当前位置: 仪器信息网 > 行业主题 > >

定制催化剂测试仪

仪器信息网定制催化剂测试仪专题为您提供2024年最新定制催化剂测试仪价格报价、厂家品牌的相关信息, 包括定制催化剂测试仪参数、型号等,不管是国产,还是进口品牌的定制催化剂测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定制催化剂测试仪相关的耗材配件、试剂标物,还有定制催化剂测试仪相关的最新资讯、资料,以及定制催化剂测试仪相关的解决方案。

定制催化剂测试仪相关的资讯

  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力
    ▼点击蓝字,关注麦克▼麦克仪器推出催化剂原位表征系统ICCS为多相催化剂研究助力原位直接评估反应条件对催化剂主要性能的影响麦克仪器公司推出了新的原位催化剂表征系统(ICCS),原位直接评估反应条件对催化剂主要性能的影响。ICCS是Micromeritics公司和PID Eng&Tech公司的专业知识相结合的产物,PID Eng&Tech公司最近被Micromeritics公司收购,并以其微反应器和中试工厂技术而闻名。ICCS使研究人员能够有效地量化反应对定义催化剂参数(如活性中心数量)的影响,所得数据直接支持开发更有效的多相催化剂。 麦克仪器的化学吸附技术如程序升温分析和脉冲化学吸附在全球范围内应用逛逛。另一方面,MicroActivity Effi是一种高度自动化的催化剂筛选工具,用于测量工艺相关条件下的产率、转化率、选择性和催化剂再生。ICCS将化学吸附和程序升温技术(如TPR、TPO和TPD)与Microactivity Effi的现有功能相结合,从而可以对催化剂进行表征、测试,然后对其进行重新表征,以评估反应的影响。所有这些都是在严格控制的条件下进行的,没有受到外部环境污染的风险。 ICCS催化剂原位表征系统集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 当ICCS与Microactivity Effi直接相连时,ICCS可以进行原位化学吸附测试,可以对催化剂、催化剂载体和其他材料进行分析,不会有暴露在外部环境中的风险,因为不需要将样品从反应器中取出。这消除了大气气体和湿气污染的可能性,因为大气气体和湿气可能会损坏活性催化剂并损害数据完整性。程序升温实验,包括程序升温还原(TPR)、程序升温氧化(TPO)和程序升温脱附(TPD),可以在大气压或高达20bar的压力(取决于相关筛选系统的额定压力)下进行,提供有关高压下催化剂氧化还原性能的重要信息。可以使用相同的样品对相同的材料进行多种表征。 欲了解更多ICCS信息请点击查看Micromeritics原位催化表征系统 (ICCS) 与 Microactivity EFFI关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。设备咨询热线:400-860-5168转0677
  • 莱驰科技回访粒度仪的老用户--石科院催化裂化催化剂研究室
    在温暖的春日,莱驰科技(Retsch Technology)海外销售经理Joerg Westman先生来到了中国石化石油化工科学研究院(以下简称石科院),回访粒度仪的老用户。石科院是中国石化直属的石油炼制与石油化工综合性科学技术研究开发机构,创建于1956年,以石油炼制技术的开发和应用为主,注重油化结合,兼顾相关石油化工技术的研发。石科院主导开发了催化裂化、铂重整、延迟焦化、尿素脱蜡和催化剂、添加剂的研制生产,被誉为中国炼油史上的“五朵金花”,是实现中国现代炼油技术从无到有的标志。今天我们来到的就是催化裂化催化剂研究室。催化裂化催化剂研究室主要研究催化裂化催化剂,催化裂化催化剂是粒径分布范围主要在20-100um的微球颗粒。催化剂的圆整程度直接影响催化剂流化性能、耐磨损强度等性能,是催化剂重要物性指标之一。 实验要求:实验提供了两种催化裂化催化剂样品,要求使用Retsch Technology(莱驰科技)的动态图像法粒度粒形分析仪CAMSIZER XT对两种样品进行形貌识别,区分出形貌差异。 测试仪器:Camsizer XT采用ISO 13322-2动态图像法原理检测颗粒的粒度分布,独家专利的双CCD镜头设计,能够检测1um-3mm的颗粒粒度与形貌特征。130万像素的高速摄像镜头每秒钟可以采集高达275张照片。检测结果实时显示,单次检测时间仅需1~3min。 样品形貌对比:显微镜照片看到的样品B和样品D的形貌外观相近,见下图。样品B 样品D 图中可以看出,样品D的形貌分布曲线明显区别于样品B,意味着样品D具有更好的球形度,总体形貌更加规则。催化剂球形度随粒径增大而变化的趋势 莱驰科技海外销售经理Joerg Westmann先生与石科院催化裂化催化剂研究室的郭瑶庆老师合影 德国莱驰科技动态图像法粒度粒形分析仪能够完美地表征微球类催化剂的形貌,定量检测催化剂的球形度等形貌信息,单次检测时间仅需1~3min。 参考文献(References):1 郭瑶庆,朱玉霞,张连荣,蔡智. 催化裂化催化剂的粒度分析误差与校正.中国石油学会石油炼制学术年会,2005
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 应用 | 高效捕获和灭活生物气溶胶的仿生蜘蛛丝光催化剂
    研究背景图1 捕获和灭活空气中细菌的ASS光催化剂的示意图含有生物体的生物气溶胶,如细菌、病毒、花粉、孢子和真菌,会长时间悬浮在空气中。它们广泛存在于室内和室外环境中,这些生物气溶胶可以引起疾病的传播,捕获和灭活生物气溶胶是尤为必要的。在自然界中,蜘蛛丝可以主动捕获空气中微小的尘埃颗粒和微滴;微滴结合形成更大的液滴,将小的尘埃颗粒和水分集中在蜘蛛丝上。近日,广东工业大学环境健康与污染控制研究院、环境科学与工程学院安太成教授团队在著名综合学术期刊Nature Communications杂志上发表了相关论文。在这项工作中,作者基于蜘蛛丝捕获空气中的微尘并将雾气凝聚成微小液滴的特性,制备了具有周期性纺锤结构的亲水“仿生蜘蛛丝”光催化剂,它由尼龙纤维上TiO2的周期性纺锤体结构组成,可以有效地捕获和浓缩空气中的细菌,形成液滴光催化微反应器,并利用固液界面光照射下光催化产生的高效自由基原位实现对生物气溶胶的连续高效光催化灭活。研究发现,ASS光催化剂的捕集能力主要归因于表面粗糙度引起的亲水性、拉普拉斯压差、纺锤体结大小和表面能量梯度的协同效应。ASS光催化剂捕获的细菌在液滴内或空气/光催化剂界面被光催化灭活。这一策略为生物气溶胶净化材料的构建铺平了道路。催化剂的设计将尼龙纤维浸在TiO2/PMMA/(DMF +乙醇)溶液中,以5&minus 95cm s&minus 1的速度抽出,制备了混合TiO2/PMMA主轴结的纤维。在纤维表面形成的一种薄膜,由于瑞利不稳定性,它沿着纤维自发地分离成周期性的聚合物液滴,然后在空气中干燥。在尼龙纤维(人工蜘蛛丝称为ASS)上形成周期性的光催化剂纺锤结,TiO2 光催化剂主要集中在纺锤结构上,其几何形状与蜘蛛的湿捕获丝相似。图2 ASS光催化剂的制备仿生捕获仿生蜘蛛丝捕获生物气溶胶经过捕获、运输及浓缩三个阶段。仿生蜘蛛丝捕获生物气溶胶后,微生物随着小液滴从连接结构处浓缩运输至纺锤结构处。图3 ASS光催化剂对生物气溶胶的捕获过程捕获机理和表征仿生蜘蛛丝的亲疏水性表征,则采用配备20 pL滴定器的接触角测试仪(KRÜ SS DSA30M)测定单纤维在不同湿度下的水接触角。图4 KRÜ SS DSA30M接触角测量仪如图5所示,通过采用不同的纤维基底制备仿生蜘蛛丝,本研究发现亲水性更强的尼龙基底所制备的仿生蜘蛛丝具有更好的捕获生物气溶胶的性能。说明亲水性对仿生蜘蛛丝的捕获性能有较大影响。图5b显示,在湿度 50%时,接头的水接触角(θ)为97.5°(θ90°,疏水),而在湿度 80%时,水接触角为88.9°(θ图5.ASS光催化剂的生物气溶胶捕获机理a具有不同纤维衬底的ASS光催化剂的生物气溶胶捕获性能。b单个ASS光催化剂在不同湿度下的水接触角。c不同RH下细菌与ASS光催化剂之间的粘附力。d用ASS光催化剂用不同的β、主轴节的高度(H)和关节的长度(L)捕获的生物气溶胶的光学图像。e不同形貌的ASS光催化剂的生物气溶胶捕获性能。F ASS光催化剂的SEM图像和AFM图像。i说明了ASS光催化剂的生物气溶胶捕获和浓缩机制。结论综上所述,本文通过将二氧化钛与周期性主轴结集成,开发了一种ASS光催化剂,并详细研究了生物气溶胶的捕获和失活性能及其相应的机理。ASS光催化剂的生物气溶胶捕获性能是纯尼龙的2倍,其失活效率为99.99%。生物气溶胶首先被亲水关节捕获,然后它们向纺锤节移动,留下亲水捕获位点暴露在外,以便进一步的生物气溶胶捕获。本文有删减,详细信息见原文Peng, L., Wang, H., Li, G. et al. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols. Nat Commun 14, 2412 (2023). https://doi.org/10.1038/s41467-023-38194-1
  • 麦克仪器发布ICCS催化剂原位表征系统新品
    ICCS-催化剂原位表征系统ICCS催化剂原位表征系统是美国麦克仪器推出的新一代催化剂原位表征系统,与其它动态实验室反应器系统(如麦克仪器的微型反应器Micro-Activity Effi和Solo)不同,它在现有反应系统的基础上增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,此外还可以通过选配相应的配置进行物理吸附。用户可以使用ICCS在新鲜催化剂上进行这些重要的表征技术,且无需从反应器中取出催化剂可直接进行重复测试。对同一个样品既可进行反应研究,又可同时获得TPx和脉冲化学吸附的数据,实现了对催化剂的原位表征,为催化研究提供了新的表征工具。进行这种原位分析,可消除环境中气体或水分污染催化剂的可能,避免损坏活性催化剂和破坏反应后表征数据的相关性。ICCS催化剂原位表征系统技术ICCS常规测试流程包括:将催化剂装入ICCS的反应器系统中,接下来可选择TPx方法表征催化剂。在TPx分析中,程序升温还原(TPR)常用于负载型金属催化剂,程序升温脱附(TPD)常用于酸碱催化剂。在TPx之后通常进行脉冲化学吸附,以确定催化剂活性位点的数量。通过TPx和脉冲滴定可以获得新鲜催化剂在典型反应条件下(特别是在高压下)的信息。进行了上述表征后,用户无需额外添加或转移催化剂,可以直接继续对相同的催化剂样品进行反应研究。长时间使用后的催化剂可以采用与新鲜催化剂相同的条件进行相同的TPx和脉冲化学吸附分析。无需从反应器中取出催化剂,就可比较反应前后催化剂的关键特性,如活性位点数目。ICCS催化剂原位表征系统主要特点及优势ICCS催化剂原位表征系统可以在高温高压的反应条件下对催化剂、催化剂载体和其他材料进行原位表征,有效排除环境中的干扰。两个高精度的质量流量计可以精确、全自动地控制气体流量,保证TPx和脉冲化学吸附的精确分析。原位测试,可对同一催化剂样品进行多种表征。高精度的热导检测器(TCD)可以实时检测流经样品管前后的气体的细微浓度变化。具有直观的软件和图形界面,通过触摸屏可进行安全警报,命令,控制参数等一系列操作。控温区内不锈钢管线提供了惰性和稳定的运行环境,避免管路中的冷凝。两个内部温度控制区可以独立运行。内置可控温的冷阱,用于去除冷凝物(如氧化物还原过程中产生的水)。超小的内部管路体积,可很大程度地减少峰展宽并显著提高峰分辨率。防腐检测器灯丝,可兼容TPx和脉冲化学吸附中常用气体。交互式峰编辑软件使用户能快速方便地评估结果,编辑峰并得到报告。只需要简单的指向和点击就可调整峰边界。催化剂原位表征系统分析能力ICCS催化剂原位表征系统能够进行一系列化学吸附和程序升温反应的原位表征,可量化催化剂及载体的各项关键属性,便于研究催化剂活性、选择性、失活、中毒和再生的过程。脉冲化学吸附可获得以下信息:金属表面积金属分散度平均金属颗粒尺寸活性位点数目TPx技术应用举例:研究催化剂再生(程序升温氧化,TPO)研究吸附强度(TPD)?评估金属催化剂中助剂对金属与载体间相互作用的影响(TPR)表征物理吸附可获得材料的表面积(选项)。 图1:压力对还原温度的影响 图2:系统示意图 催化剂原位表征系统符合以下规定及标准 PED – Directive 2014/68/UE压力设备指令(PED)该设备符合欧盟和西班牙的相应压力设备标准2014/68/UE和RD 709/2015,并通过了相关设计、制造和评估的适用法规。设备出厂时将根据现行规定打上标记。EMC – Directive 2014/30/UE电磁兼容性指令(EMC)根据标准EN 61326进行EMC抗扰性测试根据标准EN 61326进行EMC排放测试LVD – Directive 2014/35/UE低压指令(LVD)根据标准EN 61010-1进行电气安全测试ATEX – Directive 2014/34/UE用于潜在爆炸性环境(ATEX)中的设备和防护系统请勿在潜在爆炸性环境中使用本设备RoHS – Directive 2011/65/UE有害物质限制 技术指标电气电压单相频率50 – 60 Hz功率单相控制模块:低要求处理器 Intel Core I3或同等配置操作系统Windows 7/8/10 (32/64 bits)内存4 GB硬盘500 GB温度系统阀箱 高可达180℃加热线高可达180℃冷阱 通过Peltier系统可控制在-15℃-70℃压力系统工作压力高可达20 bar(g)Options 配件loop环体积0.5 cc and 1.0 cc 气体流量质量流量计2进气压力30 bar流量范围MFC1 MFC2Range 1: 0 – 800 mlN/min Range: 0 – 150 mlN/minRange 2: 800 – 3000 mlN/min气体输送要求30bar压力,通风接口为1/8’’气瓶接头不包括在内,由用户提供Physical 仪器参数高445 mm (17.52 ”)宽545 mm (21.46 ”)长500 mm (19.69 ”) (不含电脑)重量40 kg (88.2 lbs.)环境要求温度10 – 35 oC operating湿度10 – 60 % without condensation其它避免阳光直射,避免靠近冷热源 创新点:1、技术创新 ICCS增加了两项关键的表征技术--程序升温分析(TPx)和脉冲化学吸附,并与Microactivity Effi的现有功能相结合,以实现催化剂的表征、测试,评估反应的影响。此外可通过选配相应的配置进行物理吸附。 2、原位表征 ICCS可实现对同一个样品进行反应研究,同时获得TPx和脉冲化学吸附的数据,无需从反应器中取出催化剂,直接进行重复测试,避免受到外部环境污染的风险,实现对催化剂的原位表征。 3、系统组件 集成了用于全自动精确气体控制的质量流量控制器和用于去除冷凝蒸汽的冷阱。精确的热导检测器监测流入和流出样品反应器的气体浓度的变化。ICCS可以连接到任何微反应器,甚至是定制的反应器,以提供有关被测催化剂的重要信息。 ICCS催化剂原位表征系统
