了HGA-331 高精度光腔衰荡法温室气体分析仪。该分析仪采用光腔衰荡光谱(Cavity Ring Down Spectroscopy, CRDS)技术,可在有限的光腔内实现长达20千米的有效测量光程。据介绍,该分析仪是灵析光电自主研发、生产的高精度分析仪,可同时测量CO2、CH4、H2O三种气体浓度,其独有的内部控温、控压算法让这款分析仪具备了优异的精度与准确度,并可实现超低漂移。HGA-331 高精度光腔衰荡法温室气体分析仪同展台上,谱育科技还展出了EXPEC 2010环境空气ODS自动监测系统,其主要由Pre 4100 超低温预浓缩仪和EXPEC 3700 气相色谱质谱联用仪构成,其中,Pre 4100 采用二级除水、三级冷冻聚焦富集技术,温度可至-180℃以下。以智能感知监测和智慧平台管控,并实现生态环境数据的汇聚共享,聚光科技致力于生态环境保护十七年,提供的方案与服务涵盖环境监测仪器设备、管控平台、生态环境规划以及应急/运维服务等全链。展台中央,企业环保“测管治”一体化方案沙盘备受瞩目。据介绍,聚光科技一直致力于为客户搭建“测、管、治”三网融合一体化平台;通过环境监管的自动化、智能化、立体化,实现达标管控的目标,打造中国生态环境综合服务引领品牌。无组织排放集中管控系统本次环保展中,聚光科技还带来高精度二氧化碳分析仪(气相色谱法)、HMA-3000(Tl)铊水质在线分析仪、Micromac SmarTox 便携式生物毒性分析仪、SIA-3000(COD) COD水质在线分析仪等众多明星产品,都深受众多领导、专家、客户、终端用户、媒体、行业友商的关注。聚光科技其他展台一览:水环境管控展台应急执法能力建设展台实验室能力建设展台关于聚光科技:聚光科技(杭州)股份有限公司(股票代码:300203)成立于2002年,总部位于中国杭州,是一家以高端仪器装备产品技术为核心的高科技平台型企业。聚光科技用感知分析技术与数字化管理平台持续守护地球环境和人类生命的健康与安全。公司业务涵盖智慧环境、智慧工业、智慧实验室、生命科学与诊断等领域,为环境、水利水务、应急安全、冶金、石化、化工、水泥、半导体、材料、能源、地矿、食药、疾控、生命科学等众多行业客户提供分析仪器、试剂耗材、信息化软件、运维服务、检测服务、咨询服务等创新产品组合与解决方案。通过二十余年的快速发展,公司在企业规模、研发实力和市场占有率等各方面均位列国内行业前列,攻克多项“卡脖子”技术,打破国际垄断并实现落地产业化,成为国内高端仪器装备行业重要的创新平台与产业化基地,为中国科学仪器发展持续贡献聚光力量!
  • 国家药典委无菌药品包装密封性检查--真空衰减法
    国家药典委无菌药品包装密封性检查--真空衰减法真空衰减法是一种广泛用于药品包装系统密封性检测的方法。2024年,国家药典委公布了“9628无菌药品包装系统密封性指导原则”,其中详细描述了密封性测试术语、测试方法和验证等。真空衰减法因其应用范围广泛和市场接受度高而被推荐为首选试验方法。三泉中石作为9628中真空衰减法和压力衰减法标准的制定单位之一,对标准的制定过程及需要关注的条款都有深刻了解,在这里分享给大家:仪器装置真空衰减泄漏检测仪器通常包括真空衰减测试系统、与测试系统相连的测试腔、流量计或不同孔径的标准漏孔/标准泄漏件。其实在国外的相关标准中只规定了气体流量计,并没有标准漏孔的描述。之所以在这里加上,是因为了解到市场上有采用标准漏孔的设备。但是如果采用标准漏孔,应该安装不同孔径,用以验证不同泄漏。而不能只安装一个标准漏孔采用乘以不同系数型式来模拟不同泄漏量的孔径。这两者并不等同。目前市场上广泛采用的Leak-S微泄漏密封性测试仪均采用气体流量计配置,以适应不同样品的测试需求。微泄漏密封性测试仪介绍在这一条件背景下,三泉中石研发的微泄漏密封性测试仪是一种灵敏度高的检测设备,符合ASTM测试方法、USP1207、9628等标准试验要求。该仪器采用真空衰减法测试原理,实现了完全无损的检测技术。它适用于西林瓶、安瓿瓶、输液瓶、预充针、滴眼剂瓶等多种药品包装的密封完整性验证,被制药厂家、第三方检测机构、药检机构等广泛使用。测试原理微泄漏密封性测试仪的测试原理基于ASTM F2338真空衰减法密封测试标准要求,利用真空传感技术进行操作。测试过程中,将主机连接到一个特别设计的测试腔,该测试腔用于容纳待测物。仪器对测试腔进行抽真空,形成包装物内外的压力差。在压力作用下,包装物内的气体通过潜在的漏孔扩散至测试腔内。通过真空传感器技术,检测时间和压力的变化关系,与建立的数学模型进行比较,从而准确判断试样是否存在泄漏。测试方法在进行密封性测试时,需要控制并记录试验环境,避免在较高湿度下完成检测,因为检测环境中的水分可能在较高的真空度下挥发进而影响检测结果。这条表述很清晰,湿度对测试结果的影响还是很大的,主要原因是在真空状态下水分挥发,造成压力上升,从而真空衰减值也随之变化。试验样品:此外,含标签和/或粘胶的样品在测试前应去除标签,以保持瓶身清洁无遮挡,确保测试的准确性。虽然测试样品前要去掉标签会有很大工作量,但是三泉中石提醒这个标签是必须要去掉的。专家主要考虑的是标签覆盖位置阻挡部分泄漏点的检出,而在后期使用中又存在微生物侵入的风险。方法验证为了确保测试方法的有效性,需要进行方法验证,包括专属性、准确度、精密度、检测限、线性和耐用性等方面的评估。通过这些验证步骤,可以确保微泄漏密封性测试仪在不同条件下均能准确区分阴性对照样品和阳性对照样品。其中,专属性这一项9628中描述“内含药品的阳性对照样品,确保所有样品可以 100%识别”。三泉中石认为内容物对真空衰减法的影响还是比较大的。例如有的内容物为混悬液或者大分子类的产品,真空衰减法较难检测到泄漏,当然也不是绝对的,不管是哪种内容物都要经过方法的开发和验证的过程,得出的数据才能证明结论。因此这一项增加在药物干扰情况下方法的检出能力,还是很有必要的。结论真空衰减法作为一种成熟的药品包装密封性检测方法,结合微泄漏密封性测试仪的高精度CCIT测试技术,能够检测到微小孔径的泄漏,为药品包装的密封完整性提供了强有力的保障。
