当前位置: 仪器信息网 > 行业主题 > >

激光同位素分析仪

仪器信息网激光同位素分析仪专题为您提供2024年最新激光同位素分析仪价格报价、厂家品牌的相关信息, 包括激光同位素分析仪参数、型号等,不管是国产,还是进口品牌的激光同位素分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光同位素分析仪相关的耗材配件、试剂标物,还有激光同位素分析仪相关的最新资讯、资料,以及激光同位素分析仪相关的解决方案。

激光同位素分析仪相关的方案

  • 硅酸盐矿物氧同位素组成的激光分析
    对于红外激光系统和紫外激光系统, 由于它们加热样品的反应机理完全不同, 决定了它们在稳定同位素地球化学分析中的不同使用范围。根据对CO2 激光系统分析地球化学样品的实践, 发现对结果产生干扰的因素有:(1)石英的粒径效应 (2)微量样品接收电压过低 (3)分子筛的吸附能力 (4)系统中的吸附水 (5)14N19F+对δ 17O 值的影响。由于石英的粒径效应而导致细粒石英(粒径250 μ m)的δ 18O 值偏低, 可以采用不聚焦激光的快速加热法来解决。由于样品量太少而决定了样品气体接收电压过低, 导致δ 18O 值出现系统偏高或偏低, 可以利用校正曲线对结果进行校正。分子筛吸附性能的下降会产生氧同位素的分馏, 因此确定分子筛的使用寿命非常重要。系统中的吸附水利用氟化物试剂预氟化来去除, 重要的是应避免在预氟化的过程中产生大量的HF 腐蚀激光系统的BaF2 窗口玻璃并与部分矿物样品发生反应。
  • 257nm飞秒激光氮气条件下对地质矿物中锶同位素原位微区分析方法改进(英文原文)
    激光剥蚀-多接收电感耦合等离子体质谱法(LA-MC-ICP-MS)对地质矿物的n位Sr同位素分析对岩浆源组成和地质过程来说的是一种强大的追踪技术。然而,由于Sr浓度低、同重元素或复杂结构小颗粒干扰,因此在对天然矿物特别是对长石等透明矿物进行分析时87Sr/86Sr比值的准确度和精密度不能令人满意。在这项研究的分析结果表明,飞秒激光对各种样品的剥蚀率(每个脉冲0.08 -0.11μ m)是一致的。但是使用纳秒激光剥蚀效率受地质材料影响相当明显,例如长石和黄铁矿剥蚀率分别为每个脉冲0.144μ m和0.026μ m。此外,由于飞秒激光的剥蚀效率较高,在相同的能量下分析长石中的Sr飞秒激光灵敏度是纳秒激光敏度的3.4倍。飞秒激光的这些优点不仅有利于消除激光剥蚀过程中的基体效应,而且有助于提高透明矿物的分析准确度。我们还证明了在6 - 12mLmin-1 N2条件下,同重元素钙二聚体(CaAr++CaCa+)和Kr+的干扰值分别降低了6.5-11.7和5-12.5。此外,随着N2 (12 mLmin-1)的加入,铷的灵敏度受到抑制,Rb/Sr信号比下降1.47倍。由于加入N2的抑制作用,尤其是对富含铷的长石87Sr/86Sr和84Sr/86Sr比值的准确度和精密度均有提高。结合飞秒激光系统的优点和氮气的加入,改进了原位微区Sr同位素的分析方法。对天然斜长石、高Rb/Sr(0.46)的K-长石和低Sr的斜长石进行分析,87Sr/86Sr比值的准确度和精密度结果令人满意,验证了该方法的可靠性。主要元素Sr和Rb含量不同的四种长石具有均匀的Sr同位素组成,因此可以推荐作为原位微区Sr同位素分析合适的参考材料。本文提出的方法可以为单一矿物提供高空间分辨率的地球化学信息。
  • 树木年轮原位分析利器—激光剥蚀-稳定同位素比质谱系统
    英国Sercon质谱公司与英国Swansea大学的科学家合作开发了一套激光剥蚀-燃烧-气相分离-稳定同位素比质谱 系统用于树木年轮中的δ 13C的原位分析,以年为单位重构了过去的气候变化情况。这些数据结合EA-IRMS所得到的δ 13C值就可以高分辨的对在生长季节树叶与树干的分馏的情况进行评价,进而可对一年内δ 13C的变化情况进行研究。
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中 Pb 同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行.