  • 国产仪器出海!催化剂评价装置技术交流会
    8月22日下午,由仪器信息网卓越用户服务部组织的线上仪器选型技术交流会顺利召开。本次会议由俄罗斯某公司委托仪器信息网承办。通过前期对接,卓越用户服务团队了解到,该公司需要国产高通量催化剂评价装置,用于聚烯烃,但目前对国产品牌不太熟悉,基于此,卓越用户服务团队根据用户需求快速匹配了3家厂商与买家单位展开线上深入沟通。会上,厂商就仪器技术、应用、合作的典型用户单位给买家进行了介绍。讲解后,用户就技术支持、配套服务等问题与厂商进行了沟通。会议结束后,买家单位杨总表示,本次交流会不仅让他们对目前市场上的这些优秀国产品牌有了了解,更为他们提供了直接和厂商沟通的机会,国产仪器大有可为!仪器选型技术交流会是仪采通买家定制化服务之一,旨在根据买家真实的采购需求,精准推荐优质供应商;通过线上或线下会议的形式,为供需双方搭建集中交流平台,实现仪器采购降本增效。仪器选型技术交流会扫码免费报名仪器选型技术交流会
  • 首届催化剂表征与评价主题网络研讨会取得圆满成功(含回放链接)
    p   由仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建)主办的首届“催化剂表征与评价”主题网络研讨会于昨日圆满闭幕。此次会议邀请了业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流。本次会议报名参会人数近700人,观众反响强烈,会议取得了圆满成功。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202005/uepic/e14a20ed-81cd-4636-ba2b-0df66b586998.jpg" title=" 1125_480.jpg" alt=" 1125_480.jpg" width=" 500" height=" 213" border=" 0" vspace=" 0" style=" max-width: 100% max-height: 100% width: 500px height: 213px " / /p p   大会开始前,中国石油和化学工业联合会科技与装备部处长李文军为大会致辞,随后6位专家奉献了精彩的报告,并为现场提问的观众进行了耐心的解答。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/1d6d6704-bc2c-4795-9ccc-626827c41586.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" / /p p style=" text-align: center " strong 浙江工业大学工业催化研究所 李瑛 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   李瑛,浙江工业大学教授。2005年获中国科学院大连化学物理研究所物理化学博士学位,师从国际催化委员会主席李灿院士 2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。 /p p   目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p   主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/f09f957d-8dd1-41ee-bfa9-5a1af9e669ca.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " strong 安东帕(上海)商贸有限公司 陈婧琼 /strong /p p style=" text-align: center " strong 报告题目:《表征技术在工业催化剂开发中的重要性及工业催化剂宏观物性表征》 /strong /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 /p p   2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 /p p   2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/05114d62-4523-4231-b8ec-f70eebdd41c0.jpg" title=" 刘伟.png" alt=" 刘伟.png" / /p p style=" text-align: center " strong 中国科学院大连化学物理研究所 刘伟 /strong /p p style=" text-align: center " strong 报告题目:《电子显微技术在催化剂表征评价中的机会与挑战》 /strong /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4d44be02-96e2-4296-9333-ea9b61824ba1.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center " strong 南京大学 彭路明 /strong /p p style=" text-align: center " strong 报告题目:《氧化物纳米催化材料的固体核磁共振研究进展》 /strong /p p   彭路明,博士,南京大学教授,博士生导师。在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/241ab918-ba36-4070-979c-70cc80fbe37d.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" / /p p style=" text-align: center " strong 西安交通大学 杨贵东 /strong /p p style=" text-align: center " strong 报告题目:《基于催化剂结构修饰的光催化反应过程强化》 /strong /p p   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202005/uepic/7f1b13b7-19a4-49ea-a36f-9ffc0238539a.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 大连理工大学 刘家旭 /strong /p p style=" text-align: center " strong 报告题目:《双光束FT-IR光谱在多相催化反应中的应用与进展》 /strong /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p   会后,李文军处长介绍了面向工业催化领域创新成果产业化的公共服务平台现阶段的工作内容,并鼓励催化领域学者间的沟通与交流。会议至此圆满结束。 /p p   此次会议获得了工业催化协会的帮助以及安东帕的大力支持。 /p p    a href=" https://www.instrument.com.cn/netshow/SH101011/" target=" _self" strong 安东帕(上海)商贸有限公司 /strong /a /p p   安东帕(上海)商贸有限公司隶属于奥地利安东帕公司旗下,是其全资子公司,总部位于上海。安东帕公司作为密度、浓度、二氧化碳和流变测量的技术引领者,依托仪器领域的百年经验,为食品饮料、石油石化、制药、高校科研、质检、商检、药检和出入境检验检疫等领域提供量身定制的检测解决方案。安东帕的产品及服务涵盖实验室与过程应用中的密度、浓度和温度测量技术、旋光及折光仪等高精密光学仪器、微波消解、萃取及合成等样品前处理技术、黏度计及流变仪、闪点、馏程分析等石油石化产品测试仪器、以及研究材料特性及表面力学性能的测试仪器等。 /p p    strong 专家视频回放链接: /strong /p p   a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10541" target=" _self"  https://www.instrument.com.cn/webinar/Video/Video/Collection/10541 /a /p p br/ /p
  • 实践与创新结合,催化剂评价实验装置助力学生实现突破
    在化工领域的学习和实践中,催化剂评价实验装置是不可或缺的重要工具。它不仅能帮助学生增加实际操作经验,还能深入了解催化剂的性能和反应条件对反应产物的影响。我们的催化剂评价实验装置,具备先进的功能和设计,为学生们提供了一个开放性、灵活性和安全性兼备的实践平台。 作为催化剂评价实验装置的核心部分,固定床管式反应器是模拟真实工业反应条件的理想选择。它可以根据不同的反应需求进行规格定制,使学生们能够亲身体验到实际工业生产中的复杂环境。同时,反应器的样品加热炉设计方便灵活,可以轻松更换不同的反应器,为学生提供了更多实验设计和开发的机会。 为了确保操作安全和温度控制的准确性,我们的实验装置配备了超温超压报警系统和高精度的程序控温技术。学生可以放心进行实验操作,并深入了解温度对催化反应的重要性。此外,实验装置的管式反应器设计合理,可装填不同种类的催化剂,帮助学生们理解各类催化剂对反应的影响,培养他们的实验设计和催化剂选择的能力。 除了基本实验功能外,我们的实验装置还配备了一些创新功能,以更好地帮助学生进行实践教学。通过扫描装置二维码,学生可以观看实验装置的动画演示,动画内容包括催化剂评价实验装置及模拟流体在预热器及反应器内的流动形态。配备的全流程语音讲解可以深入解读实验原理和操作步骤,从而提高学生对催化反应过程的理解。此外,动画截图展示了设备不同角度含播放进度条的截图,让学生更加直观地了解实验装置的操作过程。 为了提高教学效果和学生的学习动力,我们的装置配备了配套软件系统。该系统可进行网上题库建立、试卷制作和考试成绩统计。教师可以根据需要建立题库,自主选择题型、权重和分值,并轻松生成试卷。考试成绩能够自动统计,大大减轻了教师的工作负担,同时也为学生们提供了更好的学习反馈。 我们的实验装置采用工业一体机进行控制和数据显示,让学生提前接触工业控制相关知识。这有助于学生们更好地理解和掌握现代化工工艺控制技术。此外,我们还配备了实验辅助系统,提供操作截图和分步式操作视频指导学习。学生们可以通过装置自带的操作终端观看分步式操作视频,同时还可以通过手机端APP随时随地学习实验指导视频,进一步提高学习效果。 催化剂评价实验装置的应用不仅局限于实习实践教学,它在化工领域的研究和实际应用中也发挥着重要作用。实践中获得的经验和数据可以为催化剂开发、催化反应工艺优化等方面提供有力支撑。通过我们的实验装置,学生们不仅能够提升实践能力,还能为未来的职业发展打下坚实的基础。 总之,我们的催化剂评价实验装置通过先进的功能和创新的设计,为学生们提供了一个全面、灵活和安全的实践平台。它不仅满足了学生的知识点要求,还能帮助他们在实习实践中获得真实而深入的体验。我们相信,通过实践和探索,学生们将能够充分发挥自己的潜力,为化工领域的发展贡献自己的力量。
  • 普林斯顿团队揭示PtSe2基高效ORR催化剂的催化机制!
