当前位置: 仪器信息网 > 行业主题 > >

大电池绝热量热仪

仪器信息网大电池绝热量热仪专题为您提供2024年最新大电池绝热量热仪价格报价、厂家品牌的相关信息, 包括大电池绝热量热仪参数、型号等,不管是国产,还是进口品牌的大电池绝热量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大电池绝热量热仪相关的耗材配件、试剂标物,还有大电池绝热量热仪相关的最新资讯、资料,以及大电池绝热量热仪相关的解决方案。

大电池绝热量热仪相关的资讯

  • 仰仪科技发布仰仪科技小型电池绝热量热仪BAC-90A新品
    p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/c3db3efd-00a7-4aca-bcd0-ce1fa9cf2d8c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-autospace:ideograph-numeric line-height:150%" span style=" font-family: 宋体 line-height: 150% color: rgb(102, 102, 102) letter-spacing: 0 font-size: 14px background: rgb(255, 255, 255)" span style=" font-family:宋体" & nbsp /span /span /p p   近日,杭州仰仪科技有限公司在仪器信息网发布仰仪科技小型电池绝热量热仪BAC-90A新品。BAC-90A小型电池绝热量热仪是在仰仪科技绝热加速量热仪基础上研发的、面向小型电池安全测试的绝热量热仪,将绝热加速量热仪的应用扩展至电池热安全评估领域。BAC-90A小型电池绝热量热仪兼容经典绝热加速量热仪功能,可用于电池电解液及其它电池材料的热稳定性评估,同步采集电池电压、电流、电量、温度、压力、时间等数据,帮助电池及电池组研发和测试人员实现全方位的安全性能评估。 /p p strong   产品特点 /strong /p p   1) 模拟理想绝热环境,可直接测得更加准确的电池热失控起始温度、最大热失控速率、绝热温升等热行为参数; /p p   2) 集成电池充放电模块可实现充放电模式切换、恒流/恒压充电模式设置、充电/放电电流设置、实时电池电量计算; /p p   3) 电池电压、电流、温度、压力数据同步采集,用于分析电池热失控过程中的电流/电压变化; /p p   4) 兼容经典绝热加速量热仪功能,可实现电解液等电池材料热稳定性评估; /p p   5) 具备绝热模式,可准确反映电池在充放电过程的吸放热及热失控过程; /p p   6)具有超压、超温报警功能,炉盖自动升降,保证安全,方便操作。 /p p strong   技术规格 /strong /p table border=" 1" cellspacing=" 0" width=" 489" tbody tr class=" firstRow" td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 2px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 工作环境 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 2px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 5℃~ /span span style=" font-family:宋体 line-height:150% font-size:16px" 4 /span span style=" font-family:宋体 line-height:150% font-size:16px" 0℃,& lt 85%RH /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 控温范围 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 室温~500℃ /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 温控 /span span style=" font-family:宋体 line-height:150% font-size:16px" 模式 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 恒温 /span span style=" font-family:宋体 line-height:150% font-size:16px" 、扫描、HWS、绝热模式 /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 温度检测阈值 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 0.005℃/min~0.02℃/min /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 温度跟踪速率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 0.005℃/min~ /span span style=" font-family:宋体 line-height:150% font-size:16px" 4 /span span style=" font-family:宋体 line-height:150% font-size:16px" 0℃/min /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 温度显示分辨率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 0.001℃ /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 压力范围 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 0~ /span span style=" font-family:宋体 line-height:150% font-size:16px" 20 /span span style=" font-family:宋体 line-height:150% font-size:16px" M /span span style=" font-family:宋体 line-height:150% font-size:16px" Pa /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 压力分辨率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 1 /span span style=" font-family:宋体 line-height:150% font-size:16px" kPa /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 充放电电流范围 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" -10A /span span style=" font-family: & #39 Times New Roman& #39 line-height: 150% font-size: 16px" ~ /span span style=" font-family:宋体 line-height:150% font-size:16px" 10A(可扩展) /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 充放电电流分辨率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 1mA /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 充放电电压范围 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 0 /span span style=" font-family: & #39 Times New Roman& #39 line-height: 150% font-size: 16px" ~ /span span style=" font-family:宋体 line-height:150% font-size:16px" 10V(可扩展) /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 充放电电压分辨率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 1mV /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 样品池规格 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 样品池 /span span style=" font-family:宋体 line-height:150% font-size:16px" 、 /span span style=" font-family:宋体 line-height:150% font-size:16px" 样品 /span span style=" font-family:宋体 line-height:150% font-size:16px" 支架 /span span style=" font-family:宋体 line-height:150% font-size:16px" (选配) /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 炉腔尺寸 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 直径 /span span style=" font-family:宋体 line-height:150% font-size:16px" 9cm /span span style=" font-family:宋体 line-height:150% font-size:16px" , 深 /span span style=" font-family:宋体 line-height:150% font-size:16px" 11cm /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 接口 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" USB或者 /span span style=" font-family:宋体 line-height:150% font-size:16px" 串口 /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 电源 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 220V/50Hz /span /p /td /tr tr td width=" 204" valign=" center" style=" padding: 0px 7px border-width: 1px 1px 2px 2px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 功率 /span /p /td td width=" 285" valign=" center" style=" padding: 0px 7px border-width: 1px 2px 2px 1px border-style: solid border-color: rgb(84, 141, 212) " p style=" line-height:150%" span style=" font-family:宋体 line-height:150% font-size:16px" 3000W /span /p /td /tr /tbody /table
  • 耐驰近期将举办绝热量热仪新品发布会
    绝热量热仪是一种小型而高度灵活的化学反应器,在工业安全领域有着很重要的作用。它们可以测量放热化学反应的热量与压力性质,得到的信息可以帮助工程师与科学家鉴别潜在的危险并获取过程安全设计的关键因素,如紧急卸压系统,排放处理,过程优化,热稳定性等等。这类仪器广泛应用于化学、药物、能源等各种行业,使用绝热反应量热仪,可以研究化学动力学、储存与运输、工艺中断、化工设计等。绝热反应量热仪也常被用来作事故研究,或研发气囊、充电电池、航天飞机与火箭推动等。   德国耐驰仪器公司近期宣布收购了美国 TIAX LLC 公司的加速量热仪(ARC® )和自动压力跟踪绝热量热仪(APTAC™ )业务,将这些产品整合到了耐驰公司原有的热分析产品线之中。为了宣传与推广这一系列新产品,帮助广大中国用户了解绝热量热仪的原理与应用,耐驰公司将于 2009 年 4 月上旬于绵阳、重庆两地举办绝热量热仪新品发布会,提供一个技术交流与合作的平台。   会议安排:   时间:2009 年 4 月 8 日(星期三)   地点:四川省绵阳市九龙宾馆第一会议室   日程安排:   08:30 --- 09:00 来宾签到   09:00 --- 10:00 ARC 新产品发布   10:00 --- 11:30 ARC 应用专题   时间:2009 年 4 月 10 日(星期五)   地点:重庆市大同路 49 号银河大酒店二楼会议厅   日程安排:   08:30 --- 09:00 来宾签到   09:00 --- 10:00 ARC 新产品发布   10:00 --- 12:00 ARC 应用专题   如果您愿意参加本次研讨会,请下载相应会场的邀请函,填好回执后回发,回发地址详见相应邀请函。   邀请函下载:http://www.ngb-netzsch.com.cn/news/events/arcseminar.html
  • 耐驰公司新型加速绝热量热仪ARC全新发布
    德国耐驰仪器公司作为全球热分析技术的领导者,在完善热分析技术﹑提高产品性能的同时,不断推出技术创新,性能优异的新型热分析仪器。2009年为了进一步扩大公司的应用领域,全新推出新型加速绝热量热仪ARC,全面涉足绝热量热领域。 ARC作为小型而高度灵活的化学反应器,主要用于测量放热化学反应的热量与压力性质,通过小型试验得到的信息可以帮助工程师与科学家鉴别实际生产过程中可能存在的潜在危险,并且获取到影响过程安全设计的关键因素,如紧急卸压系统,排放处理,过程优化,热稳定性等等,从而避免实际过程中可能产生的各种危险事故,可以说绝热量热仪是过程安全的最完美解决方案。 绝热量热仪被广泛的应用于化工、药物、能源等各种行业。使用绝热反应量热仪,可以研究化学动力学、储存与运输、工艺中断、化工设计等等。绝热反应量热仪也常被用来做各种事故研究,如研发气囊、充电电池、航天飞机与火箭推动等。 绝热量热仪可以配置不同的型号,根据反应过程的不同可以设置不同的模式,为了让您全面了解ARC仪器的原理与应用,耐驰公司特邀总部专家Dr.Blumm来中国进行技术讲座和交流,相信通过此次研讨会,必将为您的研究工作带来意想不到的收获。耐驰公司愿意为您提供一个技术交流平台,诚邀您参加此次发布会! 会议具体安排如下: 一﹑时间:2009 年 12 月2 日 星期三(下午) 二﹑地点:上海长城假日酒店广场楼二楼竹厅(上海天目西路285号,近上海火车站)。三﹑内容安排: 13:00---13:30 来宾签到 13:30---15:00 ARC 新产品发布 15:30---17:00 ARC 应用专题和讨论    如果您想了解更多关于加速绝热量热仪ARC的相关信息,愿意参加此次发布会,请联系以下人员: 李静,电话:021-51089255-686 手机:13801975042 E-mail地址:jing.li@nsi.netzsch.cn 耐驰公司期待您的参与!
