当前位置: 仪器信息网 > 行业主题 > >

多糖纯化制备系统

仪器信息网多糖纯化制备系统专题为您提供2024年最新多糖纯化制备系统价格报价、厂家品牌的相关信息, 包括多糖纯化制备系统参数、型号等,不管是国产,还是进口品牌的多糖纯化制备系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多糖纯化制备系统相关的耗材配件、试剂标物,还有多糖纯化制备系统相关的最新资讯、资料,以及多糖纯化制备系统相关的解决方案。

多糖纯化制备系统相关的资讯

  • 瑞士步琦Reveleleris Prep 纯化系统即将亮相2016全国多糖研讨会
    为促进我国糖化学与糖生物学研究工作者之间的学术交流,提高我国糖化学与糖生物学研究的整体水平,由中国化学学会主办,中国科学院上海药物研究所承办的2016年全国多糖研讨会将于2016年10月20-22日在上海举行。(会议地址:中兴和泰酒店,上海市浦东张江高科科苑路866)本次研讨会以多糖分离纯化、结构鉴定,中药多糖质量控制,寡糖合成,多糖活性与构效关系研究为主题,邀请在国内外糖化学及糖生物学研究领域有重要影响的科学家做大会特邀报告,同时也为活跃在本领域的中青年工作者提供学术交流的平台。瑞士步琦Reveleleris Prep 纯化系统即将亮相2016全国多糖研讨会瑞士步琦公司是中压制备色谱的市场领导者,2016.5月从美国Grace公司收购了Reveleris 快速纯化系统产品线和Alltech蒸发光散射检测器,极大的丰富了已有的色谱产品线,为用户提供了更多,更专业的应用解决方案。Reveleris Prep 是市场上最先进的分离纯化系统,内置紫外检测器和蒸发光散射检测器,无论是简单样品还是复杂样品,都能快速完成分离纯化工作。卓越的蒸发光散射检测器,可以在低温条件下检测几乎所有的物质,特别是无紫外吸收,末端吸收的化合物。Reveleris Prep 可一键实现低压或高压模式切换,特比适合复杂样品如多糖类,天然产物等的分离纯化。
  • 安捷伦推出新型快速制备纯化系统
    2011 年 3 月 15日,北京 — 安捷伦科技公司(纽约证交所:A) 今日推出了 Agilent 971-FP Flash LC纯化系统,这是一款为药物化学工程师量身打造的个人快速制备纯化色谱仪,能够对新合成的化合物进行快速、简单以及可靠的纯化。   该仪器具有新的软件界面,操作简单方便,且易于跟踪样品。“Guide Me”向导简化了系统设置,还免去了大量繁琐的方法开发设置。“Six-Clicks”触摸屏对话框进一步提高了分离的便利性,以前繁琐的步骤如今变得简单便捷。化学工程师通过该新系统能够利用薄层色谱结果来优化快速制备的分离方法,甚至还可以在运行过程当中进行更改,进一步缩短方法开发的时间。   Agilent 971-FP 快速制备纯化系统的设计, 旨在短短几分钟内从几十克目标化合物中以最大回收率和纯度获得毫克级样品。仪器的若干特征的设计都是为了确保珍贵样品的回收率。   脉冲式氙灯比标准紫外检测器的预热时间减少了大约十分钟,从而提高了效率。独特的气泡探测器能够降低溶剂灌注时间,进一步加快分析速度。   安捷伦液相分离事业部市场经理 Helmut Schulenberg-Schell 说:“我们非常高兴能够为药物化学工程师提供与分析液相色谱和气相色谱相同水平的质量和售后支持的Flash LC色谱。今后,我们用于药物发现的产品系列里又增加了一名优秀成员。”   有关 Agilent 971-FP 快速制备纯化系统(Flash LC)的更多信息,请访问 www.agilent.com/chem/flash:cn 。   关于安捷伦科技公司   安捷伦科技公司(NYSE : A)是世界领先的测量仪器公司,同时也是化学分析、生命科学、电子测量和通讯领域的技术引领者。公司现有 18500 名员工,为超过 100 个国家的客户提供服务。安捷伦科技公司在2010财年的净收入为54亿美元。有关安捷伦科技公司的更多资讯请访问公司官网www.agilent.com.cn。
  • 岛津推出《制备纯化系统应用文集》
    高效液相色谱是实验室常用的分离分析手段,用于复杂样品中目标组分的分离和定量分析。按照样品分离的目的和规模区分,高效液相色谱分为分析型和制备型。制备型高效液相色谱不仅是要获得样品分离的高效液相色谱图,更为重要的是在分离过程中对样品中的目标组分或目标化学物进行收集,获得达到一定纯度要求的馏分,以备后续研究或生产使用。 岛津公司作为全球著名的分析仪器厂商,进入中国市场30多年来一直关注着国内外各行业的发展与需求动向。从20世纪60年代研制HPLC至今,岛津液相色谱经历了从常规液相色谱到超快速液相色谱,再到超高效液相色谱的一系列发展,同时兼顾分析型和制备型液相色谱不断创新, 目前制备液相色谱系列有高通量质谱引导型制备液相色谱,大规模制备液相色谱, 半制备液相色谱,以及循环制备液相色谱等,配合岛津高灵敏的紫外检测器、 二极管阵列检测器以及LCMS-2020质谱检测器,操作简便并有多种收集模式和最大收集通量的馏分收集器,为相关行业的研究及生产使用提供合用的配置和解决方案。 近日推出的《岛津制备纯化系统应用文集》,以岛津制备液相/液质色谱用户工作数据和分析中心合作研究数据为依据,来源包括上海化工研究院,浙江省食品药品检验研究院,中国科学院上海有机化学研究所,华东理工大学,上海中医药大学,常州大学,江苏恩华药业股份有限公司,罗氏研发(中国)有限公司,上海药明康德新药开发有限公司,上海泰禾化工有限公司等相关企事业、高校、科研院所、研究机构等单位的天然产物、合成化合物、药物、农药等样品的制备分离,共收录整理应用文章14篇,提供了全面解决方案以供相关用户参考使用。 本文集所含文章目录如下: 1 质谱引导型制备液相色谱用于中药有效成分制备分离 2 质谱引导型制备液相色谱对化学合成药品的分离纯化 3 质谱引导型制备液相色谱在新药研发中的应用 4 质谱引导型制备液相色谱分离氘代结晶紫和去甲氘代结晶紫 5 质谱引导型制备液相色谱对两种染料的制备分离 6 LC-20AP制备液相色谱在合成异构体分离中的应用 7 LC-20AP制备液相色谱进行药物稳定性考察的研究 8 LC-20AP制备液相色谱对原料药中相关杂质的制备分离 9 LC-20AP制备液相色谱对多肽样品的分离纯化 10 LC-20AP制备液相色谱对中药有效成分提取物的制备分离 11 LC-20AP制备液相色谱对合成氟化物的分离纯化 12 二极管阵列检测器在制备液相色谱中的应用 13 收集时间程序在合成农药的微量杂质制备中的应用 14 Crude2Pure系统在有机合成化合物纯化中的应用 有关详情,请您向&ldquo 岛津全球应用技术开发支持中心&rdquo 咨询。 咨询电话:021-22013542 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 制备液相色谱:小领域服务大行业——访苏州汇通色谱分离纯化有限公司总经理戈兆松
    p style=" text-align: justify text-indent: 2em " 为助力国产科学仪器发展,筛选和扶持一批优秀的科学仪器产品和企业,在中国仪器仪表行业协会、中国仪器仪表学会、北京科学仪器装备协作服务中心等单位的支持下,由仪器信息网主办、我要测网协办的 span style=" color: rgb(0, 0, 0) " “国产科学仪器腾飞行动”于2013年9月5日正式启动。 /span 秉承“国产科学仪器腾飞行动”宗旨, span style=" color: rgb(0, 112, 192) " 仪 /span span style=" color: rgb(0, 112, 192) " 器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目 /span ,筛选、挖掘一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研、视频、线下座谈会等方式展现其基本情况,在企业发展的关键时期“帮一把”。 /p p style=" text-align: justify "   苏州汇通色谱分离纯化有限公司(以下简称:汇通色谱),创立于2009年,是一家以自主知识产权技术和产品为核心,具有独立研发能力的高新技术企业,主要以药厂、生物制品企业、高纯度化学制品企业、质量鉴定单位、大学、科学研究机构和生物技术公司为目标客户,提供高效、高选择性制备色谱分离柱产品、高纯度产品纯化解决方案等。仪器信息网近期采访了汇通色谱公司的总经理戈兆松,与他就汇通公司的成立、发展情况以及主营产品等相关内容进行了深入的交流。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/201908/uepic/bfde3bd5-a2a7-4118-9204-143561de4665.jpg" title=" 戈总.jpg" alt=" 戈总.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center "   苏州汇通色谱公司总经理 戈兆松 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请简单介绍下汇通色谱公司的发展历程以及公司定位。 /strong /span /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 汇通色谱: /strong /span 苏州汇通的创始人是华东理工大学特聘教授、大连化学物理研究所兼职研究员的张维冰教授。其运用多年在学术研究中获得的技术累积以及对国内外仪器的熟悉与了解,于2009年在苏州创立了本公司。公司始终秉承专业、求实、开拓、创优的经营理念,被国内市场接纳的同时也得到了国家的肯定与认可,并在2011年被评为“姑苏创新创业领军人才单位”、2014年获得科技部中小企业的创业基金资助、2017年被授予“高新技术企业”证书。与市场上现存公司相比,汇通色谱拥有的 span style=" color: rgb(0, 112, 192) " 专利分离介质,高纯度色谱纯化工程设计核心能力 /span ,已发展高通量、高选择性、高分离效率的模块式分离系列产品及配套的相应解决方案,除为企业提供高性能的色谱分离柱系统系列产品外,还可以直接提供复杂样品体系的纯品,为企业的“工程化”提供一条龙服务。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:汇通色谱当前的主营产品及其技术上的优势。 /strong /span /p p style=" text-align: justify "    strong 汇通色谱: /strong 公司成立至今已十年整,在这些年里我们始终专注于制备液相色谱领域。从硬件到软件,公司的经营重心主要有两点: span style=" color: rgb(0, 112, 192) " 第一点是侧重于制备液相色谱仪器设备的研发 /span ,其中包括了中高压恒流泵、紫外检测器、色谱柱及馏分收集器。目前这套已利用自主产权的系统设备实现了小试、中试阶段的国产化。值得一提的是,我们的中压色谱柱在内壁光洁度、耐压方面可媲美国际主流产品,并在业内获得了较高的认可度。第二点则是发挥了张教授的看家本领: span style=" color: rgb(0, 112, 192) " 纯化工艺开发 /span 。针对样品如何选择固定相、流动相,以及样品溶解的方式,开发成熟的工艺,这是软实力,也是我们公司拥有的技术优势。 span style=" color: rgb(0, 112, 192) " 多年来,汇通色谱开发了大量的应用案例,包括鱼油、利拉鲁肽的纯化工艺以及2D-LC的手段分离制备了葛根异黄酮化合物等。 /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前国内制备液相色谱的发展现状如何?汇通色谱研发制备型二维液相色谱的出发点是什么?研发过程中遇到最大的困难是什么? /strong /span /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 汇通色谱: /strong /span 制备液相虽然是一个小领域,但服务的却是一个大行业,最大的客户是制药企业,做植物提取物、标准品、以及合成需要纯化合成的物质,可以说,凡是需要得到高纯原料的领域几乎都可以运用制备液相。 /p p style=" text-align: justify "   谈到我们研发中的困难,主要有两点:资金与技术。研发型企业最担心的是销售,没有销售额就无法支撑公司的发展,汇通色谱之所以能沉下心来做研发,一方面是因为我们得到了科技部中小企业创新基金的资助 另一方面是我们拥有很强的运营团队,其很好的支撑了制备色谱的销售,有了销售才有利润支撑我们的产品。关于开发技术上的困难点,二维是一个系统,需要光学部件、机械部件、电子部分、软件控制、化学应用等各方面有机的结合。因为 span style=" color: rgb(0, 112, 192) " 我们团队的应用实验室,积累了长期的纯化服务经验,这也使得我们的二维系统得以从理论变为“落地的“产品。 /span /p p style=" text-align: center" img style=" width: 403px height: 351px " src=" https://img1.17img.cn/17img/images/201908/uepic/039100aa-78d2-4a83-915c-15fbf2a2d4de.jpg" title=" 2.jpg" width=" 403" height=" 351" border=" 0" vspace=" 0" alt=" 2.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201908/uepic/c4401f7c-5004-4af8-a8f5-e24d593c83b8.jpg" title=" 3_2.jpg" / /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:汇通色谱的制备型二维液相色谱系统什么时候推出市场?这款产品的主要创新点? /strong /span /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 汇通色谱: /strong /span 二维液相色谱系统完成硬件软件的搭建后, span style=" color: rgb(0, 112, 192) " 于2019年6月20日的国际原料药展上面世 /span ,展会期间我们收到了很多客户的问询,其中包括一些国外的客户。该款产品融合了国内首创的几项技术,目前正处在 span style=" color: rgb(0, 112, 192) " 开展应用案例的阶段 /span ,同时已有一家烟草公司表示了采购意向。 /p p style=" text-align: justify "   这款产品在以下几个方面进行了创新:一是 span style=" color: rgb(0, 112, 192) " strong 在线样品捕集并导入二维分析 /strong /span ,这需要在系统设计和软件控制方面做较多的优化 二是 span style=" color: rgb(0, 112, 192) " strong 自动化软件控制 /strong /span ,通过多维柱选择阀和软件协同作用,实现一次进样,自动化高纯馏分的收集 三是 span style=" color: rgb(0, 112, 192) " strong 正交模式应用 /strong /span ,对于二维液相色谱,唯有保持较高正交性,才能实现最大的分离效果。汇通色谱基于自身在填料选择、流动相优化,以及分析二维液相色谱上多年积累的经验,将多方面的技术整合成新一代的制备型二维液相色谱系统。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:与其他的制备液相色谱相比,二维制备液相色谱有什么优势?能解决哪些传统的制备液相难以解决的问题? /strong /span /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 汇通色谱: /strong /span 该技术最大的优势就是 strong span style=" color: rgb(0, 112, 192) " 一次纯化便可获得大量的化合物 /span /strong ,而常规的一维分离只能分离出几个产品。该设备适合复杂样品的分离纯化,例如植物中新型化合物的分离鉴定、药物中多种杂质纯化分离等。 /p p style=" text-align: justify "   就拿药物筛选人员在药物发现阶段来说,他们总是需要大量的化合物库,而常规的制备液相色谱需要好几天的分析时间,但二维制备液相色谱系统只需要 span style=" color: rgb(0, 112, 192) " 运行一次就可以得到接近上百的化合物库。 /span /p p style=" text-align: justify "    strong span style=" color: rgb(0, 112, 192) " 仪器信息网:受整体环境的影响,目前色谱仪器市场的增长放缓,在这种情况下,汇通色谱如何提升自身的竞争力? /span /strong /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 汇通色谱: /strong /span 我们重视的是整体实力,市场某一方面的放缓并不会影响到我们的业务能力。我们 span style=" color: rgb(0, 112, 192) " 研发出二维制备液相色谱的差异化产品 /span ,其次在做好自己现有仪器的同时我们也会做 span style=" color: rgb(0, 112, 192) " 技术储备 /span 。我们自己一般都是 span style=" color: rgb(0, 112, 192) " 生产一代、研发一代和储备一代 /span 。同时也会 span style=" color: rgb(0, 112, 192) " 根据客户日益变化的需求进行产品储备 /span ,比如近几年多糖领域的研究非常热门,我们就针对客户需求开发了多糖纯化专用仪器。正因为坚持这样”三代一体“的发展,相信我们在行业中会发展的越来越好。 /p p style=" text-align: justify " br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " 附:国产仪器腾飞行动“创新100”介绍 /span /strong /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   为秉承“国产科学仪器腾飞行动”宗旨,在中国仪器仪表行业协会的指导下,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研,在企业发展的关键时期“帮一把”,助力国产仪器中小厂商腾飞发展。 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   一、“创新100”入选标准 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (1) 企业主营业务为科学仪器 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (2) 企业主营产品具有自主知识产权,具备创新性 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (3) 企业总部设在中国 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (4) 企业科学仪器产品的年产值在3000万元以下 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (5) 企业需是中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网会员之一。 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   二、“创新100”申报流程 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   国产仪器腾飞行动“创新100”筛选流程包含以下环节:企业在线申报——企业创新能力审核——公益报道服务——线下资源对接——最具成长潜力企业评选。 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   更多相关内容请点击进入专题 a href=" https://www.instrument.com.cn/zt/chuangxin100" target=" _blank" style=" text-decoration: underline font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " strong 《“创新100”助力国产腾飞》 /strong /span /a 。 /span /p p br/ /p
  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash® 5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash® 5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash® 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash® 5.250 色谱仪的进样口处。step 2:puriFlash® 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;
  • 纯化制备利器岛津Crude2Pure系统应用文集问世
    合成化合物分离纯化、天然产物制备、代谢产物研究和生物制品纯化等领域离不开制备液相分离技术。制备液相分离技术主要用于目标化合物或色谱峰的分离、纯化和收集,最终获得目标馏分溶液。目前对馏分溶液的一般的操作方式是通过旋转蒸发或者冷冻干燥等手段使得含有目标化合物的溶液浓缩、干燥,最终得到目标产物的固体状态。这种传统的工作流程在相关领域得到广泛使用。 但是,该类传统方法存在与生俱来的缺陷,容易高温和浓缩的过程出现溶液条件变化从而导致化合物分解或反应,并且过多的操作步骤有引入杂质的风险。目标馏分的后处理经常是费时又费力的过程。含有大量水的样品往往需要12-24小时甚至更长的时间进行处理。流动相中加入的甲酸等添加剂会与某些化合物成盐或者以游离态存在而不能完全去除进而影响目标产物的纯度和后续生物活性实验的结果。更为严重的是,在制备纯化过程中流动相中添加的酸或碱在分离完成后对馏分进行旋转蒸发或者冷冻干燥的过程中,溶剂逐渐挥发时剩余溶液中的酸或碱的浓度相对提高,pH的过度变化导致化合物发生反应,结构发生变化,造成目标产物损失,使得前期的分离工作功亏一篑。 为解决这一问题,岛津推出了全自动纯化系统Crude2Pure,该系统包括制备液相色谱系统和目标馏分固体粉末化系统,后者提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,可以有效地除去流动相中加入的添加剂,避免了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度地降低了由于多步骤操作而引入杂质或产物损失,对合成化合物、天然产物目标产物等的分离纯化提供高效、安全、快捷的处理方式。 BCEIA2013上展示的Crude2Pure自动纯化系统 Crude2Pure系统是岛津公司在全球首个推出并商品化的用于制备液相色谱一体化自动系统,从粗产品的制备分离,到高纯目标物的收集与溶剂回收,再到固体粉末化的形成,Crude2Pure 系统提供高度自动化和灵活多样的处理方式,为用户在合成化合物和天然产物分离等方面提供高效、安全、可靠的服务。 岛津公司密切与用户单位保持合作,通过与合作研究单位上海药明康德新药开发有限公司和葛兰素史克(中国)研发中心的共同研究,开发用于合成小分子化合物的全自动纯化应用方法,通过整理汇编成册,以供参考,希望能够以此加深读者对C2P系统的认识并能够对该方面工作的开展提供思路和带来帮助。 有关详情,请您向&ldquo 岛津全球应用技术开发支持中心&rdquo 咨询。 咨询电话:021-22013542 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 液相色谱应用:完善制备纯化过程
    概述制备色谱(Prep-LC)以其高分离效率,重现性和低溶剂消耗而闻名,是一种纯化技术。来自中国的色谱专家团队应用了传质动力学建模和吸附等温线,以改善该技术的缺点之一,即超载导致的非线性,这是纯化工艺发展的重要问题。保持直率对于药物提取,纯化仍然是一个巨大的挑战,因为结构相似的化合物可以共存于基质中,特别是对于从生物发酵或多肽合成中获得的药物而言。Prep-LC广泛用作分离和纯化技术,但是由于过载导致的非线性(用于提高通量)对于开发高效的纯化过程一直存在问题。为了克服这个问题,来自中国西南医科大学的一组研究人员选择了羟基酪醇(与橄榄果和叶片中橄榄苦苷水解产生的其他成分同时生成)作为模型化合物,用于系统地开发纯化方法。甲醇和乙醇用作有机改性剂,并在三种商用色谱柱C8TDE,C18ME和C18TDE上确定了最佳流速。曲线用van Deemter方程拟合,并对A,B和C项进行了全面分析。然后研究了吸附等温线,并提出了最合适的基于制备液相色谱的羟基酪醇纯化方法。纯化方法的开发与优化使用Shimadzu Prominence-i9(LC-2030)系列仪器进行HPLC分析,该仪器配备有脱气器,低压梯度仪,混合器,自动进样器和柱箱,并与UV检测器相连。在配备P680A泵,低压梯度仪,带有500μL样品定量环的手动进样器,TCC 100柱温箱和PDA 100检测器的Dionex P680A系列仪器上进行馏分收集。色谱条件为5%甲醇或乙醇水溶液。进样量5μL 柱温40°C 检测波长为280 nm。使用三根色谱柱(C8TDE,C18ME和C18TDE)在0.1至1.5 mL/min的15种不同流速下以0.1 mL/min的增量比较羟基酪醇的传质动力学。为了精确确定变量对等效于理论塔板(HETP)的高度的影响,使用van Deemter方程,Gidddings方程,Horvath和Lin方程以及Knox方程计算了羟基酪醇的传质动力学。 van Deemter方程的三个项,即涡流扩散(A项;由于固定相色谱柱的存在而导致的峰展宽,与流动相的速度无关),分子扩散(B项)和传质阻力(C项) ),确定了三列中的两种有机改性剂。随后研究了吸附等温线,以探讨溶质在固定相和流动相之间处于平衡状态的分布。将浓度较高的羟基酪醇(10–160mmol/L)的标准溶液泵入C18TDE色谱柱,并记录穿透时间。在这项工作中,发现在5%甲醇-水条件下C8TDE和C18ME色谱柱的最佳线速度为6.37 mm/s(0.3 mL/min),在5%乙醇条件下为4.24 mm/s(0.2 mL/min)。以水为流动相。对于C18TDE色谱柱,发现5%甲醇-水的最佳线速度为14.85 mm/s(0.7 mL/min),而5%乙醇-水的最佳线速度为4.24 mm/s(0.2 mL/min)。发现C18TDE柱是最高效的色谱柱,传质动力学分析表明,乙醇是分离羟基酪醇的合适溶剂,因为带有甲醇流动相的B项极其敏感,因此在改变其他条件时很难稳定其性能。由于C18TDE的最小A项以及可接受的B和C值,因此它是最佳选择。因此,选择C18TDE和乙醇纯化羟基酪醇是因为这种组合对变化不敏感,具有最佳的A,B和C项,并且符合Langmuir等温线模型。羟基酪醇已成功纯化,样品量为1.6%,回收率为90.98%,纯度为98.01%,以5%乙醇-水为流动相,采用了优化的分馏方法,流速为0.2 mL/min。动力学使其线性在制备型液相色谱中,传质动力学建模和吸附等温线的使用证明对开发和优化羟基酪醇纯化方法非常有帮助。此方法应适用于其他制药和生物技术产品的纯化。未来将如何在行业中采用这种方法将是很有趣的。(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)根据下列两篇文章编写1. Nonlinear behavior in preparative liquid chromatography: A method-development case study for hydroxytyrosol purificationPublished:Dec 22, 2020Author: Ruting Xiao2. LEGO MINDSTORMS fraction collector: A low-cost tool for a preparative high-performance liquid chromatography systemPublished:Dec 20, 2020Author: Marco Caputo
  • 【ISCO 制备色谱仪】快速色谱法在简单碳水化合物纯化中的应用