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法. 研究发现中国国家标准物质研究中心研制的以铜为基体的标准样品GBW02137(青铜)中Pb同位素组成均一(208Pb/204Pb=37.9661± 0.0005 (2 s), 207Pb/204Pb=15.5770± 0.0002 (2 s), 206Pb/204Pb= 17.7462± 0.0002 (2 s)), 可作为原位微区分析黄铜矿、古钱币等含铜基体样品中Pb同位素组成的外部标准物质和监控样品(QC), 为矿床成因研究提供原位微区的Pb同位素地球化学制约, 亦可为利用古钱币、青铜器等中的Pb同位素来研究矿料来源、古代工艺、文化交流等. 利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成
    开发了利用飞秒激光剥蚀多接收等离子体质谱(fLA-MC-ICPMS)微区原位分析以铜为基体的金属、硅酸盐玻璃及长石等中的铅同位素组成的方法.利用本研究建立的方法对NIST(NIST SRM 610, 612, 614), USGS(BHVO-2G, BCR-2G, GSD-1G)和MPI-DING (GOR132-G, KL2-G, T1-G, StHs60/80-G))标准玻璃中Pb同位素组成进行了准确测定, 结果与参考值在2 s误差范围内完全一致. 此外, 利用本研究的方法对高温炉合成的长石熔融玻璃进行了Pb同位素微区分析, 结果与化学法在误差范围内吻合.
  • 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究
    开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb 同位素原位微区分析技术研究, 采用高温活化活性炭过滤载气中的Hg, 使得Hg 背景信号降低了48%, 进一步降低检出限, 分析过程的分馏效应及质量歧视效应校正采用内标Tl 和外标NIST SRM 610 相结合方式进行. 利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb 同位素组成. 结果表明, 该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb 含量差异可达1000 多倍, 黄铁矿具有相对较高的Pb 含量,而闪锌矿的Pb 含量则偏低. 高Pb 含量的黄铁矿具有变化小且相对均一的Pb 同位素组成, 而低Pb 含量的闪锌矿的Pb 同位素组成变化极大, 一方面它可能较易受后期热液叠加作用而改变, 另一方面由于闪锌矿中铅含量较低, 则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb 含量和同位素组成分布范围较大的原因之一. Pb 含量高于10 ppm 的黄铜矿和闪锌矿颗粒显示了一致的Pb 同位素分布, 而Pb 含量高于100 ppm 的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成, 且与化学法得到的结果误差范围内吻合, 表明本研究方法的数据可靠. 本研究还表明, 只有Pb 含量相对较高的硫化物矿物中的Pb 同位素组成才能较真实地记录其成矿物质来源. 而Pb 含量偏低的硫化物矿物中的Pb 同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值, 也可能代表了后期交代流体改造后的Pb 同位素组成.