  • 耐驰新型加速绝热量热仪ARC发布会举办
    2009年12月2日,耐驰公司在上海广场假日酒店成功举办了“耐驰公司新型加速绝热量热仪新品发布会”。来自华东理工大学、上海硅酸盐研究所、中科院林化所等多家高校和研究机构参加了此次会议,为耐驰绝热量热新产品的进一步推广建立了良好的开端。   此次会议,耐驰公司专门邀请总部专家Dr.Blumm做专题报告,Dr.Blumm不仅全面的介绍了新型绝热量热仪的应用背景,还深入的对仪器的原理进行了细致的剖析,最重要的是,Dr.Blumm介绍了大量的实际应用实例,比如加速量热仪如何在实际化工过程中的安全控制模拟,在电池领域中的应用、在火灾过程中的安全控制应用等。这些内容引起了与会者强烈的兴趣,现场气氛异常热烈。   会后,大家都纷纷表示对加速绝热量热仪有了一个比较全面的了解,开拓了眼界,拓展了研究的思路,对于以后的研究工作很有帮助。特别是耐驰公司最新研制的多模块化绝热量热仪MMC274,它整合了DSC和ARC两者的优势,应用领域非常广泛,相信一定能引起众多研究者的关注。   会议给广大客户留下了深刻印象,大家都觉得这是一个非常难得的学习机会。耐驰公司以后会尽可能多的举办这样的会议,争取为用户提供更多的交流和学习的平台。
  • 应用案例|锂金属固态电池绝热热失控特性测试
    本期预览 本文利用BAC-420A大型电池绝热量热仪对锂金属负极固态电池进行绝热热失控实验,评估该电芯的热稳定性和热失控危害。前言随着电动汽车的大规模发展,现有锂离子电池体系已不能满足日益增长的续航里程需求,亟须发展更高能量密度的电池体系。在众多的电池材料体系中,层状过渡金属氧化物-石墨负极体系的理论能量密度极限约为300Wh/kg。将纯石墨负极替代为硅基合金,则能量密度理论上限可提升至约400Wh/kg。而金属锂负极具有最低的电位和最高的理论比容量,被认为是电池负极材料的终极选择,锂金属电池能量密度的理论上限可达500Wh/kg以上。然而锂金属负极在传统液态电池体系中难以实现,金属锂和电解液界面副反应多,且负极容易产生锂枝晶,不满足电池循环寿命和安全性要求。将液态电池的电解液与隔膜替换成固态电解质所组成的全固态电池,被认为是解决锂金属负极应用的有效途径。固态电解质稳定性高、不挥发、不泄漏,并对金属锂具有良好的兼容性,因此锂金属全固态电池有望在实现高能量密度的同时解决锂电池本质安全问题,并且还具有成组效率高和模组结构简单等优势,因此中国在国家层面已明确提出了对固态电池的研发和产业化进程要求。图1 液态和全固态锂离子电池结构差异虽然目前固态电池仍然处于商业化早期阶段,但国内许多厂商的产品已接近量产状态。本文利用BAC-420A大型电池绝热量热仪对某厂商提供的锂金属固态电池样品进行绝热热失控实验,以评估固态电池的安全性。实验部分1. 样品准备电池样品: 锂金属全固态锂电池(20Ah),满电。2. 实验条件实验仪器:BAC-420A大型电池绝热量热仪、电池充放电设备;实验模式:HWS-R模式、温差基线模式;记录频率:1~100Hz;自放热检测阈值:0.02℃/min;热电偶固定位置:电池大面中心点(样品热电偶)、正负极耳。实验结果1. 绝热热失控曲线图2 锂电池热失控温升曲线及温升速率-温度曲线锂金属固态电池的绝热热失控曲线如图2所示,可以发现该电芯的热稳定性与常规的液态高镍三元电芯类似,但热失控剧烈程度明显更高。锂金属固态电池的热失控过程表现出如下的特征:1. 自放热起始温度Tonset低:Tonset温度为74.42℃,与常规三元电芯相当甚至略低。通常认为固态电解质与正负极界面的热力学稳定性要优于液态电池内的SEI膜,因此固态电池的Tonset温度理应较高。上述现象有待明确电池体系后进行进一步探究。2. 热失控起始温度接近锂金属熔点:热失控起始温度TTR约为180℃,该温度下锂金属负极熔化,电解质与熔融锂金属发生界面反应,产生的氧气会诱发锂金属发生剧烈氧化反应,导致热失控发生[1]。根据图2b,到达TTR之前电芯升温速率出现明显下降,与负极熔化过程相对应。3. 热失控剧烈程度显著高于液态电池:该电芯的热失控最高温度Tmax无法有效测定。这是由于热失控瞬间,用于温度采样的N型热电偶迅速发生熔断。考虑到采用的N型热电偶的熔点为1330℃,因此该电芯的Tmax明显超过三元9系液态电池的数值(1100-1200℃)。针对该电芯的检测需求,后续需更换熔点更高的铂基热电偶。同时,估算该电芯热失控瞬间的温升速率达到50000℃/min以上,超过目前已知的所有液态锂电池。图3 样品锂电池热失控过程监控视频另外,从热失控瞬间的监控画面可以看到,该固态电池的热失控爆燃持续时间短,爆炸冲击威力大。随着能量密度的提高,电芯热失控能量释放速率也显著增大。实验结论本次实验利用BAC-420A大型电池绝热量热仪对某型号的锂金属负极固态电池进行了绝热热失控特性评估,相关实验数据表明该电芯的热稳定性与液态高镍三元电芯相当甚至略低,同时热失控剧烈程度明显高于已知液态电池,因此针对该电芯应制定更为严苛的热管理策略。引用文献[1] Vishnugopi B S , Hasan M T , Zhou H , et al. Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries[J]. 2022..