    01 摘要碳水化合物化合物可利用 RediSep Gold Amine 色谱柱结合蒸发光散射检测(ELSD)进行简便的纯化。该色谱柱采用亲水相互作用液相色谱(HILIC)梯度洗脱法,以乙腈或丙酮与水的梯度进行操作。将待纯化的样品溶解于 DMSO 中,不仅允许大量样品加载,同时还能保持良好的分辨率。02 背景碳水化合物通常采用氨基柱进行分析,该方法具有良好的分辨率。这种分析方法一般使用乙腈和水作为流动相,样品通常溶解在水中。由于样品注射量较小,样品有机会吸附在固定相上。在制备色谱中,相对于色谱柱尺寸而言,样品负载和注射体积要大得多,因此将样品溶于水中注射可以防止碳水化合物吸附在柱子上,导致它们在空隙处洗脱。干法加载样品到固体装载小柱上通常用于快速色谱,但用户需要自己用氨基介质填充他们的小柱。样品仍然溶解在水中进行加载,这需要很长时间才能在运行样品前蒸发。二甲基亚砜(DMSO)常用于反相色谱的样品溶解,因为它能溶解大多数化合物。DMSO 能够溶解碳水化合物,但在 HILIC 中是一种弱溶剂,因此它允许样品吸附在柱子上。在使用氨基柱时,DMSO 在洗脱早期被洗脱;然而,在采用非氨基介质的其他 HILIC 运行中,它可能在梯度洗脱的后期才被洗脱。03 结果与讨论虽然亲水相互作用液相色谱(HILIC)属于正相色谱,但它使用的溶剂通常适用于反相色谱,因此需要根据表 1 中的设置调整蒸发光散射检测器(ELSD)的参数,以保持基线稳定的同时维持灵敏度。表1. 纯化碳水化合物的蒸发光散射检测器(ELSD)设置。ELSD控制设置值Spray Chamber20℃Drift Tube60℃Gain1SensitivityHigh样品均溶解于 DMSO 中。如有必要,将样品在热水浴中加热以促进溶解。使用 PeakTrak Flash Focus 梯度生成器在系统上开发方法。运行了一个亻贞查梯度以验证样品能够被洗脱,并证明化合物之间有足够的分辨率以实现成功的纯化。所需化合物的保留用于计算聚焦梯度的溶剂组成。所有运行均使用 RediSep Gold 氨基柱。运行完成后,用2-丙醇洗涤并储存柱子,2-丙醇与有机溶剂混溶,可实现较少极性化合物的快速纯化。第一个实例使用了核糖和葡萄糖。亻贞查梯度和聚焦梯度都使用乙腈作为弱溶剂。亻贞查运行只用了少量几毫克,并且为了提高这个小样品负载的灵敏度,ELSD 增益被调高到 3。第二个洗脱峰用于聚焦梯度;计算梯度后,ELSD 增益被重置为 1 以保持 ELSD 响应在量程内。总样品负载为 100 毫克,使用 50 克 RediSep Gold Amine 柱。果糖和蔗糖通常一起出现在样品中。图 2 展示了从葡萄糖杂质中纯化果糖的过程。该混合物以与核糖-葡萄糖样品类似的方式运行,梯度聚焦于葡萄糖。在约 1.8 柱体积(CV)出现的峰是用于溶解样品的 DMSO。图1. 核糖和葡萄糖在 5.5 克 RediSep Gold Amine 柱上运行亻贞查方法(上图),并聚焦到 50 克 RediSep Gold 胺柱上。样品总负载量为核糖和葡萄糖各 50 毫克。聚焦梯度中约 1.8 柱体积处的小峰是 DMSO。图2. 使用 RediSep Gold Amine 柱和乙腈/水梯度从蔗糖中纯化不纯的果糖。04 丙酮作为弱溶剂丙酮也是 HILIC 的弱溶剂,可以替代乙腈使用。尽管醇类可以用于 HILIC,但这些溶剂对于在胺柱上纯化碳水化合物来说太强了。使用丙酮纯化了一个果糖和葡萄糖的样品。该混合物的纯化方式与之前的例子相似,除了亻贞查梯度使用了一根 15.5 克的 RediSep Gold Amine 柱,因为 PeakTrak 允许使用任何尺寸的 Teledyne ISCO 柱进行亻贞查运行。聚焦梯度使用了一根 50 克的 RediSep Gold Amine 柱,但计算出的梯度需要较低的水浓度来纯化葡萄糖,这表明对于这些化合物,丙酮是比乙腈更强的溶剂。图3. 使用丙酮/水梯度纯化的果糖和蔗糖。亻贞查运行使用了一根 15.5 克的 RediSep Gold 胺柱。05 结论使用 NextGen 300+ 配备蒸发光散射检测器(ELSD)和 RediSep Gold 胺柱,通过 HILIC 梯度方法可以高效纯化碳水化合物。使用 DMSO 溶解样品既保证了高样品负载量,又保持了良好的分辨率。PeakTrak Flash Focus 梯度生成器使得 Teledyne ISCO 制造的所有色谱柱都能快速开发和放大方法。
  • 重磅:月旭科技将分离纯化业务拓展到工业制备级
    2022年新年伊始,月旭科技发布全新品牌:WelPacker® ,冠之于全新DAC产品线,将分离纯化业务从分析、小制备级拓展到工业制备级。经过近20年的发展和积淀,月旭科技不仅在分析色谱领域为用户认可和熟悉,也在填料键合和小制备领域积累了丰富的经验。DAC色谱分离技术作为目前大规模高效分离和纯化领域常用、易实现和效果较为理想的一种技术正在获得更多制备纯化用户的青睐。WelPacker® 系列DAC产品线的推出,填补了月旭科技在工业制备级分离纯化领域的空白,提高了客户服务的能力。DAC是动态轴向压缩柱(Dynamic Axial Compression column)的英文简称,是一种采用动态轴向压缩技术,能进行装柱、卸柱和维持柱压的制备柱设备,兼有装柱机和色谱柱的功能。✓ 规格多样,7种标准内径规格(25,50,80,100,150,200,300mm等),标准650mm柱管长度,并可进行定制,更加贴合用户需求;✓ 优化设计的分配器结构可以使液体更好地分配到整个柱床面上,小至3μm的筛板孔径可以装填5μm的填料,可实现更高效的分离;✓一站式服务,月旭科技产品线齐全,可提供从分析到制备放大的仪器、耗材和相关服务,尽可能地给用户提供方便;✓ 月旭科技可提供种类丰富的色谱填料,如球形硅胶基质色谱填料和无定形硅胶基质色谱填料,具有良好的机械性能、粒径分布、孔径分布和比表面积,在WelPacker® DAC系统中表现出较好的可装填性能和分离能力。除内径300mm以下的标准DAC外,WelPacker® 还有400,450,500,600和800mm内径的DAC供用户选择,并可提供相应的色谱系统、匀浆系统和装柱设备。
  • 【应用】使用步琦中压制备色谱C-815高效分离纯化ω-3脂肪酸
    使用 Pure Flash C-815高效分离 ω-3 脂肪酸Pure应用”1简介ω-3 脂肪酸是一类长链多不饱和脂肪酸,由于人体中缺乏 Δ&minus 12 和 Δ&minus 15 脱饱和酶,Ω-3 脂肪酸必须通过饮食获取,并且被认为对人类健康至关重要。EPA 和 DHA 的摄入量的增加已被科学证明在治疗和预防动脉粥样硬化、心肌梗死、炎症、关节炎、糖尿病、婴儿大脑发育和癌症方面有益。许多流行病学、观察性和临床研究强调了 ω-3 脂肪酸在降低血浆甘油三酯水平和预防心血管疾病方面的有效性。全球的心脏病学会建议每天服用 ω-3 脂肪酸(EPA+DHA 或仅 EPA)的剂量为 4 克(总EPA + DHA 超过 3 克),这代表了一种有效的降甘油三酯治疗剂。随着这一关注度的增加,对高纯度 ω-3 脂肪酸的需求激增。然而长期的过度捕鱼导致主要鱼类来源急剧下降,导致 ω-3 脂肪酸的价格迅速上涨。尽管如此,全世界只有少数公司有能力生产药用级 ω-3 脂肪酸。因此开发一种普遍适用且成本效益高的技术,以确保高纯度 ω-3 脂肪酸的安全生产是必要的。在本研究中,使用 RP-MPLC 技术来制备高纯度的 ω-3 脂肪酸乙酯,目标总含量不低于 84% 的 EPA 和 DHA,这是根据药典规定的。基本变量控制分离过程被评估和优化,基于纯度和回收率,包括填料材料、流动相、样品体积、样品浓度、流速和流动相组成。2色谱柱填料对分离效果的影响色谱柱填料是色谱系统的“核心”,其物理化学性质,包括包装结构的均匀性(单相、多孔或非多孔)、几何形状(粒径、床面积和孔径及形状)以及所附接的配体类型,对分离效能有显著影响。为了寻找高通量、低背压、高灵敏度和高分辨率以实现高效分离的色谱柱填料,对多种键合相材料(CN、Diol、C4、C6、C8、C18 和 AQ-C18)在 ω-3 脂肪酸乙酯的纯化中进行了评估(见 图1 和 表1)▲ 图1.使用不同色谱柱填料的 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表1. AQ-C18 和 C18 对 RP-MPLC 纯化的 EPA 和 DHA 酯的影响。色谱柱填料AQ-C18C18tR2 (min)17.09±0.0831.08±0.14tR3 (min)21.53±0.0737.90±0.1Rs11.43±0.021.27±0.03Rs21.13±0.031.02±0.03注意:tR2 表示 EPA 的保留时间;tR3 表示 DHA 的保留时间;RS1 表示 EPA 与其前杂质(组分A)的分离度;RS2 表示 DHA 与其后杂质(组分D)的分离度。同一组中的不同字母表示显著差异 (p▲ 图2. RP-MPLC 固定相(A) C18 和(B) AQ-C18 的结构差异3流动相对分离效果的影响选择合适的流动相对于提高分离效率起着重要的辅助作用。低粘度、低沸点和低成本的溶剂被优先考虑。在 图3 和 表2 中,乙醇和乙腈在从 ω-3 脂肪酸中分离出杂质时效果不佳,而甲醇则成功了。尽管甲醇的粘度较高,但其较低的沸点使得从产品中除去甲醇,比乙腈和乙醇更容易。因此甲醇被选为首选的流动相。▲ 图3. 不同流动相下 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表2. 不同流动相对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响。流动相乙醇乙腈甲醇tR2 (min)6.29 ± 0.0813.95 ± 0.117.08 ± 0.06tR3 (min)7.14 ± 0.0415.81 ± 0.0821.54 ± 0.08Rs1001.42 ± 0.02Rs201.32 ± 0.021.27 ± 0.03流动相中有机溶剂的比例会改变其极性,从而影响样品组分在固定相中的分配系数,并影响分离效率。增加甲醇比例会推迟峰出现时间,使峰形变宽,并减少脂肪酸乙酯 EPA 和 DHA 的保留时间、分辨率以及纯度(见 图4 和 表3)。这是因为增加流动相的极性已被发现能够通过延迟非极性FAEE在柱中的保留时间来提高分离效率。当甲醇比例为 86% 至 90% 时,ω-3 脂肪酸的纯度逐渐下降;同时回收率提高。当甲醇比例达到92%时,EPA 和 DHA 的脂肪酸乙酯纯度降至 83.39%,这不符合国家药典标准。甲醇比例超过 90% 不利于制备高纯度的 ω-3 脂肪酸。因此选择 90% 的甲醇溶液作为流动相。▲ 图4. 不同甲醇浓度的 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表3. 不同甲醇浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响甲醇:水86:1488:1290:1092:8EPA-EE/DHA-EE纯度 (%)87.17 ± 0.1586.32 ± 0.1085.27 ± 0.1583.39 ± 0.14EPA-EE/DHA-EE回收率(%)54.51 ± 0.1665.24 ± 0.1274.30 ± 0.1153.28 ± 0.01tR2(min)22.81 ± 0.0518.37 ± 0.0711.87 ± 0.059.67 ± 0.1tR3(min)30.48 ± 0.0824.26 ± 0.0615.07 ± 0.0412.02 ± 0.07Rs11.64 ± 0.041.50 ± 0.021.22 ± 0.041.05 ± 0.03Rs21.41 ± 0.031.26 ± 0.031.02 ± 0.020.84 ± 0.024上样体积对分离效果的影响根据色谱制备的非线性理论,增加样品体积可以提高色谱的处理能力,提高产品回收率,并提高生产效率。如 图5 所示,随着负载体积的增长,保留时间延迟,峰形变宽,分辨率降低,纯化时间增加。这可能是因为更多的杂质在 AQ-C18 填料上吸附,影响了主峰和杂质峰的分离,从而降低了目标物质的纯度。当样品体积为 0.6mL 时,EPA 和 DHA 峰的总乙酯回收率最高(83.57%)。为了在实现更好的分离效果的同时最大化负载体积,选择了 0.6mL 的样品负载量,相当于色谱柱 1.25% 的柱体积。▲ 图5. 不同上样体积 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表4. 不同上样体积对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响上样体积mL0.40.50.60.7EPA-EE/DHA-EE纯度 (%)87.57 ± 0.3086.75 ± 0.0886.67 ± 0.2483.15 ± 0.30EPA-EE/DHA-EE回收率 (%)58.44 ± 0.1365.43 ± 0.2183.57 ± 0.2263.59 ± 0.36tR2(min)17.10 ± 0.0417.25 ± 0.0517.40 ± 0.0517.51 ± 0.04tR3(min)21.47 ± 0.0421.80 ± 0.0322.07 ± 0.0722.30 ± 0.06Rs11.43 ± 0.021.32 ± 0.031.27 ± 0.021.06 ± 0.02Rs21.07 ± 0.021.02 ± 0.011.02 ± 0.020.96 ± 0.025样品浓度对分离效果的影响在工业生产中,增加样品的浓度可以增强色谱处理能力,而降低浓度有助于促进分析物向色谱填料材料的分配和吸附过程,从而提高目标物质与杂质的分离度。然而这种改进是以相应的回收率降低为代价。图6 展示了不同浓度的鱼油乙酯与甲醇混合的 RP-MPLC 色谱曲线,并附 表5。随着鱼油乙酯浓度的增加,EPA 和 DHA 乙酯的纯度下降,而回收率、保留时间和分辨率表现出增加。相反,使用纯鱼油注射降低了 EPA 和 DHA 乙酯的分离因子,实现了 1.23 的前杂质分离因子和 1.10 的后杂质分离因子,纯度为 85.75%。EPA 和 DHA 乙酯的回收率随着样品的浓度稳步增加,达到纯鱼油时的峰值 74.62%。为了最大化生产效率,选择了纯鱼油乙酯。▲ 图6. 不同纯度样品 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表5. 不同浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响样品浓度g/mL0.250.51PureEPA-EE/DHA-EE纯度 (%)87.19 ± 0.1986.63 ± 0.2886.11 ± 0.1185.75 ± 0.15EPA-EE/DHA-EE回收率 (%)50.47 ± 0.0858.65 ± 0.0762.21 ± 0.0874.62 ± 0.05tR2(min)15.86 ± 0.0317.51 ± 0.0417.61 ± 0.0317.72 ± 0.02tR3(min)18.07 ± 0.0620.69 ± 0.0621.47 ± 0.0421.92 ± 0.03Rs11.38 ± 0.031.35 ± 0.021.29 ± 0.021.23 ± 0.04Rs21.31 ± 0.041.27 ± 0.031.13 ± 0.021.10 ± 0.036