    【研究背景】PtM(M = S、Se、Te)二硫族化合物是具有潜力的二维材料,因其高空气稳定性、可调带隙和高载流子迁移率而被广泛应用于电子学、光电学和气体传感器等领域。与传统的铂基合金材料相比,这些二硫族化合物具有高比表面积、丰富的活性位点和优越的催化性能等优点。然而,PtM二硫族化合物在作为氧还原反应(ORR)催化剂时,常常由于其半导体特性和有限的表面积受到低估,这带来了在燃料电池应用中的挑战。近日,来自美国普林斯顿大学Wenhan Niu, Bruce E. Koel以及印度理工学院Srimanta Pakhira教授团队携手在PtM二硫族化合物的研究中取得了新进展。该团队设计并制备了缺陷铂二硒化物(DEF-PtSe2),并通过在氧气饱和电解液中进行电化学循环对其进行重构,实现了其作为高效ORR催化剂的潜力。经过42,000个循环后,DEF-PtSe2的比活性和质量活性分别比商业Pt/C电催化剂高出1.3倍和2.6倍。即使经过126,000个循环,DEF-PtSe2的ORR性能仍然保持优越,几乎没有衰减。利用混合密度泛函理论(DFT),研究人员深入分析了DEF-PtSe2的电子特性及其表面的ORR化学路径,揭示了其催化机制。这项研究不仅提供了对DEF-PtSe2作为耐用电催化剂的理解,也为PtM二硫族化合物的电化学特性和先进催化剂的设计提供了重要的见解。通过这种创新的策略,该研究成功获取了DEF-PtSe2在燃料电池应用中的显著性能提升,展示了其在未来电催化领域的广泛应用潜力。【科学亮点】本文通过多种先进的表征手段对PtSe2基催化剂进行了全面的分析和解读,揭示了其优越的催化性能和微观结构变化。首先,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了PtSe2和DEF-PtSe2的表面形貌和微观结构。这些图像显示,经过电化学激活的DEF-PtSe2表面出现了明显的结构缺陷,表明其表面重新构建的过程与催化性能的提升密切相关。为进一步了解催化剂的电子特性,本文运用了X射线光电子能谱(XPS)技术,对Pt和Se的化学状态进行了分析。XPS结果显示,DEF-PtSe2中Se的缺失导致了Pt的电子密度增加,这为催化反应提供了更强的活性位点。此外,通过核磁共振(NMR)分析,我们深入探讨了DEF-PtSe2中Pt-Se的相互作用,发现其在催化过程中起到了至关重要的作用。针对DEF-PtSe2催化性能提升的现象,本文还通过原位傅里叶变换红外光谱(FTIR)技术监测了反应过程中吸附物的形成和变化,揭示了氧分子在催化反应中的活化机制。这些结果表明,DEF-PtSe2催化剂在ORR过程中能够有效降低能量障碍,提高反应速率。在此基础上,通过电化学测试手段,如循环伏安法(CV)和计时电流法(CC),对DEF-PtSe2的电催化性能进行了系统评估。这些测试结果显示,DEF-PtSe2在经过42,000个循环后,其特定活性(SA)和质量活性(MA)分别达到商业Pt/C催化剂的1.3倍和2.6倍,进一步证实了其在氧还原反应中的卓越表现。总之,经过SEM、TEM、XPS、NMR、FTIR等多种表征手段的综合分析,深入探讨了DEF-PtSe2的催化机理及其优越性能。这些研究不仅揭示了PtSe2基催化剂在ORR中的潜在应用,更为新型催化材料的制备提供了重要的理论依据。最终,这些成果推动了电催化领域的进步,展示了DEF-PtSe2作为燃料电池组件的巨大潜力。【图文解读】图1: 缺陷二硒化铂defective platinum diselenide,DEF-PtSe2的结构和组成。图2:DEF-PtSe2(42,000)的结构和组成。图3:不同电极的电化学性能。图4: DEF-PtSe2(42,000)的形成机制。图5: Pt/C和DEF-PtSe2(42,000)的抗中毒Anti-poisoning试验。图6:电子性质计算和自由能图。【结论展望】本研究揭示了通过在PtSe2催化剂表面创造结构缺陷和进行电化学激活,从而显著提高其在氧还原反应(ORR)中的催化性能的有效策略。特别是,经过42,000个循环激活的缺硒PtSe2(DEF-PtSe2)催化剂在特定活性(SA)和质量活性(MA)方面分别达到了商业Pt/C催化剂的1.3倍和2.6倍,证明了其优越的催化能力。这一发现不仅为催化剂设计提供了新的思路,也为开发高性能燃料电池组件奠定了基础。此外,研究中通过密度泛函理论(DFT)计算揭示了DEF-PtSe2优异性能的微观机制,强调了Pt与PtSe2之间的强相互作用以及Pt顶原子活性位点在ORR中的重要作用。这些理论支持使我们能够深入理解催化过程中的反应路径及其能量学特征,从而指导后续催化剂的优化与开发。总体而言,该研究不仅为PtSe2基催化剂的实际应用提供了重要的实验依据,也为未来材料科学领域的研究方向指明了新的路径,特别是在替代贵金属催化剂方面展现出广阔的前景。文献信息:Niu, W., Pakhira, S., Cheng, G. et al. Reaction-driven restructuring of defective PtSe2 into ultrastable catalyst for the oxygen reduction reaction. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02020-w
  • 文献解读丨基于铁基催化剂的CO₂高效转化制备烯烃:Na,Mn催化助剂协同作用探究
    本文由北京大学分析测试中心电子能谱实验室所作,第一作者为徐尧老师,文章发表于Angewandte Chemie International Edition(Angew. Chem. Int. Ed. 2020, 59, 21736–21744)。 多相催化剂活性和选择性的优化常需借助多种组分(或助剂)来实现,充分理解这些不同组分(或助剂)在催化反应中所起到的作用机制,特别是各组分(或助剂)之间的相互影响及协同效应,对于理性设计多相催化剂具有重要的指导意义。CO2的有效转化是实现当下碳中和目标下的主要途径,Na和Mn常被用作助剂添加到铁基催化剂中以改善CO2加氢转化制备烯烃过程的活性和选择性。此前的研究通常将Na、Mn助剂作为独立的变量来考察,而对两者共存时Na、Mn助剂之间的相互作用及其对催化性能的影响尚缺乏系统性认识。 由于催化反应往往在催化剂的表面发生,XPS表征技术的发展为我们研究助剂对催化剂表面结构的影响提供了有利的检测手段。利用岛津X射线光电子能谱仪(XPS),通过设计准原位XPS实验,对不同助剂影响下铁基催化剂表面的元素组成和化学态变化进行了深入研究,明确了助剂在实现CO2高效转化过程中的关键作用,为设计合成高效CO2转化到烯烃催化剂提供了重要依据。 Axis Supra文献解析图一. Na、Mn助剂促进铁基催化剂上CO2高效转化制备烯烃示意图 表一. 不同铁基催化剂催化CO2加氢性能的比较aaReaction conditions: 100 mg catalyst, 340˚C, 2.0 MPa, CO2/H2/Ar = 24/72/4, 20 mL min-1. bThe carbon ratio of olefin to paraffin. cThe approach to equilibrium factor for the RWGS step (Eq. 1). dThe net rate of the RWGS step (i.e. the net CO2 conversion rate Eq. S1 of SI). eThe forward rate of the RWGS step (Eq. 2). fThe rate of the FTS step (Eq. S2 of SI).gCannot be calculated accurately due to the established equilibrium of the RWGS step. 通过动力学分析分别获得RWGS和FTS的本征速率,发现Mn的加入会同时抑制两步反应的活性,而Na则是调控烃类产物分布的关键因素。当两种助剂同时加入时,Na的介入使Fe和Mn的相互作用减弱,使更多的活性位得以暴露,在两种助剂的协同作用下催化剂表现出最高的反应活性和烯烃选择性。 对催化剂的准原位XAFS和XPS表征表明,Mn可以促进Fe5C2相的形成和稳定,而Na的加入减弱了Fe和Mn之间的相互作用,一定程度上抑制了部分Fe5C2相的生成。该影响使得FeMnNa催化剂中Fe5C2活性相的比例相比于FeMn催化剂明显减少,而体系中Fe3O4相的含量则相对增加。正是两种助剂的协同作用使催化剂中Fe5C2和Fe3O4相的比例达到了最优状态,从而使得该催化剂在获得高CO2加氢活性的同时也表现出最优的烯烃选择性。 图二. 反应3 h后催化剂的a)Fe k-边XANES谱图和b)Fe k-边 EXAFS 谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 图三. 反应3 h后催化剂的a)Fe 2p XPS谱图和b)C 1s XPS谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 通过上述实验,可发现对于使用共沉淀方法制备的铁基催化剂,Mn的添加可以有效地促进Fe的分散,但Fe和Mn之间的强相互作用在CO2加氢转化过程中却表现出了负面效应。这种负面效应包括对RWGS反应活性的抑制和烯烃产物生成速率的降低。造成前者的原因是Mn的加入促进了RWGS的活性相Fe3O4向FTS反应活性相Fe5C2的转变,而造成后者的原因则与Mn增加了Fe5C2活性相上FTS反应的空间位阻有关。而第三组分Na的加入不仅提高了CO2的加氢活性和烯烃的选择性,还减弱了Fe与Mn之间的强相互作用,使Mn转变成为对CO2加氢转化有利的助剂。 以上结果表明,对于类似的复杂多相催化体系,在设计催化剂时,关注多种助剂之间的相互作用(而非孤立地关注各助剂对于催化活性位的影响)或许能够为构筑高性能催化剂提供一种更为有效的策略。而应用具备特殊样品杆和配气装置的Axis Supra X射线光电子能谱仪,为以上实验的表征提供有效助力。 文献题目《Highly Selective Olefin Production from CO2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives》 使用仪器Axis Supra X射线光电子能谱仪 作者Yao Xua, Peng Zhaia, Yuchen Denga, Jinglin Xiea, Xi Liuc, Shuai Wang*,b and Ding Ma*,a a. Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University. Beijing 100871 (P. R. China) b. State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 36100 (P. R. China) c. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences P.O. Box 165, Taiyuan, Shanxi 030001 (P. R. China), and Synfuels China. Beijing 100195 (P. R. China)
  • Solvias手性膦配体及催化剂