  • 大容量9系三元锂离子电池热失控测试
    前言9系超高镍三元锂离子电池是指正极材料元素比值为Ni:Co:Mn=9:0.5:0.5的三元锂离子电池,作为短期内已经将锂电池正极材料的潜力发挥到最大的方案,9系锂电池的理论能量密度甚至超过了300Wh/kg。由于9系锂电池具有超高的能量密度,受到了致力于提高新能源汽车续航里程的主机厂的密切关注。但高能量密度伴随着潜在的高危险性,因此获得9系电池的热失控特征参数尤为重要,但是9系锂电池的热失控过程非常剧烈,有较大概率会损伤仪器,因此9系锂电池的绝热热失控实验数据十分缺乏,电池热管理设计也缺少实验数据的支撑。本文利用杭州仰仪科技有限公司BAC-420A大型电池绝热量热仪进行了130Ah的9系NCM超高镍锂离子电池的绝热热失控测试,获得该电池热失控过程的相关热力学特征参数等信息。相关结果有助于帮助研究人员明确9系电池的热失控危害性,优化电池安全设计。实验部分1.样品准备实验样品:130Ah 9系NCM锂离子电池*1,260mm*100mm*25mm,100%SOC。2.实验条件实验仪器:杭州仰仪科技BAC-420A大型电池绝热量热仪;工作模式:HWS模式、温差基线模式;标准铝块:6061铝合金材质。图1 BAC-420A大型电池绝热量热仪3.实验过程3.1 温差基线校正:利用与电池大小形状一致的标准铝块进行温差基线模式实验,对热电偶及仪器进行校正;3.2 标准铝块HWS实验:利用标准铝块进行HWS模式实验,验证温差基线校正的效果及实验过程中仪器的绝热性能;3.3 电池HWS实验:为了防止9系电池热失控损坏炉腔,因此在电池外部增加了如图2所示的金属网防护罩,以HWS模式进行绝热热失控实验;图2 9系电池实验安装示意图及实物照片3.4 标准铝块HWS实验:电池HWS实验结束后,用标准铝块重新进行HWS验证实验,用于验证热失控后仪器功能是否正常及传感器漂移程度。实验结果图3 电池绝热热失控(a)温度-压力曲线及(b)温升速率-温度曲线如图3(a)所示,电池在82.68℃下的自放热温升速率达到了0.02℃/min的Tonset检测阈值;在131.67℃达到泄压温度Tv,泄压阀打开;随后在169.49℃达到热失控起始温度TTR (60℃/min),电池发生热失控,数秒内温度快速升高至约1090℃,最大温升速率(dT/dt)max超过40000℃/min。并且通过图4所示的抗爆箱内外部的监控画面,可以发现电池的热失控过程十分剧烈,在极短的时间内喷射出强烈的射流火及大量浓烟,同时瞬间产生的高温高压气流对实验室墙面产生了一定的冲击作用。图4 (a)防爆箱内部视频及(b)防爆箱外部视频图5 电池残骸照片通过观察电池残骸可以发现,泄压阀位置完全崩裂,同时电池残骸基本仅剩外部铝壳,内部电池材料几乎全部从泄压口喷出,热失控后电池的质量损失率达到了85.97%,也侧面表明了9系电芯的热失控剧烈程度。图6 电池热失控前(a)后(b)铝块HWS模式实验曲线在电池实验前,通过标准铝块的HWS实验验证了仪器良好的绝热性能,如图6(a),每个温度台阶铝块的温升速率均小于±0.002℃/min;电池测试后,为了确认仪器能否在承受9系锂电池的剧烈爆炸后仍然能正常使用,重新进行一次标准铝块的HWS实验。通过图6(b)可以发现,实验过程中仪器运行良好,并且每一个台阶的温升速率均低于±0.002℃/min,绝热性能依然优异,说明仪器功能完好,同时传感器未出现明显漂移。结论大容量9系超高镍NCM锂电池绝热热失控的剧烈程度高,实验室应具备足够的泄压泄爆面积(建议50平米以上),同时实验室墙面应进行加固。仰仪科技BAC-420A大型电池绝热量热仪具有优异的耐压和抗爆性,能够承受大容量超高比能电芯的热失控爆炸冲击。
  • 耐驰收购美国TIAX绝热反应量热仪业务
    德国耐驰仪器制造公司近日宣布成功收购美国TIAX LLC公司的加速量热仪(ARC)和自动压力跟踪绝热量热仪(APTAC)业务。ARC和APTAC业务将被并入德国耐驰公司现有的热分析业务,并由耐驰公司位于美国Burlington,MA的分公司负责生产制造。 绝热量热仪在工业安全领域有着至关重要的作用。其小型而高度灵活的特性,特别适合测量放热化学反应的热量和压力特征,帮助工程师、科学家识别潜在的危险并获取过程安全涉及的关键指标信息:如紧急卸压系统、排放处理、过程优化、热稳定性等等。 因此,在化学、医药、能源、政府机构、实验室等领域广泛使用绝热量热仪来研究化学动力学、储存/运输、过程中断、化学工艺设计等问题。绝热反应量热仪也常被用来做事故调查、气囊、充电电池、航天飞机与火箭推动研发工作。 关于德国耐驰仪器制造有限公司 德国耐驰仪器制造有限公司成立于1962年,是世界领先的高性能热分析仪器专业制造商。在五十多年热分析技术研发过程中,耐驰公司积累了丰富的软、硬件设计及应用经验,锐意创新,不断改进和开发新产品,以适应不同用户的需求。其最宽泛的温度测量范围(-260 ℃ ~ 2800 ℃)和卓越的产品品质,使得耐驰热分析仪器在国际热分析市场占据了主导地位。更多信息请访问:www.netzsch.cn。 关于美国TIAX LLC公司 美国TIAX LLC公司是一家技术工艺咨询服务公司,致力于将技术与市场的结合,促进最新技术向应用的转化。公司拥有50多个研发实验室,其ARC与APTAC产品业务一直处于世界领先地位。 更多信息,请访问www.tiaxllc.com。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开!