  • 沃特世推出全新SFC制备柱,助力纯化方法的放大研究
    全新Torus色谱柱可有效满足分析级到制备级的非手性SFC分离要求 沃特世公司(纽约证券交易所代码:WAT)今日隆重推出四款全新制备型超临界流体色谱(SFC)柱,为Torus™ SFC色谱柱产品系列再添新成员。这四款新的非手性SFC色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。 智能新闻发布(Smart News Release)拥有多媒体功能。如需查看完整新闻稿,请访问:http://www.businesswire.com/news/home/20161219005035/en/ 沃特世全新非手性超临界流体色谱柱专为纯化实验室而设计,适用于药物化合物、天然产物或合成化学品分离方法的放大研究。(图片:美国商业资讯)。 圣地亚哥专用药品制药公司及研究机构Dart Neuroscience LLC最近评估了Torus色谱柱对小分子药物化合物的纯化性能。该公司的结构化学副总监Gerard Rosse表示:“全新Torus 2-PIC固定相能够有效避免保留损失,在采用甲醇和0.2%氢氧化铵分析碱性、中性和酸性类药分子时,能带来出色的选择性和优异的峰形。2-PIC色谱柱极具应用前景,有望成为一款通用型SFC固定相。” 沃特世公司消耗品团队副总裁Jeff Mazzeo指出:“两年多前,我们推出了Torus SFC分析柱并取得了不俗的成绩。此后,我们不断拓展Torus SFC色谱柱系列,以期为客户提供更多具有不同分离性能和分离能力的产品。对于采用Torus 1.7 μm色谱柱实现了标准化的实验室而言,现在可以直接放大分离方法,轻松开展更大规模的化合物纯化。而对于利用正相液相色谱法进行分析的人员,该系列色谱柱将推动其深入探索SFC的诸多优势,譬如优异的稳定性、更长的色谱柱使用寿命、更快的分离速度、更低的溶剂处置成本,以及更加环保的实验室。” Torus色谱柱适用于从分析级到制备级的所有非手性分离专用于制备级SFC分离的Torus色谱柱将赋予研究人员强大的分离能力,以全面满足其加速方法开发、将分析级非手性分离放大为制备级分离的需求。这些色谱柱以全新的专利键合填料为基础,提供四种不同的固定相,具有选择性广、稳定性高、重现性好等特点,可确保日间和批次间的分析一致性。Torus 1.7和5 μm色谱柱有四种填料可供选择:2-氨甲基吡啶(PIC)、二乙胺(DEA)、高密度二醇(DIOL)和1-氨基蒽(1-AA),并提供多种内径和柱长规格,且与Waters SFC 100系统及其它市售制备型SFC仪器搭配销售。 更多信息:www.waters.com/torus 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司已开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 超临界流体色谱实战丨薰衣草精油中芳樟醇的分离纯化制备
    背景近年来,随着生活水平的提高,精油在生活中使用越来越多。精油具有特殊的香气,可应用于身体保健、美容护肤、情绪调节等方面,正在成为现代人追求健康生活的新趋势。精油中的许多香气成分是手性化合物,手性化合物的对映体之间闻起来的味道并不相同,对映体的比例变化会直接影响到精油的品质和使用感受。因此在精油开发过程中对映体的比例确认尤为重要,本文将介绍一种使用Nexera UC快速分离与高回收率制备薰衣草精油中芳樟醇对映体的方法。芳樟醇对映体的分离使用岛津Nexera UC手性筛查系统对薰衣草精油中芳樟醇对映体进行分离。经过条件优化,最终仅需2.5分钟即可成功分离出芳樟醇的对映体。分析条件和结果如下:分析条件薰衣草精油中芳樟醇对映体的色谱图芳樟醇对映体的纯化制备岛津Nexera UC超临界流体色谱仪高效可靠,检测灵敏,搭配灵活,满足各类应用要求。上述Nexera UC手性筛选系统通过连接馏分收集器升级为分析级馏分收集系统,一机兼具分析与纯化制备功能。使用与分析时相同的色谱条件,对市售的芳樟醇样品溶液(20g/L)进行纯化制备,结果显示,升级后的Nexera UC分析级馏分收集系统顺利纯化制备(+)-芳樟醇和(-)-芳樟醇对映体,搭配岛津LotusStream气液分离器*,样品回收率均超97%。芳樟醇对映体的制备色谱图芳樟醇对映体的回收率薰衣草精油中芳樟醇对映体的纯化制备市售的薰衣草精油经过简单稀释处理,使用上述分析条件和系统进行纯化制备,结果显示Nexera UC分析级馏分收集系统顺利制备出薰衣草精油中的芳樟醇对映体;对收集到的芳樟醇对映体馏分进行进一步分析发现,薰衣草精油中(+)-芳樟醇和(-)-芳樟醇对映体被有效分离纯化,对映体的馏分纯度均超过99%。薰衣草精油的制备色谱图芳樟醇对映体馏分再分析的色谱图芳樟醇对映体馏分的纯度(峰值检测:0.5-4.0分钟)结论本文介绍了使用Nexera UC对薰衣草精油中香气成分芳樟醇分离纯化制备的方法,该方法可快速准确地分离芳樟醇的对映体,馏分回收率高,制备纯度高。Nexera UC分析级馏分收集系统可用于从分析到纯化制备的应用,有效提高在开发过程中手性化合物分离和纯化制备的整体效率。实验涉及的设备Nexera UC手性筛选系统Nexera UC分析级馏分收集系统本文内容非商业广告,仅供专业人士参考。
  • 【视频采访】上海科哲制备液相、大型纯化系统助力药物筛选
    p style=" line-height: 1.5em text-indent: 2em " 在第十九届中国制药原料展会(CPhI)上,上海科哲生化科技有限公司的总工程师张建明,为我们介绍了几款非常有特色的产品。 /p script src=" https://p.bokecc.com/player?vid=10DC13BE69DBD1FD9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p style=" line-height: 1.5em text-indent: 2em " 首先是CRO企业研发用的制备液相色谱仪,主要用于有机合成和药物筛选。据介绍,该产品可以取代进口,有助于相关企业提升效益。其次是大型高通量的纯化系统,CRO企业可用其做药物筛选。 /p p style=" line-height: 1.5em text-indent: 2em " 另外两款和医药行业紧密相关的仪器产品,分别是螺旋接种仪和全自动菌落计数仪,主要用于微生物检测。 /p p style=" line-height: 1.5em text-indent: 2em " 中药中黄曲霉素是一项重要的指标,对人们身体健康有很大影响。上海科哲拥有国内先进的荧光检测器和液相色谱技术,针对中药和天然产物领域,上海科哲提供了黄曲霉素检测解决方案和检测工具。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p style=" text-align: center " span style=" color: rgb(79, 97, 40) " strong 扫码关注 span style=" color: rgb(0, 112, 192) " 【3i生仪社】 /span ,解锁更多生命科学资讯 /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/2a2405d2-1764-46a1-ad46-620347ebc1f4.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p
  • 剑指制备液相色谱市场——探访上海科哲制备纯化产品线
    p style=" line-height: 1.5em text-align: justify " & nbsp & nbsp strong 仪器信息网讯 /strong 2018年10月31日-11月2日,为期三天的慕尼黑上海分析生化展在上海新国际博览中心召开。在本次展会上,上海科哲以“药品与食品、环境”为主题,携众多新品亮相。在展会现场,科哲展示了其最新推出了的制备液相系统Prepchromaster系列产品,仪器信息网也就最新的PrepChromaster制备色谱系列的产品特点以及市场战略采访了上海科哲。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201811/uepic/6afa0772-efff-439d-9957-7513ae83d97d.jpg" title=" IMG_2944111.jpg" alt=" IMG_2944111.jpg" / strong style=" line-height: 1.5em " & nbsp & nbsp & nbsp /strong /p p style=" text-align: justify " span style=" line-height: 1.5em " & nbsp & nbsp /span span style=" line-height: 1.5em " & nbsp & nbsp /span span style=" line-height: 1.5em " 为了满足中药与天然产物分离纯化领域的需求,上海科哲推出了PrepChromaster品牌,为该领域提供制备色谱解决方案。PrepChromaster-7000型是一款连接快速色谱和传统高压制备高效液相色谱的二元制备色谱设备,主要应用于药物活性成分、天然产物研究,合成化学分离纯化,在节省制备成本的同时极大地提高了分离纯化的效率。系统最大制备量可达百克级, /span span style=" line-height: 1.5em " 可适配10-100mm直径的各类色谱柱;本系统梯度流量250ml/min,最大系统流量可达500ml/min;高质量的液相泵系统,可实现精准的流速和二元梯度混合。 /span /p p style=" text-align: justify " span style=" line-height: 1.5em " /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/b510ece6-7581-47a9-a976-29bf4077e4f5.jpg" title=" PC7000.jpg" alt=" PC7000.jpg" / /p p style=" text-align: justify " span style=" line-height: 1.5em " /span br/ /p p style=" line-height: 1.5em text-align: center " PrepChromaster-7000型高压制备色谱系统 /p p & nbsp & nbsp & nbsp & nbsp 此外,上海科哲也启用PuriMaster品牌,专注于中药分离纯化。PuriMaster-3000制备色谱系统是为满足大型纯化实验室的分离纯化需求的制备型HPLC系统,是国内第一个实现四波长同时检测的制备色谱仪,产品高度自动化、具有极高的性价比。& nbsp /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/31d33cd3-5d54-417b-a6ee-d4023a0cbdb2.jpg" title=" 3000A.jpg" alt=" 3000A.jpg" / /p p style=" line-height: 1.5em text-align: center " PuriMaster-3000A型二元全自动制备色谱系统 /p p style=" text-align: justify " & nbsp & nbsp & nbsp /p p style=" line-height: 1.5em text-align: justify " strong & nbsp & nbsp & nbsp & nbsp 仪器信息网:上海科哲在本次慕尼黑生化展上带来了哪些新品?产品有什么特点? /strong /p p style=" line-height: 1.5em text-align: justify " & nbsp & nbsp & nbsp strong & nbsp 科哲: /strong 本次展会上,我们带来了最新型的模块化制备色谱系统Prepchromaster系列产品。该系列产品主要服务于新药研发过程中的样品纯化,产品性能基本可与进口产品并驾齐驱,可以替代高价的进口制备色谱仪,为新药研发单位节约大量资金,增强竞争力。 /p p style=" line-height: 1.5em text-align: justify " strong & nbsp & nbsp & nbsp & nbsp 仪器信息网: /strong strong 据我所知,做制备液相的厂家非常多,可以说这是一个红海市场,上海科哲为何会进入这样的市场,是如何考虑的? /strong /p p style=" line-height: 1.5em text-align: justify " strong & nbsp & nbsp & nbsp & nbsp 科哲: /strong 上海科哲可以说是国内最大的薄层色谱仪生产商,我们主要服务于医药研发行业。在与客户交流时,我们发现在新药开发的过程中,药品纯化,拿到目标单体的任务是非常繁重的,并且是研发过程中一个瓶颈。与分析实验室相比,医药研发的用户拥有各种各样的制备液相,但据客户反馈,由于需求是非常多样化的,没有一个品牌的制备液相能满足所有需求。 /p p style=" line-height: 1.5em text-align: justify "   我们制备色谱这个领域仍被进口厂商统治。而 span style=" line-height: 1.5em " 国产产品在工业化制备与非自动化的实验室制备上虽然有很多进步,但总体上,仪器比较的单一,自动化程度不足,在实验室制备中没有获得压倒性优势。我们发现无人化或省人化制备是一个切入点,所以这个领域虽然竞争激烈,但个性化需求也强,综合考虑后,我们还是决定在制备液相色谱产品线上投入资源,为CRO公司、新药研发机构提供解决方案,提高筛选与药物代谢分析的工作效率。 /span /p p style=" line-height: 1.5em text-align: justify " & nbsp & nbsp & nbsp & nbsp strong 仪器信息网:该 /strong strong 系列产品科哲公司的定位是什么,核心竞争力在哪? /strong /p p style=" line-height: 1.5em text-align: justify " & nbsp & nbsp & nbsp & nbsp strong 科哲: /strong 无人化制备纯化专家是我们对自己的定位,我们希望能够打破进口仪器在这个领域的垄断。我们拥有多年的技术积淀,具有很强的竞争优势。 /p p style=" line-height: 1.5em text-align: justify "   包括,自动进样器领域,具有完全的知识产权。 span style=" line-height: 1.5em " 可能不为大家所知的是,6年以前我们就掌握了自动进样技术。我们的薄层色谱点样仪就是全自动进样的,掌握了自动进样器,馏分收集器就比较简单了。 /span span style=" line-height: 1.5em " 并且,我们具有较深的光电基础,还掌握了多种液相检测器技术,如多波长紫外、荧光、蒸发光,电导,PH等。从知识产权来说,我们掌握的很齐全,可以提供各种解决方案。另外,我们也非常系统的进行了 /span span style=" line-height: 1.5em " 液相色谱泵以及阀等核心部件与系统整合的研究与实验。 /span /p p style=" line-height: 1.5em text-align: justify "   我们还建立了以博士为核心的应用技术团队,同时,软件设计上也体现了我们对用户的理解,给用户带来人性化的使用体验。 /p p style=" line-height: 1.5em text-align: justify "   整个PrepChromaster制备液相系列产品又分中压与高压两个系列分支,可以很好的满足CRO与新药开发用户需求。 /p p style=" line-height: 1.5em text-align: justify "   strong 仪器信息网:之前上海科哲参与的国家科学仪器重大专项是否对这系列产品的研发带来了帮助? /strong /p p style=" line-height: 1.5em text-align: justify "   strong 科哲: /strong 2012年,上海科哲承担的国家科学仪器重大专项,使我们在精密机械、光学、软件、电子等领域的技术有了很大的提高,产生了大量技术外溢,而无人化制备纯化系统也因此受益。吉林大学、成都中医药大学、中科院上海药物所等用户在试用产品之后,都给予了 span style=" line-height: 1.5em " 好评,所以我们有信心成为中国无人化制备液相的先锋。 /span /p p br/ /p