    手性制药是医药行业的前沿l域,在手性药物获得的诸多方法中,z理想的是催化不对称合成,它具有手性增殖、高对映选择性,易于实现工业化的优点,选择y种好的手性催化剂及配体可使手性增殖10万倍。 百灵威精心为您挑选Solvias系列产品,在不对称氢化,消旋体拆分,生物催化,偶联反应中应用广泛,并且供货稳定,可提供公斤j大包装定制以及高通量筛选(HTS)设计合理的实验(DOE),加速您的实验进程,满足科研和生产的不同需求。 ■ Solvias 系列产品 百灵威与美g有名工厂STREM合作,引进113种具有*权的Solvias手性膦配体及催化剂系列产品,在高校有机合成实验室、医药研发中心及药物研究所中有着广泛的应用。 产品优势 您的收获 创新性好,90%以上配体为*产品 更多选择,创新研发,优化反应条件及工艺 选择性高(ee90%以上),收率z高可达99% 纯化更简单,成本更低,项目进程更快 产品纯度高,底物适用广 应用在多种基团功能化 ■ 特色系列介绍 Josiphos 配体产品(二茂铁基双膦配体,七大优势配体类别之y),通过实验验证: 活性高、用量更少 应用在多种催化反应、适用底物广 对映选择性高、纯化更简单 Josiphos 配体 96-3650 Solvias Josiphos Ligand Kit References: 1. Chimia 53, 1999, 275. 5. Angew. Chem. Int. Ed., 39, 2000, 1992. 2. Solvias AG, unpublished. 6. Chimia 51, 1997, 300. 3. J. Am. Chem. Soc., 116, 1994, 4062. 7. EP 744401, 1995. 4. Org. Lett. 2, 2000, 1677 8. Adv. Synth. Catal. 343, 2000, 68. J. Am. Chem. Soc.,122, 2000, 5650. 9. J. Organomet. Chem. 621, 2001, 34. Solvias 产品列表: ■ 手性膦配体 15-0038 395116-70-8 15-0042 352655-61-9 15-0043 910134-30-4 15-0044 192138-05-9 15-0045 167709-31-1 15-0074 552829-96-6 15-0108 505092-86-4 15-0109 1044553-58-3 15-0112 145214-57-915-0113 145214-59-1 15-0117 1133149-41-3 15-0156 133545-24-1 15-0157 133545-25-2 15-0158 256390-47-3 15-0159 256235-61-7 15-0162 868851-47-2 15-0164 868851-50-7 15-0178 133545-16-1 15-0179 133545-17-2 15-0483 321921-71-5 ■ 二茂铁类膦配体 26-0240 494227-35-9 26-0244 494227-36-0 26-0245 847997-73-3 26-0246 793718-16-8 26-0248 494227-37-1 26-0252 210842-74-3 26-0253 831226-39-2 26-0650 246231-79-8 26-0955 914089-00-2 26-0956 1016985-24-2 26-0960 292638-88-1 26-0965 166172-63-0 26-0975 158923-11-6 26-1000 167416-28-6 26-1001 158923-07-0 26-1101 162291-01-2 26-1120 494227-32-6 26-1130 494227-30-4 26-1150 360048-63-1 26-1153 851308-47-9 26-1310 388079-60-5 26-1315 388079-58-1 26-1320 494227-31-5 26-1555 494227-33-7 ■ 手性金属催化剂 44-0442 849921-25-1 44-0443 212133-11-4 45-0172 511543-00-3 45-0173 507224-99-9 45-0174 45-0176 45-0177 45-0178 99143-48-3 45-0415 45-0750 908128-78-9 45-0752 908128-76-7 45-0766 45-0770 46-0270 359803-53-5 46-0272 614753-51-4 46-0290 172418-32-5 77-5009 880262-14-6 77-5010 583844-38-6 77-5019 880262-16-8 77-5020 405235-55-4 ■ 套包装 96-3650 Solvias Josiphos Ligand Kit 96-3651 Solvias Walphos Ligand Kit 96-3652 Solvias MandyPhosTM Ligand Kit 96-3655 Solvias (R)-MeO-BIPHEP Ligand Kit 96-3656 Solvias (S)-MeO-BIPHEP Ligand Kit 96-6651 Solvias cataCXium® Ligand Kit for C-X coupling reactions 更多产品信息请点击查询
  • 新型催化剂实现炔烃加氢制烯烃
    近日,中国科学院大连化学物理研究所研究员陈萍、郭建平团队与厦门大学副教授吴安安团队合作,在催化炔烃选择加氢反应研究中取得新进展。合作团队利用金属配位氢化物,发展出一类新型碱土金属钯基三元氢化物催化剂,并应用于炔烃选择性加氢反应中,实现高选择性催化炔烃加氢制烯烃。相关研究成果发表于《美国化学会志》。  炔烃是一类重要的化工产物,炔烃选择性氢化制烯烃是石油化工以及精细化工中的重要过程。目前研究较多的催化剂主要是金属合金、负载型单原子催化剂等。合作团队提出一种不同的催化剂设计策略,利用碱(土)金属稳定金属氢化物制备出三元配位氢化物催化剂,用于炔烃选择加氢反应,通过催化剂中的阴离子和碱土金属阳离子协同作用调控炔烃、烯烃及反应中间体的吸附与加氢能垒,实现炔烃高选择性氢化制烯烃。  郭建平表示,新型催化剂在活性中心组成、结构、反应动力学性质、催化作用机制等方面显著不同于常规多相炔烃选择加氢催化剂。该研究丰富了炔烃选择性加氢催化剂体系,并基于金属配位氢化物材料组成与结构的多样性,为寻找更加高效的炔烃选择性加氢催化剂提供了更多可能。  相关论文信息:https://doi.org/10.1021/jacs.1c09489
  • 仪器表征,科学家制备表征新型高效催化剂!
    【科学背景】单原子催化剂(SACs)由于其高效的原子利用率和可调节的化学微环境,在电催化、热催化、光催化以及仿生酶催化等领域展示了卓越的活性和选择性。然而,由于潜在活性位点结构在材料表面上的分布不均,精确控制或识别其配位位点成为了一个挑战。X射线吸收精细结构(XAFS)表征和密度泛函理论(DFT)计算通常被用来探索SACs中活性位点的结构,但这些方法往往无法提供关于单个原子详细信息和三维结构,存在着实验与理论研究之间的差距。为了解决这一问题,清华大学王铁峰教授团队利用一锅法成功合成了Pt(0)单原子嵌入在基于苯-1,4-二甲酸(BDC)的MOFs中。具体地,作者选择了包括UiO-66–X(Zr)、MOF-5–X(Zn)、MIL-101–X(Fe)、NiBDC–X和CuBDC–X在内的MOFs作为载体,并重点研究了Pt1@UiO-66–X(-X&thinsp =-Br、-NH2、-I和-H)系统。作者发现,不同功能基团对Pt加氢活性和烧结抗性具有显著影响,表现出不同的催化活性和稳定性。特别是,Pt1@UiO-66-Br表现出优异的催化性能,其在硝基苯加氢和苯乙烯加氢反应中分别显示出高达37倍和68倍的TOF增益,相较于Pt1@UiO-66-I。此外,作者通过DFT计算揭示了Pt1@UiO-66–Br在300°C钙化时比Pt1@UiO-66–NH2更稳定的原因,这归因于其不同的H2化学吸附中间态配置。【科学亮点】(1)实验首次采用一锅法将Pt(0)单原子稳定地固定在基于苯-1,4-二甲酸(BDC)的金属-有机框架(MOFs)上,包括UiO-66-X(Zr)、MOF-5-X(Zn)、MIL-101-X(Fe)、NiBDC-X和CuBDC-X。(2)实验通过研究不同功能基团(-X&thinsp =&thinsp –Br、–NH2、–I和–H)对Pt1@UiO-66 MOFs中Pt单原子催化活性的影响,得出以下结果:&bull Pt1@UiO-66-Br展现出显著的加氢活性,其转化频率(TOF)比Pt1@UiO-66-I高出37倍(对硝基苯加氢)和68倍(对苯乙烯加氢)。&bull 结果显示,不同配位配体通过调节Pt中心的电子状态和中间体在Pt位点上的吸附行为,影响其催化性能。&bull 在H2气氛中的烧结抗性测试中,Pt1@UiO-66–Br在300°C的钙化条件下表现出比Pt1@UiO-66–NH2更高的稳定性,这一差异与不同的H2化学吸附亚稳态配置有关。【科学图文】图1:Pt1@UiO-66–X的合成与可视化。图2. Pt1@UiO-66–X的光谱表征与合成机理研究。图3. Pt1@IRMOF-3和Pt1@Fe-MIL-101–NH2的表征。图 4:Pt1@UiO-66–X的催化性能。图5. Pt1@UiO-66–X的电子性质。图6. Pt1@UiO-66–NH2和Pt1@UiO-66–Br的热稳定性。【科学结论】本文通过一锅法成功合成了一类新型的单原子催化剂(SACs),其中零价Pt原子被稳定地嵌入到UiO-66–X(–X&thinsp =&thinsp –H、-NH2、-Br和-I)的金属-有机框架中。这一成就不仅在催化领域展示了如何通过有机功能基团调控金属活性位点的方法,也在材料科学中探索了MOFs作为催化剂载体的潜力。首先,作者展示了通过有机配位基团对Pt中心的电子结构和活性具有显著影响。Pt1@UiO-66–Br表现出显著的加氢催化活性,远超过其他配体类型的Pt1@UiO-66。这不仅加深了对Pt在不同环境中电子态的理解,还为设计高效催化剂提供了新思路。其次,作者发现配位配体对单原子Pt在高温下的稳定性具有重要影响。UiO-66–Br和UiO-66-I中的Pt原子能在300°C下保持原子分散状态,而在UiO-66和UiO-66–NH2中则容易发生聚集。这一发现揭示了在设计稳定和持久的单原子催化剂时,配位环境的选择至关重要。最后,作者展望了将此合成策略推广到其他金属和MOFs的可能性,以拓展单原子催化剂在更广泛催化转化中的应用。通过结合实验和理论方法,作者期待未来能深入探索和优化这些设计的催化剂,为解决能源和环境挑战提供新的有效解决方案。原文详情:Liu, S., Wang, Y., Lyu, K.F. et al. A one-pot strategy for anchoring single Pt atoms in MOFs with diverse coordination environments. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00585-7
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 飞纳电镜在催化剂观察中的应用
    飞纳电镜近期通过福州大学的验收。福州大学石油化工学院主要研究清洁燃料生产催化剂和工艺研究、多级孔道催化材料的制备以及负载型催化剂纳微结构调变方法和应用。为了保护环境,人们对车用燃料的质量要求越来越高,燃料中芳烃含量的高低不仅直接影响其燃烧性能,而且对大气质量会产生不同程度的影响,因此利用性能优良的催化剂改善燃料质量具有十分重要的意义。 福州大学石油化工学院主要研究催化剂在石油化工中的应用,其中催化剂表面形貌、表面微区成分及分散状态会对催化剂性能及活性产生很大的影响。 配备有能谱的扫描电镜是一种重要的表面分析手段,能够观察催化剂表面形貌和检测催化剂表面微区成分,对催化剂的研发具有十分重要的意义。飞纳台式扫描电镜能谱一体机 ProX 既能观察样品表面形貌,还可以利用能谱对催化剂表面成分和元素分布进行分析。 从催化剂的微观观点上看,催化剂表面形貌和组成对催化行为具有重要的影响,飞纳电镜配置二次电子和背散射电子探头,能够充分发掘样品表面信息。催化剂中活性成分的分散状态与催化剂活性及使用寿命有着密切的关系,采用能谱分析可以对催化剂表面进行元素分析,从而判断活性成分的分布。同时,利用飞纳台式电镜也可以用于分析催化剂活性下降或失活的原因。 扫描电镜下的催化剂晶体颗粒扫描电镜下的球形催化剂颗粒 用户认真学习电镜操作利用飞纳电镜的形貌和成分分析,可以直观地获得催化剂的形态和活性成分分布信息,再结合宏观分析结果,可以大致预测催化剂的活性及性能,筛选掉性能较差的样品,大大节约研究和后期测试时间。