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了他们在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。会上,杭州仰仪科技有限公司正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技的孙昕禹工程师为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼具优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。主题演讲来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了各自在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。新品发布会上,仰仪科技正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技工程师孙昕禹为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼备优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。活动回放——————————————————————————————————杭州仰仪科技有限公司成立于2006年,浙仪旗下实验室事业群成员,是专注于化工与新能源领域测试需求的国家高新技术企业。我们在温度测量与发生、测试容器制备、仪器集成与数据分析等核心技术上有深度积累,是化工领域测试仪器设备、解决方案的专业开发者。公司产品线主要有热分析与量热、理化参数测试、燃爆特性测试和化学品物理危险测试等,产品综合性能达到国际先进水平,在应急管理、货物运输、海关监管、市场监管、环境保护、高等院校、科研院所、大型企业及第三方检测等机构具有广泛应用且口碑良好。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环
  • 回放视频上线!第六届“锂离子电池检测技术与应用”网络会议圆满召开
    5月28-31日,仪器信息网联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,大会为期3天半,邀请了众多锂电检测领域研究应用专家、相关仪器技术专家等,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行了探讨。本次会议圆满召开,吸引了千余名行业相关人士线上参会并积极讨论,总观看次数3200余次。参会者的行业背景广泛,涵盖了能源、石油与化工、电子电气、环保与水工业、汽车制造等多个领域。主要来自于工业企业(非仪器制造商)、高等院校和科研机构,占比近六成。所涉及的仪器品类包括质谱、X射线仪器、显微镜、色谱等10余种。为响应广大参会者的需求,报告回放视频已全部上线,欢迎大家点击回看,温故知新。回放链接报告题目报告嘉宾05月28日 锂电成分分析技术专场点击观看 德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师点击观看PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持点击观看 HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师点击观看电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师点击观看 核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员点击观看 单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静北京安科慧生科技有限公司 应用工程师-耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员点击观看 锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理点击观看 赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师点击观看 锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师点击观看雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用点击观看X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师05月29日 上午 锂电结构形貌分析技术专场点击观看 高镍正极材料热失控过程的显微学表征闫鹏飞北京工业大学 教授-日立电镜在锂电行业的最新应用周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长点击观看 全固态电池原位观察与分析——CP+SEM+EDS庞铮捷欧路(北京)科贸有限公司 应用工程师点击观看 XRD原位技术在锂电材料中的应用王通布鲁克衍射荧光事业部 XRD销售经理点击观看 冷冻电镜观察电池颗粒与界面王雪锋中国科学院物理研究所 特聘研究员、博士生导师-扫描电镜在锂电行业的应用魏丽英厦钨新能源材料股份有限公司 分析测试研究室主任5月29日 下午 锂电粒度/表界面性能分析技术专场点击观看 