当前位置: 仪器信息网 > 行业主题 > >

激光散射仪

仪器信息网激光散射仪专题为您提供2024年最新激光散射仪价格报价、厂家品牌的相关信息, 包括激光散射仪参数、型号等,不管是国产,还是进口品牌的激光散射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光散射仪相关的耗材配件、试剂标物,还有激光散射仪相关的最新资讯、资料,以及激光散射仪相关的解决方案。

激光散射仪相关的方案

  • 土壤粒径的激光散射法和沉淀法分析及模拟转化
    土壤质地是土壤最基本的物理性质之一,它能表明不同的土壤的粒径分布和粒径组分比例。目前,有多种通过物理方法对土壤粒径进行测试,其中的吸管法是根据不同大小粒子的沉降速度来测粒径,是目前认为的标准方法。随着科技的发展,激光散射等光学测试法也逐渐被用于土壤粒径的测试。但不用的物理方式(此文基于激光散射)测得的结果与传统的沉降法的结果不是1:1的关系,这导致很多研究者不愿意接受激光散射技术。随着多线性回归模型的发展,使得传统沉降法的结果可以与激光散射法之间进行转化。因此我们对河床深度在15-20cn和40-45cm的河床土壤132个样本用激光散射法进行了分析,再将结果与吸管法对比。并应用线性函数、指数函数、幂函数、多项式推导回归关系,并对回归系数(R2)较高的函数进行了进一步的研究。 发现最符合的是多项式回归模拟。从结果来看, 0.01mm的黏土的多项式回归函数模拟得到了一个比较可信的值(R2),例如在15-20cm深度的土壤是0.72-0.95,在40-45深度的土壤是0.90-0.96。由于粘粒是土壤类型的重要指标,在利用激光散射分析时,我们推荐使用土壤科学的模拟推导关系进行分析。激光散射分析耗时短、用量少、适用多粒径组分、各种土壤类型和广的测试范围,所以有必要在此领域做一个深度的研究,以强调土壤科学研究的急需性,并用先进的激光散射方法代替传统的吸管法。
  • 380DLS动态光背散射技术用来描述墨水粒度
    喷墨油水是一种纳米颗粒分散体系,能够发生动态光散射(DLS)。喷墨墨水通常原配方浓度比使用动态散射光不稀释检测时要高很多。在某种程度上,这就可能导致在分析浓度较高的喷墨墨水时,多重散射变得没有效果。通过激光在样品池里聚焦和定位的检测器来接收背面散射出来光,这样可以完成动态光散射DLS对高浓度分散体系的检测。Nicomp 380独特地增加了多角度检测器,可以从90度到170度进行检测。一个特制的小池样品容器固定器被用来移动,使得激光的焦点可以优化成为适合每种类型样品的检测。
  • 氦气等离子体射流电子密度诊断(激光汤姆逊散射)
    逐光2DSPC单光子计数相机的外部触发稳定抖动小于35ps,增益高,稳定连续且区分度高。单光子计数模式十分适合微弱信号的探测,例如拉曼光谱、汤姆逊散射、二次谐波等应用,可以在高增益下对微弱信号进行高精度地累加,对sCMOS噪声的过滤效果很好。
  • 动态激光光散射仪表征pH对蛋白质复合物稳定性和均匀性的影响
    动态激光光散射仪(Dynamic light scattering,DLS)测量蛋白及其及其聚集状态,纳米颗粒,囊泡等流体力学半径。使用标准比色杯测试。
  • 散射光浊度法和透射光比浊法