  • 赛谱发布蛋白纯化层析系统赛谱SDL新品
    实验室蛋白纯化层析系统一体机SDLSDL蛋白纯化层析系统是为重组蛋白、抗体、疫苗、血液制品、多肽等生物样品的纯化制备而专门设计的一款自动化程度高的一款仪器。 SDL蛋白纯化层析系统采用固定模块配置,一体化设计,节省空间,适合放进冷库或者台面,各模块都面向使用者,更容易了解各模块之间的关系。SDL蛋白层析系统可用于:蛋白纯化;疫苗纯化;单抗纯化;血液制品分离纯化;多肽纯化;基因治疗药物纯化;天然药物和多糖的纯化等领域;进样模式手动进样双泵A1/A2、B1/B2,收集器、pH、电导、紫外、温度检测模块。流动相经过的模块以及管路会用绿色标记出来。可以手动进样,进样后进样阀会按照设置好的程序自动切换到Inject模式,实现进样。系统泵进样双泵A1/A2、B1/B2,收集器、pH、电导、紫外、温度检测模块。流动相经过的模块以及管路会用绿色标记出来。样品体积比较大的情况下,可以采用系统泵进样,直接将样品通过系统泵输入色谱柱。系统特点品质可靠的系统部件主要元部件均由精选欧美知名厂商制造,多数合作开发,性能优越,品质可靠。与样品接触的各部件均采用PEEK、蓝宝石、红宝石等生物惰性材料,具有良好的生物兼容性。精确连续的液体流速原装进口双柱塞杆二元梯度泵,泵头为PEEK材质,前置设计便于清洗维护。泵头带有自冲洗功能,避免纯化生物样品时,盐等在泵头析出,造成仪器损坏和污染;输液泵采用电子压力脉动抑制技术,为蛋白层析系统提供良好的梯度精确度和重复性,保证纯化结果的重现性;精确即时的检测环境紫外检测器为原装进口DAD检测器,同时提供多个波长的信号输出,可方便实时监测分离组分的纯度;pH/电导检测器,可精确的提供pH和电导率的实时监测,并可根据需要对pH和电导率进行温度补偿,以获得更准确的监测;智能化配置,享受工作的乐趣全新组分收集器,配备多种收集架,支持多种收集方式,便于对目标物的纯化收集;各种阀(收集阀、柱位阀、进样阀、柱选择阀、电磁阀等)均为国际知名厂商定制,原装进口,用户可根据实际需要选择;专业及时的售后服务团队专业的售后服务团队,2小时给予回复,24小时到达现场解决问题。软件终生免费升级。创新点:该产品与上一代仪器的主要创新点: 1、SCG产品(上一代)为分体式结构,客户根据不同的配置,安装不同的模块。SDL为一体机,整台仪器为固定配置。 2、一体机在整个外观与SCG差别较大,主要为科研机构,配置较低的用户设计,整体布局设计简约而不简单。 蛋白纯化层析系统赛谱SDL
  • 汉邦科技举办《制备液相色谱分离纯化及应用技术研讨会》
    2012年11月6日&mdash 9日,江苏汉邦科技有限公司在淄博、济南、石家庄三地举办了《制备液相色谱分离纯化及应用技术研讨会》,300多位制药等领域的专家、学者到会。 江苏汉邦科技有限公司是主要从事液相色谱设备研制、生产和应用技术开发的高新技术企业,现已形成液相色谱分析仪器、液相色谱制备分离设备、模拟移动床连续色谱系统和超临界液相色谱装备等的分离纯化产品集群,同时专注于化学药物、植物药物、多肽药物等有效成分的分离纯化工艺的开发,是中国最大的液相色谱纯化设备研发和制造商。 会议报告: 《天然产物的分离纯化》 《高压、中低压液相色谱分离纯化设备和应用技术》 《模拟移动床(SMB)色谱及其应用技术研究》 《反相色谱在合成肽分析、纯化中的应用》
  • 从CISILE 2014看生物制药分离纯化技术发展
    仪器信息网讯 近年来,全球医药市场的发展中心逐渐由小分子化学药转向大分子生物药,预计到2020年,全球生物医药的销售额将达到1400亿美元,生物医药的全球销售比重将超过三分之一。而各大跨国药企对生物制药的投入不断扩大,如2013年罗氏宣称拟投资8亿瑞郎用于全球生物药品的生产,2014年三星公司宣布以至少20亿美元的投资进军生物制药市场。   当今影响生物制药发展的重要技术之一是分离纯化技术。来自北京赛升药业股份有限公司的孔双泉在CISILE 2014&ldquo 药物纯化、检测技术专题论坛&rdquo 上分析了现有生物制药行业所用的分离纯化技术特点以及新兴纯化技术的发展。   从机理上划分,生物制药行业现行的分离纯化技术主要有五大类:基于溶解度差异的分离纯化技术、基于分子大小差异的分离纯化技术、基于选择性吸附差异的分离纯化技术、基于电荷不同的分离技术 、基于对配体亲和力差异的分离技术。   以基于溶解度差异的分离纯化技术为例,其主要包括盐溶盐析法、有机溶剂沉淀法、等电点法、双水相萃取法和反胶团萃取法,每种方法均有其明显的特点或适合分离的对象。 方法 特点 盐溶盐析法 优点是温度系数小而溶解度大 有机溶剂沉淀法 多用于生物小分子、多糖及核酸产品的分离纯化;低温一般先冷却&mdash 20度;常与其他沉淀方法联用。 等电点法 适用于低温操作.因对于许多生物分子等电点比较接近,故此法常与其他方法结合使用,较难扩大生产。 双水相萃取法 与传统的分离技术相比,具有操作条件温和、处理量大、易连续操作等优点。 反胶团萃取法 具有选择性高、萃取过程简单,正萃、反萃同时进行,能有效防止大分子失活、变性。其不足之处包括:普通离子型表面活性剂可能对产品产生污染;常用的离子型表面活性剂容易造成蛋白质的变性和失活。   从报告中获悉,现行的膜分离技术常用的膜有四种:用于细菌和病毒分离的微滤膜 用于蛋白质和多肽分离的超滤膜 用于抗生素、合成药物、核苷酸、无机盐分离的纳滤膜 用于无机盐分析的反渗透膜。   从纯化策略上看,生物制药的分离纯化主要分四个阶段:样品准备(破碎、过滤和离心)、粗提(分离、浓缩和稳定样品)、中度纯化(去除大部分杂质)和精细纯化(高纯度)。当前较为成熟的生物分离纯化技术如IEX、HIC等具有不同的特色。 层析技术 主要特色 粗提 中度纯化 精细纯化 IEX 高分辨率、高载量、快速 ★★★ ★★★ ★★★ HIC 分辨率好、载量一般、快速 ★★ ★★★ ★ AC 高分辨率、高载量、快速 ★★★ ★★★ ★★ GF 高分辨率 ★ ★★★ RPC 高分辨率 ★ ★★★   分离纯化工业化影响因素主要来自设备和分离介质,目前生物制药企业纯化工业所使用的设备主要有GE AKTA Pure 蛋白质层析纯化系统、 高分辨率的分析制备平台&mdash &mdash BioLogic DuoFlow中高压层析系统以及北京创新通恒第三代工业化生产HPLC系统 分离介质主要有BIO&mdash RAD公司适合工业化的耐受高压层析介质-UNOsphere SUPrA 亲和介质和UNOsphere Q 阴离子交换介质、利用灌注层析技术制备层析介质-POROS胶体是灌注层析技术的填料以及PALL公司HEA和PPA HyperCelTM混合模式填料。   基于生物制药纯化对高通量、高分辨率等的追求,分离纯化技术也得到了快速发展,主要有三种:第一,扩张床吸附技术,该技术结合了澄清、浓缩及产品捕捉三个步骤,在基因工程产品的分离纯化过程中得到较好的发展 第二,径向膜层析技术,该技术由于流向的截面积大,具备了纯化速度快处理量大以及简单通过改变柱长便可增加上样量的特点,利于放大生产 第三,置换层析技术,与传统的洗脱层析技术相比,其明显的优势在于高上样量、高产率、高分辨率、易于操作等。   目前生物纯化技术的设备主要是以GE公司的AKTA系统,据了解,该产品在生物制药企业的全球市场占有率在90%左右,中国生物制药市场的占有量几近100%。相关消息显示,国内有研究机构和仪器制造企业已经着手生物纯化设备产品的研发,并已进入研发后期。在生物制药快速发展的今天,生物纯化设备也将得到快速的发展。(撰稿:杨改霞)
  • 【阿拉丁】FITC标记多糖——荧光探针下的多糖世界
    FITC标记多糖——荧光探针下的多糖世界 荧光素异硫氰酸酯(Fluorescein Isothiocyanate, FITC)是一种绿色荧光染料,广泛应用于生物标记和成像技术。多糖作为重要的生物大分子,参与了众多生物过程和功能。将FITC标记在多糖上,使其在荧光显微镜或流式细胞仪等设备下进行可视化和定量分析,在生物医学研究中具有重要意义。本文将着重介绍几类常见的FITC标记多糖,并详细讨论其在实验技术和生物医学应用中的重要作用。 常见的FITC标记多糖 FITC标记透明质酸 透明质酸(Hyaluronic Acid, HA)是一种天然存在于结缔组织、上皮组织和神经组织中的多糖。它在组织修复、细胞迁移、肿瘤生物学等方面具有重要作用。通过FITC标记透明质酸,可以实现对其在细胞和组织中的动态分布和代谢途径进行研究。 FITC标记葡聚糖 葡聚糖(Dextran)是一种由葡萄糖单元组成的多糖,常用于血浆扩容剂和药物载体。FITC标记葡聚糖主要用于研究其在生物体内的分布和清除过程,以及在药物输送系统中的作用。 FITC标记几丁质和壳聚糖 几丁质(Chitin)和壳聚糖(Chitosan)是由N-乙酰葡糖胺和葡糖胺组成的多糖,广泛存在于甲壳类动物的外骨骼中。FITC标记几丁质和壳聚糖用于研究其在生物降解、生物相容性以及作为药物递送载体中的应用。 FITC标记海藻酸钠 海藻酸钠(Sodium Alginate)是一种从褐藻中提取的阴离子多糖,常用于生物材料和药物递送系统。通过FITC标记海藻酸钠,可以研究其在生物材料中的作用和性能,如细胞包裹和释放机制。 实验技术 荧光显微镜成像 FITC标记多糖在荧光显微镜下具有优异的成像效果。通过共聚焦显微镜,可以获得多糖在细胞内外的三维分布图像,研究其在细胞迁移、组织修复和药物递送中的动态变化。1. 样品制备:将FITC标记的多糖加入细胞培养基中,与细胞共同孵育一段时间后,固定细胞并进行染色。2. 成像:使用共聚焦显微镜对样品进行成像,获取多糖在细胞中的分布图像。 流式细胞术分析 流式细胞术是用于定量分析FITC标记多糖在细胞表面结合和摄取情况的重要技术。通过检测细胞内外的荧光强度,可以研究多糖与细胞表面受体的相互作用及其在细胞内的代谢过程。1. 细胞处理:将FITC标记的多糖加入细胞悬液中,与细胞孵育适当时间后,用缓冲液洗涤去除未结合的多糖。2. 检测分析:使用流式细胞仪检测细胞的荧光强度,分析多糖在细胞中的结合和摄取情况。 生物材料表征 FITC标记多糖在生物材料中的应用广泛,通过荧光标记技术可以直观地观察多糖在材料中的分布和降解情况。1. 材料制备:将FITC标记的多糖掺入生物材料中,制备成所需形态(如水凝胶、薄膜)。2. 表征分析:使用荧光显微镜或荧光光谱仪检测材料中的荧光分布,研究多糖在材料中的分布和降解特性。 生物医学应用 细胞成像与跟踪 FITC标记透明质酸、葡聚糖等多糖在细胞成像中应用广泛。通过荧光显微镜,可以实时跟踪多糖在细胞内外的分布,研究其在细胞迁移、组织修复和肿瘤生物学中的作用。1. 细胞迁移:FITC标记透明质酸可以用于研究其在细胞迁移过程中的作用,揭示其在创伤愈合和癌细胞转移中的机制。2. 组织修复:通过标记透明质酸,可以研究其在组织修复中的分布和作用,优化治疗策略。 药物递送系统 FITC标记海藻酸钠、壳聚糖等多糖在药物递送系统中的应用,为提高药物的靶向性和疗效提供了新的思路。通过荧光追踪技术,可以监测药物在体内的分布和释放情况,优化药物递送系统。1. 药物释放监测:FITC标记海藻酸钠微球可以用于研究其作为抗癌药物载体的效果,追踪药物在肿瘤组织中的释放和分布。2. 靶向递送:FITC标记壳聚糖纳米粒子可以用于研究其在靶向递送中的性能,提高药物的治疗效果和减少副作用。 疾病诊断与治疗 FITC标记多糖在疾病诊断和治疗中具有重要应用。通过荧光标记技术,可以开发新的生物标志物用于疾病的早期诊断和疗效监测。1. 早期诊断:FITC标记透明质酸可以用于检测血清中透明质酸水平的变化,作为肝纤维化的早期诊断标志物。2. 疗效监测:通过标记多糖,可以实时监测治疗过程中生物分子的动态变化,评估治疗效果。 生物相容性与免疫研究 FITC标记几丁质和壳聚糖在生物相容性和免疫研究中应用广泛。通过荧光标记技术,可以直观地观察多糖与细胞或组织的相互作用,评估其生物安全性和免疫调节作用。1. 生物相容性:FITC标记壳聚糖可以用于研究其在生物医用植入材料中的生物相容性,优化其制备工艺和应用效果。2. 免疫调节:FITC标记细菌多糖可以用于研究其在免疫细胞中的摄取和处理机制,揭示其在感染和免疫调节中的作用。 技术挑战与解决方案 尽管FITC标记多糖在生物医学研究中具有广泛的应用前景,但在实际操作中仍存在一些技术挑战。1. 标记效率:多糖分子结构复杂,标记位点有限,可能导致标记效率较低。通过优化反应条件,如调整pH值、反应温度和时间,可以提高标记效率。2. 标记均一性:多糖分子大小和结构的异质性可能导致标记的不均一性。为克服这一问题,可以通过改进多糖的纯化和预处理方法,获得更加均一的多糖样品。3. 标记稳定性:FITC标记的多糖在储存和使用过程中,可能会发生荧光淬灭或脱落。为提高标记稳定性,可以优化标记反应条件,并在储存和使用过程中注意避光、防潮,低温保存。 未来发展方向 随着生物医学技术的发展,FITC标记多糖的应用前景将更加广阔。1. 多功能标记:通过结合多种荧光染料,可以实现多功能标记,研究多种生物分子的相互作用和调控机制。2. 智能药物递送:开发基于FITC标记多糖的智能药物递送系统,实现药物的可控释放和靶向治疗,提高治疗效果。3. 高通量筛选:通过高通量筛选技术,开发新型FITC标记多糖,应用于生物医学研究和临床诊断。 结论 FITC标记多糖在生物实验和生物医学研究中具有重要应用。通过荧光标记技术,可以实现多糖在细胞和体内的可视化和定量分析,促进了多糖在细胞迁移、组织修复、药物递送、疾病诊断和治疗等方面的研究。尽管在技术应用中仍面临一些挑战,但通过不断优化和改进,FITC标记多糖将在未来生物医学领域发挥更加重要的作用。 阿拉丁:https://www.aladdin-e.com