磷酸锰铁锂正极材料粒度对材料物理性能的影响梁广川河北工业大学材料学院 教授-应用XPS研究锂离子电池中的界面问题谢方艳中山大学 正高级实验师5月30日 上午 锂电热性能分析技术专场点击观看 动力电池热物性参数测试方法研究林春景重庆理工大学 副教授-热分析技术助力锂电池的热安全检测袁宁肖梅特勒托利多科技(中国)有限公司 技术应用专家-绝热量热技术与锂电池热安全测试邱文泽杭州仰仪科技有限公司 资深应用工程师点击观看 锂离子电池绝热产热量(ARC)和产气量(压力容器)测试方法薛钢苏州玛瑞柯检测技术有限公司 技术总监点击观看 锂电池导热性能参数无损测试方法侯德鑫中国计量大学 实验师5月30日 下午 锂电安全与失效分析技术专场点击观看 TIES固态锂电池设计开发评测技术及其失效机制介绍王愿习天目湖先进储能技术研究院有限公司 测试分析事业部负责人点击观看 金属锂电池安全设计:材料、界面与性能谭双杰中国科学院化学研究所 博士后点击观看 创新气相色谱技术助力锂电领域发展温焕斌岛津企业管理(中国)有限公司 GC高级产品专员点击观看 电芯及原材料分析实例分享张亮锂电企业 实验室经理点击观看 微米硅固态锂电池界面调控与失效分析韩响南京林业大学 副教授05月31日 设备更新主题:锂电回收相关检测技术专场点击观看 ICM动力电池碳足迹方法学研究余海军湖南大学 研究员-锂离子电池正极材料再生技术进展田俊行北京科技大学冶金与生态工程学院 讲师点击观看 基于弯晶阵列的单色X射线荧光部件研制与锂电池回收应用王清亚东华理工大学 讲师
  • 下周二开播!第六届“锂离子电池检测技术与应用”网络会议全日程公布
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。点击图片报名一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 详细日程报告时间报告题目报告嘉宾05月28日锂电成分分析技术专场09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静北京安科慧生科技有限公司 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师05月29日 上午 锂电结构形貌分析技术专场09:00高镍正极材料热失控过程的显微学表征闫鹏飞北京工业大学 教授09:30日立电镜在锂电行业的最新应用周海鑫日立科学仪器(北京)有限公司 电镜市场部 副部长10:00全固态电池原位观察与分析——CP+SEM+EDS庞铮捷欧路(北京)科贸有限公司 应用工程师10:30XRD原位技术在锂电材料中的应用王通布鲁克衍射荧光事业部 XRD销售经理11:00冷冻电镜观察电池颗粒与界面王雪锋中国科学院物理研究所 特聘研究员、博士生导师11:30扫描电镜在锂电行业的应用魏丽英厦钨新能源材料股份有限公司 分析测试研究室主任5月29日 下午 锂电粒度/表界面性能分析技术专场14:00磷酸锰铁锂正极材料粒度对材料物理性能的影响梁广川河北工业大学材料学院 教授14:30应用XPS研究锂离子电池中的界面问题谢方艳中山大学 正高级实验师5月30日 上午 锂电热性能分析技术专场09:00动力电池热物性参数测试方法研究林春景重庆理工大学 副教授09:30热分析技术助力锂电池的热安全检测袁宁肖梅特勒托利多科技(中国)有限公司 技术应用专家10:00绝热量热技术与锂电池热安全测试邱文泽杭州仰仪科技有限公司 资深应用工程师10:30锂离子电池绝热产热量(ARC)和产气量(压力容器)测试方法薛钢苏州玛瑞柯检测技术有限公司 技术总监11:00锂电池导热性能参数无损测试方法侯德鑫中国计量大学 实验师5月30日 下午 锂电安全与失效分析技术专场14:00TIES固态锂电池设计开发评测技术及其失效机制介绍王愿习天目湖先进储能技术研究院有限公司 测试分析事业部负责人14:30金属锂电池安全设计:材料、界面与性能谭双杰中国科学院化学研究所 博士后15:00创新气相色谱技术助力锂电领域发展温焕斌岛津企业管理(中国)有限公司 GC高级产品专员15:30电芯及原材料分析实例分享张亮锂电企业 实验室经理16:00微米硅固态锂电池界面调控与失效分析韩响南京林业大学 副教授05月31日 设备更新主题:锂电回收相关检测技术专场09:30ICM动力电池碳足迹方法学研究余海军湖南大学 研究员10:00锂离子电池正极材料再生技术进展田俊行北京科技大学冶金与生态工程学院 讲师10:30基于弯晶阵列的单色X射线荧光部件研制与锂电池回收应用王清亚东华理工大学 讲师11:30如何通过3讲堂实现会议营销事半功倍刘亚伟北京信立方科技发展股份有限公司 会议运营部平台运营经理四、 演讲嘉宾(按报告时间排序)五、 参会指南1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/ldc2024/ 2. 审核通过后将以短信形式向报名手机号发送在线听会链接。3. 本次会议不收取任何注册或报名费用。4. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn5. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 产品应用|使用等温微量热法测试锂离子电池的质量和性能