    散射光浊度法和透射光比浊法是基于光散射现象原理的分析技术。光散射是一种物理现象,其中光束由于与足够小的物质粒子相互作用而改变其传播方向(称为偏转)。根据麦克斯韦电磁理论,散射发生的先决条件是悬浮颗粒的折射率必须不同于悬浮液体的折射率。差异越大,散射越强烈。光散射有两种类型:1)弹性散射,其中散射光和入射光的波长相同;2)非弹性光散射,其中散射光和入射光的波长不同。只有第一种光散射(弹性)与散射光浊度法和透射光比浊法有关。在透射光比浊法中,测量透射光的强度,并在入射光方向(即0° )测量散射导致的入射光强度的衰减,并与入射光强度进行比较(空白测量)。被测特性是悬浮颗粒散射效应的间接测量,称为浊度。悬浮样品对光的任何吸收都会导致光强度的额外衰减(参见 Ultraviolet-Visible Spectroscopy和 Ultraviolet-Visible Spectroscopy—Theory and Practice)。因此,确保被测材料不会吸收测量波长处的光非常重要。实际上,控制吸收和浊度测定的方程式是相同的(尽管衰减常数的值不同)。在散射光浊度法中,测量与入射光传播方向成90° 角的散射光强度。因此,散射光浊度法浊度测量是对悬浮物散射效应的直接测量。
  • AN-CN-17 DLS动态光散射和SPOS技术激光粒度仪在脂质体检测方面的应用
    脂质体的大小和表面电荷是两项重要特征需要检测和监控。动态光散射(DLS)是用于测量亚微米脂质体的大小最常见的分析技术,而单颗粒光学传感(SPOS)技术用来测量大于1um的脂质体,不仅可以检测脂质体的大小还可以进行颗粒计数。
  • 光散射法用于膜蛋白结构的研究
    膜蛋白和脂质体组成生物膜,生物膜对生命起着重要的作用。为了弄清膜蛋白在组成生物膜中所起的作用及功能,了解膜蛋白的结构非常重要。 膜蛋白通常只溶解在胶束溶液中,因此表征脂质体溶剂中低聚态的膜蛋白相当困难。本文利用多角度激光光散射仪(MALS)、紫外检测器(UV)与示差折光检测器(DRI)联用技术测定蛋白核、脂质体胶束、蛋白-脂质体复合物分子量以及各组分的含量。
  • 激光粒度测试时样品折射率和吸收率的确定方法
    Bettersize3000plus激光图像粒度粒形分析仪是一种采用半导体泵浦532纳米波长的偏振激光器作为光源的智能化的激光粒度仪,采用单一光学全角度测量的光路系统,散射光探测角度无死角,具有最高的分辨率,是百特公司的专利技术。同时在激光散射法测量的基础上结合了动态颗粒图像测量系统,使粗颗粒端的测量精度更高,同时采用百特公司的专有技术可以对激光法数据和图像法数据进行融合,给出结合测试结果,而且图像法还可以给出粒形上的信息数据,激光法与图像法结合测量是百特公司在国内的首创。该仪器还有一个显著的特点就是可以进行折射率测量,折射率是激光粒度仪测试中的一个非常重要的参数,正确与否对测量结果的准确性有至关重要的作用,那么百特公司在Bettersize3000plus仪器的基础上结合多年的研究成果,开发出具有创造性的折射率测量系统,使仪器的测量结果真实准确性有个可靠的保障。
  • 光散射法与滤膜称重法的对比分析
    K值不受公共场所行业类型的不同、季节变化以及是否使用空调的影响,但是K值是会收到不同地区、气候、环境等因素影响。光散射法粉尘仪受湿度的影响较大。由于光散射法具有反应迅速灵敏、轻巧便携、操作简单、现场直读等优势,经过大量研究表明光散射法粉尘仪测量数据相对可靠,所以光散射法粉尘仪替代滤膜称重法在公共场所空气可吸入颗粒物监测中应用是可行的。最好采用光散射法与滤膜称重相结合的工作方式,这样会使得监测所得数据更加具有说服力。
  • 研究论文集(理论篇)--论文六:用激光粒度仪测量大颗粒时使用衍射理论的误差
    2微米)时,其散射可以用相对比较简单的夫琅和费(Fraunhoff)衍射理论描述。通过实验发现,用衍射理论分析大颗粒的散射光能数据时,会在1微米附近“无中生有”出一个粒度分布峰来。本文首先描述和分析了上述现象,然后用光学理论进行了解释,证实这是由衍射理论的误差造成的,最后指出只有当颗粒的折射率带有虚部,即颗粒具有吸收性时,衍射理论才能在激光粒度仪中使用。