  • 激光剥蚀-稳定同位素比质谱在树轮碳同位素分析中的应用
    树轮常用于研究气候变化与环境演变,通过对其稳定同位素的分析,可揭示生态系统碳—水—氮变化特征及相互作用。树木在生长发育中响应环境变化,将环境信息通过水/空气/土壤中的碳、氢、氧转化为树木年轮的同位素比值变化,从而为重建环境变化提供了一份可靠的“档案”。古气候变化研究载体有树轮、石笋、海洋/湖泊沉积物和冰芯等。其中树轮样本具有两大优势:1)定年精确,分辨率可以到年;2)树轮年表的每一部分都可以和其它树木(年表)重叠搭接,能够获取平均值。稳定碳同位素:气孔导度、光合速率氧氢同位素:温度、叶片蒸腾作用
  • 采用飞秒激光消融MC-ICP-MS对NIST、USGS、MPI-DING和CGSG玻璃基准材料中的铅同位素比值进行了精确、准确的原位测定(英文原文)
    采用266 nm飞秒激光烧蚀(fLA)系统连接多集电极ICP-MS (MC-ICP-MS),通过严格控制分析程序,获得了具有良好精度和准确性的铅同位素比值数据。266nm飞秒激光烧蚀诱导的质量分馏率约比193nm准分子激光烧蚀(eLA)诱导的质量分馏率低28%。摘要采用调优Tl比的Tl归一化指数律校正方法,获得了具有较好精度和准确度的Pb同位素数据。NIST SRM 610、612、614玻璃参考材料的Pb同位素比值 USGS bhvog - 2g、BCR-2G、GSD-1G、bir1 g 采用fa - mc - icp - ms法测定MPI-DING GOR132-G、KL2-G、T1-G、StHs60/80-G、ATHO-G、ML3B-G。在2s测量不确定度范围内,测得的铅同位素比值与参考值或公布值吻合较好。利用飞秒激光消融MC-ICP-MS分析获得了GSE- 1G、GSC-1G、GSA-1G、CGSG-1、CGSG-2、CGSG-4、CGSG-5玻璃基准材料的高精度铅同位素资料技术。
  • 国际原子能机构(IAEA)研究人员应用LGR水同位素分析仪测量高2H富集水样
    1. 能够准确测量含量高达9000ppm的高富集HDO的水样品(delta_2H ~ +57,000‰), 其精度和准确度是目前测量天然水样所能达到的最高水平;2. 在测量高富集样品后的1个小时之内,用户即可应用同样的设置测量普通的自然水样,快速的消除记忆效应,没有同位素质谱仪可以做到这一点;3. 文章中报道LGR水同位素分析仪可每天测量60个高富集水样品;4. 文章所述LGR水同位素分析仪的高性能在所有EP型号的水同位素分析仪上均可实现,无需特殊设置。
  • 高盐水的稳定同位素分析
    该系列文章由三部分组成,本文为第二篇,探讨了 Picarro 分析仪、系统和配件如何确保对具有挑战性的海水和高盐水样品实现准确测量。第一篇文章海水的水稳定同位素测量介绍了多实验室间的研究结果,该研究旨在评估与同位素比质谱 (IRMS) 测量相比,在结果一致性和测量值上,光腔衰荡光谱 (CRDS) 所得测量结果的质量。本篇文章报道了对 CRDS 用于高盐水分析的评估。
  • 飞秒激光长石Sr同位素分析方法研究
    纳秒激光剥蚀长石效率很低!激光参数:193nm, 60μ m, 8 J cm-2。纳秒激光剥蚀长石产生大量沉积物,纳秒激光表现出明显的基体依赖,飞秒激光在不同物质之间剥蚀速率比较接近。飞秒激光可以改善透明矿物(如长石)剥蚀效率。飞秒激光-纳秒激光信号强度对比。
  • 飞秒激光剥蚀MC-ICP-MS法测定硫化物原位微区硫同位素标准的制备(英文原文)