  • 9628公示稿 无菌药品包装密封性检查-真空衰减法
    9628公示稿 无菌药品包装密封性检查-真空衰减法真空衰减法,作为药品包装系统密封性验证领域的一项广泛应用技术,于2024年迎来了国家药典委颁布的“9628无菌药品包装系统密封性指导原则”的详细阐述,该原则深入解析了密封性测试的专业术语、具体方法及验证流程等。在众多检测方法中,真空衰减法凭借其广泛的适用性和市场的高度认可,被明确推荐为首选检测手段。作为参与制定9628标准中真空衰减法与压力衰减法标准的制定单位之一,三泉中石在此深入剖析该标准的核心要点及实践中的注意事项。仪器装置概览真空衰减泄漏检测仪器的核心组件包括真空衰减测试系统、配套测试腔体、流量计,以及(可选)不同孔径的标准漏孔或泄漏件。值得注意的是,国际标准多聚焦于气体流量计,并没有标准漏孔的描述。之所以在这里加上,是因为了解到市场上有采用标准漏孔的设备。若选用标准漏孔,应该配备安装不同孔径,用以验证不同泄漏。而不能只安装一个标准漏孔采用乘以不同系数型式来模拟不同泄漏量的孔径。这两者并不等同。当前,市场上备受欢迎的三泉中石Leak-S系列微泄漏密封性测试仪,即采用了气体流量计配置,灵活应对各类药品包装的检测需求。微泄漏密封性测试仪亮点这款高灵敏度的仪器遵循ASTM、USP1207及9628等标准试验要求,依托真空衰减原理,实现了对药品包装(如西林瓶、安瓿瓶、输液瓶等)密封完整性的无损检测。其卓越的灵敏度和广泛的适用性,赢得了制药企业、第三方检测实验室及药品监管机构的广泛信赖。测试原理深析三泉中石的微泄漏密封性测试仪Leak-S在测试时,仪器将待测包装置于特制测试腔内,该测试腔用于容纳待测物。并抽取腔内空气以建立内外压差。在此压差驱动下,包装内可能存在的气体将通过微小漏孔逸出至测试腔,仪器则通过监测这一过程中检测时间和压力的变化关系,并与预设数学模型比对,从而精确判断包装的密封状态,是否存在泄漏。测试方法精要执行测试时,需严格控制并记录环境条件,特别是避免高湿度环境,以免水分蒸发影响真空度,进而干扰检测结果。此外,对于附有标签或粘胶的样品,测试前务必去除,以确保测试区域的完全暴露,避免标签遮挡潜在泄漏点,同时预防微生物入侵风险。虽然测试样品前要去掉标签会有很大工作量,但是三泉中石提醒这个标签是必须要去掉的。专家主要考虑的是标签覆盖位置阻挡部分泄漏点的检出,而在后期使用中又存在微生物侵入的风险。方法验证的全面性为确保测试方法的有效性和可靠性,需要进行包括专属性、准确度、精密度、检测限、线性关系及耐用性在内的全面验证。特别是专属性验证,9628标准强调了对内含药品的阳性对照样品的完全识别能力,三泉中石指出,不同内容物(如混悬液、大分子产品)可能对真空衰减法的灵敏度构成挑战,因此需针对具体药物特性进行方法开发与验证,以确保检测结果的准确无误。综上所述,微泄漏密封性测试仪的先进CCIT测试技术,为药品包装密封完整性检测提供了强大支持,能够精准捕捉微小泄漏,为药品安全保驾护航。作为专业从事包装检测仪器的行业制造商-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 德国IS光测的AR/VR测量系统在SID上荣获“ People's Choice Awards”奖
    Instrument Systems的LumiTop 5300 AR/VR测量系统荣获专家票选大奖在2024年5月于美国洛杉矶举办的SID Display Week显示器行业大展上,德国IS光测的AR/VR测量系统荣获了备受关注的“People's Choice Awards”奖。该奖项是由全球显示领域的专家们共同投票选出。图:获奖的LumiTop 5300 AR/VR 近眼显示器测量系统在“最佳显示度量技术”(Best Display Metrology Technology)类别中,LumiTop 5300 AR/VR系统脱颖而出,成功斩获这一奖项。LumiTop 5300 AR/VR系统专为测试增强现实(AR)和虚拟现实(VR)眼镜中的近眼显示器质量而设计。其镜头高度模拟人眼,能够直接测量用户所看到的画面颜色和亮度。LumiTop 5300拥有24 MP的高分辨率和122° x 107°的宽广视场(FoV),可以通过一次拍摄,高精度地捕捉近眼显示屏的测量值。该系统的直式镜头非常适合在AR/VR显示模块安装到头显之前进行生产线测试。此外,同一系列的LumiTop 4000 AR/VR系统具有12 MP的分辨率,适合用于生产链末端的质量控制。其潜望镜式镜头模拟了人眼瞳孔,为测量头戴显示装置提供了便捷的方法。衷心感谢所有为LumiTop 5300 AR/VR系统投票,并给予我们高度肯定的行业专家们。
  • 230万!中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目
    项目编号:OITC-G220321054项目名称:中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目预算金额:230.0000000 万元(人民币)最高限价(如有):230.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品分项最高限价1钛宝石飞秒振荡器1是170万元双通道成像光谱仪1是30万元多通道锁相放大器1是30万元2、投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • “抢”出来的世界级科学突破--大亚湾发现中微子第三种振荡模式