  • 高通量动态光散射对预制剂的研究
    传统的基于比色皿的手工动态光散射测量,只适合于少量的样品测量而不适合于成百上千的样品测量。自动化技术帮助我们解决了分析成百上千的样品和条件所面临的困难。高通量动态光散射实验改善了统计,允许多次重复,并且只需要人工分析很少一部分的时间。鉴于每个微孔数据的生成只需要10秒的时间,一个由不同样品、PH值、离子强度、重复样品覆盖384样品微孔的实验只需要90分钟就可以完成。Dynapro Plate reader Ⅱ 使用工业标准微孔板,与其他基于板的扫描技术相兼容。实际上,这意味着,动态光散射样品易于放入其他仪器做多元样品分析。这种能够迅速检测一种药物产品在成百上千种不同条件下的性能的能力,使得科学家们更容易实施DoE和QbD试验方法,以满足监管和企业生产效率的期望。
  • 【AM-AN-22025A】标准粒子在光散射研究中的应用
    瑞利散射可以说是米氏散射理论模型在小粒子端的近似形式,而衍射散射也可以说是米氏散射理论模型在大粒子端的近似形式,接下来我们将详细了解标准粒子应用于米氏散射理论对其光散射特性研究中,入射光波长、标粒直径以及入射光偏振角对散射光强的影响。
  • 研究论文集(理论篇)--论文七:论现代激光粒度仪采用全米氏(Mie)理论的必要性
    激光粒度仪已经在世界范围内成为最流行的粒度测量仪器。米氏(Mie)理论是描述光的散射现象的严格理论,是激光粒度仪的理论基础。在一定的条件下,散射现象也可以用相对较简单的夫琅和费衍射理论近似描述。早期的激光粒度仪基本上都用衍射理论。随着科学技术的发展,仪器制造商先是在亚微米范围内采用米氏理论,后又在全范围内采用米氏理论,即不论颗粒大小,全部都用米氏理论,称为“全米氏理论”。许多激光粒度仪的制造商,尤其是国外制造商,都把“采用全米氏(Mie)理论”作为其产品的重要优点之一。可是有的国内制造商还不知道“米氏理论”为何物,有的国外厂商虽然在宣传时声称用“全米氏(Mie)理论”,可是交付到中国用户手中的仪器还是用夫琅和费理论。本文首先介绍什么是米氏(Mie)理论,在什么条件下可以作衍射近似,然后分亚微米颗粒和大颗粒两种情况比较了两种理论的差别,指出了衍射理论的误差以及该误差可以忽略的条件。
  • 体积排阻色谱法与光散射检测技术联用高效分析蛋白多聚体
    静态光散射与尺寸排阻色谱的联用,在单克隆抗体(mAbs)的纯度检验或下游纯化的快速检测方面来说是一项重要手段。光散射也是在荧光检测之外蛋白多聚体的最敏感检测方法之一。
  • 静态多重光散射技术测量粒度标准发布--- ISO TS 21357
    ISO在2022年1月发布了Turbiscan测量粒度标准《纳米技术——静态多重光散射法测量液体分散体中纳米物体平均尺寸》,文中描述了利用SMLS静态多重光散射技术测量不同样品类型(宽浓度范围)的平均当量粒径的标准方法。纳米颗粒液态分散体系被广泛应用在工业中。纳米颗粒在液体中通过各种强弱力量相互作用,可能导致絮凝或聚集(初级粒子、聚集体、絮凝体等)。因此分散状态和表观平均粒径和粒径分布可能随着生产、储存、加工、特别是在测试粒度前的稀释或超声过程中导致絮凝体、聚集体和初级粒子的破碎或变形。出于产品开发、质量控制和法规遵从的原因,行业利益相关者需要适用于样品原位状态测量粒度的分析方法。目前,主流的粒度分析方法是光散射法,其中激光衍射式粒度仪仅对粒度在5μ m以上的样品分析较准确,而动态光散射粒度仪则对粒度在5μ m以下的纳米样品分析准确。但是光散射粒度测试需要对样品进行预处理,包括稀释、超声等。而Turbiscan所采用的静态多重光散射技术可以在样品原位状态下,无需稀释,直接测试样品的平均粒径。