  • 核酸提取纯化和浓缩方法应该选_____
    自20世纪诞生以来,分子生物学迅速发展并在整个生命科学领域广泛渗透和应用,推动了传统医学进入基于分子层面实验科学的现代生物医学时代。核酸提取和纯化是分子生物学试验的基础,在以下应用实验中都需要进行核酸提取: ● 分析基础研究和疾病研究中的基因表达;● 跟踪对药物治疗的反应(例如,在抗病毒治疗期间和之后监测病毒滴度);● 识别新物种并深入了解进化过程 (例如,Ancient DNA分析);● 对人类、动物和植物中引起传染病暴发的病原体进行监测和分类;● 通过微生物检测和量化监测食品和水安全;● 诊断疾病 (如基因疾病,癌症,免疫学缺陷)。核酸提取纯化基本步骤 核酸纯化方法是影响提取核酸质量高低的最重要因素之一,也是下游分子生物学试验成败的关键,遵循提取纯化原则以及选择合适的纯化、浓缩方法,可以使核酸的质量及回收率达到最大化。 核酸提取纯化原则和要求 ● 需要保证核酸一级结构的完整性,为下游实验做准备;● 排除其它核酸分子的污染(提取DNA时排除RNA的干扰,反之亦然);● 核酸样品中没有对酶有抑制作用的有机溶剂和高浓度的金属离子;● 将核酸样品中其它生物大分子如蛋白质、多糖和脂类分子的污染降到最低程度。 核酸提取纯化的常见方法溶液抽提法经典的DNA提取方法:酚氯仿抽法,主要是使用两种不同的有机溶剂交替抽提将蛋白去除。通过苯酚氯仿处理细胞破碎液或者组织匀浆后,在水相中主要溶解的是以DNA为主的核酸成分,在有机相中主要是多糖和脂类物质,蛋白质则沉淀于两相之间。离心分层后取出水层,多次重复操作,再合并含核酸的水相,利用核酸不溶于醇的性质,用乙醇沉淀核酸,之后再离心分离和溶解洗脱,最后通过将洗涤后的核酸沉淀进行浓缩干燥即可得到高纯度核酸。 离心柱法(柱膜法)通过特殊硅基质吸附材料,能够特定吸附DNA,而RNA和蛋白质顺利通过。硅胶膜表面的硅醇基团呈弱酸性,其水化后带负电。当溶液中存在一定浓度的阳离子后,形成的阳离子桥能够中和DNA和硅醇基团之间的表面负电荷,从而使DNA牢固地吸附在硅胶膜表面。反之,处于低盐水溶液状态下时,由于硅胶膜的硅醇基团与DNA磷酸基团之间的静电排斥,硅胶膜释放DNA。 利用高盐低PH结合核酸,低盐高PH值洗脱,来分离纯化核酸。离心柱纯化也是试剂盒提取中广泛的使用方法。磁珠法运用纳米技术对超顺磁性纳米颗粒的表面进行改良和表面修饰后,该磁珠能在微观界面上与核酸分子特异性地识别和高效结合。磁珠法利用了磁性颗粒活性基团在一定条件下可与核酸结合和解离的原理,先使用细胞裂解液裂解细胞,带有活性基团的磁性颗粒可特异性吸附从细胞中游离出来的核酸分子,而样品中的其他干扰物则很好的移除了,在磁场作用下,磁性颗粒与液体分开完成,最后回收颗粒(即磁珠-DNA 混合物),再用洗脱液洗脱,纯化浓缩后即可得到纯净的DNA,获得质量较高的核酸模板。 提取纯化方法的选择一般地,分离纯化步骤越多,核酸的纯度也越高,但得率会逐渐下降,完整性也愈难以保证。相反,通过分离纯化步骤少的实验方案,我们可以得到比较多的完整性较好的核酸分子,但纯度不一定很高。这需要结合核酸的用途而加以选择。如果对核酸提取的质量要求不高,可以选择经济实惠的溶液法,选择柱膜法还是磁珠法自动化提取,基本上取决于样本数量,针对大批量的样本,优选磁珠法自动化提取。如果对样本数量较少,则可以选择柱膜法,既快速又经济实用。对于Oligo寡核苷酸的纯化,实验要求更高。(可参考往期推文) 不管采用哪一种核酸提取纯化方法最后都离不开浓缩干燥! ● 再浓缩核酸样品,随着核酸提取试剂的逐步加入,以及去除污染物过程中核酸分子不可避免的丢失,样品中核酸的浓度会逐渐下降,甚至影响到后面的实验操作或不能满足后继研究与应用的需要时,需要对核酸进行浓缩,可将150uL DNA水溶液浓缩至10uL再进行测序;● 去除DNA样品中醇的残留,当DNA样品中有乙醇的残留会影响测序反应;● 干燥DNA样品。DNA沉淀后可能会含水或水/乙醇混合液,浓缩去除后可以得到干燥的DNA样品。常用的干燥方法:风干VS真空离心浓缩仪应用案例分享WTCHG(牛津大学人类遗传学威康信托中心) 使用Sequenom MassARRAY® SNP 基因分型系统用于SNP分析,样品前制备过程分别使用风干(左)和Genevac EZ-2真空离心浓缩仪(右)干燥含有寡核苷酸样品的384孔板。下图结果表明,使用EZ-2真空离心浓缩仪干燥寡核苷酸样品,可以大大降低样品降解率,保证样品不会被污染,消除了样品损坏的潜在来源。深绿色-高样本数据质量浅绿色-中等样本数据质量红色-样品质量差或无数据使用真空离心浓缩仪,可以避免核酸浓缩干燥遇到的过度加热、绝对干燥、交叉污染及紫外损害保证核酸样品的完整性。Genevac真空离心浓缩仪浓缩干燥DNA样本,Genevac真空离心浓缩仪是合适的选择,Genevac系统广泛应用于DNA样品制备与纯化处理,不论是处理PCR前的简单的小体积浓度DNA pellets,还是高通量处理许多纯化DNA或寡核苷酸的样品,都有不同的机型可供选择。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。 Genevac英国Genevac是德祥集团资深合作伙伴之一。英国Genevac公司成立于1990年,隶属SP Scientific旗下,一直专注于研究和生产各种离心蒸发浓缩设备,其产品广泛应用于生命科学、制药、化学、分析等领域。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 汉邦科技成功于台州、杭州举办《制备液相色谱分离纯化及应用技术研讨会》
    2012年12月10日&mdash 11日,江苏汉邦科技有限公司在台州、杭州举办了《制备液相色谱分离纯化及应用技术研讨会》,200多位制药、高校、测试中心等领域的专家、学者到会。 在大家的关爱下,江苏汉邦科技有限公司已形成液相色谱分析仪器、液相色谱制备分离设备、模拟移动床连续色谱系统和超临界液相色谱装备等的分离纯化产品集群,同时专注于化学药物、植物药物、多肽药物等有效成分的分离纯化工艺的开发,是中国最大的液相色谱纯化设备研发和制造商。 会议报告: 《汉邦简介》 《反相色谱在合成肽分析、纯化上的应用》 《从分析到制备&mdash 高压制备色谱技术交流》 《连续色谱和循环色谱应用技术》 《制备色谱在天然产物分离纯化中的应用及超临界的应用技术探讨》
  • 特邀报告精彩回放· 第四届制药分离纯化大会
    2017年9月21日,备受瞩目的第四届制药分离纯化技术与学术大会如期召开,来自全国100多家单位的近500名参会者兴致高昂地齐聚一堂,互相交流行业心得,聆听资深专家教诲,在其乐融融的氛围中,共享此次业界盛会带给大家的丰硕成果。9月21日第四届分离纯化技术与学术大会现场千呼万唤始出来:分离纯化领域的行业盛宴作为国内色谱分离纯化领域研发创新的排头兵,纳微科技兼顾软硬件方面的共同发力,不仅数十年如一日地坚持技术创新、研发突破,保证研发投入占比在40%以上,还应行业迫切需求首创分离纯化技术学术大会及相关实验培训班,至今已成功举办第四届。“以创新,赢尊重,得未来”,如今纳微科技已经越来越得到国内外顶尖制药企业及色谱领域公司的认可与信赖,我们愿与包括药企、食品企业等在内的广大用户共同努力、携手走向美好未来。 小编之所以称这场学术技术大会为行业盛宴,是因为此前曾在药企从事数年的新药研发、质量研究和工艺优化等工作,站在这样的立场上看待与会特邀嘉宾和报告嘉宾的论题,简直觉得字字珠玑,不容错过。非常荣幸的是,小编全程学习了特邀嘉宾的报告论题,现在试图根据自己的心得感悟整理成文,以飨读者。精华一:张玉奎院士从科研角度提出发展色谱行业的迫切需求 张玉奎院士从蛋白质组学角度介绍了他们的研究成果,并引用质谱行业领军企业的话:当务之急是要让色谱峰变得更窄!尽管当前质谱领域发展迅速,但其始终无法取代色谱分离纯化的地位,目前解决该问题的方法之一在于发展单分散填料。纳微科技实现单分散填料的技术突破后,为中国色谱行业的发展带来了新的希望,祝愿中国早日由色谱大国转变为色谱强国。精华二:郭中平处长发出监管标准改革最强音:更规范、更严格、全球新 在国家“健康中国”的战略发展背景下,生物制药的快速发展将使国家监管和标准体系面临新的挑战,实现生物制品国家标准与生物制药创新与产业升级的协同发展成为新形势下的重要任务。她还不无感慨的表示,十多年来首次看到政策表态国家标准药品“极端重要”,在我国政府深化改革和加入ICH的大背景下,严格规范的食品药品监督管理将进一步提升色谱分离纯化的重要性和紧迫感。精华三:魏开坤博士分享最前沿生物医药研发审评改革信息并作经验性指导 随着我国改革开放事业的发展,生物医药领域的研发和审评进入了一个由仿制为主向创新为主转变的转型时期。自2015年起,为了顺应我国生物医药领域的创新形势所需,国家食品药品监督管理总局按照国务院的部署,发力推进药品审评审批制度改革,逐步拓展为药品监管制度的全面变革。他简要分享了就生物医药方面的最新政策法规、新药研发挑战与机遇、评审决策要点及注意事项等方面的信息和理解,向行业传递监管当局的思想理念和方法策略,希望以此共同促进为人民服务的生物医药事业发展。目前我国CFDA已经加入国际人用药品注册技术协调会(ICH),下一步还要争取加入国际药品认证合作组织(PIC/S),并逐渐与国际水准接轨,实现新药“全球新”。精华四:江必旺博士介绍多年来技术创新成果,分享应用效果 江必旺博士作报告表示,生物分子结构的多样性以及监管部门对生物药的纯度要求越来越严格,使得生物药的分离纯化难度越来越大。因此,如何经济、高效的从复杂组分中浓缩、分离和纯化目标生物分子,往往是生物药生产的瓶颈。蛋白类层析或制备色谱分离纯化技术对结构复杂、稳定性差及浓度低的生物分子具有极高的分离纯化效率,且条件温和,在分离纯化过程中容易保持目标分子的生物活性,已成为生物药分离纯化最重要的工具。另外,高效液相色谱法(HPLC)作为一种高效、快速的分析检测技术,已成为生物药生产过程中产品质量监控的重要方法。色谱填料或层析介质毫无疑问是整个液相色谱技术的核心, 液相色谱的分离效果很大程度上取决于色谱填料;色谱技术重大进步往往是随着新的色谱分离材料的出现而突破的。他还分享了国内企业如何通过持续不断的技术创新突破国外在高性能的色谱填料和层析介质的长期垄断,以及产品从me too到me only的发展过程,最后他还通过大量生动详实的应用案例讲解如何选择合适的色谱填料和层析介质以解决抗体、蛋白、胰岛素、 多肽、抗生素、天然产物及多糖的分离纯化问题。
  • 疫苗纯化难题,月旭科技助你轻松解决
    疫苗,是2020年一个被频繁提及的词,在以后的很长一段时间里也会持续出现在大家的视野中。接种疫苗是预防和控制传染病经济、有效的公共卫生干预措施,对于家庭来说也是减少成员疾病发生、减少医疗费用的有效手段。 不同疫苗的生产时间各不相同,有的疫苗可能需要22个月才能生产出一个批次。疫苗的开发是一个漫长而复杂的过程,且成本很高。为保证疫苗的安全性和有效性,降低接种疫苗的副作用和杂质的免疫干扰,需要对疫苗进行有效的分离纯化,去除细胞培养液中的其它杂质,提高疫苗有效成分的含量和纯度。本文简要介绍了疫苗分离和纯化的当前方法,以及疫苗纯化技术的应用,发展和前景。疫苗纯化路线疫苗在研制方式、组成成分和物理、化学性质及原始来源等诸多方面都存在或大或小的差异,其分离纯化方法具有相对特殊性。针对不同的疫苗应选用不同的分离纯化路线,但一般而言,都包括两个基本阶段:初级分离和精制纯化。初级分离阶段的主要任务是分离细胞和培养液,破碎细胞释放产物(如果产物在细胞内),浓缩产物和去除大部分杂质等,这一阶段可选用的分离方法包括细胞破碎技术、离心沉降、盐析和超滤浓缩技术等;精制纯化阶段则选用各种具有高分辨率的技术,以使目的蛋白和少量干扰杂质尽可能分开,达到所需的质量标准,超速离心技术和各种层析技术成为当前达到此目的的主要方法。膜技术(粗纯技术)膜分离和超速离心纯化技术在疫苗、蛋白组分、多肽及生物大分子的纯化过程中有着广阔的发展前景。用该工艺制备的疫苗,纯度和性状符合规程要求,但抗原回收率相对较低、操作繁琐且周期长、技术设备要求高,近年来已逐渐为日臻成熟的层析技术所代替,在基因工程疫苗的研制中尤为如此。层析技术(精纯技术)凝胶过滤色谱也称为排阻色谱,凝胶渗透,凝胶色谱,分子筛色谱等。它是液相色谱中按分子大小分离的技术。它主要用于组分分离:脱盐,更换缓冲液,去除有害试剂,纯化蛋白质,肽,多糖等生物分子。具有更换缓冲液快速,温和,产率高。适用于任何缓冲液系统。 离子交换色谱离子交换色谱法是一种吸附色谱法,可根据样品电荷差异起到分离作用。它被广泛用于所有纯化阶段和所有规模生产,具有可控,高选择,高容量,样品浓缩和高回收率特点。另外,没有一种离子交换是完美的。选择正确的离子交换介质非常重要。不同的样品和不同的纯化目的需要不同的离子交换介质。此外,值得注意的是,样品在上样之前要进行处理:除去颗粒物(离心或过滤方法),调节pH和离子强度(使用脱盐或缓冲液交换方法)。 疏水色谱疏水色谱法是基于液相色谱中生物分子的疏水性的技术。它是离子交换技术,凝胶过滤技术和亲和色谱技术的补充。具有温和且不变性的纯化;这也是一种浓缩技术;它具有高选择性和高收率的特点。 亲和层析亲和色谱是一种通过生物分子之间的特异性相互作用来分离生物分子的技术。这是一种特别易于使用的方法,该方法简单易用,纯度高且样品浓缩。纯化蛋白质更常见,因为它易于使用。一步纯化可以使纯度大于95%,去除特定杂质并快速分离。它广泛用于分离单克隆抗体和多克隆抗体,融合蛋白,酶,DNA结合蛋白以及任何可以结合其配体的蛋白。用于传统疫苗和新型疫苗的纯化技术,必须依靠各学科相关技术之间的结合而发展起来的,至今尚无一项技术能单独承担分离纯化的全过程。创新的分离纯化工艺,往往是由多项新技术和原有技术的优势组合而成。传统的离心、过滤和沉淀技术更多只是作为整个疫苗分离纯化工艺的起始步骤,用于初步分离过程,层析技术与沉淀、离心等传统分离技术的结合已逐渐成为疫苗分离纯化的主流。 1.更均匀的粒径分布及平均34um的粒径使其具有极高的分辨率!2.琼脂糖基质使其可以耐受0.5MPa的压力!3.极高的耐压性使其具有高流速。使用高回收率高分辨率离子交换填料,再也不用担心高分辨率的离子交换填料流速太慢了!4.小粒径基质使其具有极高的比表面积,载量也很高哦!5.纯化工艺灵活,可以方便和疏水层析组合使用!6.就是如此完美,高载量,高流速,高分辨率,高回收率,高寿命!