    实验站现场执行经理李小男研究员正在介绍探测器运行情况。   深圳特区报讯(记者 綦伟 文/图)日前,美国《科学》杂志公布2012年度十大科学突破中,中国大亚湾发现中微子第三种振荡模式位列其中。《深圳特区报》一直关注大亚湾中微子实验,曾在2011年12月7日、2012年3月9日、3月21日、12月22日 进行跟踪报道,引起强烈反响。   昨天,《人民日报》头版头条刊发《大亚湾中微子实验成果世界瞩目》的消息,对大亚湾中微子实验发现新的中微子振荡模式的成就和意义进行报道。   10年前,我国中微子物理研究还几乎为零 今天,来自大亚湾中微子实验的发现已上榜《科学》2012年度十大科学突破第4位。历经4年准备和4年建设,一个“抢”字贯穿大亚湾中微子实验过程,这是“抢”出来的世界级科学突破。   国际竞争中“抢”出国际领先   近日,记者再次来到位于大亚湾核电站内的中微子实验站,发现这里的科研人员们一如往常,正一丝不苟监测探测器运行取数情况,或进行实验设备的日常维护。实验站现场执行经理李小男研究员说:“入选年度十大科学突破当然高兴。但最感到痛快的,还是去年10月到12月大家抢着把探测器安装到位,成功开启运行的那一刻。”   那是一次果断的变阵提速。面对日本、美国、法国和韩国中微子实验的竞争,大亚湾实验国际合作组决定将计划安装的8个中央探测器改为先安装运行6个,力争最先发现中微子混合角θ13参数值。   “真抢!”李小男说,那一段时间没有节假日,天天从清早忙到深夜。不仅现场抢安装、抢调试、抢运行,远在北京中科院高能所的数据分析人员也抢先开发出分析软件并进行了多次演练。去年12月24日,6个中央探测器开始运行捕获中微子事例,两个月后,实验组便在置信度大于99.9999%的水平上测得θ13不为零,向世界宣布首次发现了中微子的第三种振荡模式。如此快的速度,让合作组内的美国伙伴们都感到不可思议。   国内多家单位在帮着实验组一起抢。科技部、中国科学院、国家自然科学基金委、广东省、深圳市和中国广东核电集团,共同出资1.57亿元对大亚湾实验给予支持。“用核反应堆来测量θ13参数值是最便利的,这个几乎所有高能物理科学家都知道。但是有哪个核电站会允许在离反应堆仅几百米的地方施工建设一个大型地下实验站呢?”当了解到实验的重要意义后,中广核集团不仅同意工程建设,而且还出资3500万元。深圳市政府为此专门召开了有20多个委办局领导参加的协调会,中心内容就是如何保证大亚湾实验工程顺利开工。   多方努力,保证了大亚湾实验工程安全高效建成投入使用。李小男感慨:“这恐怕只有在中国才办得到。”   实验运行6年 精测值50年领先   乘电动车进入幽暗的隧道,记者来到位于地下百米的实验大厅。今年8月,实验曾暂停,将另外两个中央探测器安装到位后,10月19日大亚湾中微子实验开始进入全部探测器同时运行的完整测量阶段。   “现在我们正用新的物理分析方法,以求更精确地分析这一物理结果。”李小男说,之前是数测到的中微子个数,现在加入能谱分析,即不仅知道有多少个,而且知道每个的能量是多少。两种分析方法可以互相验证。   由于新方法对探测器性能的要求更高,实验组已经在8月份对全部探测器进行了一次新的全体积不同能量的标定。“现在物理结果的统计误差约有10%。估计全部8个探测器运行约6年左右,将可把统计误差降到约5%的精度目标。50年内,这都将是最精确的测量数值。”   大亚湾中微子实验首席科学家、中科院高能物理研究所所长王贻芳研究员介绍,实验使我们更深入地了解中微子的基本特性,也对未来中微子物理的发展方向起着决定性作用。只有得到这一结果,才能设计下一代中微子实验,如为不同种类的中微子质量排序,或测量中微子振荡中的宇称和电荷对称性破坏,以理解宇宙中物质—反物质不对称现象,即宇宙中“反物质消失之谜”。   实验二期项目初步选址开平   大亚湾中微子实验组仍在“抢”。10月份到现在,李小男到处跑,开始为大亚湾中微子实验二期项目忙碌。“本来想喘几口气,没想到这么快就启动了。”   王贻芳透露,中微子实验二期选址已基本上定在江门开平,在距离阳江核电站和台山核电站都是53公里左右的地方。“正在立项中。我们计划能够在2014年前开始动工,用6年时间建成。”   王贻芳说,中微子实验二期工程建成后,将可期待在测量三种中微子的质量顺序上有一个重大突破。届时,我国对于中微子的研究将达到真正的国际领先。  “一个方面的领先,不算全面的领先。”王贻芳说,计划中的我国中微子研究发展分三步走。第一步目标已经在大亚湾反应堆中微子实验站实现,在精确测量θ13值方面取得国际领先 第二步,中微子实验二期瞄准多个科学目标,将在很多方面开展中微子研究,取得突破后,我国便真正达到在国际中微子物理科学研究中的领先水平。之后为第三步远期目标,将利用加速器产生的中微子更精确测量中微子物理参数。   “在中微子实验二期中,中微子探测器将更大。”王贻芳说,一期8个中央探测器总共800吨,二期将达到2万吨。“探测技术上也将实现一个大的跨越。”
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 这台低温光学系统,再发两篇Nature,助力用户在量子自旋、量子光学领域持续发力!