  • 动态光散射测试维生素B1粒度
    检测角度也会影响结果。例如,侧向散射(90° )适用于弱散射样品,包括小颗粒和透明样品;背散射(175° )适用于强散射样品,包括大颗粒、高浓度或者浑浊样品。Litesizer 500的一个独特功能是它的自动测试角度选择,允许仪器选择最佳的测试角度。此选择基于样品的连续透光率测试。此功能对于用户处理未知或者不熟悉样品非常有用。
  • 时间分辨X射线散射法探测全长蓝藻植物色素的光诱导结构改变
    采用立陶宛Ekspla公司的5ns脉宽可调谐激光器的630nm,0.5mJ输出光解蓝藻植物色素分子,并采用时间分辨X射线散射法探测光诱导结构改变。
  • 岛津激光粒度仪在食品中的应用
    激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今比较流行的粒度测量仪器之一,,具有测量动态范围大、测量速度快、重复性好、操作方便等优点,尤其适合测量粒度分布范围宽的固体颗粒和液体雾滴。激光粒度仪作为一种测试性能优异和适用领域极广的粒度测试仪器,已经在其他粉体加工与应用领域得到广泛的应用。激光粒度进样方式分为干法、湿法两种。湿法是利用水或其它试剂将样品颗粒分散后测量,湿法又包括微量进样池和超声循环池两种附件。超声循环池具有不同的循环速度,可提供超声以增加样品的分散性,根据样品特性自由选择,可针对样品优化分散条件;微量进样池具有不同的搅拌速度,搅拌速度均匀且样品需求量小。干法测定部件采用气旋方式样品抽吸结构,抽吸与喷射2段作用,从而出色实现样品的稳定气相分散,可实现高灵敏度、高重现性、高分辨率的测定干燥样品的粒径分布。岛津激光粒度(SALD)系列包含多款产品,主要包括SALD-2300、SALD-7500nano、IG-1000、SALD-7500和DIA-10等众多型号,适合多种粒度范围测量。除光学系统,不同机型也有相应多种规格的进样器可供选用进样器,根据样品特性可以选择湿法(微量进样池和超声循环池)和干法测试样品粒径,可以帮助客户大大提高分析速度和工作效率。
  • 岛津激光粒度仪在制药疫苗中的应用
    激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今比较流行的粒度测量仪器之一,,具有测量动态范围大、测量速度快、重复性好、操作方便等优点,尤其适合测量粒度分布范围宽的固体颗粒和液体雾滴。激光粒度仪作为一种测试性能优异和适用领域极广的粒度测试仪器,已经在其他粉体加工与应用领域得到广泛的应用。激光粒度进样方式分为干法、湿法两种。湿法是利用水或其它试剂将样品颗粒分散后测量,湿法又包括微量进样池和超声循环池两种附件。超声循环池具有不同的循环速度,可提供超声以增加样品的分散性,根据样品特性自由选择,可针对样品优化分散条件;微量进样池具有不同的搅拌速度,搅拌速度均匀且样品需求量小。干法测定部件采用气旋方式样品抽吸结构,抽吸与喷射2段作用,从而出色实现样品的稳定气相分散,可实现高灵敏度、高重现性、高分辨率的测定干燥样品的粒径分布。岛津激光粒度(SALD)系列包含多款产品,主要包括SALD-2300、SALD-7500nano、IG-1000、SALD-7500和DIA-10等众多型号,适合多种粒度范围测量。除光学系统,不同机型也有相应多种规格的进样器可供选用进样器,根据样品特性可以选择湿法(微量进样池和超声循环池)和干法测试样品粒径,可以帮助客户大大提高分析速度和工作效率。
  • 岛津激光粒度仪在粉体材料中的应用
