当前位置: 仪器信息网 > 行业主题 > >

高分辨型双束系统

仪器信息网高分辨型双束系统专题为您提供2024年最新高分辨型双束系统价格报价、厂家品牌的相关信息, 包括高分辨型双束系统参数、型号等,不管是国产,还是进口品牌的高分辨型双束系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨型双束系统相关的耗材配件、试剂标物,还有高分辨型双束系统相关的最新资讯、资料,以及高分辨型双束系统相关的解决方案。

高分辨型双束系统相关的论坛

  • 【原创大赛】高分辨质谱数据系统源程序的设计

    响应斑竹的号召,现献上一篇"高分辨质谱数据系统源程序的设计".参加五届原创大赛.谢谢朋友们的青睐,邀请我参加团队.因此这篇文章是以"平凡的独特"团队名义出马的.希望大家喜欢. 高分辨质谱数据系统源程序的设计Daichaozheng 2004年在全国有机质谱会议上与两位同事共同发表了题为“高分辨质谱数据系统的研制”一文。由于篇幅的限制,文章仅对系统的功能作了大致的描述,没有具体解释编写程序的内容。今天在此,借质谱版块宝地将高分辨质谱数据系统的源程序公布出来,希望能与有兴趣的朋友们切磋。高分辨采集采用较慢的磁场扫描速度。首先按常规进行质量校正,为了避免仪器不稳定带来的系统误差,样品与标样同时进入,数据采集前要确认“高分采集” 钮。采集完成后进入“高分数据”处理。从文件目录中选择要处理的高分数据文件。从总离子流图上选择任一次扫描。屏幕上方出现高分连续谱图,中间是中分辨棒图。用鼠标右键在中分辨谱图点击可在连续谱图上标明相应的峰。采用这种方法把高分连续谱图上标样的两个峰识别出来。用鼠标左键划取高分连续谱图局部以放大。在屏幕上方填入标样峰的精确质量,用鼠标右键在高分连续谱图点击两个标样峰。两个标样峰之间各峰的精确质量即可得到。对此工作希望进一步了解的朋友可想法与武汉大学或河北大学联系交流。因为近10年了他们的VG质谱仪一直采用的这套数据系统。VB源程序如下:

  • 高分辨率光镊系统特点及应用

    [url=http://www.f-lab.cn/microscopes-system/picotweezers.html][b]高分辨率光镊系统[/b][/url]采用了德国picotweezers技术的细胞单分子力学捕获系统,是全球领先的超高分辨率激光光镊系统,是进口光镊品牌中具有超低光镊价格Optical Tweezers产品.[b]高分辨率光镊系统[/b]不仅具有光镊功能,还提供微视图像计算能力,非常方便单细胞生物力学分析.[b]高分辨率光镊系统通[/b]常与德国蔡司Axiovert、AxioA1或D1型显微镜配套使用,配备1W或5W的红外光纤激光器,提供激光捕获力高达400pN~2nN范围。高分辨率光镊系统配备压电定位位移台,在XYZ三轴三个方向具有200μm分辨率的扫描能力.[b]高分辨率光镊系统[/b]还具有视频分析功能,至少2.5nm的横向和轴向分辨率,其图像拍摄速率为200帧/秒,X、Y、Z互相成像速度为400赫兹,可对生物大分子进行0.1PN作用力分辨率的实时分析。[img=高分辨率光镊系统]http://www.f-lab.cn/Upload/ionovation-explorer.jpg[/img] [b]高分辨率光镊系统特色[/b]定量分析,在三维方向实现0.1 PN分辨率的生物为微力分析最大光阱捕获力可在1 W光纤激光器下达到400 PN通过光镊实现对捕获对象精度为纳米级别的操控 [b][b]高分辨率光镊系统[/b]应用[/b]单分子与活细胞的操控和分析 弹性模量分析、微流控分析 分子相互作用、纳米孔分析 [color=#666666][color=#000000]高分辨率光镊系统:[url]http://www.f-lab.cn/microscopes-system/picotweezers.html[/url][/color][/color]