    在量子材料与量子效应的研究中,无损的光谱学测量已经变得尤为重要。而在低温等极端条件下的原位显微光学测量是近十年来逐渐发展成熟的测量方法。近几年中大量重要的科研工作中都有低温光学测量的内容。Montana Instruments 生产的超精细多功能无液氦低温光学系统以其卓越的性能广受低温光学领域科学家的好评。超过千套设备分布在世界各地的重要高校和科研院所,并助力用户做出了大量的顶级科研成果。近期,超精细多功能无液氦低温光学系统用户的工作中又有两项问鼎了高水平学术杂志-Nature。1、正方晶格铱酸盐中的量子自旋向列相研究自旋向列是经典液晶概念的磁性类似物,是物质的第四种状态,同时表现出液体和固体的特征。特别是在价键自旋向列中,自旋具有量子纠缠效应,可以形成多极序而不破坏时间反演对称性,但目前为止,还难以在实验室进行透彻的研究。韩国浦项科技大学与浦项基础科学研究所的Hoon Kim, Jin-Kwang Kim, B. J. Kim等研究者利用变温拉曼光谱、磁光克尔测量和共振非弹性X射线散射等多种技术对Sr2IrO4进行测量,在正方格子铱酸锶 (Sr2IrO4) 中发现了自旋向列相和四极序,并利用共振X射线衍射技术确定了四极序的空间结构和对称性。其结果发表在Nature上(Quantum spin nematic phase in a square- lattice iridate)。本文中基于超精细多功能无液氦低温光学系统进行了大温区范围的变温拉曼测量。在冷却时,从拉曼光谱中获得了静态自旋四极磁化率的发散,以及伴随出现了与旋转对称自发破缺有关的集体模式。这标志着在Tc≈263K时向自旋向列相的转变,并且在Tn≈230K以下的反铁磁相中四极序持续存在。图:变温拉曼测量表明自旋向列相的相变。这一研究表明了在Mott绝缘相中存在自旋向列相等多重序,为我们提供了关于材料中隐藏序的新见解。研究还表明有可能通过电荷四极干涉来检测四极序。本篇研究的结果为探索具有强自旋轨道耦合的过渡金属氧化物等竞争相互作用材料中自旋向列相的产生提供了直接证据。揭示了人们普遍认为与高温超导机制密切相关的Néel反铁磁体的量子序。因此,这篇文章对于凝聚态物理领域的研究具有重要的推动作用。2、量子点-单光子超辐射研究量子光源发射器的亮度最终由费米黄金法则来决定,其辐射率与其振荡器强度乘以光子态的局部密度成正比。由于振荡器强度取决于固有的材料特性,因此对高发射率的追求依赖于使用电介质或等离子体谐振器来提高光子态的局部密度。相比之下,利用超辐射的集体行为来提高振荡器强度从而提高发射率这一途径研究还较少。最近,有人提出使用其巨振子强度跃迁可以使量子阱中的弱约束激子的相干运动延伸到许多晶胞上,从而明显提高振荡器的强度。图:载流子寿命的温度依赖特性瑞士苏黎世联邦理工学院Chenglian Zhu,Maksym V. Kovalenko & Gabriele Rainò等,在Nature上发文(Single-photon superradiance in individual caesium lead halide quantum dots),报道了单个铯铅卤化物量子点的单光子超辐射,在钙钛矿量子点中的单光子超辐射,辐射衰减时间低于100皮秒,几乎与报道的激子相干时间一样短。本篇工作中作者利用超精细多功能无液氦低温光学系统进行了系统的单量子点光谱测量。辐射率对量子点的大小、组成和温度的特性依赖性测量表明,系统形成了巨大的过渡偶极子,并且通过有效质量计算对测量结果进行了证实。本篇研究结果有助于开发超亮相干量子光源。本研究还证明了单光子发射的量子效应在比激子玻尔半径大十倍的纳米颗粒中持续存在。超精细多功能无液氦低温光学系统超精细多功能无液氦低温光学系统以超低振动和超高的温度稳定性被广泛应用于多种高精度的变温光谱和显微成像实验中。Montana Instruments推出的新一代超精细多功能无液氦低温光学系统——CryoAdvance,是基于模块化设计架构的新一代标准化产品。该系统采用特殊减振技术和温度稳定技术,在不牺牲任何便捷性的同时,为实验提供超高温度稳定性和超低振动环境。CryoAdvance系列产品具有多种型号、配置、选件与配件可选,能够满足每个研究人员的个性化需求。除了标准系统之外也可为用户提供整体光学测量系统的解决方案。 CryoAdvance技术特点:&blacksquare 自动控制:智能触摸屏,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。&blacksquare 模块化设计:多种配置可选,快速满足各种实验需求,后续升级简单。&blacksquare 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。&blacksquare 稳定性设计:新设计在变温和振动稳定性上进一步优化。&blacksquare 最低温度:3.2K&blacksquare 振动稳定性:&blacksquare 光学通道:多个光学窗口,近工作距离、集成物镜、光纤引入等多种配置可选。Montana超精细多功能无液氦低温光学系统
  • 红外光谱的测量极限在哪里
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器“优秀新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   为了多方位展现我国在红外光谱领域的最新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的最新技术及应用情况,并探寻红外光谱的测量极限。 /span /p p    span style=" color: rgb(255, 0, 0) " strong 红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 /strong /span /p p    strong 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段? /strong /p p strong   韩铁柱博士 /strong :人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2首次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的极大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。 /p p   现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。 /p p   然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。 /p p    strong 仪器信息网:目前红外光谱的测量极限发展到了什么程度?可以给大家带来什么样的体验? /strong /p p strong   韩铁柱博士: /strong 目前,传统红外光谱的空间分辨测量极限在几微米到几十微米,时间分辨测量极限在几十毫秒的量级,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着第一台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射极限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us级,如果将超快激光引入pump-probe体系,时间分辨可以达到fs级别。 /p p    strong 仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么? /strong /p p strong   韩铁柱博士: /strong 相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术独有特点,使得其应用范围进一步拓宽。 /p p   红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。 /p p    span style=" color: rgb(255, 0, 0) " strong Quantum Design红外产品着眼红外光谱测量极限 /strong /span /p p strong   仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些独具优势(里程碑式)的技术(专利技术,独有技术)? /strong /p p strong   韩铁柱博士: /strong 我们公司一直贴合最新研究前沿和热点课题,结合红外光谱的应用与现代尖端科学研究的需要,专注最新、最先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒级时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,极大推动了红外光谱测量极限。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C377717.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 183px " src=" https://img1.17img.cn/17img/images/202006/uepic/34a71ded-e469-47c6-8f17-0f6442a01553.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 183" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C377717.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其首创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C363244.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 193px " src=" https://img1.17img.cn/17img/images/202006/uepic/d719a770-b45f-494a-822b-1bfb8d6976f2.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 193" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C363244.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于专利的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C305345.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/03b21d48-652a-4150-8caf-f5c21c9855c7.jpg" title=" 03.png" alt=" 03.png" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C305345.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   瑞士IRsweep公司推出的IRis-F1微秒级时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“优秀新品奖”,它是一种基于量子级联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。 /p p    strong 仪器信息网:贵公司红外光谱仪应用最具优势的领域?主推的解决方案? /strong /p p strong   韩铁柱博士: /strong 我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。 /p p   1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量级,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs级的红外光谱测量表征。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 316px " src=" https://img1.17img.cn/17img/images/202006/uepic/69125e72-499a-4ced-b257-9bdb7b3a4f00.jpg" title=" 04.png" alt=" 04.png" width=" 600" height=" 316" border=" 0" vspace=" 0" / /p p   美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。 /p p   2、当红外光谱空间分辨率要求在亚微米量级,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个最好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 331px " src=" https://img1.17img.cn/17img/images/202006/uepic/35ecedb1-5d4e-431a-b8a1-043e5acec657.jpg" title=" 05.jpg" alt=" 05.jpg" width=" 600" height=" 331" border=" 0" vspace=" 0" / /p p   越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为最近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。 /p p   3、为精准描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒级时间分辨超灵敏红外光谱仪解决方案。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 280px " src=" https://img1.17img.cn/17img/images/202006/uepic/adaa6cec-04b2-4a33-8145-bdb8a4376d43.jpg" title=" 06.jpg" alt=" 06.jpg" width=" 600" height=" 280" border=" 0" vspace=" 0" / /p p   斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子级联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。 /p p    span style=" color: rgb(255, 0, 0) " strong 未来:通用型和专用型红外光谱协同发展 /strong /span /p p    strong 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? /strong /p p   strong  韩铁柱博士: /strong 当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和世界主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。 /p p   作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。 /p p    strong 仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? /strong /p p strong   韩铁柱博士: /strong 针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在: /p p   1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率 2)简化样品制备过程,避免样品污染和接触引发的红外赝相 3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等 4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。 /p p   通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。 /p p   strong   span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记: /span /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登世界科技高峰的必由之路”,“当今世界科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为最大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就尖端红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。 /span /p p br/ /p