    由寄生反应测量推动的研究突破过去十年中,在电池研究、开发和质量控制领域,已将原位和操作中等温微量热法(IMC)用作评估锂离子电池循环期间热流的主要方法。将电池循环至失效可能需要数月的时间,但新兴的诊断测试能够在几周内预测长期行为。此类新兴诊断方法之一是测量电池在循环过程中的寄生热。Krause等人概述了将寄生热事件与总热量生成进行分离的程序,以对寄生反应进行量化,然后利用寄生反应数据以实现:√ 判断电池质量√ 协助活性材料配方的研发√ 研究添加剂的影响√ 研究固体电解质界面(SEI)的形成和增长√ 协助循环和日历寿命预测模型的制定通过了解寄生反应 加强新电池配方的研发J. Krause等人和Jeff Dahn小组研究了不同石墨以及电极配方对电池性能的影响。他们使用TAM III微量热仪测量寄生能量并将其与活性锂损失或库仑效率相关联的早期创新者,“确认寄生能量的来源是锂化电极和电解质之间发生的反应热。”已经证明,他们的方法对研究新材料组合和预测电池寿命是有效的。先前的工作表明,从石墨锂离子软包电池的电解质中去除碳酸亚乙酯(EC)可延长循环寿命和高压运行寿命。S. L. Glazier 等人通过联用TAM III微热量仪和电池循环器测量在高压运行期间的寄生热流,研究了无EC电解质的性能。该团队测量了寄生反应的时间和电压依赖性,以表征电池中复杂的内部反应。他们发现,不含EC的电解质“在较低电压下产生更高的寄生热流,但在4.3 V以上时的表现优于含EC的电解质。”此外,不含EC的电解质在高压暴露后能够更好地恢复到较低的寄生热流。他们的工作证实,不含EC的电解质可提供出色的高性能操作,进一步的研究可帮助改善电池在低电位下的性能,以获得更成功的电池电解质配方。通过高压热流测量 评估新型电池材料L. Glazier等人还通过测量寄生热流和容量保持率对天然石墨和人造石墨电池进行了比较。事实证明,他们的TAM III微热量仪有助于“了解高压锂离子软包电池中寄生反应的电压和时间依赖性。”他们使用IMC在低电压范围内研究寄生反应,以探测电解质在负电极中的反应,然后在高电压范围内进行测试,以探测氧化的正/负相互作用。结果表明,含足够电解质添加剂负载的天然和人造石墨电极将产生相似量的寄生热,人造石墨产生的热量最少。电解质添加剂负载不足会产生更大的寄生热流,并且在高电压范围内的电化学性能显著恶化。长期循环行为表明,与人造石墨相比,天然石墨电池具有更快的容量衰减速度。该小组提出,在电解质负载不足的情况下,SEI层很薄,无法有效承受锂化过程中天然石墨颗粒的机械膨胀,并且由于新的SEI在暴露表面形成,会导致不可逆膨胀和更大的容量衰减率。通过评估寄生反应 为优化高镍NMC阴极制定基线C. D. Quilty等人在研究富镍锂镍锰钴氧化物(NMC)阴极电池的研究中也评估了新型锂离子电池材料。NMC提供了高能量密度,但受到潜在的容量衰减较高的影响,因此必须谨慎限制其容量。要最大限度地提高NMC电池的寿命和高容量,需要使用一套工具来测量容量衰减机制,包括操作中IMC实验。C. D. Quilty等人使用TAM IV微热量仪实时测量(去)锂化过程中的热量,以全面了解了电池退化过程。他们指出,IMC是一个“强大的非破坏性工具,能够以超高精度捕捉循环电池释放的瞬时热流”,为他们的研究提供了帮助。他们发现,在更高电压下,容量衰减率的增加可能由更大的热能浪费或更低的电化学效率引发。他们的结论为未来的NMC阴极优化设定了基准。评估预锂化 对新型锂离子电池加工技术的影响预锂化是一种新的锂离子电池化成方法,该方法在电池单元运行之前增加活性锂含量。预锂化可补偿形成循环中的锂损失,如果操作正确完成,有望获得高能量密度和更好的循环性能。然而,对预锂化可能产生的负面影响仍处于研究阶段。Linghong Zhang等人使用TAM III微热量仪评估了预锂化过程和相关的寄生反应。第一个循环期间,预锂化电池产生了额外的寄生反应,但在三个循环后,“在预锂化电池和对照电池中观察到类似的来自寄生事件的热信号,表明预锂化的稳定性,以及可能不存在长期的副作用。”该研究首次展示了应用等温微量热法评估预锂化,并提供了有关该程序的有前景的结果。他们得出结论,“操作中等温微量热法是表征锂离子电池预锂化应用的有力工具。”未来的研究可继续优化预锂化,监测预锂化添加剂对大规模安全形成电池的影响尤为重要。研究背后的技术上述研究均使用到TA仪器的TAM系列微量热仪,这是一款先进的分析工具,可在受控温度条件下测量样品的热行为。许多研究将TAM与恒电位仪或电池循环器配对使用,使它们能够测量电池运行期间的热流,以获得可靠的结果。TA仪器全新推出的电池循环微量热仪解决方案专为这一应用而构建。该方案将TAM IV微量热仪与BioLogic VSP-300恒电位仪搭配成一个集成系统,从而形成一个端到端的运行中(in-operando)测量工具,在灵活和直观的系统中实时揭示电池在用户定义的温度和电压曲线下的详细热-电化学特性。现在,各级研究人员和科学家都可以通过无缝系统控制和数据分析来测量操作中的电池热流,从而缩短测试时间、加快决策。电池循环器微型量热仪解决方案包括两个主要系统的无缝软件和硬件集成:TAM IV 微型量热仪——可在受控温度条件下测量样品热行为的最先进的分析工具BioLogic VSP-300 恒电位仪/循环器——用于探测材料电性能的研究级电化学分析工具高级集成√ 仅通过一个软件接口,即可提供无缝系统控制√ 实时汇总数据,无需等待漫长的实验完成即可查看初步结果√ TAM ASSISTANT软件可一键进行数据可视化分析,更快提供结果和新见解卓越生产率√ 可同时循环并测量多个电池单元和外形尺寸的寄生热量√ 无需处理或操纵电线,消除了对专项工程的需求以及与定制OEM产品相关的不安全操作风险灵敏可重复√ 温度范围扩展至4℃-150℃,更好模拟现实世界中的应用√ 无与伦比的自放电测量的灵敏度和温度稳定性
  • 电池被刺爆破的瞬间,FLIR高速热像仪收集各项热数据!