    激光粒度分析仪,是指以激光作为探测光源的粒度分析仪器,通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小,已成为当今比较流行的粒度测量仪器之一,,具有测量动态范围大、测量速度快、重复性好、操作方便等优点,尤其适合测量粒度分布范围宽的固体颗粒和液体雾滴。激光粒度仪作为一种测试性能优异和适用领域极广的粒度测试仪器,已经在其他粉体加工与应用领域得到广泛的应用。激光粒度进样方式分为干法、湿法两种。湿法是利用水或其它试剂将样品颗粒分散后测量,湿法又包括微量进样池和超声循环池两种附件。超声循环池具有不同的循环速度,可提供超声以增加样品的分散性,根据样品特性自由选择,可针对样品优化分散条件;微量进样池具有不同的搅拌速度,搅拌速度均匀且样品需求量小。干法测定部件采用气旋方式样品抽吸结构,抽吸与喷射2段作用,从而出色实现样品的稳定气相分散,可实现高灵敏度、高重现性、高分辨率的测定干燥样品的粒径分布。岛津激光粒度(SALD)系列包含多款产品,主要包括SALD-2300、SALD-7500nano、IG-1000、SALD-7500和DIA-10等众多型号,适合多种粒度范围测量。除光学系统,不同机型也有相应多种规格的进样器可供选用进样器,根据样品特性可以选择湿法(微量进样池和超声循环池)和干法测试样品粒径,可以帮助客户大大提高分析速度和工作效率。
  • 光散射法在颗粒物检测中的应用
    传统的滤膜称重法在实际监测任务中具有操作繁琐、费时、以及不能及时得到现场测定结果等缺点,难以满足实际工作任务的需求。而利用光散射法原理的便携式颗粒物检测设备克服了传统方法的缺点,具有反应迅速灵敏、轻巧便携、操作简单、现场直读等优势,此类设备受到了相关工作人员的青睐。在GBT 18204.2-2014 《公共场所卫生检验方法 第2部分:化学污染物》中,光散射法也被纳入国标方法。
  • 溶菌酶-动态光散射测试颗粒尺寸
    在这篇应用文章中,动态光散射(DLS)被用来表征一种常用蛋白质溶菌酶的尺寸。所用仪器Litesizer 500在最低检测限下的准确度和灵敏性也被检验。
  • 基于电子拉曼散射谱的快速、高效金属性单壁碳纳米管手性结构测定
    相比于现有的瑞利散射光谱、偏振吸收光谱、可调激光拉曼等适用于单根碳管测试的谱学方法,基于ERS的拉曼光谱拥有以下三大优势:1仪器需求简单,测试便捷在该工作中,作者使用了HORIBA Aramis拉曼光谱仪,配备532nm、633nm、785nm三个常见的激发波长,通过仪器全自动切换,即可测试得到1.4-2.3 eV范围内的跃迁能数值。类似的显微拉曼光谱仪还有HORIBA XploRA, LabRAMHR Evolution型光谱仪,均可以满足相关研究者的需求,测试不再依赖于复杂的仪器搭建和调试。2测试精度高得益于HORIBA拉曼光谱仪的高分辨率和良好的噪声抑制水平,通过ERS测定Mii的误差仅为± 1meV,远优于常见的瑞利散射光谱等电子光谱学手段~10 meV的误差。 3样品适用范围广针对硅基底上、表面活性剂包裹的、管束中的碳管作者在实验中均能测试得到ERS峰。
  • 溶菌酶-电泳光散射测试Zeta电位
    蛋白质在人体内有多种角色,包括催化剂、细胞膜受体和通道、细胞内和器官之间的分子输送者。它们在很多疾病的治疗中扮演了重要角色,因为它们通常是经过胃肠外(例如静脉注射)供给的。为了最优化处方,监测蛋白质溶液的稳定性很重要。在这篇应用文章中,Litesizer 500用电泳光散射(ELS)表征一种常用蛋白质溶菌酶的Zeta电位。
  • 生物兼容液相色谱仪与多角度光散射检测器联用测定双抗分子量