  • 奥谱天成:拉曼光谱仪专业ODM提供商
    这两年,拉曼光谱仪一直吸引着业内人士的眼球,各大仪器厂商不断在新产品、新技术、新应用等方面推陈出新,精心布局,不仅如此,新迈入此领域的仪器厂商也层出不穷,可谓热闹非凡。  拉曼光谱如此的蓬勃发展给广大用户提供了更多可选择的空间,那么,当前有哪些主流企业/主流产品?有哪些最新的技术/应用?哪款仪器更适合用户自己的研究工作?  仪器信息网:奥谱天成拉曼光谱仪的定位?  奥谱天成:奥谱天成(厦门)科技有限公司,由中科院光电行业专家筹建,公司聚焦于光谱分析仪器、光电模块等领域,致力于开发具有国际领先水平的技术创新和应用推广。公司集研发、生产和销售于一体,专注于光谱分析仪器等光机电一体化产品,成功地为国内外不同领域的众多客户提供了先进的技术解决方案和高品质的产品。  奥谱天成是由拉曼光谱仪专家刘鸿飞博士联合几位拉曼光谱专家成立,公司从一开始,就聚焦于拉曼光谱仪的硬件研制和批量化生产,致力于成为国际领先的拉曼光谱ODM提供商。  经过了多年的技术攻关、耕耘,奥谱天成已为国内外很多科研单位、企业,提供了拉曼光谱仪整机或模块,奥谱天成的拉曼光谱仪性能一流、品种齐全,已成为拉曼光谱领域享有盛名的一站式解决方案提供商。  奥谱天成可以提供785、532、1064、830、473nm等各种激发波长的拉曼光谱仪,形成了微型拉曼、便携式拉曼、显微拉曼等全系列的拉曼光谱仪产品,产品系列涵盖了低成本、高性价比、高性能以及各种常见波数范围的拉曼光谱仪,可以说,拉曼光谱仪已成为奥谱天成的拳头产品,是奥谱天成的镇山之宝。图 1 奥谱天成的拉曼光谱仪产品全集  奥谱天成除了提供拉曼光谱仪硬件,也提供软件定制和算法开发服务,公司还提供食品安全、毒品、化学、化工等领域的整体应用方案。  仪器信息网:请回顾贵公司拉曼光谱仪的研发及技术进展历史,贵公司在拉曼光谱仪器方面有哪些优势/专利技术?  奥谱天成:公司联合创新人,刘鸿飞博士,是国内最早从事小型拉曼光谱仪研制的专家之一,从2003年进入中科院攻读博士学位开始,刘鸿飞博士就醉心于拉曼光谱仪的研制工作,迄今,研制了第4代拉曼光谱仪。图 2 公司创始人刘鸿飞博士的拉曼人生路  刘鸿飞博士也是国家科学仪器重大专项“等离激元增强拉曼光谱仪器研发与应用”(项目号:2011YQ030124,总经费:8525万)的子课题负责人,负责项目中各类拉曼光谱仪的研制工作。  刘鸿飞博士还参与制定了《福建省便携式拉曼光谱仪标准》、《国家拉曼光谱仪标准》。  经历了多年的产品研发和改进,奥谱天成在CCD信号处理、CCD制冷技术、高效光学集成技术等领域,形成了一系列的独有技术,公司在灵敏度、信噪比以及可靠性等多个方面,处于行业领先地位。  特别是2015年后,公司在拉曼光谱仪产品线,投入巨大人力财力物力,在小型化、低功耗、嵌入式操作系统等方面的研究,取得了长足的进步,先后为客户定制了一系列便携式、手持式拉曼光谱仪。特别在谱图识别算法方面,取得了重大突破,奥谱天成(厦门)科技有限公司的谱图识别算法,识别准确率高,经过数百次的应用验证,虚警率、漏警率低于3.2%。  仪器信息网:贵公司当前拉曼光谱仪的主流产品和主流技术?有什么样的产品发展计划?  奥谱天成:奥谱天成(厦门)科技有限公司有着众多的便携式、手持式拉曼光谱仪,有低成本便携式的ATR1000系列,有高性价比的ATR2000、ATR2100、ATR6000、ATR6100,有高灵敏度的ATR6300、ATR6800、ATR3000、ATR3010等 还有ATR8000、ATR8300、ATR8700等显微拉曼光谱仪。目前公司,在低噪声CCD信号处理电路、高可靠性、低功耗、传感器制冷、散热等方面,均有着自己独特的技术和工艺手段。图 3 奥谱天成生产的ATR3010型便携式高灵敏度拉曼光谱仪  图 4 奥谱天成公司生产的ATR6100型微型拉曼光谱仪,仪器具有极小的体积、极轻的重量(0.85kg)和极佳的信噪比。ATR6100运行Android 4.4操作系统,带WIFI、USB接口,支持云处理和云谱图,同时内置GPS、拍照取证等功能。  未来的几年里,公司将加大拉曼光谱仪的研发投入,拟引入MEMS分光技术、石墨烯导热技术,进一步致力于拉曼光谱仪的微型化、低功耗、散热、低成本等方面。  仪器信息网:目前贵公司拉曼光谱仪重点关注的应用领域有哪些?最看好哪个领域?主推的解决方案?  奥普天成:拉曼光谱仪作为物质的指纹谱,具有无损、快速、前处理简单的检测特征,拉曼光谱能够观测分子的振动-转动能级跃迁,可以提供简单、快速、可重复、且无损伤的定性定量物质分析。通过分析拉曼光谱峰的位置,可以判断物质的组成 通过分析拉曼光谱峰的信号强度,则可以得到受激发的物质总量。另外,拉曼光谱仪简单易用,无需特别的样品准备,可直接通过光纤探头或者通过玻璃、石英和光纤对样品进行测量分析。  拉曼光谱仪目前主要应用在食品安全、环保、毒品、化学品、生物医学、珠宝钻石、文物、制药等方面的应用,由于拉曼光谱仪在定性测量方面的优势,拉曼光谱在毒品、化学品、珠宝钻石、制药方面的应用,有着无可比拟的优势,另外,食品安全问题是中国人们关注的热点问题,拉曼光谱在食品安全快检方面也有一些独特的优势。奥谱天成(厦门)科技有限公司,也将在这些领域内持续发力。  奥谱天成(厦门)科技有限公司在ATR6100的基础上,结合公司特有的拉曼谱图识别处理算法,进行了毒品、化学品、制药等方面的应用研究。  仪器信息网:从整个行业来分析,目前拉曼光谱仪都有哪些先进的技术值得大家期待?同时有哪些问题亟待解决?未来拉曼光谱仪的技术发展趋势?  奥普天成:目前,拉曼光谱仪推广的难度,在于成本过高、体积过大,信号弱也是拉曼应用推广的不利因素,再加上应用方法上还比较少。  但是拉曼信号非常微弱,人们发展多种拉曼增强技术,如等离激元拉曼表面增强方法、针尖增强,取得了5-8个数量级的增强。