  • 【新品扫猫】英国质谱仪器公司推出全新系列AutoConcept双聚焦高分辨质谱仪

    英国质谱仪器公司(Mass Spectrometry Instruments Ltd)来源于英国著名质谱公司Kratos Analytical。岛津公司收购Kratos Analytical时,而其双聚焦高分辨磁式质谱部门独立出来,成立了英国质谱仪器公司(MSI),算上Kratos Analytical在该领域的历史,该公司从事双聚焦高分辨磁式质谱的研发和业务已经有53年历史,从事双聚焦辉光放电质谱仪的研发和业务有6年历史。去年,英国质谱仪器公司推出全新系列的AutoConcept双聚焦高分辨质谱仪,分为有机质谱和无机质谱两大类。其中有机高分辨磁质谱有Autoconcept Environmental、Autoconcept Petroleum、Autoconcept General三个型号。无机高分辨磁质谱为Autoconcept GD90辉光放电质谱仪。[img]http://bimg.instrument.com.cn/show/NewsImags/Image/2010/8/2010080920132475561.gif[/img]新一代Autoconcept双聚焦高分辨磁式质谱仪系列Autoconcept Environmental适用于依据US EPA1613和En1948的方法用于二恶英和呋喃分析,Autoconcept Petroleum配置有全玻璃加热进样系统,适用于油品的汽化从而将样品蒸汽连续稳定地对质谱仪进样,适用于依据ASTM的方法进行油品的族组成质谱分析。通用型Autoconcept,它可以配置如FD、FI、FAB等多种离子源,适合于更宽广的分析应用。Autoconcept GD-90是MSI推出的新一代辉光放电质谱仪,它是世界上第一台拥有射频源的商品化GDMS,可以直接分析非导体样品。对于高纯金属材料、硅太阳能材料、半导体材料、无机非金属材料中痕量杂质的分析,GD-90是将是最理想的分析工具。目前,Autoconcept GD-90在亚洲已经有了两台用户,分别是韩国国家地质矿产研究所和中国东方希望(三门峡)铝业有限公司。北京嘉德元素科技有限公司作为英国质谱仪器公司中国专业代理商,将为中国原Kratos Analytical和MSI新进的高分辨磁质谱用户提供专业的售后服务。

  • 首台应用于临床检验领域的高分辨质谱系统登陆中国

    首台应用于临床检验领域的高分辨质谱系统登陆中国赛默飞Thermo Scientific Q Exactive系统助力中国医院特种检测服务中国上海,2012年6月7日 ——全球科学服务领域的领导者赛默飞世尔科技公司(以下简称:赛默飞)近日宣布,武汉康圣达医学检验所有限公司选择与赛默飞合作,采购Thermo Scientific Q Exactive系统,用于为全国的医院提供特种检测服务。这是目前在中国临床检验领域运用的首台高分辨质谱系统,同时也是中国整个临床检验系统第一台高分辨质谱仪器。此前在蛋白质组学、环境分析、食品安全等应用领域广受好评的Thermo Scientific Q Exactive系统,将在临床检测领域大展拳脚,助力中国医院特种检测服务!武汉康圣达医学检验所有限公司是中国首家也是最大的综合性临床医学检验机构,已成为中国医院在包括血液、肿瘤、遗传、感染以及心血管等高端医学专科特验领域首选的合作伙伴。此次康圣达与赛默飞的合作充分显示了赛默飞在高分辨质谱领域的领导地位,以及业界对Thermo Scientific Q Exactive系统性能的一致肯定。Thermo Scientific Q Exactive系统将用于为全国的医院提供新生儿筛查、疾病标志物筛查、维生素D水平检测、内分泌水平检测等特种检测服务。Thermo Scientific Q Exactive系统是首台将四极杆的母离子选择性和高分辨率精确质量(HR/AM) OrbitrapTM质量分析相结合的商业化仪器,旨在提供高度可靠的定量和定性(quan/qual)工作流程。Q ExactiveTM质谱仪具有创新的HR/AM Quanfirmation™功能,能够在单次分析中鉴定、定量和确认生物样本中更多痕量级的药物和代谢物、肽类和蛋白质以及其它内源性成分。

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 高分辨质谱到底“高”在哪里?