    在使用标准样品进行原位微区硫同位素测定时,我们制备了一系列粉末压片和黄铜矿玻璃标准样品来纠正质量偏差。采用飞秒激光剥蚀多收集器电感耦合等离子体质谱法(fsLA-MC-ICP-MS)测定了标准样品的硫同位素组成。黄铜矿玻璃(YN411-m)是将黄铜矿在N2保护条件下于1000° C融化,然后快速淬火制成。采用fsLA-MS-ICP-MS对YN411-m进行了多次均匀性测定,外部精度为0.28‰(n = 35)。当测定黄铜矿(GC)δ 34S时,使用矿物颗粒、粉末压片、黄铜矿玻璃片作为标准。结果表明,基体效应是由浓度、元素组成和晶体结构引起的。从实用性考虑,熔融玻璃比粉状压片更合适作为标准样品。我们还发现载气流量、激光通量和光斑尺寸对结果的规律性有影响。因此,我们可以不使用匹配的标准样品,通过调整激光和MC-ICP-MS的参数来获得准确的δ 34S结果。此外,fsLA-MC-ICP-MS由于可以极大地提高灵敏度、空间分辨率(10 - 20μ m)因此非常有利于原位微区硫同位素测定。可以通过分析较小的矿物微区,特别是成矿后期充填的硫化物矿物,来解释多成因矿床的成因
  • 硅酸盐和金属氧化物矿物氧同位素组成的CO2激光氟化分析
    4 000K), 因此能够对某些难熔矿物(如锆石、蓝晶石、橄榄石等)进行氧同位素分析。
  • Picarro同位素分析仪与全自动EOSENSE土壤呼吸室联用,研究土壤N2O,CO2和CH4排放通量
    N2O,CO2和CH4的稳定同位素分析是更好地了解土壤生产和消费途径的宝贵工具。文中,我们介绍了使用两个不同的光腔衰荡光谱仪(CRDS),通过与12个自动土壤通量室联用对N2O,CO2和CH4进行连续稳定同位素分析。
  • Picarro应用系列—— 海水和高含盐量水中稳定同位素的精度测量与准确度优化
    Picarro盐衬管是一种使用简便、价格经济的附件,能够保护Picarro同位素分析仪系统免受汽化器中盐积聚的影响。Picarro水稳定同位素分析系统用于分析离散水样品,由自动采样器(A0325)、高精度汽化器(A0211)和L2130-i或L2140-i光腔衰荡光谱(CRDS)水同位素分析仪组成。这是一种比同位素比值质谱仪(IRMS)更经济、更易用、测样速度更快的解决方案,能够在水文学、海洋科学和古气候学等一系列研究应用中实现精准的同位素测量。
  • 利用LA-MC-ICP-MS原位微区精确测定硫化物和硫单质中的硫同位素组成(英文原文)
    硫同位素在地球科学的多个领域中是一种重要的地球化学示踪剂。在这项研究中,采用257nm飞秒(fs)和193nm ArF准分子纳秒(ns)激光剥蚀系统结合Neptune Plus MC-ICP-MS,研究了不同基质富硫矿物(硫化物和元素S)中激光和等离子体等离子体诱导的同位素分离法。与ns-LA-MC-ICP-MS相比,在相似的仪器条件下,fs-LA-MC-ICP-MS具有更高的灵敏度(1.4-2.4倍),在相同的信号强度条件下,具有更好的精度(~1.6倍)。此外,与ns激光相比,fs激光对S同位素分离的影响更小,对基质的依赖性更小,瞬态同位素比更稳定。由于更小的粒子尺寸和飞秒激光更低的热效应,使用fs-LA-MC-ICP-MS可以得到更佳的测定结果。这一点可以通过P-S-1(IAEA-S-1压粉球团)和PPP-1(苏霍伊原木矿床中黄铁矿单晶)的剥蚀坑和喷射的气溶胶来证明。在*灵敏度条件下,fs-LA-MC-ICP-MS仍然存在等离子体诱导的同位素分离(基体效应)。然而,针对S同位素分析,在低较低的组成气体流速(0.52-0.54Lmin-1)稳定等离子体条件较*灵敏度条件(0.6Lmin-1)下,基体效应显著降低。这可以归结为粒子不仅在较高的温度下以较低的组成气体流速进入ICP,停留时间更长,从而使粒子雾化效率更高,同时在等离子体中加入4-6mL min-1 N2也能增强稳定性。此外,在稳定的等离子体条件下,对六种不同基体的参考材料使用fs-LA-MC-ICP-MS在20-44 µ m光斑处不使用基体匹配校准进行测定,测定结果与参考值一致。验证了该方法非常适用于在高空间分辨率条件下利用非基体匹配分析提供高质量的硫元素和硫化物原位微区同位数据。
