当前位置: 仪器信息网 > 行业主题 > >

反射透射测量支架

仪器信息网反射透射测量支架专题为您提供2024年最新反射透射测量支架价格报价、厂家品牌的相关信息, 包括反射透射测量支架参数、型号等,不管是国产,还是进口品牌的反射透射测量支架您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反射透射测量支架相关的耗材配件、试剂标物,还有反射透射测量支架相关的最新资讯、资料,以及反射透射测量支架相关的解决方案。

反射透射测量支架相关的资讯

  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 中科院物理所研制出原位透射电镜测量仪器
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室SF1组研制出新的原位透射电镜测量装置,实现了纳米管/纳米线场效应晶体管器件单元在透射电镜中的原位表征。在确定器件材料结构的同时,原位测量电输运性质。他们将这种方法运用到双壁碳纳米管研究上,在实验上直接获得了双壁碳纳米管电输运性质与手性指数的对应关系,相关结果发表在J. Am. Chem. Soc. 131, 62 (2009) 上,这项研究对双壁纳米管基本物性的理解和未来应用均具有重要意义。   双壁碳纳米管由两个单壁碳纳米管套构而成,为纳米光电功能复合材料提供了理想的结构组元,也是研究纳米管层间原子相互作用的最简单材料体系。纳米管的电子结构唯一地决定于表征其原子结构的手性指数(n, m),在实验上测量纳米管物理性质与手性指数的一对一关系,从本征结构出发理解碳纳米管的特殊性质是一个基本的科学问题。该研究小组的博士生刘开辉、副研究员王文龙、工程师许智、研究员白雪冬和王恩哥等人用微加工工艺制作特殊衬底并构造双壁纳米管场效应晶体管,做到器件电输运测量与透射电镜表征相兼容,成功测得了手性依赖的纳米管电输运性质。双壁碳纳米管每一层可能是金属性的(M),也可能是半导体性的(S),根据两者的组合方式有四种类型的双壁碳纳米管,即M/M, M/S, S/S和S/M。他们系统研究了四种组合情况下的双壁纳米管,实现纳米管输运性质与手性指数的直接对应。并且,通过对同一种类型纳米管(S/M)做大量器件样品的研究,证明了层间距是影响双壁纳米管输运性质的主要因素。他们还采用较大电流脉冲烧蚀纳米管的外壁,将探测深入到纳米管内壁,实现了双壁纳米管的逐层测量。实现单个纳米结构单元/材料微区的结构分析与原位性质测量,建立性质与结构的一对一关系,是纳米科学和低维材料物理研究的重要课题。   自2002年以来, SF1组与Q01组和美国佐治亚理工学院王中林教授合作,将扫描探针技术与透射电镜技术结合,研发原位透射电镜实验仪器,开展纳米操纵和纳米测量研究,在单根纳米管/纳米线的操纵和测量方面已经取得了系列进展(申请仪器和方法的发明专利5项,发表多篇论文如APL 87, 163106 (2005) APL 88, 133107 (2006) APL 89, 221908 (2006) APL 92, 213105 (2008) 等)。   该工作得到国家自然科学基金委、国家科技部和中科院的资助。
  • 科学家利用透射电镜研究量子点附近的声学行为
    随着电子、热电和计算机技术被微型化到纳米级,科学家们们面临着研究所涉及材料的基本特性的挑战:在许多情况下,这些目标太小,无法用光学仪器观察到。美国两家大学的一个研究小组利用尖端电子显微镜和新技术,找到了一种以原子分辨率绘制声子(晶格中的振动)的方法,从而能够更深入地了解热通过量子点的传播方式,量子点是电子元件中的工程纳米结构。为了研究声子是如何被晶体中的缺陷和界面散射的,科学家们在一个透射电子显微镜中使用振动电子能量损失谱仪,研究了硅锗单量子点附近声子的动力学行为。“我们开发了一种新技术,用原子分辨率差分映射声子动量,这使我们能够观察到仅存在于界面附近的非平衡声子。”科学家们解释说:“这项工作标志着该领域取得了重大进展,因为这是我们首次能够提供直接证据,证明扩散反射和镜面反射之间的相互作用在很大程度上取决于原子结构。”根据这位科学家解释的,在原子尺度上,热量在固体材料中以原子波的形式传输,当热量离开热源时,原子波从平衡位置位移。在具有有序原子结构的晶体中,这些波被称为声子。利用硅和锗的合金,联合科学团队能够研究声子在量子点无序环境中、量子点与周围硅的界面中以及量子点纳米结构本身圆顶状结构的行为。另一位科学家说:“我们发现SiGe合金呈现出一种成分无序的结构,阻碍了声子的有效传播,由于硅原子在各自的纯结构中比锗原子靠得更近,合金使硅原子略微拉伸。另外我们发现,由于纳米结构中的应变和合金化效应,量子点中的声子正在软化。软化后的声子能量更少,这意味着每个声子携带的热量更少,从而降低了导热性,振动的软化是热电装置阻碍热量流动的众多机制之一。”大家看到这里可能很懵,这说了半天到底什么意思。总的来说,该项目的关键成果之一是开发了一种新技术,可以用于绘制材料中热载体的方向。“这类似于计算有多少声子在上升或下降,并计算差异,表明它们的主要传播方向,这项技术使我们能够映射界面上声子的反射。”科学家们解释说。电子工程师们已经成功地将电子技术中的结构和组件微型化到了这样的程度,现在它们的尺寸已经降到了十亿分之一米左右,远小于可见光的波长,因此这些结构对于光学技术来说是看不见的。“纳米工程的进步已经超过了电子显微镜和光谱学的进步,但通过这项研究,我们正在开始赶超的过程。”一位研究生参与者表示。从这项研究中受益的一个领域是热电材料系统——将热量转化为电能的材料系统。“热电技术领域的科学家致力于设计阻碍热传输或促进电荷流动的材料,而原子水平上关于热如何通过嵌入有缺陷、缺陷和瑕疵的固体传递的知识将有助于这一探索。”本次科学研究的负责人表示。
  • Zenith Polymer® 白色漫反射片
    用于背光系统的耐用、超实惠漫反射片独特的属性Labsphere的Zenith漫反射片由聚四氟乙烯聚合物制成,具有独特的光学性能。薄片为各种光散射应用提供漫透射,并为各种背光应用提供漫反射和耐用性。该材料非常适合用作辐射测量和光度扩散以及一般背光、平板和显示器的应用。各种尺寸和厚度Zenith漫反射片的厚度为100 μm、250 μm、500 μm、1 mm和2 mm,在250 ~ 2500nm波长范围内的透射值约为4% ~ 50%。可根据客户要求定制尺寸和厚度。 特点: 朗伯特性耐久性、易清洗高透射率,低反向散射特性应用:辐射测量和光度扩散普通背光照明平板显示器订购信息
  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
  • FEI发布Talos 透射电镜新品
    Talos先进科技集于一身 Talos™ 是新一代 TEM 产品,致力于让用户迅速访问二维和三维数据,从而专注于研究发现。Talos 的配置适合开展材料研究和生命科学研究,是一款融合了众多创新技术的多功能系统,能够在未来数年里满足您的研究需求。Talos 的材料科学应用Talos 可以在多个维度开展快速、精确、量化的材料表征分析,而且配备了全新的软件功能,能够改善成像效果和易用性。Talos 将出众的高分辨率 S/TEM 和 TEM 成像与行业领先的 EDS 性能(包括独一无二的 EDS 断层扫描技术)融为一体,能够以二维图像和三维容积的形式提供结构信息。创新的新软件拓宽了可以分析的材料范围,同时全新的 Ceta 16M 摄像头可迅速从大视场切换到原子级别。全新的压电工作台可确保实现无漂移成像和精确导航。而且,Talos 还预留了配件接口,可以配备特定于应用的原位样本支架以开展动态实验。 创新点:为帮助研究人员在低束流条件下更快速地获得各类型样品(包括电子束敏感材料)的二维和三维化学信息,我们在Talos F200i扫描透射电镜(S/TEM)中加装了一对对称设计的100 mm2 Racetrack能谱仪(双X射线)。这一更新突破了使用非对称EDS难以获得有效定量数据的瓶颈,并能让科研工作者以最快的方式在(亚)纳米尺度对材料进行表征。 Talos 透射电镜