    高分辨质谱  用低分辨质谱测定时,分子的质量数都是整数表示,如CO、N2、C2H4和CH2N的质量都是28。如果用高分辨质谱测定就能得到如C2H4=28.031299,CH2N=28.018723,因此,根据高分辨质谱所测得的精密质量就可以对结构加以剖析和区别  小分子化合物确定结构式有多种方法,NMR,高分辨质谱(由于每个元素的原子量实际都是小数的,通过高分辨质谱可以直接获得化学式!  其中高分辨质谱我们强烈推荐THERMO LTQ ORBITRAP  Orbitrap具有高分辨率[最高可达45万半峰全宽(FWHM)],高质量精度(0.1×10-6~1×10-6),质量范围宽,动态范围广的优点,可提供大范围的定性和定量分析,并且克服了其他高分辨质谱如傅里叶变换离子回旋共振(FTICR)质谱、飞行时间(TOF)质谱的尺寸大,维护与操作复杂的缺点。  在药物分析的应用  此段摘取贺美莲 郭常川 石峰 姜玮 所著的《Orbitrap高分辨质谱技术在药物分析领域中的应用进展》  在药物代谢方面的应用  Orbitrap高分辨质谱可以在很宽的质量范围内生成全扫描数据,同时提供组分的定性和定量分析[21]。此外,在各种生物基质(如血浆、血清,尿液等)中的药物代谢物分析需要复杂的前处理过程,而Orbitrap质谱对于复杂生物基质中的痕量分析物也可进行准确的分析,从而简化了样品前处理过程。基于这些优势,Orbitrap质谱已成为药物代谢研究中强有力的分析工具  在中药组分分析方面的应用  Orbitrap串联超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]实现单针进样即可高通量获取中药中的成百上千化合物的定性和定量信息,能够显著提高中药复杂体系中化学成分的快速分析鉴定能力。  中药由于成分复杂,对于其真正起治疗作用的化学成分往往不够清晰。应用二维[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联LTQ-Orbitrap质谱对丹参中的酚酸和双萜类成分进行定性和定量分析。根据裂解机制和高分辨MSn数据,共鉴定或初步表征了102个化合物,同时检测到丹参样品中的14个生物活性化合物,其中10个酚酸类和4个双萜类,这些成分是丹参发挥心血管疾病治疗作用的主要成分。  从中药中探索新的化学实体是筛选候选药物的重要来源。采用Orbitrap高分辨质谱鉴定蛇麻花中具有潜在抗菌活性的化合物,对钩藤中的92个吲哚生物碱进行系统表征并发现56个新的潜在生物活性分子,进一步明确了钩藤治疗作用的物质基础。  在药品杂质检查方面的应用  杂质检查是药品质量安全评价的重要环节。得益于其强大的定性和定量分析性能,Orbitrap技术可为原料药中杂质和药物降解产物研究提供强有力的支持。采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联紫外检测器和高分辨质谱检测器(UPLC-UV-LTQ-Orbitrap)对左旋甲状腺素的氧化降解杂质进行鉴定,利用时间分辨的高分辨质谱数据和自动数据处理的结合能够推断出单个化合物基础上杂质形成的动力学及其形成机制;通过比较降解曲线,总共识别了4个主要类型的甲状腺素降解杂质的产生路径。  采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联Orbitrap质谱仪对伊潘立酮降解杂质进行分离和鉴定,通过[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析共鉴定了7种降解杂质,并发现在水解和氧化条件下,伊潘立酮是不稳定的。  在中成药非法添加筛查方面的应用  [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联高分辨质谱技术不仅可以用来筛查已知的非法添加成分,还可以发现并鉴定复杂基质中的未知成分,先后对中成药中非法添加的磷酸二酯酶-5抑制剂、降糖药和糖皮质激素的筛查和鉴定进行了研究。在63批次中成药和34批次保健品样本的检测中,共有7批保健品检测到降糖药,涉及二甲双胍、苯乙双胍和格列本脲等在非法添加糖皮质激素的检测中,分析物响应与质量浓度(1.0~1 000 ngmL-1)呈良好的线性关系,回归系数(r2)大于0.999 0,所有分析物检测下限(LODs)为1.0 ngmL-1,在42批中成药中共有22批样品检测到醋酸泼尼松,其中1批样品同时检测到了泼尼松和醋酸氢化可的松。  在蛋白质组学的应用  目前广泛使用的用于蛋白质鉴定的质谱分析主要使用两种类型质谱:一种是MALDI-TOF直接对分子量进行测量;另一种是使用ESI-MS高分辨率质谱分析电喷雾得到的多电荷信号,然后对信号进行去卷积分析,获得精确分子量数值。这两种方法各有其优点及适用的领域  采用直接MALDI-TOF进行分子量测定的主要问题是,MALDI-TOF质谱仪在不同质量区域内分辨率差别很大,分子量越大,分辨率越低。因此当样品为大分子蛋白质样品(比如抗体类药物)时,MALDI-TOF无法测得精确分子量,更不用说对蛋白质的糖基化等修饰形式进行分析。  (1) 抗体类蛋白质药物的精确分子量测定  抗体类蛋白质药物是生物医药界非常重要的一类样品,这些蛋白质分子的分子量非常大,一般情况下150KDa左右。因此在没有高分辨率质谱仪的情况下,要对这类蛋白质进行精确分子量测定是困难的。  在高分辨率质谱仪,特别是orbitrap原理的质谱仪出现以后,抗体类蛋白质的去卷积分子量测定变得容易实现。  (2) 还原后抗体类样品的不同亚基精确分子量测定  抗体类蛋白质样品通过还原,可以将轻链和重链分开,然后通过HPLC分离,在线进行MS分析得到亚基的精确分子量。  (3) 小分子量(25KDa)蛋白质样品的精确分子量测定  常用蛋白质样品包括抗体类蛋白质(150 KDa),同时也包括一些相对较小的蛋白质分子。对着这些相对较小的蛋白质,进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析,并去卷积分析得到精确分子量,不需要太高的分辨率即可实现(早期的离子阱,如LTQ就可以实现对小分子量蛋白质的分子量测定)。  高分辨率质谱可以对蛋白质样品(约10-150KDa)进行精确分子量测定,精度达到1Da左右,可以满足分析蛋白质的修饰状态(比如糖基化、磷酸化、氧化、C末端K缺失情况等),并可以对这些修饰情况进行定量分析

  • 【分享】敏感高分辨离子探针

    敏感高分辨离子探针II(shrimpII)是一个高精度的二级离子质谱(SIMS)粒子探针通过用几微米的离子束轰击固体样品的方法探测同位素和进行化学表面分析(也称科勒聚焦)。SHRIMPII通过双聚焦的方法(能量和质量的双聚焦)的质谱达到高质量分辨率。这种方法将使用有很大旋转半径的磁场和电场分析仪。