  • 大连化物所实现高温稳定的铜基催化剂的研制
    近日,大连化物所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑研究员、俞佳枫副研究员团队,与日本富山大学Noritatsu Tsubaki教授、我所电镜技术研究组(DNL2002)刘岳峰副研究员等人合作,成功构建了800℃高温稳定的铜基多相催化剂。合作团队结合磁控溅射(Sputtering,SP)和火焰喷射(Flame spray pyrolysis,FSP)两种负载型催化剂制备新技术,分别对金属铜的电子结构和TiO2载体的可还原性进行重构,首次在较低温条件下构建了非贵金属铜基催化剂上经典的金属载体强相互作用(Strong metal-support interaction, SMSI),进而实现了耐水耐高温铜催化剂的可控制备。  长期以来,铜基催化剂因其廉价和高活性而被广泛应用于多种工业催化反应中。但受限于较低的塔曼温度,铜纳米颗粒极易在300℃以上烧结聚集而导致失活,严重限制了其高温应用。因此,构建可稳定铜颗粒的保护层,从根本上限制其聚集长大是解决这一问题的关键技术之一。然而,金属铜的功函数较低,且对氢气活化能力较弱,很难诱导载体物种向其表面迁移形成包裹,无法像传统贵金属一样在温和条件下形成金属载体强相互作用。  本工作中,合作团队通过利用自主开发的SP技术,改变了Cu的外围电子环境,同时采用FSP技术,增加了氧化物中晶格氧无序度,分别促进电子转移和载体还原,实现了在300℃较温和条件下即可形成SMSI。研究发现,在高温(550-800℃)CO2加氢(逆水气变换)反应条件下,该铜基多相催化剂可连续稳定运行700小时,且未见颗粒长大。本工作实现了铜催化剂上SMSI的构筑和调控,阐明了催化剂表界面上的反应过程和催化机理,为提高铜基催化剂的水热稳定性提供了全新策略,有望进一步拓宽铜基催化剂的高温应用领域。  近年来,孙剑团队在CO2加氢和先进纳米催化材料的制备和新应用方面取得了系列成果,采用SP技术(Sci. Adv.,2018;ACS Catal.,2014)和FSP技术(ACS Catal.,2020;Chem. Sci.,2018;Chem. Comm.,2021;Appl. Catal. B: Environ. ,2016)先后开发了一系列与传统催化剂不同性质的催化材料,并成功应用于加氢、氧化、重整等多种催化反应中。  相关成果以“Ultra-high Thermal Stability of Sputtering Reconstructed Cu-based Catalysts”为题,于近日发表在《自然-通讯》(Nature Communications)上。该文章的第一作者是大连化物所DNL19T3俞佳枫。该工作得到国家自然科学基金、中国科学院青年创新促进会、兴辽英才青年拔尖人才计划、大连市杰出青年科技人才计划、大连化物所创新基金等项目的支持。(文/图 俞佳枫、孙剑)  文章链接:https://doi.org/10.1038/s41467-021-27557-1
  • 奥林巴斯Vanta XRF分析仪是如何应用于汽车催化剂回收行业的?
    Vanta XRF分析仪 应用于汽车催化剂回收行业首先,我们有必要先简要介绍一下汽车催化转化器(Car Catalyst或Car Cat)的功能。这些转化器的目的是减少汽车尾气排放到大气中的污染物。汽车催化转化器是一个蜂窝状圆柱体,有一层铂(Pt)、钯(Pd)和铑(Rh),也称为铂族金属(PGMs),以不同的含量附着在其表面。汽车尾气中未燃烧的残留物,如一氧化碳(CO)、碳氢化合物(CH)或氮氧化物(NO)等,经过附有铂族金属的蜂窝状圆柱体,被尾气中的氧气氧化并被中和。近50年来,汽车催化剂已经成为内燃机汽车不可缺少的一部分。汽车催化剂的平均寿命取决于几个因素,如燃料的质量和发动机的体积,但它通常可以维持100,000公里(约62,000英里)。通过对汽车催化剂的合理处理,我们可以为其中的铂族金属提供第二次生命。通过分类和适当处理废弃的催化剂,铂族金属可以被回收并在未来的生产中重复使用。目前,这些再加工铂族金属占催化剂总产量的40%左右,但仍不能满足日益增长的市场需求。目前,汽车催化剂回收不仅在经济上有利可图,也是世界经济发展趋势和环境标准所预测的必然。含有贵金属供循环利用的汽车催化转化器铂和钯是中和有害排放物最有效的两种元素。虽然除了汽车制造外,铂、钯还被用于许多行业——比如珠宝生产——但如今生产的90%的铂、钯都用于汽车催化剂的生产。随着新燃料标准(China VI, Tier 3, Euro 6d, Bharat 6)的采用,可以肯定地说,在未来几年,铂族金属的需求将会增长。因此,汽车催化剂回收有很大的市场前景。另外一个重要的事实是,从环境的角度来看,回收用过的汽车催化剂比通过采矿提取铂族金属的危害要小得多。更不用说,钯在一般是矿物加工厂的副产品,其提取效率很低。Vanta如何协助回收汽车催化剂?从采矿和废料加工行业引进的X射线荧光(XRF)测试方法已被证明可以完全胜任汽车催化剂的回收工作。如果不使用特殊设备,是不可能快速确定汽车催化剂中铂族金属的含量的,这为回收过程带来麻烦。而奥林巴斯便携式XRF分析仪Vanta可以在几秒内为用户提供待回收催化剂中的铂、铑和钯的含量。使用Vanta分析仪,可以对汽车催化剂进行分类,从而以较佳方式提取铂族金属并为回收确定一个合理的价格。Vanta分析仪可以与研磨机、搅拌机和秤等一起使用,是汽车催化剂回收必备的工具。Vanta分析仪可以分析的元素范围是从镁(Mg)到铀(U)(元素周期表的顺序),同时显示多达45个元素。当然,对于汽车催化剂回收来说,感兴趣的元素种类要少得多:铂(Pt)、钯(Pd)、铑(Rh)、钽(Ta)、铈(Ce)、硒(Se)、钨(W)、硅(Si)、铅(Pb)、锆(Zr)、钌(Ru)、镧(La)、镍(Ni)和硫(S)。所有这些元素都是优先考虑的,并包含在Vanta为该应用定制的Car Catalyst方法中。然而,你仍然可以分析从镁(Mg)到铀(U)范围内的其他元素。随着汽车催化剂回收业务的持续增长,试图以尽可能高的价格出售废旧汽车催化剂的诈骗者数量也在增加。提高汽车催化剂价值最常见的方法是增加含铅(Pb)的添加剂。还有更复杂的欺骗方法,比如在混合物中加入钽(Ta)或硒(Se)来模拟XRF光谱上的铂(Pt)峰。错误也可能在没有恶意的情况下发生——例如,带有非专业校准的pXRF很容易将柴油微粒过滤器(DPF)中的钨(W)误认为铂(Pt)——这种情况非常常见。Vanta分析仪可以帮助避免这种混淆,它独特的校准有助于防止此类欺诈或错误的发生。如何从催化转化器中制备样品,以获得准确和有代表性的结果?汽车催化剂块样本以及该样本的初步Pd含量(ppm)样品制备是XRF分析的重要组成部分。90%的XRF误差与样品制备有关。在汽车催化剂回收领域,通常需要处理两种类型的样品:块状蜂窝状样品(整体或分体)和粉末样品。蜂窝结构表面上涂附的铂族金属常常不均匀(图2),所以这样的样本只能提供一个初步测试结果,可以利用该结果对汽车催化剂进行简单分类或者识别那些铂族金属已经被移除的“空汽车催化剂”,特别是当回收小批量汽车催化剂的时候。为了对汽车催化剂进行分类以供后续提纯或大批量生产,需要额外的样品制备步骤以获得有代表性的结果。一般来说,我们建议以下方法:1) 按类型进行粗分类2) 每一类分别粉碎(重要的是要使颗粒大小分布尽可能均匀)3) 均质化4) 取样(如果需要,可以使用压机)另外,必要时也需要密切监测湿度。超过10%的湿度波动会极大地影响分析的准确性。样品获得后,要做3-5次测试,然后取平均值。如果在样品制备阶段没有发生错误,则应该有一个4ppm-31ppm左右的平均误差。不同的Vanta型号有什么区别?奥林巴斯为汽车催化剂回收提供了多种Vanta型号。它们之间的主要区别是分析速度、灵敏度和轻元素(镁(Mg)、铝(Al)、硅(Si)、磷(P)和硫(S)的检测能力。Vanta L分析仪是一种经济型催化剂分类设备。该设备配备了PIN探测器,所以它无法探测到比钛轻的元素。Vanta L分析仪的平均分析时间约为40-60秒。Vanta C和M分析仪是采用硅漂移探测器(SDD)技术的器件,能够检测轻元素,这将有助于确定碳化硅(SiC)的含量以及控制其含硫(S)量。在这些设备上的平均测试时间约为15-20秒,工作效率是配置PIN检测器设备的3倍。表中Pd(单位为ppm)的结果和误差显示了这种差异。Vanta M分析仪5秒测试的测量结果与Vanta L分析仪60秒测试的结果接近。Vanta L分析仪和Vanta M分析仪对Pd的检测结果和误差比较Vanta有哪些特性适合汽车催化剂回收?首先值得一提的是校准的稳定性和结果的重复性。很难相信这些结果来自便携式XRF。此外,基于Axon专利技术,每一台Vanta分析仪之间都能保证较高的重复性。这对市场的大型参与者来说尤其有利。此外,它还提供了使用“用户因子”来调整设备以适应不同催化剂基质,就像你去另一个时区旅行时,只要改变时钟就可以了。钨靶材和银靶材X射线管都是汽车催化剂分析的较佳选择。因为使用铑靶材X射线管时,光谱上会出现相应的特征峰。另外,Vanta分析仪测量窗口的大小是很重要的。大窗口能够分析一个大的表面积,从而提高准确性。回收催化剂是一个粉尘非常大的过程,因此IP55防尘防潮是明显有利的。Vanta系列主线的3年保修期也是一个显著优势。Vanta工作站对于生产过程,客户可以使用奥林巴斯XRF工作站(图3),这将Vanta变成一个成熟的台式XRF,便于固定使用。Vanta也符合工业4.0,可以进行网络连接和并打印报告,可以将数据直接从设备发送到ERP系统,而无需用户干预。此功能有助于让工作更加可控。随着汽车催化剂回收市场的快速增长,提纯工厂将收紧对来料的要求。在计算来料成本时,碳化硅(SiC)和硫(S)的含量将会越来越重要。因此,带有硅漂移探测器(SDD)和X射线粉末衍射仪(XRD)将越来越受欢迎。例如奥林巴斯Terra Ⅱ X射线衍射分析仪,不仅可以定量估计碳化硅(SiC)含量,还可以确定其特定相。在未来,随着奥林巴斯科学云3.0(Olympus Scientific Cloud 3.0)的开放和优化,我们能够为汽车催化剂回收者提供的不仅仅是一个测量工具,更是一个基于云进行计算和测试的生态系统,这对许多小型参与者来说可能是成功的关键。
  • 你距离一流的催化剂可能只差一个表征