  • 130万!中国科学院上海应用物理研究所透射电镜原位高温力学测量杆
    项目编号:STC22A076项目名称:中国科学院上海应用物理研究所透射电镜原位高温力学测量杆预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:透射电镜原位高温力学测量杆可以实现在外场环境下原位动态研究的材料塑性变形机制、断裂行为、辐照后合金的力学行为、微纳乃至原子尺度下的辐照缺陷运动、相变等微观机理研究。有助于进一步提升熔盐堆材料的评估研究能力。本次项目招标的透射电镜原位高温力学测量杆能够实现在高温下进行原位力学实验,并且可以双轴倾转。合同履行期限:交货期:自合同签订后4个月内。本项目( 不接受 )联合体投标。
  • 电镜之家与JEOL的两代因缘——访日本电子中国区透射电镜产品经理袁建忠
    父母与姐姐都曾从事电子显微学相关工作,袁建忠成长于一个“电镜家庭”,随后又机缘巧合加入日本电子,近20年来专注透射电镜产品技术与推广。以“幸运的职业”描述自己的履历,这位电镜人近20年的职业里,见证了日本电子电镜业务在中国的快速发展,也见证了中国电镜事业的不断腾飞。日本电子中国区透射电镜产品经理袁建忠近日,仪器信息网走进日本电子北京分公司,采访了袁建忠,请其分享了自己与电子显微学的不解之缘、自己与日本电子的故事。从成长于电镜家庭,到职业电镜产品经理袁建忠父母曾在北京科技大学任教,所在专业为当时的金属物理专业,此专业对金属结构的研究,就离不开电子显微学等表征方法技术。同时,袁建忠的姐姐也在北京有色金属研究总院超高压透射电镜实验室工作。在这样的家庭氛围下,耳濡目染,电镜在国内应用还比较少的较早时期,袁建忠便开始认识并接触电子显微学这门学科。在袁建忠父母的实验室放置的正是日本电子送给中国的一台透射电镜,其姐姐工作单位安装的也是日本电子的高压透射电镜,这些为后续袁建忠有缘加入日本电子埋下伏笔。与日本电子结缘到了大学阶段,袁建忠就读中南大学,也选择了金属物理专业,对电子显微学有了进一步认识。得益于其课题组透射电镜较多的应用,当时大家扫描电镜都较少能上手的背景下,袁建忠在本科毕业论文中已然能应用十多张透射电镜图片。随后,到日本留学,包括继续从事材料学相关学科也与日本电子电镜有了进一步接触。2002年,日本电子拟扩大在中国市场的业务范围,机缘巧合,在FESCO(北京外企人力资源服务有限公司)简历库中搜到了袁建忠于2000年留学回国时上传的一份简历。接收到日本电子的“橄榄枝”后,基于从小家庭电子显微学氛围的熏陶、电镜相关的知识积累、日文英文的基础等多方面的契合,袁建忠与日本电子很快达成一致,加入并开始了在日本电子的职业生涯。预判应验,电镜业务在中国“百倍”增长回顾加入日本电子后的发展,袁建忠表示,整个过程并不是一帆风顺的,但在日本电子“容错”、“传帮带”等企业文化氛围下,大家从不懂到被手把手教授,经历犯错、学习、不断成长,到能够独立工作,然后自己也能手把手教别人等,公司的培养成就了大家的成长,集体队伍的努力也成就了公司的发展。“传帮带”传授透射电镜技术刚加入日本电子时,日本电子在北京只是办事处性质,其职能仅限于给用户提供一些信息、与日本方面进行一些联络等,售后维修也需要挂靠在特定的单位进行。后来,逐渐拥有了自己的售后服务团队、应用技术团队,为用户提供直接的售后和技术支持。2009年,在中国设立零部件仓库,满足为用户更快捷的售后服务,随之在中国的分公司(JEOL (BEIJING) CO.,LTD.)正式成立,做到把先进仪器、先进技术卖到中国的同时,提供更好的服务。2002年,刚加入日本电子时,日本电子在北京的办公室只有两三个人,袁建忠认为,电子显微学应用潜力很广,并笃定日本电子在中国市场必将拥有广阔的发展空间。如今,从市场规模来讲,日本电子在中国市场电镜相关产品已经超过3000台,相比当初,已实现了百倍增长,而这也应验了袁建忠当初的预判。加入近20年,见证日本电子电镜技术的飞速发展日本电子株式会社(JEOL Ltd.)致力于世界顶尖技术的创新、研究和开发。拥有丰富且高端的产品线,科学/计量仪器、工业设备以及医疗器械三大业务部门的产品包括电子显微镜、核磁共振、质谱仪、X射线光电子能谱、俄歇电子能谱、电子束光刻系统、氨基酸分析仪等。作为当下全球三家透射电镜供应商之一,日本电子透射电镜是其典型代表产品技术之一。袁建忠与日本电子生产的第一台透射电镜(摄于日本总部展厅)加入日本电子近20年,聚焦于透射电镜技术的袁建忠见证了其透射电镜技术的不断创新与迭代更新。2003年,日本电子200kV六硼化镧场发射透射电镜技术产品开始受到市场青睐并在中国市场实现大卖。典型的电镜型号为JEM-2010,在此之前,透射电镜的高分辨像如原子晶格像是很难实现的,只有一些院士级别的科学家才能操作实现,而JEM-2010的面世则将透射电镜高分辨像的实现简单化,不光是院士,更多领域电子显微学科研人员都能够获得透射电镜高分辨像。在此推动下,电子显微学领域迅速步入透射电镜超高分辨时代,透射电镜超高分辨技术的“大众化”也当即促进了材料科学,尤其是纳米科学的快速发展。北京工业大学于2004年启用的透射电镜JEM-2010(图自北京工业大学)2009年,日本电子发明的HAADF-STEM技术,很快发展成透射电镜的一个技术基础,并促进材料科学综合表征实现很大进步,也包括对工业领域的钢铁行业、材料行业、半导体行业等在材料评价表征和质量管理方面作出巨大贡献。同时,日本电子在2009年推出当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达到0.19nm,STEM-HAADF分辨率达0.078nm,这款产品大获成功,开启了球差校正的新时代。球差校正电镜可以看到更高的原子级分辨率,这就帮助研究者可以从研究一种材料发展到基于一些性能的需求设计一种材料。包括应用于新能源锂电材料、催化材料、半导体工艺控制、新材料研发等热点研究中。世界上第一台JEM-ARM200F安装在德州大学圣安东尼奥分校,2010年1月安装结束,二月初就获得了惊人的实验结果。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学等也陆续购置。西安交通大学2010年配置的球差校正透射电镜JEM-ARM200F(图自贾春林科学家工作室)随后,2014年,日本电子发布终极分辨率的新一代球差校正透射电镜JEM-ARM300F, 其采用日本电子独自研发的十二级像差校正器,TEM分辨率达0.05nm, STEM HAADF分辨率达0.063nm,再次把商业化透射电镜推向了一个新的极限。目前,日本电子在中国售出的球差校正透射电镜已经达到50多台,普及速度远超出当时的预期。超快、脉冲、无磁,日本电子未来电镜技术漫谈当前,业界广为关注的球差校正透射电镜技术再次走到一个极限,并逐渐成为一种常规电镜技术手段被应用,接下来,透射电镜技术的新突破在哪里?日本电子又有哪些技术方向?袁建忠也分享了自己的看法。首先是超快电镜技术。从电子束打在样品上到拍一张电镜图一般是十几秒,我们传统得到的电镜图像记录是这段时间的一个平均结果,而这十几秒内可能是有变化的。平均势必会影响真实的分辨率,一些过程的变化也无法捕捉到。超快电镜技术便是日本电子一个未来发展方向之一。 一种方式是采用激光发射,激光发射可以控制在飞秒级别,如此瞬间的结构变化就可以捕捉到。