  • 【原创大赛】基于高分辨质谱技术的中毒毒物快速分析与临床实践

    [align=center]基于高分辨质谱技术的中毒毒物快速分析与临床实践[/align]毒物是一个比较宽泛的概念,任何以较低的剂量就可以致人畜死亡的物质均可以认为是毒物,而毒物的概念也具有相对性,对于一个物质是有毒还是无毒的判定有一系列的先决条件,不存在任何条件下都无毒或者绝对有毒的物质。其中农药占比9.46%,药物占比21.07%, 化学物如乙醇、CO占比62.85%。在今天,毒物致死是继恶性肿瘤、脑血管疾病、心脏病和呼吸系统疾病后的第五大死亡原因,其中毒机制主要有:干扰酶的活性、破坏细胞膜的功能、阻碍氧的吸收、输送和利用、损害免疫功能等。毒物致死问题亟待解决,毒物的快速分析检测和临床实践刻不容缓。在我国,中毒患者的诊断现状缺乏快速有效准确的检测手段。对急性中毒患者误诊、治疗耽搁的不合理选择和使用等会对患者造成不同程度的伤害,且检测无法覆盖多种目标化合物,同时难以定量检测。因此发生了诸多事件,如清华大学朱令事件、扬州大学秋水仙碱投毒事件等。因此,中毒物质检测技术亟待更新。准确及时的毒物检测与诊断直接影响临床治疗方案的选择,在临床抢救治疗过程中发挥着至关重要的作用。毒物检测方法的发展历程:自薄层层析法、化学法,发展至今现代仪器分析法,一道道技术难题被攻克,鉴定毒物越来越准确。毒物分析仍面临一系列挑战,毒物及其代谢产物在体内浓度极低,常规检测手段难以达到检测所需的灵敏度,存在检出假阳性的可能;代谢产物与原型毒物结构相似,造成对检测的干扰;生物基质复杂,可能会有干扰;毒物种类繁多,理化性质差别大,且中毒时限紧迫,检测需要快速高效。近年来,色谱质谱技术在毒物分析中逐渐应用起来,色谱法凭借其分离效率高、选择性好和灵敏度较高的优点,已广泛应用于中毒物质检测,但中毒患者毒物复杂,仅靠被测物质的保留时间和光谱吸收或电化学检测无法准确定性定量,且耗时长,鉴定效率低。质谱联用法弥补了色谱法的缺点,凭借其灵敏度超高(可达飞克)对极微量物质进行定量分析,质谱法特异性高,其SRM和MRM模式选择性高,且高通量,检测范围覆盖绝大多数化合物,但三重四级杆对未知毒物的定性能力相对较差。而高分辨质谱可以弥补上述的缺点,其优势体现在超高分辨率和准确度,可在复杂基质样本中保证目标质荷比的准确测定,进而排除假阳性结果;其优势还体现在强大的同时定性定量能力,快速实时正负切换,同时获得一级高分辨数据和完整的二级碎片离子信息。中毒毒物质谱分析和处理方案主要流程:样品收集;样品前处理;高分辨率和高灵敏度的高分辨质谱同时定性定量分析;针对未知的中毒毒物可进行毒物筛查与鉴定;针对已知的中毒药物,可进一步确定中毒药物体液浓度,并设定安全范围,在安全范围内的病人对症抢救。在超安全范围的病人对因抢救。有两个案例与大家分享,案例一:患者孙某,51岁男,诊断其为肝硬化失代偿期,肾病,银屑病,经过针对性治疗后,症状得到有效控制,但间断出现无法解释的血液(白细胞,血小板)指标异常、脱发、昏迷等。在组织多科室,多学科会诊后,仍不能解释上述病症,经询问,患者近期服用一种成分不明的药物,白色小瓶中黄色药片,考虑到患者银屑病的病史,遂即诊断为药物中毒。实验室采用高分辨质谱仪对样品进行分析,经碎片裂解规律推导和对照品比对,在两个小时内明确了患者是因为服用了甲氨蝶呤过量而导致的药物中毒。案例二:患者刘某,45岁男,误服用百草枯60 mL导致双肺纤维化,临床诊断为百草枯中毒、双肺纤维化和肾功能不全。临床治疗采用序贯式双肺移植术,先左后右的顺序,采用高分辨质谱对移植前患者体内百草枯体内快速定性定量,12小时内开发出百草枯的定性定量方法,并给出了分析报告,随后至今患者移植物功能稳定。高分辨质谱技术在中毒毒物快速分析与临床实践还会有更多实用案例。感谢郑州大学孙晓坚和孙志研究团队!