    p   催化在化工、能源、环境、材料、生物、制药、分析等领域被广泛应用。催化研究涵盖的领域更是包括了能源催化、催化材料、催化机理、环境催化、工业催化、电化学催化、化学合成催化、光催化、单原子催化等领域。90%以上的化学化工工程都是催化反应过程,因此,催化剂的表征与评价研究与应用具有重大的意义。 /p p   基于此,仪器信息网(www.instrument.com.cn) 联合面向工业催化领域创新成果产业化的公共服务平台(2020年工信部批建),将于2020年5月12日组织召开 a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" 首届“催化剂表征与评价”主题网络研讨会 /a ,邀请业内著名催化研究学者、检测分析专家以及业界企业代表,针对催化研究应用及检测分析的前沿热点和关键技术进行探讨,为催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国催化领域的研究发展。 /p p    strong 会议日程(以报名页面为准): /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 389px " src=" https://img1.17img.cn/17img/images/202004/uepic/2d2b81b9-37c4-4310-b824-24a0dde5bb40.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 389" border=" 0" vspace=" 0" / /p p    strong 报告嘉宾简介: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/202004/uepic/f0ffda9a-a79b-46b2-b962-61852b503735.jpg" title=" 李瑛.jpg" alt=" 李瑛.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " 浙江工业大学工业催化研究所 李瑛 /p p   李瑛,浙江工业大学教授,主要研究方向:新型多孔碳材料及其复合材料的调控合成及催化应用 纳米金属催化剂的调控合成及工业应用。2005年获中国科学院大连化学物理研究所物理化学博士学位。师从国际催化委员会主席李灿院士。2005.08-2007.08荷兰 Eindhoven University of Technology做博士后及访问学者。合作导师:荷兰皇家科学院院士Prof. Rutgers Van Santen。2007.10-至今,浙江工业大学参加工作,目前担任浙江省石油协会理事,浙江省科协九届委员。中国化学工程学报(英文版)编委,近年来在国际知名期刊共发表SCI论文100余篇,已获得授权专利10余项,其中多项技术已经实现产业化推广。承担浙江工业大学研究生核心课程《现代催化剂表征技术》、《催化学科前沿讲座》、本科生《物理化学》上下册等教学。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/8eb4aed1-d4cb-4371-87f4-5a95d4f8985f.jpg" title=" 陈婧琼.png" alt=" 陈婧琼.png" / /p p style=" text-align: center " 安东帕(上海)商贸有限公司 陈婧琼 /p p   陈婧琼,安东帕(上海)商贸有限公司产品应用专家,毕业于天津科技大学。具有长达8年的粉体材料表征经验。 /p p   2012~2014从事甲醇制烯烃MTO催化剂的制备和表征,包括催化剂原料SAPO-34的合成,催化剂喷雾干燥制备、粒度测试、zeta电位测试,催化剂微反评价,酸性测试,比表面积和孔径分析等 2014~2015于兰州化学物理研究所羰基合成与氧化国家重点实验室从事光催化产氢研究,以共沉淀法制备了掺杂石墨烯的光催化剂,具有良好的产氢效应 2015至今,任职于安东帕,从事粉体表征产品气体吸附仪等的技术支持。每年于清华大学、复旦大学、石油大学、大连理工等高校进行气体吸附的技术交流和客户培训。 /p p   从业多年来,以丰富的职业经验和深入浅出、活泼的手法编写和翻译气体吸附相关行业技术文件50多篇,深受行业客户的好评。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 359px " src=" https://img1.17img.cn/17img/images/202004/uepic/b3624259-0e1f-46c8-96f6-617867a5f51a.jpg" title=" 刘伟.png" alt=" 刘伟.png" width=" 300" height=" 359" border=" 0" vspace=" 0" / /p p style=" text-align: center "   中国科学院大连化学物理研究所 刘伟 /p p   刘伟,中国科学院大连化学物理研究所电子显微中心副研究员,环境透射电镜负责人,中科院青年创新促进会会员,大连市紧缺技术人才,2013年度北京航空航天大学优秀博士论文。2003.07~2012.06 北京航空航天大学应用物理学士,凝聚态物理博士 2012.06~2013.10,四川大学物理系 讲师 2013.11~2017.03,电子科技大学物理系副教授 2011.07~12、2015.08~2016.08,美国密西根大学电子显微分析中心访问学者。 /p p   迄今,研制了国内首套专用于环境透射电镜的mbar级负压定量混气自动控制系统 研制“透射电镜可控气氛转移样品台” 解决敏感材料向电镜转移中的氧化相变问题 基于深度学习技术和数字滤波图像识别,实现单原子催化剂的原子精度识别与万级样本空间的分散度统计 /p p   先后主持国家自然科学基金(1项)、近3年围绕催化剂显微结构分析与支撑发表Nature Catalysis(1篇),JACS 2篇、Nano Lett. 2篇、Nature Commn. 2篇、Adv. Mater. 1篇、Adv. Sci. 1篇、Chem. Mater.1篇、ACS Catal. 1篇、Appl. Catal. B 1篇。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c2152725-0f04-4b8e-ad99-d0c80dbd4ec5.jpg" title=" 彭路明.jpg" alt=" 彭路明.jpg" / /p p style=" text-align: center "   南京大学 彭路明 /p p   彭路明,博士,教授,博士生导师。1997-2001,南京大学化学化工学院化学系,学士(2001) 2001-2006,美国纽约州立大学石溪分校化学系,博士(2006) 2006-2008,美国斯坦福大学地质和环境科学系,博士后;2008- 至今,南京大学化学化工学院,副教授(2008-2013),研究员(2013-2017),教授(2017-至今)。 /p p   在Nature Materials,Science Advances,Nature Communications,Journal of the American Chemical Society等杂志发表学术论文100多篇。入选2010年度新世纪优秀人才支持计划。2012年获得国家自然科学基金委优秀青年科学基金项目资助,同年获中国化学会催化专业委员会中国催化新秀奖。2016年起任中国物理学会波谱专业委员会委员和《波谱学杂志》编委,同年获英国皇家学会牛顿高级学者项目资助(Newton Advanced Fellowship)。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/c9d9165c-5824-45a4-84f4-ef47d8320e90.jpg" title=" 杨贵东.jpg" alt=" 杨贵东.jpg" width=" 200" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 西安交通大学 杨贵东 /p p style=" text-align: left "   杨贵东,西安交通大学化工学院教授,博士生导师。主要从事光催化反应过程强化及吸附新材料开发的研究工作。在Angewandte Chemie International Edition、ACS Catalysis、Applied Catalysis B: Environmental、Nano Energy等高质量学术期刊发表论文52篇,其中IF& gt 10的论文17篇,累计被 SCI引用3000余次,个人 H 因子27。开发了一系列具有高介孔含量、强疏水、高机械强度的三维分级通孔碳质吸附材料,实现了其工业化生产与应用。入选了教育部“青年长江学者”、“王宽诚青年学者”、“陕西省青年科技新星”,兼任中国化工学会化工过程强化专业委员会青年委员会委员和中国石油和化学工业联合会工业催化联盟青年工作委员会委员等学术职务。担任国际期刊《Frontiers in Environmental Chemistry》副主编、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letter》青年编委和《工业催化》期刊编委。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 293px " src=" https://img1.17img.cn/17img/images/202004/uepic/330e9a1d-1016-4fa5-af51-cd6ed2420c2b.jpg" title=" 刘家旭.jpg" alt=" 刘家旭.jpg" width=" 200" height=" 293" border=" 0" vspace=" 0" / /p p style=" text-align: center " 大连理工大学 刘家旭 /p p   刘家旭,大连理工大学副教授,主要从事分子筛催化在能源、环境及精细化学品清洁制备等领域的应用基础研究和原位分子光谱表征技术开发。作为项目负责人主持国家自然科学基金、中国石油科技创新基金和大连市高层次人才创新创业计划等12项科研项目。研制出具有自主知识产权的双光束原位红外光谱技术,并将其成功应用于多相催化反应的原位表征,已在Catalysis Science & amp Technology, Chemical Engineering Journal, ACS Applied Materials & amp Interfaces等期刊发表30余篇学术论文,申请10余项国内专利,1项国际专利。作为项目负责人开发的精细化学品清洁制备催化剂,低碳烃芳构化催化剂已实现工业应用。 /p p    strong 参与方式: /strong /p p   免费报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" & nbsp /a /p p a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self"   https://www.instrument.com.cn/webinar/meetings/catalyst/ /a /p p   或扫描下方二维码报名: /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/catalyst/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7f447697-bd90-47df-8213-b3370e6155a6.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" / /a /p p   扫下方二维码进入催化剂表征与评价交流群: /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/810a8756-4206-4f04-a26c-8134245d0576.jpg" title=" 催化剂表征与评价交流群.jpg" alt=" 催化剂表征与评价交流群.jpg" / /p
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • 中国科大研制非贵金属电解水制氢高效催化剂取得重要进展