另一种方式是通过一种快速成像技术,去瞬间录制捕获一些变化,如化学反应或原位反应的过程。其次是低剂量控制技术。电子束对样品的损伤是电镜技术长期面临的一个难题,比如200kV条件下,电子束对样品表面必然有一定的损伤,包括冷冻电镜为了减少对生物样品的损伤,往往控制很低的剂量,一个像素上可能多几个电子就会造成样品的损坏,但电子量减少又势必减少获得的分辨信息量。此背景下,受人体癌症X光检测的形式启发,日本电子引进电子束脉冲技术,通过脉冲的形式在保证电子信息的基础上避免样品损伤。再次是无磁透射电镜技术。传统的透射电镜是电磁透镜,样品处在很强的电磁场环境中成像,样品无疑会受到磁场力等因素的影响。日本电子近期在开展一项无磁场的透射电镜技术,即保证样品在零磁场环境下成像,如此成像结果将更加真实,同时,许多目前研究不了的磁性材料的一些微观的磁性性质变化可以直观解决,透射电镜技术也会更进一步发展。且该技术原型机已经面世并在运行数据阶段,商品化产品也将指日可待。以“愉悦”的情感 开展中国市场以“愉悦”的情感 开展中国市场袁建忠谈到,中国电镜事业的发展,两位重要的国外前辈曾作出了很大贡献。一位是高分辨电子显微学的祖师级人物,美国亚利桑那州立大学的约翰麦斯威尔考利(John Maxwell Cowley)教授,Cowley教授实验室培养了很多知名中国学者,除了王中林院士,还包括北京大学彭练矛院士等,另外两位中国科学院院士叶恒强、朱静都曾两度在其实验室工作过。另一位是日本国著名物理学家、前亚太地区电子显微学协会主席、前国际电子显微学会联合会主席、中国电子显微镜学会名誉会员桥本初次郎教授。桥本初次郎教授多年来倾心致力于中日友好事业,特别为中国电子显微镜学会和电子显微学事业的发展做出诸多贡献。两位前辈为共助中国电镜事业的发展树立了很好的榜样,日本电子也是怀着“愉悦”的情感,开展在中国市场的各项工作。包括在桥本初次郎教授鼓励下赠送中国电镜学会透射电镜、早期在世界贸易不发达的情况下日本电子积极参与一些与中国的交流、将高端的电镜搬到一些中国举办的工业展会展出等。而且许多电镜产品也很早被引进,如1956年,中日还未建交时,日本电子在中国的第一个电镜用户中科院武汉病毒所采购首台透射电镜;1972年,周恩来亲自审批外汇,采购日本电子的一台超高压电镜并在有色金属总院安装;以及早期长春应化所、北京化工大学等单位逐一引进日本电子电镜等,这些产品技术也为中国电镜领域培养了一批批的电子显微学专家。多措并举 迎合“十四五”新时期新发展2021年作为“十四五”开局之年,迎合中国市场新发展,日本电子也不断调整策略,加快在中国市场的发展步伐。加强南方市场投入。过去,中国的经济、科研、文化建设更偏向以北方为重心,所以日本电子最初将在中国分公司的总部设立在北京。而随着国家经济建设、科技投入的不断南移,日本电子也分别在上海、广州、武汉和成都成立分公司,并在近来先后新建扩容上海演示中心、广州演示中心等,以满足南方地区越来越大的市场需求。扩容后的上海演示中心加强售后支持。比如零部件供应的加强。以前,在交通物流不发达的背景下,日本电子出售到中国的仪器设备,都会附带一批零部件备件以备接下来几年备用。但许多仪器设备多年运行也很稳定,这些备件就会久置浪费或放坏。为便于资源高效利用,日本电子目前已基本不再附带备件,而是在上海、广州等地都设立备件库,定期预估更新零部件库存,客户需要则可以马上调货,保证用户的及时售后支持。保持产品创新。中低端电镜,主要不断增强其自动化、智能化,加快其“大众化”,让更多普通科研人员可以轻易上手,直接操作。高端电镜方面则紧跟前沿技术,结合各个国家学科的新思路新需求,不断创新,向超快、脉冲、无磁等多元化发展。后记随着中国经济的不断发展,科学仪器行业得以快速发展,而科学仪器的发展则进一步促进了中国科技的发展,实现良性循环发展。如袁建忠所言,电镜用户层面,刚加入日本电子时,电镜的使用群体还局限于以电子显微学为主要研究方向的专业人群,如中科院金属所、中科院物理所、北京科技大学等少数单位,但目前,电镜已经发展成为一种科研常规的实验室分析工具。除了应用领域遍布材料科学、半导体、生命科学等诸多领域,同时,企业单位也开始大量购置电镜,投入研发。无疑,电子显微学将在更多的领域书写科技的不断创新,见证前沿科技的不断进步。
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现   人工界面改写光的反射和折射定律   光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。   光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。   经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。   研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。   阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。   这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。   利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 科研人员利用透射电镜破解氢致界面失效之谜
    当“安静”的铝制品遇见“淘气”的氢原子,为何“肌肤”表面就会冒出“痘痘”?  这一谜团已存在超过50年。  西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心的科研人员破解了这一难题。此项成果6月29日在线发表在世界著名期刊《自然-材料》上(原文链接http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4336.html)。  人们知道,生活中常见的铝制品通常稳定耐用,因为它的表面会自然形成一层致密而坚硬的氧化铝保护膜,俗称“刚玉”。但在含氢环境中,铝制品常常会在表面鼓出气泡,最终导致氧化膜保护层脱落,乃至材料失效。这一现象,被称为“氢鼓泡”。  西安交大科研人员发现,原来,对于“纤瘦”的氢原子而言,刚玉中的原子间隙如此之大,以至于它们可以在其中来去自如。氢原子的随性“游走”会破坏金属铝和刚玉之间“手拉手”的紧密联系,从而使一部分铝原子“重获自由”。这些铝原子也会在氧化物和金属铝的界面上自由运动,并在金属铝的一侧形成很多微小的坑。随着坑的不断长大,氢原子拥有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡。而气泡密度足够大时,氧化膜保护层便会脱落,最终导致材料失效。  这种氢致界面失效是在石化、海洋、核、航空航天及半导体等工业里常见的金属材料失效原因之一。尽管此前不同国度的研究人员进行了大量的研究,但对其原子尺度的机理一直不甚明了。传统的表面鼓泡理论只能解释气泡的生长,对于气泡的形核则缺乏理论及实验证据。西安交大微纳中心的这一研究发现填补了氢致界面失效现象起源的实验和理论空白,有助于人们找到防止氢致界面失效的方法,提高材料在含氢环境中的服役寿命。  “举一个激动人心的例子:太阳帆,”微纳中心博士生解德刚介绍说,宇宙中氢的质量分数在70%以上,人类造的任何飞行器在太空航行时都必须考虑氢对材料性能的影响。太阳帆的原理就是利用大面积镜面般光滑的薄膜反射太阳光以获得动力航行。目前最有可能的薄膜材料就是铝箔,科学家已经意识到太空环境中铝箔表面易发生鼓泡的现象,而太阳帆表面一旦发生鼓泡,其反射能力就会大打折扣,影响飞行器的动力性能。“希望我们的发现对于太阳帆的防氢设计有着积极的指导意义”,解德刚对此十分期待。  “这项发现对很多与氢有关的未解之谜都有着重要的启示,”微纳中心主任单智伟教授告诉记者,“比如半导体芯片中的导线基底界面劣化、电厂的汽轮机叶片的氧化皮脱落、核电站中有大量的质子辐射环境以及高温水汽环境等等。”  此项研究中,微纳中心的科研人员一改以往楔形的样品设计,采用微纳尺度的金属铝圆柱体,通过环境透射电子显微镜观察氢气氛围下金属和氧化界面的动态演化过程,以令人信服的证据无可争辩地证明了氢致表面氧化物鼓泡的晶向依赖性。  据了解,绝大多数金属制品在实际使用时表面都会有一层保护膜,有的是自然形成,有的是人为添加。这层保护膜通常起着防氧化、防腐蚀、耐磨损等作用。一旦被破坏,材料的氧化、腐蚀、磨损就会加速,发生到一定程度就会使材料彻底失效。单智伟教授指出,降低表面防护层的粗糙度,选择合适的金属基底取向,对界面进行有目的改性等可有效减缓甚至防止氢致界面失效的发生。接下来,研究小组将继续聚焦氢致材料失效机理研究,致力于进一步推动人们对氢影响的认知,以减少和避免由氢脆等材料失效所造成的巨额经济损失和重大安全事故。  该文章的作者依次为博士生解德刚、王章洁博士、孙军教授、马恩教授、李巨教授和单智伟教授。此项研究工作得到中国国家自然科学基金、973项目及111项目的资助。
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • “几家欢乐几家愁”-论TESCAN发布独创版的透射电镜TENSOR
    “千呼万唤始出来”,TESCAN2022年11月8号“犹抱琵琶半遮面”,但业界已经感受到“高手出招”的犀利,在“剑锋”下“瑟瑟发抖”。“Vratislav Koštál, Chief Product Officer at TESCAN: “We’ve listened to our customers and delivered what they’ve asked for – a more accessible TEM solution that is high-performing and productive for mainstream use.” 所以,TENSOR的推出是源自对客户需求的调研、定位和转化,是一款在常规应用上“平易近人”的,但又是“身怀绝技”的,态度上“吃苦耐劳”的“主流”机型。1990年,即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,捷克Brno的电子显微镜时代也并未就此结束;相反,市面上却出现了三家新的电镜公司,公司的员工都来自Tesla和捷克科学仪器研究所。TESCAN接管了Tesla的扫描电镜部门;并很快的,从最初的六个人发展到近百倍的规模;另一支约20余人,也成立了一家公司叫Delmi,并开始生产型号叫Morgagni的常规透射电镜;随后,Delmi被飞利浦电子光学部收购,后又被FEI公司收购,直到2016年被赛默飞收购,一路风尘才最终尘埃落定;1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造的是加速电压为5kV的小型透射电镜;2014年后,Delong开始制造加速电压为25kV的小型透射电镜,并供货给很多公司和机构。从2000年在Brno举办的EUREM,到2014年在捷克布拉格举办的ICEM,与会代表都曾发言说:世界上大约30%的电镜在捷克Brno生产;Brno因此也获得了“电镜谷”的称号。“For crystallographers, the TENSOR STEM helps to determine the crystallographic structure of small, sub-micron natural or synthetic particles that are too small to be characterised using micro-XRD techniques.” 时间过了超过半个世纪了,TESCAN的TENSOR一如既往,充分尊重了透射电镜利用电子选择性微区衍射对晶体结构的强大分析能力,又能够接力XRD的通量优势完成更小分工的显微分析,贯彻了TESCAN对实验室显微成像和分析workflow的深刻理解。“Applications within the semiconductor lab include multimodal nano-characterisation of thin films for R&D and failure analysis of logic, memory, and storage devices and advanced packaging.” 半导体实验室仍是“众矢之的”,TENSOR显然没有“甘居人下”-光刻显影量测、逻辑闪存芯片、存储设备、以及先进封装的缺陷检测,一个不落,解决“多模态纳米级别表征”的需求清晰明了。值此TENSOR发布之际,笔者也不由得想起和TESCAN同属于捷克电子光学三支之一的Delong Instrument: 世界上最小型的低加速电压透射电镜厂家;小型透射电镜的成功设计和搭建,是捷克电子显微镜发展的成就。早在1951年,建立小型透射电镜的想法,就已经起源于捷克理论和实验电工学研究所;这项工作启动于两年后的1953年的Delong;其目的是利用不需要特殊处理的材料,制造尽可能简单结构的透射电镜;这种电镜对生产的要求不会太高,因此,工程师能够设计出可靠性更高的部件;另一方面,小型设计为用户提供最大化的操作可能性。一小队年轻的Delong工程师在1954年完成了第一个原型机,从图中的横截面图可以看出:台式透射电镜具有相对较高的配置-其照明系统仅由一个使用Steigerwald(1949)设计的“远距聚焦”的电子枪组成;因此,它提供给研究对象相对较窄的电流密度范围和照明角度。从图中的横截面图还可以看出:Delong BS242的成像系统由四个电磁透镜:物镜、中间透镜、衍射透镜和投影透镜组成,这种设计不仅允许了较宽的放大范围,而且可以完成电子束选区衍射;真空系统由位于镜筒后方的旋转油泵和扩散油泵组成,通过空气对流冷却;在扩散泵上方安装了一个简单的阀门系统,只有在更换相机35毫米胶片时,显微镜才会放气;样品的更换通过杆式气闸操作;因此,物镜配有平坦的上极靴,以便于将样品放置在离物镜足够距离的位置上;杆式气闸由两部分组成;样品支架的部件被插入XY工作台,使得样品在垂直于光轴的方向上能够移动;另一部分与第一部分拧在一起时,能在样品杆插入真空中时保护样品;样品杆拧松开之后,样品室就密封了;这个简单的原理被证明很成功,并且多年来一直在使用。杆式气锁的构造也采用了同样的原理,这有助于将样品自动降低到上极靴的孔中;轴向像散由位于真空外部的四个线圈组成的像散器补偿消除;因此,它们很容易在没有任何真空馈通的情况下转动;三透镜投影系统,由插入磁路的机械中心极靴组成;电子光学系统由三个可从外部居中的光阑组成:限制照明面积的光阑、物镜光阑和用于选区衍射的光阑;图像观察室和胶片照相机室,通过车削和铣削制成;显微镜的镜筒安装在一个平台之上,平台两侧配有用于样品位移和聚焦的操作旋钮;为了实现电子加速,Delong设计了60kV的油绝缘高频电源,它的大小正好可以放在平台的镜筒旁边;最初用于激励透镜线圈的蓄能器,很快在1955年被安装在桌下旋转泵上的电子稳定器取代了;显微镜的分辨率最初是25Å,后来甚至达到15Å。