  • 奇怪的高分辨结果

    奇怪的高分辨结果

    哪位高手帮我看看这两张高分辨电镜图片,我的样品是六方晶向的,为什么会出现小六边形,特别是构成小六边形的原子排布很奇怪,像是3个原子一排。还有我这个样品电子束打上去之后很容易中间衬度变浅,求解释http://ng1.17img.cn/bbsfiles/images/2012/05/201205071045_365295_1752986_3.jpg

  • 【我们不一YOUNG】+高分辨质谱在药物方面的助力

    一般在生活中肾脏是药物排泄的主要器官。但是药物排泄过程的正常与否关系到药效强度、药效维持时间以及毒副作用。所以,这是我们必须要借助一些科学例如高分辨质谱技术来助力药物。近年来,高分辨质谱成像技术的诞生为定位药物组织分布研究提供了全新的技术和思路。质谱成像是以质谱技术为基础的可视化方法,通过质谱离子源直接扫描生物样本,可以在一张组织切片上同时分析数百种分子的空间分布特征,已成为精确解析药物分子及其代谢产物组织空间分布的关键技术之一,应用于药物ADME的研究。本文将主要介绍TransMIT AP-SMALDI 10高分辨率质谱成像系统如何一步步揭秘伊马替尼在小鼠肾脏组织中的空间分布特征。TransMIT AP-SMALDI 10质谱成像系统是目前少有的集高空间分辨率和高质量精度于一体的质谱成像系统。该系统采用常压基质辅助激光解吸电离技术,通过先进的准直光束聚焦实现了5μm的成像分辨率;质谱端搭载Thermo Scientific? Q Exactive?系列质谱仪,保证了离子分析的高质量分辨率和高质量精度。研究首先采用35μm中等空间分辨率分析了内源性物质和伊马替尼在小鼠肾脏组织中的空间分布特征。MALDI质谱成像能够准确的可视化肾脏组织中磷脂分子的组织分布特征:其中PC(32:0)(绿色)、PC(40:6)(蓝色)、PC(38:5)(红色)分别特异性分布于肾皮质、外髓质外带和外髓质内带。由此可见,质谱成像技术突破了传统H&E染色只能提供组织形态和变化特征的局限性。重要的是,在无需荧光探针或放射性同位素标记的情况下,质谱成像实现了伊马替尼的组织空间定位。根据质谱成像的检测结果,常容易判断出伊马替尼主要分布在小鼠肾脏的外髓质外带。为了获得更为精确的空间分布特征,随后采用10μm高空间分辨率对肾外髓质外带的局部组织进行了深度分析。高空间分辨率MALDI质谱成像为我们呈现了更为准确清晰的内源性物质和药物空间分布特征。研究结果发现,伊马替尼的空间分布和直小血管之间存在着紧密联系。此外,如图2D所示,由于原位分析不可避免的引入多种干扰因素,如果质谱成像设备的质量分辨率较低,图2D中两个相邻的质谱峰则无法区分,导致成像结果不准确。因此,高质量精度和分辨率是保证质谱成像结果准确可靠的必要条件。综上所述,研究成功的揭示了伊马替尼在重要排泄器官肾脏中的组织分布特征,同时也获取了组织中各种内源性化合物的空间分布信息,为研究药物分子的累积和排泄机制提供了可靠的科学依据。TransMIT AP-SMALDI 10质谱成像系统集高空间分辨率、高质量分辨率和高质量精度于一身,不仅成为了药代动力学研究的利器,也应用于肿瘤标志物研究、植物次生代谢物研究、药用植物药效成分研究、微生物和单细胞研究等。未来,期待TransMIT AP-SMALDI 10质谱成像系统为我国药物研发人员和各领域科研工作者带来更多的惊喜,加快研究进程,加速成果转化。

  • 【求助】求助2010做高分辨的技巧

    我是新手,非常想得到jem-2010坐高分辨的完整技巧(操作指南性质)比如如何调整电压电流中心,如何在碳膜上聚焦、消像散得到一张高清晰的高分辨像,只借助双瞳目镜观察(我们的没有ccd采集系统)。希望有清晰的操作步骤,按部就班就可得到高分辨像。先谢谢了。

  • 高分辨成像时,衍射束与透射束相位为何相差π/2?

    请教:高分辨成像时,入射电子束穿过薄晶体形成弱衍射束与透射束,衍射束与透射束相位相差π/2,各位如何解释为什么?衍射束相位是滞后透射束π/2还是超前π/2。在欠焦位置,衍射束光程比透射束多1/4倍波长位置,其相位是否又比透射束超前(增加)π/2?在正焦点位置,教材上好像说,衍射束位相比在从样品出发时的增加π,为什么不是增加2π?好像光束从样品经过透镜聚焦到达像平面(正焦位置)相位不变(即2π的整数倍)。高分辨像最佳欠焦位置的暗点可否解释为原子列位置的透射波与邻近原子间隙位置的衍射波的合成波的强度,亮点为原子间隙位置的透射波与邻近原子位置的衍射波的合成波的强度?透射波与衍射波此时相位相同,合成波振幅大小=透射波与衍射波振幅大小之和。因为原子间隙位置的透射波强而衍射波弱,原子列位置的透射波弱而衍射波强,所以对应原子列位置的合成波强度较弱,形成暗点;而对应于原子列间隙位置的合成波强度较强,形成亮点。

  • 【求助】高分辨图像的描述

    【求助】高分辨图像的描述

    [img]http://ng1.17img.cn/bbsfiles/images/2007/10/200710241933_67700_1800797_3.jpg[/img]这个是ZnSe (fcc) [1-10]带轴的高分辨. 右侧标记的区域, d的数值等于3倍的d{224}晶面间距. 方向上与图中标记的[11-2]的方向是一致的. 请问我应该怎么描述呢?因为我看到一般的描述是 展现了 {224}的晶格条纹. 但是这个d对应于什么晶面呢? 应该不会是{2/3 2/3 4/3} 吧?望老师同学指点一下?谢谢!