    本文采用岛津生物兼容液相色谱仪Nexera Bio联合多角度光散射检测器测定双抗分子量,为推断双抗连接情况提供依据。本实验采用体积排阻色谱对双抗样品进行分离,多角度光散射检测器检测分子量。通过谱图得知,此双抗样品(单抗Fc端融合型)含3个主要成分,多角度光散射检测器测得重均分子量分别为197708 Da、145121 Da、56401 Da,推测双抗样品组成为双抗(Fc端融合scFv),单抗(未融合scFv)和单链抗体scFv。此分子量测定方法操作简便,快速,成本低,可为双抗连接情况的确定提供依据。
  • 光散射法与滤膜称重法的对比研究
    传统的滤膜称重法在实际监测任务中具有操作繁琐、费时、以及不能及时得到现场测定结果等缺点,难以满足实际工作任务的需求。而利用光散射法原理的颗粒物便携式设备克服了传统方法的缺点,具有反应迅速灵敏、轻巧便携、操作简单、现场直读等优势,此类设备受到了相关工作人员的青睐。在GBT 18204.2-2014 《公共场所卫生检验方法 第2部分:化学污染物》中,光散射法也被纳入国标方法。
  • DLS 动态光散射法能够测定大范围的粒径分布
    动态光散射法常被认为无法检测到大范围的粒径分布,然而事实并非如此。峰值的高度大小代表了粒子的数目多少,因而动态光散射不仅能够给出粒径的正态分布,还可以给出关于峰值的更多意义。
  • 研究论文集(理论篇)--论文四:棒状和片状颗粒在激光粒度仪中的等效粒径(一)
    任何粒度测试设备测得的非球形颗粒的粒径都是等效粒径。棒状和片状颗粒是两种比较典型的非球形颗粒,本文研究这两种颗粒在激光粒度仪中的等效粒径。论文四--立论和计算模型,是本文的第一部分,主要介绍激光粒度测量系统,棒状和片状颗粒光散射问题的近似处理方法,以及相应的数学推导。
  • 生物兼容液相色谱仪与多角度光散射检测器联用测定曲妥珠单抗主成分及聚集体分子量
    本文采用岛津生物兼容液相色谱仪Nexera Bio联合多角度光散射检测器测定单抗药物主成分及聚集体分子量,为推断单抗药物聚集体状态提供依据。本实验采用体积排阻色谱对样品进行分离,紫外和多角度光散射检测器进行检测,通过色谱图得知,此曲妥珠单抗药物无聚集体,多角度光散射检测器测得主成分分子量为159,722 Da,与理论值偏差为0.17%。此分子量测定方法操作简便,快速,成本低,可用于单抗药物主成分及聚集体分子量的测定。
  • 时间门控拉曼散射的典型应用案例
    连续激光激发与时间门控技术用于纳米SnO2 颗粒检测的拉曼光谱比较:实验结果简要描述:用四种拉曼光谱仪研究了颗粒尺寸为4nm的纳米SnO2 在室温的拉曼光谱。 其一是Renishaw公司的显微共聚焦拉曼光谱仪,它提供了连续激发波长为514.5nm的拉曼光谱(514nm-CW);其二是Horiba公司的显微共聚焦拉曼光谱仪,它提供了连续激发波长为532nm的拉曼光谱(532nm-CW);其三是Bruker公司的傅里叶红外变换拉曼光谱仪,它提供了连续激发波长为1064nm的红外拉曼光谱(FT-Raman),其四是Timegate公司的时间门控拉曼光谱仪(Pico-Raman),它提供了532nm皮秒脉冲激光激发的拉曼光谱(532nm-TG)。从图1所示,在200-800波数范围内,除了强度外,四种光谱仪获得基频拉曼光谱基本相似。但在800-2000波数范围内,用可见区连续激光激发的拉曼光谱,由于强的荧光背景干扰,叠加在此背景上,难以确定弱小的拉曼峰的峰位、峰形和强度,就难以确定它们的散射性质,而红外FT-Raman在800波数后,它基本是一条直线。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制