“With the launch of TENSOR, TESCAN is the go-to company for turnkey ‘medium-voltage’, Schottky FEG, analytical 4D-STEM solutions,” said Jaroslav Klíma, Chief Executive Officer of TESCAN ORSAY Holding (TOH a.s.). “TESCAN understands the challenges of integrating not only STEM, but 4D-STEM capabilities particularly, onto legacy TEM columns. This extensive knowledge was leveraged into the design, from the ground up, whereby scanning of the electron beam is synchronised with diffraction imaging using a hybrid-pixel direct electron detector, electron beam precession, EDS acquisition, beam blanking, and near real-time analysis and processing of 4D-STEM data.” 超过半个世纪之后的今天,TESCAN这台TENSOR大概率是200kV的热场发射枪,“混合”像素电子直读相机,TESCAN推出的“一体式整合式”的,直接输出贴近“原位”的四维STEM数据的分析平台;这让我们一下子都有“文盲”的感觉。业界朋友推荐了一个网站:https://www.superstem.org/ , 应该能够帮助我们恶补一下什么叫做4D-STEM,还有为什么透射电镜不好好地就叫TEM,而直接叫了STEM。“JK Weiss, TEM Applications R&D Manager and General Manager of TESCAN Tempe, adds, “It is not just the hardware that sets this system apart from every other TEM currently available on the market, but rather, it’s the integration of the hardware and software for a totally revolutionised new user experience that does not require months of Ph.D. or post-doc training or hours of column adjustments between different analysis modes.” TESCAN的这段承诺掷地有声:上手操作都很容易,软硬一体化,革命性的用户体验,有别于市场上任何现有TEM。这又使笔者想起,同属一脉的Delong小型透射电镜的特性,就是结构简单,因此操作简便;一名受过普通技术培训的操作员就能够进行安装和拆卸,维护工程师可以很容易地了解电镜所有部件的功能;很容易地证明物镜光阑对对比度的影响,从而说明亮场和暗场模式下的对比度和成像原理;很容易地通过操作衍射透镜在晶格处证实电子衍射,并用选区光阑让衍射图像对应研究对象的部分光学图像。这种简单的设备就像光学显微镜一样,在简单维护的情况下,也能可靠地工作多年,这无疑是这一派系的TEM的优点。我们熟悉的现代透射电镜设计的初衷是为了达到电子光学的理论分辨率;但如果没有维护,我们很难将这样复杂的设备保持在最佳性能水平。TENSOR这类新生代STEM的出现,许诺将会展示用户如何用最小的努力,可靠地实现有保证的分辨率;在这里,我们又不得不说,超过半个世纪后的今天,TESCAN对电镜极简化使用的情怀犹在。五十年代的Delong也很快发现,TEM领域缺少一个简单的装置,与简化的SEM相对应,在不影响设计原则,即结构简单、操作简单、价格低廉的情况下,将两种设备结合在一起的成为紧要的需求,Delong就是这样成为了STEM的先驱;TENSOR这类新生代扫描透射电镜完美地致敬了捷克电镜这一脉重要的分支。同时我们也不难看出,TENSOR这次的WORKHORSE定位决定了它不会带CEOS或是NION的球差矫正器了,同时上单色器的概率也应该很小;那么会有能量过滤器吗?ZEISS的OMEGA流派,还是GATAN的ENFINA路数?这个可能这次我们也想多了。“TESCAN TENSOR is the next example of innovation by TESCAN, following the company’s launch of the world’s first focused ion beam/scanning electron microscope (FIB/SEM) and Plasma FIB/SEM, time-of-flight secondary ion mass spectrometry (ToF-SIMS) applications on FIB/SEM platforms, Dynamic-CT and Spectral-CT.”回顾TESCAN精准的研发定位,从第一台RISE,到第一台电镜一体化TOF-SIMS,再到第一台pFIB,还有最近的两款显微CT产品,我们不得不再一次佩服TESCAN的BD团队的“行业嗅觉”。随着赛默飞在“冷冻电镜”上赚得“钵满盆满”,已是高端“结构生物学”餐桌上的“必点”菜目;在半导体离线破坏式检测领域,又凭借在pFIB上的“后来居上”,搭档“老骥伏枥”的Metrios,稳居榜首;TENSOR的出现,撕下了赛默飞“沾沾自喜”的遮羞布,似乎让业界清晰地看到了赛默飞的短板-材料分析TEM;TENSOR的出现,又让业界“久旱逢甘雨”。“For materials scientists and semiconductor R&D and FA engineers, the TENSOR 4D-STEM provides multimodal, high contrast, high-resolution 2D & 3D characterisation of functional (engineered) materials at the nanoscale.” 不出所料,材料科学显然是TENSOR的重点照顾对象。“几家欢乐几家愁”,进口电镜五大家中,赛默飞可以暂时“熟视无睹”,“倚老卖老”,假装“不愁”;两家日系的也是家底深厚,“树大根深”,也不像欧美上市公司有业绩压力,可以“不愁”;最后一家ZEISS却是完全“眼不见心不愁”,因为在这家的产品线上,早已“赫然”没有了透射电镜-这个电镜企业的“看家法宝”,电子光学“技术下放”的源头;这家德企有着颇为“瞩目”的TEM根基,加上一路并购“DSM”,“Cambridge Instrument”,“LEO”,最后都改姓“ZEISS”小兰标,不能不说是“根骨清奇”;“Orange Column”的用户仍然对其津津乐道;然而,对Omega能量过滤器的执着,既成就了它对TEM的最高水平的呈现,也直接成了其在2008年全球经济危机中的黯然隐退的导火索;“欲练神功,必先自宫”的极左思维模式,ZEISS不仅将标配了场发射源和能量过滤器的200kV顶配透射电镜“下架”,而且“一不做二不休”,将120kV Libra,以及刚收购一年有余的乌克兰Selmi公司的100kV TEM,整条产线同时“自戕”;拿着如此级别的“家当”,却是如此“败家”,“弃珍宝之如敝履”,可谓令人“瞠目结舌”;西欧的“百年老店”自废武功,东欧的“世家子弟”TESCAN却一心一意,凭着捷克硕果仅存的三支之一的电镜纯正“火种”,从钨灯丝扫描电镜起步,“见龙在田”,一步留下一个脚印,终于祭出了全新一代的TEM,且直接冠名发布为STEM,“亢龙有悔”,完成了Tesla电镜的华丽“回归”,相信下一个发布会是“飞龙在天”,“励志”所有电镜研制团队。