  • 【求助】请教关于高分辨和电子衍射的问题

    我做电镜时间不久,请教大家两个问题,我看版里一些人说拍高分辨像的时候要转正带轴,但是我这里做高分辨一般就用单倾台,直接做,看清楚晶格条纹就可以,这样是否可以呢?还有就是拍单晶的电子衍射图像,要用双倾台转正带轴,不知道有什么一般通用的方法和步骤,或者窍门没有,这方面的经验很少,带轴总是转不明白。请各位大侠不吝赐教!多谢了!

  • 高分辨质谱仪在中药研发和质控中的应用

    [i][b]草药成分分析是一项复杂和困难的工作,其化学成分是中药发挥药效作用的物质基础,是实现中药现代化的关键所在。然而,中药有效成分的结构鉴定是其成分分析的瓶颈,如何快速发现中药中的有效成分,并鉴定其结构?本文应用AB SCIEX TripleTOF[sup][/sup] 高分辨质谱仪对人参中有效成分分析进行了研究。[/b][/i] 如何在高分辨数据中,快速发现和鉴定目标结构的化合物, 已成为中药成份研究的限速挑战。近年来,LC/MS 凭借其高通量、高灵敏度以及强大的定性、定量能力等特点,逐渐成为中药分析的主流仪器。不同类型的LC/MS 具有特定的工作流程,AB SCIEXTripleTOF[sup][/sup] 高分辨质谱仪是具有高分辨定性能力和三重四极杆定量能力的新一代高分辨串联质谱仪。运用特有的动态背景扣除(DBS)、质量亏损(MDF)、中性丢失(NL)数据采集功能,一次进样可同时获得高质量的TOF MS和TOFMS/MS,从而完成化学成分的分析和确证。结合PeakView[sup][/sup]软件中简单快捷的XICManager 进行目标化合物的筛查和确证,能够提高数据分析速度和数据结果的准确度,成为中药成分分析和鉴定方面得心应手的工具。[align=center][/align][b]  实验内容[/b][i][b]  仪器和试剂[/b][/i]  甲醇、乙腈均为色谱纯,其他有机试剂为分析醇 人参50% 甲醇提取液,经SPE 处理后获得人参提取液 ABSCIEX TripleTOF[sup][/sup]5600 质谱系统,岛津公司LC-20A [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]。[i][b]  采集方法与实验条件[/b]  ■质谱采集方法[/i]  Tr ipl eTOF[sup][/sup]5600,TOF MS-IDA-MS/MS 负离子测定 TOF MS,m/z 100~1600,200 ms TOF MS/MS-10 MS/MS,m/ z 50~1300,80 ms,IDA 动态背景扣除(DBS)开启。[i]  ■ 质谱参数[/i]  喷雾电压(IS):-4500 V 去簇电压(DP):-70 V 辅助加热气温度(TEM):500℃ 雾化气(Gas1):50 psi 辅助加热气(Gas  2):50 psi 气帘气(Curtain gas):30 psi。  ■[i] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]条件[/i]  流速:0.2 ml/min 流动相:A 相:0.02% 甲酸水溶液 B 相:0.02% 甲酸乙腈溶液。色谱柱: Phenomenex Luna5 μm, 2.1×150 mm),梯度洗脱。[i][b]  数据处理工作流程[/b][/i]  通过智能DBS-IDA 采集方法,一次进行获得高分辨的TOF MS 和TOF MS/MS,高分辨的TOF MS 通过PeakView[sup][/sup] 进行目标化合物以及非目标化合物的提取或结构特征提取发现可能的中药成分,通过FormulaFinder 计算其分子组成,再结合高分辨TOFMS/MS 进一步做结构分析,以确定化合物,分析流程如图2 所示。[b]  结果与讨论[/b][i][b]  目标化合物的筛查与鉴定[/b][/i]  人参主要成分为三萜皂苷类,在负离子模式下,很容易产生加合离子,本实验的流动相中含有甲酸,人参皂苷的分子离子为加合醋酸的离子,根据苷元的不同分为二醇型皂苷和三醇型皂苷,其在负离子条件下产生三醇型皂苷特征性碎片475.38,二醇型碎片459.38,结构特点如图3所示。  使用PeakView[sup][/sup] 软件中的XICmanager 对人参皂苷目标化合物筛查,将人参皂苷目标化合物序号或名称和分子式信息导入到软件中的XICmanager,即可筛查目标化合物,可根据4 大标准(保留时间、质量精度、同位素比例、谱库)判断筛查到的色谱峰是否为目标化合物。利用已知的68 种人参皂苷类成分,筛查到37 种人参皂苷类成分,提取离子流色谱图、测得的精确质量数以及保留时间、强度和质量准确度简单直观显示出来,并同时根据获得的高分辨TOFMS 和TOF MS/MS 进一步的确证,筛查结果如图4 所示。  人参皂苷中有多种同分异构体,仅通过高分辨的TOF MS 不能确定,如人参皂苷Re & Rd 分子组成均为C49H84O20, 必须通过高分辨的MS/MS 进一步确定结构。图5 展示了根据人参皂苷的结构特点,并结合高分辨MS/MS 对人参皂苷结构的推测。  PeakView[sup][/sup] 软件解析化合物的结构根据一级质谱的质量精度、同位素比例、不饱和度等信息, 运用PeakView[sup][/sup] 软件推测可能化合物分子式,同时也能给出MS/MS 的分子组成。在PeakView[sup][/sup] 软件中导化合物结构式,可对二级碎片结构进行预测。[i][b]  查找结构相关化合物(NLF, PIF)[/b][/i]  中药成分中同一类成分都具有相似的母核或结构特征,如会产生相同的碎片或具有相同的中性丢失部分,因此可通过中性丢失过滤(NLF)和产物离子过滤(PIF)查找结构相似的化合物。根据人参皂苷的结构特点,人参三醇苷能产生475.3 的碎片以及人参二醇苷能产生459.3 的碎片,可通过PIF 找到满足特点的人参皂苷,同时可通过人参皂苷上结合糖的部分在ESI模式下,很容易中性丢失糖 162.053,146.058,可通过NLF 来找到满足中性丢失六碳糖的皂苷类成分,满足这些特征的离子提取,同时满足条件的离子在TOF MS 上会以红色标记,同时得到的MS/MS 可进一步进行确认,从而能够全面地完成人参皂苷类成分的分析鉴定。通过目标代谢物以及PIF、NLF 方式,共鉴定出人参皂苷类成分45 种,结果如表1 所示。[b]  小结[/b]  高分辨质谱具有简单的数据采集流程, 可应对中药成分分析的要求,但如何在高分辨数据中快速发现和鉴定目标结构的化合物,已成为中药成份研究的限速挑战。凭借TripleTOF[sup][/sup]5600系统的高扫描速度、高分辨以及高质量准确度,可同时获得高分辨的TOF MS 和TOF MS/MS,能通过目标化合物提取以及PIF、NLF 处理获得的高分辨数据,快速简便地查找到目标化合物。实验结果表明:所获得的各成分均具有较高的质量准确度,质量准确度均小于2 ppm