  • 氮氧双同位素模型在土壤氮溯源的应用
    N2O是一种重要的温室气体,其全球增温潜势是CO2的300倍。农田生态系统是大气的主要来源。此时,氮元素的来源就成为了非常有意义的参数,通过同位素分馏的现象来判断来源成为了热门分析手段。研究表明N同位素在各类土壤和水体中存在重合的情况,那么引入O同位素就显得尤为重要。目前,国内外主要的研究方法是细菌反硝化方法,他们是怎么通过Elementar元素分析仪+气体浓缩仪+同位素质谱联用系统实现的呢?详细请查阅附件内容
  • 同位素技术在环境和生态上的应用
    由robert Michener 和 Kate Lajtha编辑 自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样, 理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。 从历史视角的方法 每一个不同的元素,制备样品的方法都不一样。稳定同位素分析的目标是使得样品定量的转变成合适的纯气体(比如CO2,N2或者H2等)使得质谱能够分析。硫可以以SO2或者SF6的方法分析。通常,有机样品首先被干燥(或者在60℃的烘箱中或者冷冻干燥),并且被碾压成粉末。样品可以被保存在一个密闭容器中,使得他们保持干燥。如果对样品的碳元素感兴趣,但是样品中含有无机碳的话,样品需要首先被酸化(通常使用1NHCL,即便有很多用户使用稀释的磷酸) 有机样品中的C和N 早起的同位素测定中,大多数研究者使用氧化反应要不就是“离线”或者“在线”,将有机样品燃烧成气体。 现在均转变成在线的方式,通过元素分析仪连接同位素质谱的装置。1-20mg(或者更多)的样品被称量后,用锡纸包好,放在样品盘上。样品会在氧气流中,在高温下燃烧,然后燃烧的气体被氦气流带到吸附阱上进行分离成H2O,N2,CO2等。感兴趣的气体然后被导入到质谱中进行分析。这就是目前所知的连续流分析模式。 碳酸盐和溶解无机碳 无机碳样品与100%磷酸反应在真空下反应,使其完全转化为纯CO2。这使得可以同时分析C13和O18,条件是磷酸是纯的,并且不能有水。 水样中的溶解无机碳,通过酸化水样并且搅拌水样,在部分真空下产生CO2样品,然后分离纯化该气体。该样品制备原则可以被用来制备血液中的生物碳酸盐。 关于上诉样品的最新方法使用了自动的连续流系统。不需要估计瓶子中的碳酸盐,氦气在酸化之前已经代替了瓶子中的所有气体。在一个反应时间之后,CO2气体被转移到样品环中,然后使用氦气做载气导入到质谱中。一个相似的方法使用在水中DIC的测定中。 氨和水中的硝酸盐δ 15N 早期的溶解无机氮分析中,水样中的氨被分离,使用各种蒸汽蒸馏技术或者使用扩散技术等。所有的步骤使得水中的pH变化,然后将氨气被一个酸trap捕获。蒸馏技术比较适合于大量水中含有痕量氨气的情况,可以使用盐水溶液,大概每个样品需要30分钟。一旦氨气被收集在酸阱中,沸石将会用来从溶液中转移出氨气。在所有的方法中,需要小心NH3在每个阶段的收集也纺织分馏。硝态-N可以使用同样的技术蒸馏在使用还原剂将水中的硝酸根还原为氨气。 水中氧 水中氧的分析主要有两种:水平衡法和元素分析仪-同位素质谱法。 水平衡法: 氘: 水平衡法和EA-IRMS方法。 硫: 测定硫的办法,取决于样品的初始状态,核心是将硫转变成SO2还是SF6。 SF6的优势是F只有一个同位素原子,但是技术上转化有点复杂,所以大部分的实验室使用SO2气体。 大部分的方法都是将硫分离出来然后采用氧化硫成溶液中的硫酸盐。硫酸盐可以使用10%的氯化钡转变成BaSO4沉淀。在这里,样品可以氧化为SO2气体并且导入到质谱中进行检测。 连续流的方法:在元素分析仪中,高温下燃烧S,然后进入柱子分离。之后SO2被导入到质谱中进行分析。
  • 碳水同位素分析仪测量北极地区的水文循环和碳循环