    氢能是有望替代传统化石燃料的可再生清洁能源。其中,通过电化学析氢反应(HER)制备“绿氢”是实现氢能社会的最佳策略之一。由于贵金属铂独特的电子结构,铂和铂基材料是目前唯一商用的电制“绿氢”催化剂;然而,贵金属铂昂贵的价格和地壳中稀有的储量限制了其大规模商业化应用。未来氢能社会对于氢气的大量需求使得必须降低电制“绿氢”催化剂的成本,同时提升其催化活性和稳定性。对催化剂进行电子结构优化,能够提高材料的本征性能。其中,离子掺杂能够通过在材料晶格中引入杂原子,改变局域配位结构进而调控电子结构,实现产物催化性能的提升,是一种有效的性能优化手段。   二硒化钴具有与铂类似的电子结构,因此他们常被研究作为贵金属铂的替代材料用于催化HER反应。但是其活性和稳定性与铂和铂基材料相比仍有差距。通过材料微观结构的设计制备新型高效电制“绿氢”催化剂是当前的研究热点。近日,中国科大俞书宏院士团队报道了一种普适的合成策略用于制备十种单原子掺杂的CoSe2-DETA(CoSe2=二硒化钴,DETA=二乙烯三胺)纳米带。研究人员通过改变掺杂元素,调控掺杂产物的电子结构,进而实现产物电解水制氢性能的优化;最优产物活性与商业贵金属材料接近,表明其在电制“绿氢”领域的潜在应用。该研究成果以“Dopant triggered atomic configuration activates water splitting to hydrogen”为题发表在Nature Communications上。吴睿特任副研究员、许杰、赵川林、苏晓智为论文的共同第一作者,高敏锐教授和俞书宏院士为通讯作者。图1. 单原子掺杂的CoSe2-DETA纳米带产物表征。a,十种单原子掺杂合成方法示意图。b,产物的扫描透射电子显微镜元素分布图。c,d,Pb、Cr、Mn、Fe、Zn、Mo掺杂元素扩展X射线吸收精细结构谱的R空间(c)和k空间(d)。   研究人员成功制备了多种离子掺杂型电催化材料,例如阴离子磷掺杂的二硒化钴纳米带。正如预期,由于磷的引入优化了材料电子结构和局域配位环境,产物显示出令人印象深刻的电解水制氢性能。但是,由于缺乏普适合成的方法,单一磷元素对于产物微观结构调控不够充分,材料性能与结构的关系仍较为模糊。因此,通过设计更多种类元素的掺杂以实现产物电子结构的可控是至关重要的,进而调控产物电催化性能,并总结构效关系用以设计新型高效的HER材料。   研究人员利用他们在前期开发的具有优异电制“绿氢”性能的CoSe2-DETA纳米带材料为研究对象,结合阳离子掺杂的手段,发展了能够一次性制备十种单原子掺杂产物的普适合成方法学(图1)。在该工作中,研究人员借助不同的掺杂原子系统调控产物的局域配位结构,实现了材料的电子结构和HER性能在较大范围内的可控调节。   研究结果表明,所得最优掺杂产物的催化活性与商业铂碳(铂质量分数为40%)相近,其电流密度达到-10mA cm-2所需过电势仅为74mV,由极化曲线计算得到的塔菲尔斜率为42dec mV-1 该产物活性在1000圈循环伏安测试保持几乎不变,还可以在-10mA cm-2电流密度下稳定运行20小时。同步辐射谱学数据表明不同掺杂原子会导致产物中钴原子的配位环境(钴氮配位数与钴硒配位数之比)发生变化,该参数可与产物的HER活性展现出较为匹配的“火山型”曲线关系,展示了掺杂型二硒化钴的构效关系(图2)。   此外,本文还通过理论计算证实了产物性能随局域配位结构的变化规律,为设计制备新型高效催化材料提供了一种新的途径。而最优产物的性能使得该产物有望取代商业铂碳成为电制“绿氢”的理想电极材料。图2. 产物电解水制氢活性、局域配位结构及二者“火山型”构效关系表征。a,不同电极材料的HER极化曲线。b,不同电极材料HER性能对比。c,不同电极材料中Co的X射线吸收近边精细结构谱。d,e,不同材料中Co的扩展X射线吸收精细结构谱的R空间(d)和k空间(e)。f,掺杂产物HER活性随产物中Co配位结构变化的“火山型”曲线示意图。   该工作受到国家自然科学基金重点项目、国家自然科学基金青年基金、科技部国家重点研发计划“变革性技术关键科学问题”重点专项项目、合肥大科学中心卓越用户基金等资助。
  • 液态金属催化剂或撼动百年化工工艺
    据科技日报(记者张梦然)报道,液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然纳米技术》上的一项创新研究,摆脱了由固体材料制成的旧式能源密集型催化剂。催化剂是一种在不参与反应的情况下使化学反应更快、更容易发生的物质。固体催化剂,通常是固体金属或固体金属化合物,通常用于化学工业中制造塑料、化肥、燃料和原料。然而,使用固体工艺的化学生产是能源密集型的,需要高达1000℃的高温。 新工艺改为使用液态金属,在这种情况下溶解锡和镍,这赋予它们独特的流动性,使它们能够迁移到液态金属的表面并与输入分子,例如菜籽油发生反应,这导致菜籽油分子旋转、破碎和重新组装成更小的有机链,包括对许多行业至关重要的高能燃料丙烯。液态金属中的原子比固体中的原子排列更加随机,并且具有更大的运动自由度。这使得它们很容易接触并参与化学反应。在新研究中,研究人员将高熔点镍和锡溶解在熔点仅为30℃的镓基液态金属中。通过将镍溶解在液态镓中,研究人员在非常低的温度下获得了液态镍,并将之充当“超级催化剂”。相比之下,固体镍的熔点为1455℃。液态镓中的锡金属也会受到相同的影响,但程度较轻。金属以原子水平分散在液态金属溶剂中,单原子具有最高的催化表面积,这就为化学工业提供了显著的优势。这一方法还可用于其他化学反应。研究人员表示,其为化学工业降低能耗和绿色化学反应提供了可能性。 在化学反应中,催化剂往往扮演着“四两拨千斤”的角色。对化学工业而言,它更是对生产流程是否绿色、节能、高效起着举足轻重的作用。因此,催化剂是科学研究的重要领域,相关科研成果层出不穷。上述研究便是其中一个典型案例。
  • 科学家研制出含铁燃料电池催化剂
    新材料不含贵金属 成本不再高企   近日,中科院大连化学物理研究所催化基础国家重点实验室博士邓德会、研究员潘秀莲、院士包信和等与洁净能源国家实验室燃料电池研究部合作,首次完成用铁替代燃料电池催化剂中贵金属的实验。相关研究成果日前在线发表于《德国应用化学》。   据了解,利用氢气发电是未来先进可持续能源体系发展的重要目标。为了实现这一目标,作为重要能量转换装置的质子交换膜燃料电池将会发挥不可替代的作用。然而,该类燃料电池需要大量的贵金属,如铂、钯、钌等作为催化剂,进而影响了其大规模应用。因此,大幅降低燃料电池电极材料中的贵金属含量,并最终采用地球上丰富的“廉”金属元素完全替代贵金属已成为该领域的重大机遇和挑战。   为此,该研究团队创造性地将铁基金属纳米粒子限域到具有豆荚状结构的碳纳米管的管腔中,采用该研究组新近研制成功的深紫外光发射电子显微镜,并借助上海光源先进的X射线吸收谱,结合理论计算,首次观察到金属铁的活性d电子通过与组成碳管壁的碳原子相互作用而“穿过”碳管管壁,使富集在碳管外表面的电子直接催化分子氧的还原反应。   该实验和理论研究进一步证实,在这一体系中,包裹纳米金属铁的碳壁阻断了反应气体与铁纳米粒子的直接接触,从原理上避免了反应过程中活性金属铁纳米粒子的深度氧化以及反应气氛中其他有害组分对催化剂的毒害,从而在根本上解决了纳米金属铁作为燃料电池阴极催化剂的稳定性难题。   业内专家认为,该项研究不仅为燃料电池催化剂的贵金属替代研究提供了行之有效的途径,而且,由此发展出来的概念为在苛刻条件下运行的催化剂的设计和制备开辟了新方向。   以上研究得到了国家自然科学基金委和科技部等相关项目的资助。
  • 新型铂基催化剂:高效稳定,推动燃料电池技术!
    【研究背景】随着可再生能源需求的不断增长,铂基催化剂因其在氧还原反应(ORR)中的卓越性能而受到广泛关注,尤其在燃料电池等领域的应用中。与传统的贵金属催化剂相比,铂基催化剂具有高活性和良好的导电性等优点。然而,铂的高成本和资源稀缺性使得其大规模应用面临挑战,同时在高温环境下,铂基催化剂的稳定性和活性往往下降,制约了其在实际应用中的表现。近日,来自厦门大学黄小青教授、中国科学院苏州纳米研究所Yong Xu以及浙江大学曹亮课题组携手在铂基催化剂的研究中取得了新进展。该团队设计并合成了以金属/氮双掺杂碳(M–N–C)为载体的铂基中间化合物(IMCs),成功实现了在高温下的铂颗粒稳定性。通过构建独特的铂-金属-氮配位结构,研究者有效控制了铂的价态,从而显著提高了催化剂的活性和耐久性。在性能测试中,所制备的g-Zn–N–C/PtCo催化剂在ORR中显示出优异的表现,催化活性达到了2.99 A mgPt&minus 1,远超传统的N–C/PtCo(0.71 A mgPt&minus 1)和Pt/C(0.27 A mgPt&minus 1)催化剂。此外,经过多次电位循环后,该催化剂的性能保持率高达98.3%,在燃料电池阴极中的集成测试中也显示出79.3%的性能保持率。最重要的是,在连续230小时的运行中,该催化剂未出现显著的电压衰减,充分证明了其在燃料电池实际应用中的潜力。【表征解读】本文通过高角环形暗场扫描透射电子显微镜(HAADF-STEM)、X射线衍射(XRD)、X射线吸收谱(XAS)等多种表征手段,对铂基互金属化合物(IMCs)的微观结构和电化学性能进行了深入的研究。这些表征手段揭示了铂基IMCs在高温环境下的稳定性以及其催化活性,这对理解催化反应过程具有重要意义。首先,通过HAADF-STEM技术观察到,铂基IMCs在氮掺杂碳载体上呈现出超细尺寸(图1. N–C/PtCo和g-Zn–N–C/PtCo的设计与表征示意图。图2. 经0.5 M HNO3处理后的g-Zn–N–C/PtCo结构。图3. g-M–N–C/PtCo和g-Zn–N–C/PtxM的结构表征。图4. 电催化和燃料电池性能。图5. g-Zn–N–C/PtCo和N–C/PtCo的原位电化学XRD和理论研究。【科学启迪】本文的研究通过原子级别的配位调控,可以有效提升催化性能和稳定性。特别是在铂基催化剂的研究中,引入“原子胶”概念为铂的纳米颗粒提供了更为稳固的支撑,这不仅能够防止颗粒的聚集和流失,还能增强其在氧还原反应中的催化活性。研究表明,金属/氮双掺杂碳载体(M–N–C)的独特配位结构,能够有效地稳定铂-金属-氮相互作用,提高了铂基纳米颗粒的分散性和活性。此外,通过优化催化剂的合成条件和改进材料设计,能够显著增强其在实际应用中的耐久性和性能稳定性。这一研究成果不仅为铂基催化剂在燃料电池等能源转换领域的应用提供了新的思路,也为其他类型催化剂的优化设计提供了借鉴,强调了材料界面及相互作用在催化性能提升中的重要性。这种原子级的调控方法,为未来开发高效、稳定的催化剂提供了有价值的指导。原文详情:Zhongliang Huang et al. ,Atom-glue stabilized Pt-based intermetallic nanoparticles.Sci. Adv.10,eadq6727(2024).DOI:10.1126/sciadv.adq6727
  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • 催化剂表征更快、更简单的5种方法
    2022年6月,全球专业的材料表征技术公司 Micromeritics 宣布新品 AutoChem III 的上市。AutoChem III 的动态化学吸附和程序升温分析在开发新催化剂材料至关重要的性能指标中发挥着极其重要的作用,助力碳捕获和利用、氢清洁能源以及其他净零等技术的发展。新升级的 AutoChem III 能够显著提高实验效率和灵敏度。Micromeritics AutoChem III 的全新设计旨在简化关键实验步骤,每天能够为用户节省几个小时,减少测试时间,提高实验效率。全新产品带来让催化剂表征更快、更简单五种方法!● 冷却更快全新 AutoCool 比压缩空气冷却时间快 30 分钟,无需液体或外部帮助。● TPR 无需另外准备水蒸汽捕获冷却浴全新 AutoTrap 为 TPR 实验提供高效的蒸汽捕获,无需制备冷却浴。● 自动 TCD 校准 专利的 (美国专利号:#10487954 B2) 气体混合阀和智能程序使 TCD 校准更简单更准确。● 样品管安装便捷全新专利(美国专利号:#11105825 B2)保护的 KwikConnect 样品管安装比传统设计更快、更容易、更可靠。独立组件数量是传统设计的一半,没有螺纹接头。● 直观可视化的实验方法开发通过流程图实现个性化编程和程序可视化。想要了解更多关于 AutoChem III 的技术与资料内容,欢迎访问 Micromeritics 官方网站相关页面,并免费索取产品资料册。关于麦克默瑞提克Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 多伦多大学团队揭示Cu-Ag复合催化剂电催化CO2还原新机制!