  • 【讨论】带磁性样品做高分辨的小窍门

    带磁性的样品(比如铁素体钢)做高分辨有什么窍门吗?一般带磁性的样品放入电镜中会影响物镜的磁场,所以电压中心和物镜像散都不太好调,而且即使调好了也不稳定很容易变差,大家有没有好的解决办法?

  • 高分辨的傅里叶变换

    高分辨的傅里叶变换

    大家好,这个高分辨图经过傅里叶变换得到的斑点和高分辨图中的原子排列情况对应不上,求指教。高分辨图中的四个原子基本上呈正方形排列。傅里叶变化后怎么会出现斜平行四边形????http://ng1.17img.cn/bbsfiles/images/2013/11/201311151045_477357_2595093_3.jpg

  • 高分辨像成像讨论

    只有在特定条件下(薄样品),点阵条纹像(高分辨像 ,HRTEM image)与晶体结构才存在一 一对应的关系,,此时才能称为高分辨结构像。要获取结构像,需要满足如下条件:1.电子显微镜要有较高的分辨本领 2.样品足够薄(满足弱相位物体近似或者赝弱相位物体近似)3. 离焦量接近最佳欠焦条件那么问题来了,我们的样品,大多数都不满足弱相位物体,那这种情况下得到的高分辨像能反映什么信息?晶面间距,晶体周期性,还有呢?2.对于一般的样品(不是弱相位物体),离焦量不同,同一位置可能由白点变成黑点,那要选白点还是黑点呀?有时候可能样品厚度不同,一张图上,就能看到同样周期的,一块区域是白点,另一块区域是黑点。

  • 网络讲堂:10月9日 高通量代谢物鉴定---AB SCIEX 快速高分辨TripleTOF 系统

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif高通量代谢物鉴定---AB SCIEX 快速高分辨TripleTOF 系统讲座时间:2014年10月9日 14:00 主讲人:张克荣AB Sciex公司 药物市场发展部经理http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】LC/MS在代谢产物鉴定的进展AB SCIEX TripleTOF 高分辨质谱数据采集:一次进样,同时获得MS/MS数据非依赖性采集工作流程:SWATHMetabolitePilot™: 应用PCVG 过滤MS/MS 质谱MetabolitePilot™: 结构解析AB SCIEX TripleTOF TM 系列定量策略-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年10月9日13:304、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 低分辨质谱与高分辨质谱

    杂质分子量为300.1,用低分辨全扫描的分子离子301.1,二级碎片为212.2和86.2,用高分辨定性时分子离子为301.1353,但二级碎片却与低分辨质谱不太一致,分别为198.0354和86.0902,这是因为仪器不一样导致的吗?低分辨是安捷伦三重四级,高分辨质谱为waters飞行时间质谱,同一物质二级碎片不一致是可以接受的吗?