    美国海岸警卫队希利 (Healy) 号破冰船实施北极水循环和碳同位素循环研究,博士杰夫· 威尔克 (Jeff Welker) 博士和埃里克• 克莱因 (Eric Klein) 博士 生物科学系 阿拉斯加大学安克雷奇分校 北极地区的水文循环和碳循环目前正随着气候变迁而不断变化,包括海冰覆盖范围及其厚度、北冰洋酸碱度 (pH 值) 以及初级生产力格局和食物网动力学模式方面发生的变化。此外,与海冰有关的蒸发过程变化正在影响着冬夏两季的降水特征以及更广泛的气候模式。举例来说,北极涡旋转移使更多北极气团抵达低纬度地区,这可能会导致美国东北部出现更频繁的极端天气事件。
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。
  • AEgIS实验中正电子偶素的激光激发
    采用Ekspla公司的NL300HT激光器泵浦光学参量发生器,产生高能量可调谐纳秒激光输出。在AEgIS实验中,用于激发Na22同位素,产生正电子偶素。
  • 理加联合:LGR液态水同位素分析仪在PNAS上发表的最新文献
    此前文献表明绝大多数生物中脂肪与水分之间存在比较大的D/H的分馏。这种分馏归结为同位素对脂肪生物合成的影响。本文我们报导了4种细菌(phylum Proteobacteria)的脂肪与水分之间的D/H分馏 ,结果表明单一生物之中波动可以达到500‰ 。这种变动不可能归因于脂肪生物合成,因为这些途径中没有明显的变化,也不能归因于培养基的D/H比率。更重要的是,脂肪/水的D/H随着新陈代谢而系统地变化:化学自养生长(几乎达到-200到-400‰)、光合自养生长的(-150到-250‰)、非自养生物,采用糖做培养基的生物(0到-150‰),以及非自养生物,采用TCA循环(-50到-200‰) 。我们猜测脂肪的D/H比率很大程度上是由生物合成的NADPH来控制,而不是脂肪生物合成途径本身来决定的。我们的结果表明,不同的代谢途径产生NADPH—并间接影响脂肪的同位素组成。如果是这样,脂肪的δD值可能成为连接脂肪和能量代谢的重要生物化学循环工具,并可通过固碳途径中13C提供了更多的补充信息。
  • 使用TSI台式激光诱导击穿光谱仪 LIBS分析仪对煅烧氧化铝中的钠元素进行分析
    钠是一种轻元素,可以通过激光诱导击穿光谱(LIBS)技术轻松测定到ppm级别。对于测定耐火材料如氧化铝中的钠元素,传统方法是酸消解,再通过电感耦合等离子体发射光谱 (ICP-AES) 进行测定,或者通过XRF (X射线荧光) 进行测定。酸消解费时费力,因此总的分析时间也相当长。即使是使用复杂的X射线荧光光谱仪,因为荧光相对较弱,要获取可靠的钠读数通常也需要花费20分钟或更长。相反,使用TSI 台式LIBS分析仪,仅需要几秒钟,即可完成材料中多种成分(包括钠)进行定性及定量分析
  • 微量采样方法及锶、铷同位素的高精密分析,在岩石学地质学上的应用
    单晶体的微研磨可产生微克级的固体样品,可用于之后的同位素分析,并得出重要的岩石成因信息。从样品所在位置的上下组织结构在研磨前便可充分评估,因此可得特殊的细节。而这种细节,在大块岩石分析时,不容易被发现。这里,我们提供一种综合方法,可精细分析由微克固体样品精炼得到的ng-量级的Rb、Sr。物理取样技术,是基于电脑数控微钻机器(Micromill),专门用于晶体材料的复杂堆积和生长结构的取样。分离Sr、Rb并用于TIMS和MC-ICPMS分析的化学过程,将分别呈现。这些分析技术也会被评估。虽然耗时久,机械取样、方便溶解、化学分离并TIMS分析,仍是高精密度分析Sr同位素组成的*方法,针对大部分的地质材料,很大范围的Sr浓度、Rb\Sr比及基体类型。应用这些技术,可以得到外部浓度2.S.D,精度为50ppm的负载,3ng的Sr。我们用2个样品,验证了此技术的有效性。