  • 国际知名快速纯化制备色谱仪制造商ANALOGX公司总裁来我公司参观访问
    2007年7月,国际知名快速纯化制备色谱仪制造商ANALOGX公司总裁Mr. Demarco 先生来我公司参观访问,双方对进一步开拓中国市场进行了亲切而友好的交谈。 Analogix公司是世界上最专业的快速纯化色谱设备及色谱柱的生产厂商,总部位于美国东北部高科技走廊地区的伯灵顿市。其快速色谱产品的分离能力从0.5mg到5Kg,覆盖了从实验室研究、中试到小规模生产等各个领域,被广泛应用于有机物的纯化、天然产物的分离等。 Intelliflash 280是Analogix公司的主打产品。它的自动控制程度高,可实现无人照看工作或工作过程中修改实验参数;外观设计紧凑:占有空间为62 x 49 x 39cm (H x W x D),可以放入实验操作箱进行操作; 高精度:双元泵的精度为± 1%; 模块化设计:便于系统升级和功能扩展; 纯化柱品种丰富,连接简单; 单波长或多波长检测器,除以上优点外,还可以实现样品的自动收集。 详情请浏览 http://www.pynnco.com , 或咨询:电话:010-65528800,传真:010-65519722,邮件sales@pynnco.com
  • 沃特世9月12日"高校系列1——HPLC制备纯化篇:制备色谱柱与仪器应用与维护"网络讲座即将启动
    日期: 2017年9月12日时间: 14:00 – 16:00地点: 网络讲座语言: 简体中文 面对不同的研究课题,化药、肽药、中药,不同的极性,你会根据项目特点来选择合适的制备柱吗?你知道从UPLC直接放大到制备纯化的计算工具吗?你们实验室有Waters AutoP自动纯化系统吗?本次网络讲座将会帮助您了解极具特色的Waters制备柱,帮助您更好的应对您的项目;资深应用工程师为您辅导AutoP的操作维护事项,让您的仪器更稳定耐用,实验课题进展更为顺利! 讲座概要: 如何选择并顺利应用合适的制备柱?Auto-Purification 制备液相特色应用与操作维护 主讲人:黄金昌(沃特世资深应用工程师);吴柳柳(沃特世应用工程师) 登录沃特世官网并搜索“高校系列1——HPLC制备纯化篇:制备色谱柱与仪器应用与维护”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加,如果您需要在讲座中加入讨论或语音提问,请您提前准备好麦克风。收到您的注册信息后我们会筛选并在讲座前一天通过电子邮件给您发送讲座登录链接。如有任何问题请拨打电话:021-61562642或发送邮件至minxing_guo@waters.com,谢谢。
  • 2017.03.07 同田与您相约上海交大分析测试中心——高速逆流色谱分离纯化与制备技术应用讲座
    2017.03.07 同田与您相约上海交大分析测试中心——高速逆流色谱分离纯化与制备技术应用讲座 报告内容简介:高速逆流色谱技术(High Speed Counter Current Chromatography)做为一个现代主流的分离纯化制备技术,以其独特的分离理论成熟运用于天然产物的分离纯化制备,在更多领域有更好的分离效果,如:微生物发酵活性物质的分离纯化,海洋有效新化合物的发现与制备,化学手性物质的分离纯化等。高速逆流色谱技术(HSCCC)以其纯化制备效率高、运行耗材成本低、极大保护活性物质,回收率高等优势,并发挥着越来越重要的作用。 报告时间:2017年3月7日(周二),下午1:30报告地点:分析测试中心317-319大会议室 报告人:王维娜博士,毕业于中国科学院生态环境研究中心环境工程专业,多年高速逆流色谱研究工作经验,包括环孢菌素A、B、C、D;必特螺旋霉素的分离;贝母中贝母素甲和贝母素乙的提取;刺五加提取物中紫丁香苷和刺五加苷E、大豆皂苷提取物中的皂苷类成分的提取方法研究;红霉素的分离纯化;用高速逆流色谱制备高纯度芦荟甙异构体和人参皂苷类化合物的工艺研究。 欢迎广大师生届时前往交流!
  • 抗体药物质量和成本遇瓶颈:下游分离纯化技术明显滞后
    漫谈离子交换层析之生物大分子分离纯化应用——江必旺博士全球生物制药产业发展迅猛,根据Frost&Sullivan市场调研,2018年全球生物制药市场规模约为2642亿美元。单抗类药物由于特异性好,靶向性高,副作用小,疗效显著,成为发展最快的一类生物药。单抗药物在2020年市场已达到1550亿美金。生物药的生产可分为上游发酵过程和下游纯化分离过程,上游工艺主要包括细胞复苏、传代、发酵生产。而下游工艺主要包括膜过滤及多步层析分离纯化。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/L 到现在普遍达到5g/L,有的甚至超过10g/L。这些进步是由细胞表达载体的开发,单克隆筛选以及细胞培养基优化等技术创新所驱动的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低。与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗体主要生产成本也转移到下游。下游纯化在整个生物药生产中占据主要生产成本,也被认为是最需要改进的技术领域。下游工艺先进性决定了药品的质量,及药品生产效率和成本。生物药生产的技术瓶颈:实现高效、经济的分离纯化生物制药下游生产工艺目的就是把目标药物分子从复杂发酵液体系中分离出来以满足药品纯度及质量的需求。一方面监管部门对生物药的纯度和质量要求越来越高,另一方面用于治疗用的生物分子种类越来越多,结构越来越复杂,且生物分子对外部条件敏感,稳定性差,杂质多,使得生物制药分离纯化的挑战更大。比如说治疗用抗体不仅对其含量有严格的要求,还必须去除工艺相关杂质如HCP, DNA,Endotoxin, 聚集体及降解片段等(表2)。 因此如何经济、高效的从发酵的复杂组分中浓缩、分离和纯化目标生物分子已成为全球生物药生产的技术瓶颈。在蛋白类生物药生产过程中,分离成本可占总生产成本的50~80%,分离纯化技术还对生物药的分子形态、收率、质量和成本具有关键作用。色谱或层析技术对复杂生物分子具有极高的分离纯化效率, 且条件温和, 在分离纯化过程中容易保持目标生物分子的活性,因此层析技术是目前生物药分离纯化最重要的手段,甚至是唯一的手段,几乎所有生物分离纯化都离不开层析技术。离子交换层析技术的优势生物分子的分离可以根据其尺寸大小、表面电荷、疏水性能、及与配基的亲和作用性能的差异分别采用分子筛,离子交换,疏水,亲和等层析分离模式。由于蛋白类生物分子是由氨基酸组成,几乎都带有电荷,因此蛋白分子在不同pH 条件下其带电状况不同,当pH等于蛋白的等电点时,蛋白处于电中性,当pH 小于等电点时,蛋白带正电荷,当pH 大于等电点时,蛋白带负电。不同生物分子带的表面电荷正负性质及表面电荷数量不同而且会随着流动相的pH改变而改变,使得不同组份的生物分子在离子固定相的电荷作用力有较大差异,因此绝大多数生物分子可以通过离子交换进行分离纯化。离子交换层析在生物分离纯化具有较多优点:第一,载量高,离子交换对蛋白的吸附量可超过100 mg/ml, 有利于提高批处理量及大规模纯化效率;第二,离子交换分离纯化选择条件比较多,既可选择不同的离子强度,也可选择不同的pH值作为分离条件。而且色谱出峰顺序可根据蛋白质的等电点进行预测。第三,离子交换层析操作简单,流动相便宜,蛋白质活性回收率高,综合成本低。第四,离子交换在蛋白的纯化过程中可同时实现产品的浓缩,有利于低浓度蛋白样品的分离纯化。减少后续浓缩工艺。总之,离子交换具有交换载量高,适用性广,且容易保持生物分子的活性而使得离子交换成为生物大分子分离纯化最常用的分离模式,根据Markets and Markets 市场报告离子交换介质用量已超过所有其它层析介质(包括SEC,亲和,疏水、复合模式及其它)用量总和。离子交换层析介质的种类离子交换色谱(IEC)是利用带有不同电荷的样品组分与固定相的离子功能基团形成电荷作用力而吸附在固定相上, 然后通过增加流动相的盐的浓度或改变pH来以降低样品组分与固定相的电荷作用力从而达到洗脱分离的目的。因此离子交换过程是低盐上样,高盐洗脱的过程。按所使用的离子交换介质所带基团的不同,可分为强碱性阴离子型(含季胺基,Q型)、弱碱性阴离子型(含伯、仲胺基,DEAE型)、强酸性阳离子型(含磺酸基,SP型)和弱酸性阳离子型(含羧酸基,CM型)等四种类型。为了增加离子交换的选择性,同时含有离子和疏水功能基团的混合模式离子交换介质也已问世,由于混合模式离子交换层析可以同时提供疏水作用力和静电作用力,因此其具有独特的选择性在分离纯化上具有广泛的应用。另外由于有疏水作用力混合模式离子交换介质耐盐性好,生物样品可以在高盐条件上样。离子交换基团要发挥离子交换作用,必需在溶液中解离成离子。季胺盐(Q)强阴离子交换介质和磺酸型(SP)的强阳离子交换介质离解的pH范围很大,在水溶液中几乎百分之百离解。而羧甲基(CM)型弱阳离子型交换介质和二乙胺乙基(DEAE)型弱阴离子交换介质离解的pH范围小得多。羧甲基(CM)弱阳离子型交换介质在pH 变大后逐渐离解成羧基负离子,pH大到一定程度就可完全离解;二乙胺乙基(DEAE)弱阴离子交换介质在pH 变小后氮原子上逐渐结合质子,pH小到一定程度就可完全让氮原子都结合上质子,达到完全离解。离解度越大,对应的柱子吸附量也大,不离解的弱离子交换介质是无吸附能力的。当然,吸附量还与目标蛋白质在此pH下的电荷情况有关。从羧甲基(CM)弱阳离子型交换介质在pH 变大后离解度逐渐变大看,pH值大有利于弱阳离子型交换介质使用。但是此时蛋白质带的正电荷减少,不利于蛋白质的吸附。当pH值大到一定程度,蛋白质可能带负电荷,就不被弱阳离子型交换介质吸附。从二乙胺乙基(DEAE)弱阴离子型交换介质在pH 变小后离解度逐渐变大看,pH值小有利弱阴离子型交换介质使用,但是此时蛋白质带的负电荷减少,不利于蛋白质的吸附。当pH值小到一定程度,蛋白质可能带正电荷,就不被弱阴离子型交换介质吸附。很多情况下,只要介质在使用pH范围,也就是在离子状态,蛋白质的带电性质和电荷多少是影响蛋白质吸附量的决定因素。另外,蛋白质样品一般要求在分离后保留生物活性,而保留蛋白质活性需要一个合适的pH值。所以选择离子交换分离纯化生物分子时,要综合考虑样品组分的等电点、蛋白质稳定的pH 范围和交换基团离解范围选择交换基团类型。常规四种离子交换结构图基质组成对离子交换层析介质的影响目前市场上用于生物分离层析介质主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的天然高分子层析介质;第二类是以聚苯乙烯和聚丙烯酸酯为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。但如果软胶在干燥状态下脱去水孔道结构容易塌陷,因此,软胶填充的层析柱一般不能干,否则介质容易孔道结构容易塌陷从而失去分离性能。软胶是生物大分子分离纯化应用历史最悠久,应用最广泛的层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,其市场应用增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度、高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。未来离子交换层析介质的发展方向就是融合软硬胶的优点,做成载量高,机械强度大的介质。介质孔径大小及孔隙率对生物分离的影响除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求。不同孔径大小的单分散聚合物色谱填料图层析介质粒径大小及均匀性对生物分离的影响单分散与多分散层析介质分离性能对比示意图层析介质粒径大小和分布是影响其分离性能最重要的参数之一。