  • 高分辨质谱

    [table=100%][tr][td]请教一下大家:我的样品溶解性很差,分子量500,稳定性挺好的!且已经做了个MALDI-TOF,但元素分析做不准,想做个高分辨质谱,不知该做那一种呀?[/td][/tr][/table]

  • 实验分析仪器--影响质谱仪高分辨精确测定准确度的因素

    高分辨仪器均有分辨率和精确质量测定准确性的指标,它们是由仪器的设计、加工、安装、电器部件的稳定性以及仪器调试所决定。当一台仪器调试结束达到出厂指标后,用户所关心的问题是如何保持仪器良好的高分辨和稍确质最测定的准确性。这里从三个方面讨论影响准确性诸因素。[b]一、实验条件1、分辨率的设定[/b]通常分辨率为10000 (10%谷)的条件对大多数的测试是适宜的,更高的分辨要求是在少数的测试中。由于[sup]13[/sup]C和CH组合的两种离子分离要求更高的分辨(如m/Z 300的离子,需要R=70000才能将上述组合的离子相分离),故在R=10000条件下,测定的结果往往以负偏差的形式出现。在色谱分离的前提下进行质谱的精确质量测定,在多数情况下被分析的组分往往具有较好的纯度,因此它们的质谱图是反映单一元素组成的组分,这样,质谱的准确度测定可以在较低的分辨下进行。[b]2、被测峰的峰形[/b]峰形对测定的准确性影响很大,高斯型的低噪声峰具有良好的测定准确性。实际参数的配合,例如检测系统的带宽、统计漂移、噪声脉冲等在峰形上均有反映。计算机测定是在动态条件下测试经静态调试的峰形,在动态条件下有可能保持不了对称,这样,用对称数字模型去计算不对称的曲线也会造成测定的误差。[b]3、被测峰的强度[/b]离子的统计性是影响峰形的另一种因素。—般认为50?100个离子/峰,才能保持高斯型的峰形。峰的强度增大,则测定的准确性也好,不过离子流强度也有上限的要求,即过强的峰也会降低准确度。在动态扫描时峰强的增加使整个谱图中要进行准确质量测定的峰数目也增加,这势必要调整实验参数而不利于测定的准确性,例如提高全进的扫描速度会降低各质峰峰上的采样数。建议控制精确质量测定的峰数目不超过100个。[b]4、多次扫描[/b]计算机控制下的动态扫描是符合统计误差的规律,测试次数越多得到的平均值越接近真值,因而准确度也越好。建议至少重复扫描4次以上。[b]5、内标法与外标法[/b]内标法的精度优于外标法。这是因为前后两次扫描不能完全重合的结果。使用内标法时参考峰与样品峰相距越近,则测定的准确性也越好

  • 求助ESI低分辨和ESI高分辨质谱的差别原理?

    求助各位老师专家,低分辨质谱分辨率低,但灵敏度为什么会高?高分辨质谱是什么原理可以让分辨率提高?为什么灵敏度会较低?最近学习高分辨,产生了很多疑问,谢谢指导!

  • 求助高分辨标定

    求助高分辨标定

    拍了一些高分辨图,在量高分辨晶面间距时,用DM软件里的profile 可以看到两个高峰间可以看到很多细小的峰。而且高分辨晶格条纹间也可以看到一些细细的条纹,这样的高分辨图能说明什么呢?是长周期结构吗?(看文献感觉跟长周期结构的高分辨很像),求助一下,拜托啦http://ng1.17img.cn/bbsfiles/images/2015/06/201506290802_552130_1606080_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506290802_552131_1606080_3.jpg

  • 高分辨质谱

    请问结构鉴定时,通常用到高分辨质谱,高分辨质谱哪种类型的呢?傅立叶变换?离子阱?飞行时间?四级杆是不是很难达到呢?

  • 【求助】求助到底是高分辨还是低分辨

    拿到一个谱图,除了问测试者,怎样知道是高分辨还是低分辨质谱,谱图有4位数字,但是通过计算,与精确计算分子量差0.2255,高手指点一下,急。软件是masslynx,如果是高分辨,怎么校正,有没有用这个软件的高手啊!还有UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测得的是高分辨还是低分辨数据啊。

  • 高分辨质谱解析

    [color=#444444]各位大侠,之前做了个新化合物(C35H17Br8NO8P2)的高分辨,ChemDraw exactmass 1272.39,得到高分辨结果是1272.1143,我的问题是,高分辨不是大部分+H,-H,+Na吗?请问我这个结果符合那种情况?氢不吝赐教!!!谢谢!!![/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制