*个样品来自智利Panacota火山的<50ka单长石晶体,得出87Sr/86Sr同位素比小至0.00006,在放射性Sr向内生长可被忽略的条件下,可被溶解。第二个样品来自28.4Ma的凝灰岩(Colorado),表明Rb、Sr的同位素稀释测量方法的有效性,并计算87Rb/86Sr,并用于年代校正,以便建立单晶和地带的87Rb/86Sr不同的比率。我们证明,凝灰岩中的黑云母晶体表现出Sr同位素变化超出分析误差范围,因此其晶体的同位素并不平衡,也无法建立等时线年龄。另一方面,我们的同位素稀释测试方法的准确度也被验证,可用于获取Rb-Sr地质学信息,并提供结晶时的87Sr/86Sr的同质性。
  • LI-7825应用案例 | 基于CO2同位素研究植物和土壤碳动态
    了解科罗拉多州立大学的Michelle Haddix和Aaron Prairie如何使用LI-7825 CO2同位素/NH3痕量气体分析仪研究植物和土壤碳动态。他们借助LI-7825进行多种实验研究,其中包括植物生长室内的同位素标记实验和培养的土壤微生物实验。
  • 伯东 Pfeiffer 真空泵用于同位素测试仪器
    同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.赛默飞同位素比质谱分析上含有多种伯东 Pfeiffer 真空泵, 如前级泵为3台旋片泵 DUO系列油泵, 分子泵为 Hipace 系列两个.
  • 北大西洋稳定碳同位素季节性的详细观察
    北大西洋在气候变化中发挥着重要作用,尤其是因为它对二氧化碳的吸收和自然碳的封存非常重要。其地表水中的二氧化碳浓度,随季节和年际时间尺度变化,主要受海气交换、温度变化和生物生产/呼吸的驱动,最终决定了海洋的二氧化碳汇/源功能。稳定碳同位素特征的变异性可以提供进一步的洞察,并有助于提高对表层海洋碳系统控制的理解。在这项工作中,一个光腔衰荡光谱仪(G2131-i)被耦合到一个经典的,基于平衡仪的pCO2系统上,这个系统安装在在北美和欧洲之间的亚极地北大西洋的一个定期航班上。2012年至2014年,在连续测量温度、盐度和fCO2的同时,获得了3年的航面δ 13C(CO2)数据时间序列。我们对二氧化碳和 δ 13C(CO2)进行热驱动和非热驱动分解。对表层海洋δ 13C(CO2)的直接测量使我们能够估计质量流量,以及在海气交换过程中的稳定碳同位素分馏。当大陆架浅层上的二氧化碳质量流量在1–2 mol CO2⋅ m− 2⋅ year− 1和在开阔海域为2.5-3.5 mol CO2⋅ m-2⋅ year-1的范围内,CO2通量同位素特征为:海面的范围为-2.6± 1.4‰,在西部为-6.6± 0.9‰,在开阔海域东部为-4.5± 0.9‰。
  • CHNS稳定性同位素比值的同时测定
    一次做样,同时测量几个元素的同位素比值,会给同位素比值分析带来极大的方便性。 但是难点在于:1. CNS的含量差异很大,C的含量通常很高,但是N,S的含量通常很低。如果想同时测定这几种元素,需要同位素质谱具有很好的线性范围。2. 燃烧过程中H元素将转化为水,但是水不能直接进入质谱分析,必须是H2的形式。那Elementar是如何解决此难题的呢?请参阅附件中的文件。
  • 微量采样方法及锶、铷同位素的高精密分析,在岩石学、地质学上的应用
    单晶体的微研磨可产生微克级的固体样品,可用于之后的同位素分析,并得出重要的岩石成因信息。从样品所在位置的上下组织结构在研磨前便可充分评估,因此可得特殊的细节。而这种细节,在大块岩石分析时,不容易被发现。这里,我们提供一种综合方法,可精细分析由微克固体样品精炼得到的ng-量级的Rb、Sr。物理取样技术,是基于电脑数控微钻机器(Micromill),专门用于晶体材料的复杂堆积和生长结构的取样
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制