电镜是一种集成了光、机、真空、电、软、算、系、数项基础和先进学科及技术的综合学科科学,及显微成像和分析类仪器设备,电镜的精度及可靠性来自于对上述学科基础知识的牢固掌握,及对产品化的深刻理解和实行;近五年来,国产电镜百家争鸣,其中不乏拥有多项自主专利的实干厂家;笔者综合评价,国产替代的突破点主要集中在“光”,即电子光学,而在其余多项分支多为直接采购,或堆砌模仿,或生硬整合;国产替代虽然已经在电镜的核心技术-电子光学上突破重围,但其多项配套技术发展的不平衡性,在加上来自于各种材料、各项技术和各类人才的缺口,导致电镜这只需要多块木板才能拼就成功的“木桶”,数块木板长短参差不齐;所有公差的集合,直接导致了国产电镜来自于系统整合集成,积累沉淀在工程产品化的差距;这项差距相比起进口欧美日厂商,尤其巨大。所以,电镜的“重灾区”已经不再是“电子枪和镜筒”,而更多地集中在了精密机械、高真空及超高真空、高速高稳定性电路设计制造,及各个模组子系统之间的有效有机整合。笔者认为,比起进口主流,国产电镜的性能差距具体表现为两方面:一是仪器关键精度的出厂重复性很差,难以控制和把握;电子光学仿真软件完成光路设计之后,电子枪和电子光学镜筒即进入选料及加工阶段,精密加工主要集中在电子透镜特别是物镜的极靴的生产上,然后再进入部件组装、机械调试及电子调试等各阶段;而在这些阶段累计的问题,最终表现为实测电子束分辨率和设计精度之间的差距,单台模组在不同时间段指标性能表现不一致的差距,还有多台电子光学关键模组及整机实测指标之间的差距,等等;二是电镜研制多学科发展,交叉但又不融合;表现为光、机、电子系统联合运行匹配问题频出,并与真空,软件、算法等子系统互为交叉影响,仪器整体使用感受不顺畅,小毛病多,不明问题多,导致机器磨合及解决问题时间比正常运行时间多等等,不能符合科研及产业对普适类工具稳定性表现的要求。相对于半导体产业的电子束量测设备,如CD-SEM,普适型扫描电镜使用了对长期使用、高密度使用整体稳定性要求相对较低的可用标准原材料;就像Delong选择了小型透射电镜的细分赛道那样,如果要达到极限性能,复杂的TEM是关乎材料、技术和生产的非常复杂的装置;如果我们接受比极限分辨率低的指标,要求也会相应减少很多;Delong台式透射电镜的材料成本和生产时间较低,因此卖价也不高;仍以Delong为例,20世纪50年代初,台式透射电镜的构建就证实这条路线是非常成功的;因为,一种结构简单、操作方便、价格低廉的设备满足了许多实验室的基本需求,也并没有让大多数追求极限分辨率显微镜的用户对高端电镜产品失去兴趣。关于国产电镜,还有一个更有趣的方面,使得国产电镜难以在正常赛道上与进口抗衡:就是进口电镜简单廉价的生产成本和低价格。很明显,这是由于欧美日电镜厂商早已消化完毕前期研发的高额投入和成本,而电子光学模组的创新和迭代也相对缓慢,再加上西方完整齐备的电镜产业供应链支撑,种种优势,使得国产电镜步履维艰,任重而道远;相信国家,还有投资界已经听到了国产仪器人的呼声,这也是为什么近五年来国产高端仪器能够蓬勃发展的原因。话说至此,笔者还是相当“清醒”的,我们当前“念念有词”的国产电镜,只限于电子显微镜的“弟弟”-扫描电镜,成像类工具的“大哥”级别的存在,仍然是透射电镜;我们现在之所以能够自我研制扫描电镜了,是相关材料,技术火种和它们的载体-行业人才“因势利导”、“水涨船高”、“水到渠成”的结果;所以,国产透射电镜,包括FIB双束电镜的亮相,会更多的是随着时间的推移能够“浮出水面”的。书归正传,就这次TENSOR的高调发布,完全可以肯定的是:从一路扫描至发布透射的扩张,这次TESCAN的功力提升不是一点点,这是一个质变和飞跃;从做好扫描到向上做好透射,是要看TESCAN在年轻的TESLA时候有没有练过“童子功”的;TESCAN的市场、产品、应用、乃至销售和售后团队都会水涨船高,从“散仙”飞升“晋神”;ZEISS的“自宫”只要“挥刀”就行,TESCAN的“飞升”需要经年累月,甚至“三生三世”的修炼;所以,从整体建制需要基建“配套”的角度看,这次TENSOR的推出也不会是“拔苗助长”式的,TESCAN迈过了“小升初”,“中高考”,现在正在“本硕连读”之阶段,一路走来“精彩”归“精彩”,现在正是“吃劲”的关头;祝TESCAN能够凭借TENSOR,完成“复兴”的起步;更希望TESCAN可以凭借TENSOR,自创新的“赛道”,不仅能够稳居“四绝”之一,更能引领;就像他们的愿景说的那样:“An analytical 4D-STEM that is as easy to use as TESCAN SEMs, with all the efficiency and economic benefits of a results driven Electron Microscope.” 透射电镜能像扫描电镜一样易用,高效,经济,以能出高质量结果为最终导向。愿TESCAN这次“出击”能够站稳脚跟,期待看到他们下一次的惊艳。(完)
  • 蓝菲光学公司的FS2投射灯测量系统用于标定光谱特性
    一种新的投射灯测量标准出现在地平线上,蓝菲光学公司已经开发出FS2投射灯光谱通量测量系统,它可以精确地测量出光辐射度、光度学和色度学等参数。对于商用、海用、军事、头戴式、应急路旁和室内外照明手电筒等投射灯的开发和制造方面,该专用的测试系统是对灯的发光效能进行综合评价的最有效校准仪器。 这种FS2系统可以测量总光谱辐射通量 (Watts/nm)、总辐射通量(Watts)、总光通量(lumens)、色温(CCT)、灯泡性能随时间的变化、峰值波长和主波长、光谱纯度、显色指数(CRI)、色度坐标和有效带宽等参数。该系统具有很大的动态范围,因此可以对各种灯泡,包括LED、钨灯、氙灯、氪灯等灯泡进行测量。 该系统包括一个积分球表面镀有蓝菲光学公司所特有的高漫反射率材料Spectraflect?的反射面,因此空间尺寸非常紧凑。对于测量方向性很强的投射光源来说,可以保证获得一致的、可重复和可再现的测量结果。借助于位于侧面的输入口,可以很方便地测量前向总光谱通量,在积分球的内部,有一个供选用的内部安装平台,可以用它来测量手电筒等投射灯的总光谱通量。 借助于一个吸收校正灯泡,可以对置换误差进行校正,并且提供了前向光谱通量标准,以供用户进行自行校准。灯泡的分布能进一步减少空间置换误差。投射灯专用的光谱通量测量软件MtrX-Flashlight提供了一个用户友好的、直观的平台,通过它可以对系统进行校正和分析测量结果。所有的测量结果都可以立即在图形界面中显示出来,并且能够生成并打印出报告。
  • 嘉兴学院单一采购透射电镜 赛默飞1500万元中标