但是,由于其单分子增强作用特性,一般多用于液体、固体样品的增强。  拉曼光谱仪的成本过高,主要在于激光器、各种滤光片以及核心芯片,基本是来自进口,价格降不下来。国内有些企业,也在尝试着做,但是性能还不够稳定,达不到批量化生产的要求。  针对拉曼信号较弱的情况,一般采用表面增强SERS技术或光学增强:  1)表面增强SERS技术,表面增强纳米粒子容易结团,不耐保存,所以比较难以推广,厦门大学田中群院士项目组研制的SHINERS增强粒子,在纳米金颗粒的外围,包裹着一层均匀的硅层,保护金纳米粒子,使得保质期可以达到1年以上。图 5 厦门大学田中群院士主持研制的SHINERS拉曼增强粒子图 6 厦门大学任斌教授项目组研制的针尖增强技术(TERS)  2)光学增强技术  光学增强技术,一般采用增大激光功率、增大数值孔径等方法,但是这两种方法,均有一定的局限性,不可能无限制地增大,且增强效果有限。奥谱天成提出的离轴衰荡积分腔拉曼增强技术,采用离轴衰荡技术,使激发光在积分腔里来回反射上千次,从而大大地提高了激发功率,同时采用球形反应腔技术,可以尽可能多地收到拉曼信号。图 7奥谱天成正在开发的离轴衰荡腔增强拉曼光谱仪  多个拉曼信号接收探头,意味着多股拉曼信号光纤,如果普通排列,要么降低分辨率,要么降低拉曼信号强度。奥谱天成采用采用多股光纤线性排列,通过狭缝,提高拉曼光谱信号的传输效率,从而增强信噪比。  图 8拉曼散射光由多模光纤中,经狭缝,进入到光谱仪中。(a) 传统的200μ m光纤透过狭缝的通光(40倍显微镜下拍摄) (b) 多股光纤的线阵排列,经过狭缝进入光谱仪,可以有效增加拉曼信号的通过量。  针对拉曼光谱仪体积过大的问题,目前主要的解决方案,基本都是用MEMS技术,在保证分辨率的同时,降低分光模块的体积。其中现有比较成熟的技术有:  1)基于MEMS技术的光栅与可动F-P腔集成  光栅和F-P腔都是常用的分光元件,是被大多数光谱仪成品所采用的成熟方案。本方案拟利用MEMS技术将光栅与可动F-P腔集成,制成新的光调制器进行色散分光,利用它们各自的优势,在保证大自由光谱范围的同时,获得高的光谱分辨率。光栅和可动F-P集成的光调制器的光谱分光光路示意图如下所示。  利用光栅和可动F-P腔集成的光调制器,可将两种色散分光原理在一块芯片上实现,完成单片集成,可大大提高这二者光路的对准精度,提高加工效率。具体的芯片设计与集成方案如下图所示。  2)基于MEMS技术的傅里叶变换光谱技术  常规的傅里叶变换光谱仪体积大、价格昂贵、不便于携带,基于MEMS技术的FT光谱仪可解决这样的问题。FT光谱仪的基本部件就是一个Michelson干涉仪,其中的一个反射镜可高精度地线性移动,由此产生的光干涉信号经过傅里叶变换后即可得到光谱。FT光谱仪微型化的关键就在于减小该可动反射镜及其控制组件的尺寸,MEMS微镜已被应用到FT光谱仪的微型化,但现有的MEMS微镜的线性位移在50微米以内,如果想要达到200微米的线性位移,就需要真空封装和上百伏的驱动电压,不利于降低加工和使用成本。无锡微奥公司提出了一种新的基于MEMS的FT光谱仪设计,其结构示意图如下所示,所用MEMS微镜采用电热式双金属梁驱动,可在小于10伏驱动电压下,达到超过500微米的线性位移,并且无需真空封装。图 9基于热驱动光学微镜的付立叶变换光谱仪  3)基于AWG技术的光谱分光技术  在波分解复用器技术的发展初期,和光谱仪一样,有棱镜型、光栅型、干涉仪型,滤波器型等类型,但随着对于性能和成本的要求不断提高,目前波分解复用器主要采用基于阵列波导光栅(ArrayedWaveguide Grating, AWG)的无源芯片,阵列波导光栅的结构如下图所示,它的工作原理与光栅相同,在两个平板波导(S1,S2)之间制作波导阵列,阵列中相邻光波导长度的阶梯变化产生了光程差,具有不同光程差的光信号在平板波导S2 中发生衍射,使不同波长的光分开进入N根输出波导中,实现了分光功能。图 10基于阵列波导光栅的MEMS色散模块  在微型MEMS拉曼光谱仪领域,国内外起步时间接近,仪器设计理念与大型仪器设备不同,微型化拉曼光谱仪由于体积小带来的信号弱的不足,可以通过辅以独创的高活性的SHINERS基底,使微型拉曼光谱仪达到大型或台式仪器的灵敏度。国内外这方面的研究较少,有利于抢先占领技术高地,及时掌握关键技术,形成专利等自主知识产权形式,提高我国现代科学仪器设备产业的核心竞争力,对国家的科技进步和制造业强国地位的巩固都具有重要的意义。  仪器信息网:预测未来拉曼光谱仪的市场发展潜力(包括应用方向、方法标准、政策法规等)?  奥谱天成:经过多年的培育,尤其是厦门大学田中群院士主持的国家重大科学仪器专项项目,对拉曼光谱仪的研制和应用得到了市场和客户的认可,拉曼光谱仪也从原来进口的大型桌面型企业为主,走向了便携、手持式等小型拉曼为主。据初步估算,2016年全年,拉曼光谱仪在全国总共销出了超过3000台,总销售额超过60亿人民币。  随着市场对拉曼光谱方法的接受,拉曼光谱仪的各种标准也在加紧制定中,福建省在2016年初发布了福建计量院主持制定的《便携式拉曼光谱快速检测仪》(DB35/T 1564-2016),在国内率先推出了便携式拉曼光谱仪的地方标准 国家质量监督检验检疫总局在2015年发布的《拉曼光谱仪校准规范》(JJF 1544-2015),为拉曼光谱仪的校准提供了规范准则。《便携式拉曼光谱仪》全国标准,也正在紧锣密鼓地推进中。  随着这些标准、规范的制定和发布,必将进一步地推动拉曼光谱仪的发展和应用。未来的几年,是拉曼光谱技术发展和应用的腾飞之年,拉曼光谱将以其自身快速无损的独特优势,服务于人民生活、安全。(内容来源:奥谱天成)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制