粒径越小,分布越均匀,柱效越高,分辨率越高。因此制备精确的粒径大小及高度的粒径均一性单分散层析介质一直是业界追求的目标。纳微成功开发出单分散大孔聚合物层析介质可以用于高效分离生物大分子。另外粒径均匀,填充的柱床稳定,重复性好,不容易堵塞筛板,而且可以使用更大孔径的筛板以降低反压。表面亲水改性对离子交换性能的影响大分子分离纯化介质的一个共性要求就是介质表面亲水性要好,以达到降低蛋白的非特异性吸附并保持生物分子的活性的要求。因此商业化的聚合物层析介质一般有两种合成方法:第一种就是选择具有足够亲水的单体直接合成亲水聚合物多孔微球,然后通过表面键合不同功能基团以制备离子、疏水、分子筛及亲和层析介质。比如说日本Tosoh 和美国 Biorad公司都是采用亲水较强的带多羟基丙烯酸酯或丙烯酰胺单体,这类介质与糖基组成的软胶类似不需要进行表面亲水化处理就可以直接键合功能基团做成离子交换层析介质。第二种方法是用疏水性较强的单体如苯乙烯,丙烯酸酯合成疏水聚合物多孔微球。这种微球由于疏水性较强不能直接用于蛋白分离纯化的层析介质,而是要先经过表面亲水化改性,才可以键合功能基团制备生物大分子分离纯化用层析介质。Thermofisher 生产的POROS 离子交换层析介质就是在疏水的聚苯乙烯微球表面通过亲水化改性后再键合不同功能基团制成离子交换层析介质。多孔聚苯乙烯微球表面亲水化改性是由Purdue 大学 Regnier教授研究组发明的专利技术( US Patent No. 5503933)。因此Thermofisher利用该技术成功地开发出用于蛋白药物如抗体分离纯化的亲水化聚苯乙烯层析介质,该介质目前已被广泛地用于抗体及疫苗的纯化,在去除抗体多聚体等杂质方面具有明显优势。显然,第二种方法制备聚合物层析介质步骤多、工艺复杂、技术门槛高、成本高,但其制备的介质具有更高的机械强度,更小的压缩系数和更低的溶胀系数,可耐受更高的压力和流速,而且具有传质速度快、寿命长等优势。间隔臂对离子交换层析介质的影响除了介质基质材料组成,表面亲水性能及功能基团种类及密度会影响离子交换层析介质分离效果外,其功能基团与基球表面之间的间隔臂长短以及接方式也很重要。尤其是对于生物大分子的分离纯化,由于生物分子体积大,相比于小分子,其表面电荷的可及性差,因此间隔臂越长,越有利用介质表面离子功能基团与生物大分子带电功能基团起作用。对于小分子的分离纯化,由于空阻比较小,离子交换载量与离子功能基团的密度基本成正比,与基团与介质表面之间手臂长短关系不大。因此用于小分子分离纯化的离子交换介质,其离子功能基团可以直接连接到介质表面,中间不需要长间隔臂。但对于大分子分离纯化的离子交换介质,间隔臂对载量和分离效果都有较大影响。 德国默克开发出触角型的离子交换介质就是把离子功能基团通过高分子链从微球表面延伸出来,这种触角型的离子交换介质更容易与生物大分子有效结合,同时也有利于孔道空间的利用,解决了聚合物由于表面积比软胶小从而导致聚合物离子交换介质载量低的问题。触角型离子交换不仅载量高,而且传质速度快,分辨率高。单分散离子交换层析介质的最新进展为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。粒径分布与流速特征关系图另外粒径大小一致,可以保持分子在填料微球的扩散迁移路径基本保持一致,相应的保留时间也一致,减少分子扩散系数,从而获得更高的柱效。因此高度粒径均一的单分散色谱填料既可以降低涡流扩散系数又可以减少分子扩散系数,从而提高柱效。另外粒径越精确、分布越窄、其柱床越稳定、反压越低、批间稳定性好。纳微生产的单分散色谱填料不仅完全可以替代SOURCE 系列产品,而且粒径,孔径及材质的选择都远远超过SOURCE产品种类和规格。纳微单分散聚合物层析介质包括聚苯乙烯和聚丙烯酸酯系列。聚苯乙烯表面改性层析介质系列可以替代POROS用于抗体和蛋白的分离纯化,而聚丙烯酸酯系列可以替代Tosoh, Merck, Biorad等生产的聚丙烯酸酯或聚丙烯酰胺层析介质。层析介质关系到药品生产的成本和质量。不同厂家生产的离子交换层析介质都有各自的特点,没有最好的,只有选择最合适的。但层析介质的国产化无疑对中国生物制药产业链安全供应至关重要。越来越多像纳微这样的中国公司已经具备生产一流的层析介质的能力,这些国产化的层析介质也得到越来越多的药企认可。后记在问及江必旺博士对该技术的期望时,他表示:“色谱和层析是药物分离和分析最重要手段,尤其是生物制药领域,层析几乎是生物制药分离纯化的唯一方法。中国生物制药快速崛起会带动中国色谱和层析介质的发展,同时色谱和层析技术的进步及国产化会降低中国生物药的成本,提高药品的纯度和质量。因此中国的色谱和层析技术遇到千载难逢的发展机遇, 相信一定会得到迅猛的发展。”作者简介苏州纳微科技董事长 江必旺博士 江必旺博士,国家特聘专家,获北京大学化学系学士, State University of New York at Binghamton博士学位,在University of California at Berkeley 从事博士后研究。 回国后创建了北京大学深圳研究生院纳微米材料研究中心并任该中心主任。于2007年,江必旺博士创建了苏州纳微科技股份有限公司,专门从事高性能微球材料的研发及产业化。江博士带领团队突破了单分散硅胶色谱填料精确制备技术难题,成为全球唯一一家可以大规模生产单分散硅胶色谱填料的公司。江博士团队还开发出世界领先的单分散聚合物层析介质、如离子交换、亲和,疏水及分子筛等系列亲和层析介质,打破国长期垄断。江博士创建的纳微科技成为色谱领域第一家在科创板上市公司。【专家约稿招募】若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!Webinar预告(点击报名)
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
  • 沃特世针对制药和天然产物提取行业推出全新纯化系统
    Prep 150制备液相色谱系统满足了色谱工作者对专用制备纯化技术的需求 美国宾夕法尼亚州费城市 沃特世公司(纽约证交所代码:WAT)推出了Waters® Prep 150 制备液相色谱系统,这是一套针对特定需求开发的制备色谱系统,用于初步纯化处理,可从提取自实验室合成或天然来源的粗制混合物中分离出目标化合物。 &ldquo 我们应科学家需求推出了这款耐用、可靠的色谱系统,该系统可满足科学家偶尔或日常的纯化需求,&rdquo 沃特世产品经理Wendy Harrop表示,&ldquo 通过这款产品沃特世履行了对科学家们所作出的服务承诺,它不仅仅是分析级液相色谱,同时也是制备级的纯化系统。&rdquo 基于创新的高效液相色谱(HPLC)硬件和软件,Waters Prep 150制备液相色谱系统采用ChromScope&trade 软件,可适用于各种技术水平的科学家和技术员&mdash &mdash 从初学者到专家,只需少量培训。这款专用HPLC系统能够帮助化学家纯化并收集大量的特定分子,以此作为新药、天然产物和特殊化学品研究的一部分。 Waters Prep 150制备液相色谱系统的流速可达150 mL/min。检测、进样和溶剂传输系统的功能选项可以令系统更好地满足多种应用需求。Waters Prep 150 制备液相色谱系统可支持全套Waters OBD&trade 制备色谱柱(10&ndash 50 mm 内径,5&ndash 10 &mu m粒径)。 首批产品将于2013年第二季度到货。
  • 【步琦维修小课堂】Pure 色谱纯化系统如何清洗背压阀
    Pure 色谱纯化系统用户在使用设备过程中,有时候会出现溶剂压力高的的情况,这时候,我们需要排查背压阀是否被堵住了,视频中就是如何拆开设备后盖,取下背压阀并清洗的教程。背压阀被堵住的情况一般有几种: 1客户使用正向柱,走甲醇、二氯甲烷的时候,甲醇的比例高于 15%,会把正向柱的硅胶溶解下来,后面走到背压阀的时候造成堵塞。 2客户使用的色谱柱,是自己装填的,用的筛板可能会漏硅胶,导致的背压阀堵塞。 3客户使用的样品比较脏,溶解都比较差,长期在背压阀造成堆积导致堵塞。正常低压不接柱子走溶剂(石油醚)30mL/min 应低于 30psi。高压纯水 30ml/min 压力<120psi。
  • 如何使用ELSD克服制备色谱中的局限性
    距离Pure快速纯化系统发布已有一年有余(点此查看去年发布会)。在这一年里,我们的Pure系统进入了许多高校实验室纯化了多种有价值的天然产物,进入了国家级的研究所帮助分离了多糖和酯类化合物,进入了企业有效地提高了有机合成的效率。随着客户数量不断地提升,客户领域不断地扩大,我们发现一个有意思的现象——除了流速、压力、灵活性等等优点,客户对Pure系统印象最深的便是这个神奇的检测器:蒸发光散射检测器(Evaporative Light-scattering Detector),又称ELSD。在色谱纯化的过程中,我们常常因为技术原因而局限了方法的开发。随着时间的推进,当技术发展到足以克服其中一些局限时,我们可以使用许多原先无法用的方法,ELSD就是一个很好的例子。配备了ELSD的快速纯化系统能够检测到许多“困难”的样品,例如碳水化合物,脂质,精油,聚合物和天然产物。由于紫外检测器的局限性,这些样品不能有效地被检测和收集。从檀香提取物中分离α-檀香醇与β-檀香醇可以很好地说明这一点(点此查看檀香提取物应用)。在此应用中紫外无法检测到所有的化合物,而有了ELSD的加持,研究人员可以轻松分辨檀香中大部分的化合物。除此之外,ELSD更是由于检测原理的优势,可以还原混合样品的实际质量比,让我们来结合以下案例来看一下:图1:相同混合样品在UV和ELSD下的检测对比图图2:混合样品实际质量与UV/ELSD峰高的对比表可以看到,在方法与样品都完全一致时,ELSD不仅在峰面积上更加还原样品的实际质量比,在可见性上也适应于弱紫外吸收的样品(Peak 1/Peak 2)。而这一切的优势,都是源于其独特的检测原理。那么相比于单独的紫外检测器,ELSD如何在色谱运行中检测出更多类型的化合物并且还原出其实际质量比的呢?含有待测分析物的柱洗脱液与气流(氮气或空气)混合形成液滴分散液,从而被雾化。液滴分散液中的流动相在漂移管内被蒸发。分散液中残留的干燥分析物颗粒穿过检测器中的激光。激光被颗粒散射并且由光电二极管捕获。激光散射的量与目标化合物的质量有关。ELSD可检测任何不挥发的化合物,而与它的性质无关。因此与仅使用UV检测器相比,该检测器可以帮助您看到更多的物质。ELSD产生的响应高度几乎与目标化合物的质量相同,UV检测器响应在很大程度上取决于消光系数。在大多数情况下,这些系数不能反映样品中化合物的实际质量比。随着溶剂在ELSD检测器中蒸发,几乎不会产生梯度导致的基线漂移,进而我们可以使用紫外截止波长与设置的检测波长冲突的溶剂。ELSD简化了馏分收集,若您的化合物无紫外吸收,则不需要收集所有物质,并且在下游处理过程中需要处理的馏分更少。综上所述,即使在存在紫外线可见化合物的情况下,ELSD对于标准应用也是非常有益的。因为ELSD响应可以更好地反映样品中化合物的实际质量比。而对于存在非发色化合物且对紫外线仅产生轻微或没有响应的“困难”样品,ELSD尤其有用,其检测样品中所有非挥发性分子的工作原理可以有效克服制备过程中遇到的各种局限。那么ELSD就那么完美无缺了吗?其实不然,下一篇文章我们将会给大家介绍传统制备ELSD本身的局限性,以及步琦Pure是如何通过技术革新完善新一代的制备ELSD,使其趋向于完美。看到这里,不知道大家是否领略到了ELSD的魅力呢?如果感兴趣的话请点击此处了解更多关于内置ELSD型制备色谱的详情吧!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制