    p    strong 仪器信息网讯 /strong 嘉兴学院分析测试中心日前发布公共服务平台建设项目(二期)单一来源公示,采购200KV场发射透射电子显微镜、场发射扫描电子显微镜、聚焦离子束和电子束系统各一套,赛默飞世尔以1500万元中标,供应商为浙江省科学器材进出口有限责任公司。 /p p    strong 一、 采购人名称 /strong : 嘉兴学院(含平湖师范) /p p    strong 二、 单一来源编号 /strong : singleSource2020021183265695 /p p    strong 三、 采购项目名称 /strong : 分析测试中心公共服务平台建设项目(二期) /p p    strong 四、 采购组织类型 /strong : 分散采购-分散委托集采 /p p    strong 五、 采购项目概况 /strong : /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/32ada1fb-f862-4e38-89d5-f2191dffffe4.jpg" title=" 2020-02-27_212748.jpg" alt=" 2020-02-27_212748.jpg" / /p p    strong 六、 拟采用的采购方式 /strong : 单一来源 /p p    strong 七、 申请理由: /strong /p p   透射电镜(TEM)是材料科学中十分重要的分析工具。可以进行样品的形貌分析,结构分析和成分分析。形貌分析可以获得非晶材料的质厚衬度像、多晶材料的衍射衬度像和单晶薄膜的相位衬度像(原子像)。结构分析可以进行电子衍射、原子位错、孪晶类型、晶界结构等研究。成分分析可对小到纳米尺度的微区或晶粒的成分进行测量。该设备是探索物质表观特性及微观本质的强有力工具。 /p p   分析测试中心作为校级公共服务平台,不仅服务于全校师生,同时为嘉兴地区的科研院所和生产企业提供技术支持。本项目仪器设备主要用于校内外的科研工作,对仪器设备的性能、功能要求高,需要具有高灵敏度、高分辨率、快速高效的特点,并具备磁性样品直接观察并实时测试磁力线分布状况、TEM/ STEM /EDS快速三维重构的功能。此外,由于透射电镜对制样要求非常高,人工制样不仅操作繁琐、十分耗时,而且操作人员的制样技术严重影响透射电镜的测试结果,因此需要具备为透射电镜进行全自动制样功能。 目前场发射透射电子显微镜(TEM)生产商只有美国赛默飞世尔科技(并购美国FEI品牌)和日本电子两家,而满足我校采购需求的仅美国赛默飞世尔科技一家(代理商:浙江省科学器材进出口有限责任公司)。 /p p   赛默飞世尔的TalosF200X是目前在无球差校正技术的同类型场发射透射电镜中性能最优异的产品:1)专利独特的4探头STEM设计可以同时快速采集来自不同角度的电子信号,4个对称分布的无窗SDD检测器的能谱仪系统,具有极高的灵敏度,每秒可收集高达105幅能谱图,其Mapping的采集时间可缩短一半以上。EDS Mapping的分辨率可达500x500 像素 2)因为检测器是无窗设计,对于轻元素的灵敏度比常规有窗能谱仪检测器提高1倍以上 3)独特的微分相位衬度技术(DPC)可实现对磁性样品的直接观察,并实时测试磁力线分布状况 4)三维重构功能的应用,不但实现TEM模式和STEM模式的三维成像,配合4探头的能谱仪系统还可实现三维EDS成像。另外,美国赛默飞世尔公司的Helios 5 CX聚焦离子束和电子束系统,其离子束分辨率30kV下2.5nm,电子束分辨率30kV下STEM 0.6nm、1kV下1.0nm,具备为透射电镜进行全自动制样功能、自动切割和三维重构功能。 /p p   由于本项目仪器设备主要用于我校科研工作并服务嘉兴地区的科研单位,对仪器设备的性能、功能要求高,符合我校需求的只有美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统,因此计划单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。 /p p    strong 八、 拟定供应商: /strong /p p   1、拟定供应商名称 /p p   浙江省科学器材进出口有限责任公司 /p p   2、拟定供应商地址 /p p   浙江 /p p    strong 九、 论证专业人员信息及意见: /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b13f829d-a4f7-41fa-8600-60af2bcc4f66.jpg" title=" 2020-02-27_212758.jpg" alt=" 2020-02-27_212758.jpg" / /p p   专业人员对供应商因专利、专有技术等原因具有唯一性的具体论证意见: 无球差校正的200kV场发射透射电子显微镜目前无国产设备,国外生产商只有美国赛默飞世尔科技和日本电子两家,不适合公开招标采购方式。根据用户调研,符合采购需求的只有美国赛默飞世尔科技公司一家。美国赛默飞世尔科技公司的Talos F200X场发射透射电子显微镜和Helios 5 CX聚焦离子束和电子束系统具有独特技术领先优势,符合用户需求,建议单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。 /p
  • FEI推出3款透射电镜新产品
    2013年8月1日,FEI宣布推出三款专门满足特殊的应用和行业需求的透射电镜(TEM)新品。这三款新产品将为半导体制造和科研提供高效率和有效的特定应用程序。它们是专门用于先进的半导体制造业设的Metrios&trade TEM,为材料和生命科学研究提供高速成像分析的Talos&trade TEM ,以及提供原子量级材料特性研究Titan&trade Themis&trade TEM。   &ldquo 加上这三个新产品,在过去一年中,我们已经推出了6款TEM新产品,这是前所未有的&rdquo 。FEI公司执行副总裁兼首席营运官Benjamin Loh说道。&ldquo 所有6款新产品都是为专门的应用工作流程而设计制造,它们将为科研和工业细分市场的用户提供了信息,如:材料科学,化学,生命科学,半导体制造等领域。我们的目标是完全改变TEM的世界,从而让我们的客户能够改变他们的世界。&rdquo   Metrios&trade TEM系统,致力于为需要开发和控制晶片制造工艺的半导体制造商提供快速,精确的测量。透射电镜基本操作和测量程序广泛的自动化,最大限度地减少对操作人员培训的要求。其先进的自动化计量提供比手工操作更高的精度。Metrios&trade TEM的设计,相比其他电镜,将为客户提供更好的分析通量和较低的成本。   Talos TEM结合高分辨率,高通量的TEM快速成像,以及精确定量的能量色散X-射线(EDX)分析,提供先进的分析性能。新的TEM采用了FEI目前亮度最高的电子源和最新的EDX检测技术,可实现对低浓度和轻元素的高效分析,并拥有FEI独家的3D EDS X射线断层成像技术。在较低的加速电压下,允许使用能量较低的电子束,以减少对样品的损伤。Talos平台是完全数字化的,允许远程操作,并且它可以增加用于特定应用程序的检测器或动态实验的样品架。Talos平台自动化程度高并易于使用,非常适合于个人研究室以及多人操作的实验室。   Titan Themis TEM增强了FEI在原子级成像分析方面的领导地位。研究人员使用高分辨率像差校正TEM来研究大尺寸材料的物理性质以及原子尺度之间的组成和结构的关系。Titan Themis平台可直接测量物理属性,如磁场,纳米尺度,以及下降到原子尺度时的电场。从样品定位到最终数据采集整个流程均实现了自动化,提高结果的重复性和再现性,从而使用户以更少的时间和精力获取更有信心的结论。(编译:秦丽娟)
  • 850万!高分辨率场发射透射电子显微镜设备采购安装
    1、项目编号:JNSMX公标【2022】01号2、项目名称:高分辨率场发射透射电子显微镜设备采购安装3、预算金额:850万元4、最高限价:850万元5、采购需求:高分辨率场发射透射电子显微的采购、安装、调试及售后服务等,主要用途:精确测量碳纳米材料的厚度与层数;获得碳纳米材料的结晶度信息;获得碳纳米材料催化剂的相关信息,包括催化剂的纳米形貌、元素组成、元素分布、晶体分布等。本项目共一个标段(详见采购需求)。6、合同履行期限:合同签订后8个月内将所有仪器、设备送至采购人指定地点,并安装调试到位至验收合格。7、本项目不接受联合体投标。8、本项目接受进口产品。
  • 武汉大学科研公共服务条件平台透射电镜顺利通过验收