    【研究背景】电化学二氧化碳还原(CO2R)是一种利用可再生电力将二氧化碳转化为有价值燃料的重要技术,广泛应用于应对气候变化和实现碳中和目标。与传统的生物质乙醇生产方法相比,CO2R具有更低的碳强度和潜在的可持续性。然而,现有的CO2R催化剂在选择性和能量效率方面仍存在瓶颈,尤其是在实现高碳效率和能量效率的平衡时,面临着显著的技术挑战。近日,来自加拿大多伦多大学机械与工业工程系David Sinton教授(加拿大工程院院士)团队某研究团队的研究中取得了新进展。该团队设计并制备了一种新型的电解槽系统,结合了正向偏压双极膜(f-BPM)和酸性电解质,成功实现了乙醇的高效电合成。利用创新的界面阳离子矩阵(ICM)-催化剂异质结,该系统有效富集了阴极表面的碱性阳离子,从而显著提高了二氧化碳还原为乙醇的选择性,达到超过90%。该研究还显示,氢氧根离子的迁移被有效控制,极大地降低了氢气演化反应(HER)的法拉第效率,保持在10%以下。此外,整个系统的碳效率达到了63%,全电池能量效率(EEethanol)为15%,每吨乙醇的总能耗为260 GJ。这些结果表明,该团队的研究为电化学二氧化碳还原技术在高效乙醇生产中的应用提供了新的解决方案,具有重要的理论和实践意义。【表征解读】本文通过一系列高端仪器和表征手段,揭示了Cu电极在电催化CO2还原反应中的重要作用。首先,使用超高分辨率的Schottky扫描电子显微镜(SEM)及能量色散X射线谱(EDS)映射,作者能够详细观察到催化剂表面的微观结构及其元素分布。这些表征结果表明,银的负载能够显著改善Cu电极的催化性能,从而促进了CO2的还原反应。针对Cu电极表面形成的银簇现象,作者采用了场发射透射电子显微镜(HF3300,环境CFE-TEM)进行微观机理的深入分析。通过获取扫描透射电子显微镜(STEM)和高分辨率透射电子显微镜(HRTEM)图像,作者能够观察到银簇的均匀分布及其对Cu晶体结构的影响。这一发现揭示了银簇在催化反应中的关键作用,帮助作者理解其催化机理。此外,作者还使用Rigaku Miniflex 600 6G台式粉末X射线衍射仪对催化剂的晶体结构进行了表征。通过分析不同银负载量的催化剂的衍射图谱,发现银的引入显著影响了Cu的晶体相,促进了催化剂的活性位点生成。这为作者后续的催化性能评估提供了理论基础。在此基础上,采用Renishaw inVia拉曼显微镜进行原位拉曼光谱测量,作者能够实时监测催化过程中的反应中间体及其变化。通过对拉曼光谱的分析,作者发现催化反应的活性与反应中间体的形成密切相关。这一结果为作者进一步挖掘Cu-Ag催化剂的反应机制提供了重要的实验依据。同时,通过X射线吸收光谱(XAS)技术,结合原位和外部测量,作者深入探讨了Cu催化剂在电解过程中的电子状态和局部结构变化。这些表征结果表明,银的加入不仅增强了Cu电极的导电性,还提高了其催化选择性。这一发现为优化催化剂的设计提供了新的思路。综合以上表征手段和结果,本文着重研究了Cu-Ag复合催化剂在CO2电还原中的性能表现。通过系统的微观分析,作者揭示了催化剂在反应过程中发生的结构变化和性能提升机制。这些深入的研究为制备高效催化材料奠定了基础,最终推动了电催化领域的进步。参考文献:Shayesteh Zeraati, A., Li, F., Alkayyali, T. et al. Carbon- and energy-efficient ethanol electrosynthesis via interfacial cation enrichment. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00662-x
  • 北化院BHL催化剂完成首次工业应用试验
    近日,北京化工研究院自主研发的新型BHL催化剂在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。
  • 仪器表征,科学家通过界面工程调控助力异相催化剂最新突破!
    【科学背景】乙烷是一种代表性的非甲烷挥发性有机化合物(NMVOCs),因其对烟气排放的严格标准而成为监管审查的焦点。因此,为了减少这些有害物质的排放,迫切需要开发高效的催化剂。然而,由于低温下烷烃分子固有的强C-H键,以及天然气中含有的乙烷(1-9 mol%),使得对于催化天然气燃烧的催化剂设计提出了更高的要求。传统上,贵金属基催化剂(如Pt或Pd)在低温下对低碳链烷烃的催化活性非常高。然而,其高成本和有限的可用性限制了其广泛应用。因此,针对这一问题,非贵金属基催化剂的研究备受关注。尤其是,过渡金属尖晶石型氧化物(AB2O4)因其在氧化反应中的出色活性和耐久性而备受关注。然而,尽管尖晶石型氧化物具有潜在的优势,但其合成过程中常常会出现一定程度的不完整性,导致所得产物并不总是符合理想的结构。特别是在合成过程中,某些金属离子可能会与其母尖晶石颗粒分离,形成多相氧化物,其性质更为复杂。此外,多组分氧化物之间的界面也被认为是影响催化性能的重要因素,但其作用机制和影响尚未得到深入研究。为了解决这一问题,中石化(大连)石油化工研究院有限公司研究员侯栓弟、副研究员刘世达,大连理工大学化工学院教授郭新闻教授、副教授聂小娃携手通过化学还原的方法设计了一种独特的MnCoOx催化剂结构,用于乙烷氧化反应。通过控制Mn/Co比例,形成了MnO2-MnxCo3-xO4界面的结构,从而优化了催化剂的性能。通过表征和催化性能测试,揭示了界面构造对乙烷氧化反应的重要作用机制。同时,本研究还通过原位X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算等手段,深入探讨了界面构造对催化性能的影响机制。【科学亮点】本文通过多种表征手段,如透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS),发现了MnCoOx催化剂中MnO2-MnxCo3-xO4界面的独特结构,从而揭示了该界面在乙烷氧化中的重要作用。针对催化活性与稳定性之间的关系,通过原位红外光谱(in situ IR)技术探究了C2H6在催化剂表面吸附的微观机制,得到了吸附位点和反应路径的清晰图像,进而挖掘了界面协同效应的本质。在此基础上,结合气相色谱(GC)分析与催化性能测试,结果表明,Mn/Co比为0.5的催化剂展现出最佳的催化活性与长时间稳定性,着重研究了MnO2与MnxCo3-xO4之间的相互作用。这些表征手段揭示了反应过程中C-H键的活化机制,并证明了界面钴位点的关键作用。总之,经过透射电子显微镜、X射线衍射等多种表征,深入分析了MnCoOx催化剂的微观结构和反应机制,进而制备出高效的新型催化材料,最终推动了异相催化领域的发展,为烷烃燃烧催化剂的设计提供了新的思路。【科学图文】图1:合成的MnCoOx催化剂的结构分析。图2. MnCoOx-0.5催化剂对乙烷氧化的催化性能。图3. MnCoOx催化剂的微观结构表征。图4. MnO2-MnCO2O4界面在乙烷氧化中的作用。图5:MnO2-MnCO2O4界面对乙烷氧化的性质。图6: MnCoOx-0.5催化剂上乙烷氧化的机理研究。【科学结论】总结起来,作者成功地通过简便的化学还原合成方法开发了MnCoOx催化剂,其在乙烷燃烧中表现出超过所有报道的非贵金属催化剂的最高比表面反应速率,以及在潮湿条件下长达1000小时的优异长期稳定性。具有强氧亲和力的Mn在富氧环境中倾向于扩散到尖晶石表面形成MnO2领域。MnO2和MnxCo3-xO4之间的相互作用促使了界面位点的构建。令人惊讶的是,在建立的MnO2-MnxCo3-xO4分层界面上,Co位点表现出对乙烷的优先吸附作用;而MnO2层则显示出对其活性晶格氧的强力H抽取能力,并通过界面区域的氧化还原途径进一步进行乙烷氧化。揭示界面的重要作用提供了一种有效的策略,用于调节涉及组分的配位环境以及它们的电子转移能力。原文详情:Wang, H., Wang, S., Liu, S. et al. RedOx-induced controllable engineering of MnO2-MnxCo3-xO4 interface to boost catalytic Oxidation of ethane. Nat Commun 15, 4118 (2024). https://doi.org/10.1038/s41467-024-48120-8
  • 新型铜催化剂助力二氧化碳变燃料
    中国科学技术大学教授高敏锐课题组合成一系列暴露不同铜(100)和铜(111)晶面比例的铜催化剂,发现铜(100)/铜(111)的界面位点相比于单一的晶面展现了显著增强催化碳—碳电化学耦联的性能,对于利用二氧化碳制备多碳燃料具有重要意义。相关成果日前发表于《美国化学会志》。  电催化二氧化碳还原制备高附加值化学品,是二氧化碳资源化利用的有效手段。近年来,科学界通过电催化二氧化碳制备能量密度高、应用前景广阔的多碳燃料取得很大进展,但其选择性和转化效率仍不尽人意。这主要由于二氧化碳转化为多碳燃料需经历动力学缓慢的碳—碳耦联过程。因此,设计并创制能高效促进碳—碳电化学耦联的催化剂至关重要。  研究人员利用电化学测试表明,与其他铜催化剂相比,这种新型铜催化剂在电流密度为每平方厘米100毫安至400毫安时,均有利于催化二氧化碳到多碳产物的转化。多碳产物的选择性与铜(100)/铜(111)界面的长度呈现线性相关,证明该界面为催化碳—碳耦联的活性位点。原位拉曼和红外实验证明,在铜(100)/铜(111)界面处,能更好吸附中间体,展现更强的碳—碳耦联能力。理论计算进一步表明,铜(100)/铜(111)界面处电子结构被优化,促进了碳—碳耦联动力学。  该项研究发现了铜原子排列变化形成的特定界面结构能更高效地催化碳—碳耦联,降低多碳产物形成过程中的关键步骤能垒,这一成果对于二氧化碳制备多碳燃料的电化学升级利用具有重要意义。  相关论文信息:https://doi.org/10.1021/jacs.1c09508
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制