    平台透射电镜顺利通过验收11月19日上午,科研公共服务条件平台组织召开设备技术验收会议,对200kV场发射透射电子显微镜JEM-F200、200kV六硼化镧透射电子显微镜JEM-2100Plus以及相关附件纳米等离子清洗仪、氩离子抛光仪、透射电镜原位力电测量系统进行了技术验收。来自于武汉理工大学、华中科技大学以及我校的5位专家组成了验收评审专家组,武汉大学实验室与设备管理处副处长吴红波主持验收会,经过会议专家推举,由吴劲松教授任专家组组长。受疫情防控影响,验收会采取了线上线下相结合的方式。吴红波代表学校对参加会议的各位领导、专家表示热烈欢迎。王建波对项目的整体情况做了简要介绍。日本电子严雪部长、上海微纳衡潘总经理、泽优科技许智总经理先后致辞,纷纷表示非常珍惜和武汉大学的合作机会,将一如既往地为武汉大学的科研发展、人才培养提供支持,同时对售后服务进行了承诺。会上,验收专家组依次听取了厂家工程师和平台李雷博士分别对安装调试和技术指标达标情况的报告、使用情况的报告,审阅了技术服务协议、性能指标等材料。听取报告后,验收组专家就主机的实验室环境、标样、超级能谱等问题,配件的抛光面积、耗时、电脉冲以及耗材费用等问题进行了质询。质询环节后,验收组专家们实地考察了两台透射电镜以及配件的运行情况,李雷老师认真解答了专家提出的问题。经过报告、质询和讨论,验收专家组一致认为,两台透射电镜以及配件符合合同规定;设备运行正常,各项技术性能指标达到采购要求;经过培训,平台机组人员掌握操作规程及方法。与会专家一致同意通过验收。Core Facility of Wuhan University撰稿:仲 秋拍摄:仲 秋审核:王建波
  • Nature:利用透射电镜以原子分辨率观察材料中的热效应
    随着电子、热电和计算机技术已经小型化到纳米级,工程师们面临着研究相关材料基本特性的挑战。在许多情况下,研究目标太小而无法用光学仪器观察。加州大学欧文分校、麻省理工学院和其他机构的一组研究人员利用尖端电子显微镜和新技术,找到了一种以原子分辨率绘制声子(晶格中的振动)的方法,从而实现更深入地理解热通过量子点传播的方式,设计电子元件中的纳米结构。为了研究声子如何被晶体中的缺陷和界面散射,研究人员使用透射电子显微镜中的振动电子能量损失光谱法探测了靠近硅锗单量子点的声子动态行为,该设备位于欧文材料研究所在UCI校园内。该项目的成果近日发表在《自然》杂志。“我们开发了一种新技术,以原子分辨率差分映射声子动量,这使我们能够观察仅存在于界面附近的非平衡声子,”共同作者,UCI 材料科学与工程和物理学教授、Henry Samueli 工程学院讲席教授、IMRI 主任Xiaoqing Pan说。 “这项工作标志着该领域的一项重大进展,因为这是我们第一次能够提供直接证据,证明漫反射和镜面反射之间的相互作用在很大程度上取决于具体的原子结构。”据Xiaoqing Pan所述,在原子尺度上,热量在固体材料中传输,因为当热量远离热源时,原子波会从其平衡位置移位。在具有有序原子结构的晶体中,这些波被称为声子:原子位移的波包,其携带的热能等于它们的振动频率。该团队使用硅和锗的合金,能够研究声子在量子点的无序环境、在量子点与周围硅之间的界面以及在量子点纳米结构的圆顶形表面周围行为表现。“我们发现SiGe合金呈现出一种成分无序的结构,阻碍了声子的有效传播,”Xiaoqing Pan说。 “由于硅原子在各自的纯结构中比锗原子更靠近,因此合金稍微拉伸了硅原子。由于这种应变,UCI 团队发现由于纳米结构内设计的应变和合金化效应,量子点中的声子正在软化。”Xiaoqing Pan补充说,软化的声子能量更少,这意味着每个声子携带的热量更少,从而降低了热导率。振动的软化是热电设备阻碍热量流动的众多机制之一。该项目的主要成果之一是开发了一种,用于绘制材料中热载体的方向的新技术。 “这类似于计算有多少声子上升或下降,然后计算差异,证明它们的主要传播方向,”他说。 “这项技术使我们能够映射声子从界面的反射。”电子工程师已经成功地将电子设备中的结构和组件小型化到这样的程度,因此它们现在已经下降到十亿分之一米的数量级,远小于可见光的波长,所以这些结构对光学技术来说是不可见的。“纳米工程的进步已经超过了电子显微镜和光谱学的进步,但通过这项研究,我们正在开始追赶的过程,”共同作者,Xiaoqing Pan小组的UCI 研究生 Chaitanya Gadre 说。一个可能从这项研究中受益的领域是热电学——将热能转化为电能的材料系统。 “热电技术的开发人员努力设计阻碍热传输或促进电荷流动的材料,以及如何通过嵌入的固体传输热量的原子级知识,因为它们通常带有故障、缺陷和缺陷,将有助于这一探索”共同作者、UCI 物理学和天文学教授Ruqian Wu说。“人类活动产生的能量中有 70% 以上是热量,因此我们必须找到一种方法将其回收成可用的形式,最好是电力,来满足人类日益增长的能源需求。”潘说。参与这项由美国能源部基础能源科学办公室和美国国家科学基金会资助的研究项目的还有麻省理工学院机械工程系教授Gang Chen;台湾国立中央大学材料科学与工程系教授Sheng-Wei Lee,和UCI材料科学与工程博士后研究员Xingxu Yan。关于加州大学欧文分校(the University of California, Irvine,UCI):UCI 成立于 1965 年,是久负盛名的美国大学协会中最年轻的成员,被U.S. News & World Report评为全美排名前 10 的公立大学。该校区培养了五位诺贝尔奖获得者,以其学术成就、最早的研究、创新和食蚁兽吉祥物而闻名。在校长Howard Gillman的带领下,UCI 拥有 36,000 多名学生,并提供 224 个学位课程。它位于世界上最安全、最具经济活力的社区之一,是奥兰治县的第二大雇主,每年为当地经济贡献70亿美元,在全州范围内贡献80亿美元。
  • 我国首台国产场发射透射电镜发布
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产场发射透射电子显微镜在广州发布。这标志着我国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力,将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。中国科学院院士、生物岛实验室主任徐涛联合中国科学院生物物理研究所研究员孙飞在2016年启动透射电镜有关研究,并于2020年在生物岛实验室组建起一支体系完整的透射电镜研制工程技术团队。团队成立三年多以来,相关研发工作接连取得重大突破。研发团队介绍,此次推出的首款场发射透射电镜新品TH-F120,取名源自中华名山“太行”,寓意它将如太行山一样成为中国透射电镜产业的脊梁。该场发射透射电镜利用被加速到120千电子伏特的高能电子与被观测样品中的原子发生相互作用,检测透射电子携带的样品信号转化为显微放大的图像,可以用来观察材料样品中的原子排列结构、细胞组织样品的精细超微结构、病毒和生物大分子复合体的精细结构,是科学家研究微观世界的重要仪器。研发团队表示,该电镜拥有自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可带来更佳的图像衬度和分辨率。生物岛实验室是广东省首批省实验室之一。自成立至今,生物岛实验室优化整合力量,加快成果转化、产业孵化和创新体系建设,不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家。发布会现场详细信息,请关注仪器信息网后续报道。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制