    在很多研究实验中,都需要对设备进行热点监控,因此Teledyne FLIR高速热像仪越来越受到瞩目。今天,小菲就来说一个Teledyne FLIR 高速热像仪在进行电池滥用测试中应用的案例。选择Teledyne FLIR的原因位于印第安纳州纽伯里的电池创新中心 (BIC) ,是一家合作性非营利机构,专注于为商业和国防客户提供安全、可靠和轻量化电池的快速开发、测试、验证和商业化的服务。其部分测试过程包括各种滥用测试,将电池暴露于最恶劣的情况,以确定并解决由此产生的安全问题。近些年,我们对电池的需求急剧增加,为了满足这一需求,电池的型号在不断增加,使其性能和安全性的验证变得越来越重要。“电池的测试至关重要”,BIC 总裁兼首席执行官 (CEO) Ben Wrightsman 说。“在进行测试时,我们希望收集尽可能多的数据,并且我们希望能够确信我们的数据是准确的,”BIC项目总监Ashley Gordon解释说。为了从这些测试中收集尽可能多的数据,BIC选用了Teledyne FLIR 高速热像仪,它可显示用其他技术无法捕捉的热成像细节。在电池的使用过程中,事故是难免的,而在事故发生时,一定要知道电池会有什么反应,比方说如果电池着火,引起周围材料着火的速度有多快,可能性有多大。“我们模拟最坏的情况以收集数据,然后就知道预期会发生什么情况,”Gordon 说。BIC在2020年年底购入的FLIR高速热成像仪已成为其收集数据的关键。传统热电偶的局限性“在我们拥有热成像仪之前,主要采用体积较大的热电偶和更普通的红外 (IR) 设备,”BIC 研究总监 James Fleetwood 博士说。热电偶是一种由两根不同的导线组成的廉价温度传感器,常用于工业领域的温度测试。然而,它们也存在许多局限,特别是对于在BIC进行的电池测试。热电偶的主要缺点是一次只能测量一个点。“如果我只使用热电偶,得到的是接触点的温度读数。这意味着只有热电偶所在位置的读数,”BIC实验室技术员Rodney Kidd解释说。热电偶的放置也容易出现偏差。“这是一种自我实现反馈,”Fleetwood 博士说。“你其实并不知道热点在哪里,只有已知位置对应的测量值。”电池滥用测试中的热观察电池要接受的滥用测试之一是针刺,该测试用于模拟短路,而短路可能导致电池过热、着火甚至爆炸。“如果我们在进行针刺测试时只能使用热电偶,你实际上必须在整个电池表面放置一千个热电偶,才能清楚地了解整个电池的温度分布,”Kidd 说。了解短路和热量扩散如何导致气体积聚及这些气体和其他电池材料从哪里排出(以及它们有多热)对于工程师来说非常重要。“我们不能保证每次都能防止电池着火,”Kidd 解释说,“但我们可以减轻损害程度,并引导其进入安全的通道。”“这是我们以前用热电偶和普通红外热像仪所无法捕捉到的,”Kidd 说。虽然它们也能看到碎屑排出,但材料在接触大气时会立即冷却。“有了FLIR高速热像仪,我就可以放慢速度,并捕捉到这种材料,其温度有时可高达700℃,甚至更高”他解释说。其结果是热成像比单纯的通过/失败认证提供了更多的信息。“比起系统是否着火,热图谱可以告诉你更多有关热管理系统效果的信息
  • 发布绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器新品
    德国kiutra -绝热退磁制冷器 绝热去磁制冷器 ADR低温恒温系统kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。 我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝 对零值(–273.15°C):无危险且使用简单 我们的设备是全电气高度自动化。特别是它们不需要稀有且昂贵的液化气(低温剂),而是使用廉价的固体作为冷却介质。具有出色的温度精度和稳定性 由于采用了直接的电磁控制机构,因此可以以非常出色的稳定性和稳定性达到并保持温度设定点,从而获得更好的测量数据或性能结果。最小的基础设施和空间要求 电磁冷却解决方案以紧凑的方式构建,并且只需要最少的基础架构。如何工作磁性制冷是基于磁热效应的:当介质被磁化时,其磁矩会对齐,并且释放出磁化热。反之亦然,如果介质被消磁,其温度将下降。kiutra的冷却系统可以利用两种不同类型的磁制冷方法:单次绝热退磁制冷(ADR)如以上附图中示意性所示,磁制冷可用于产生短期冷却。从封闭式低温冷却器提供的初始基准温度开始(步骤1)首先,将合适的冷却介质磁化(步骤2)。然后,磁化热由低温冷却器消散(步骤3)。随后,冷却介质通过所谓的热开关进行热分离(步骤4),然后再消磁(步骤5)。在退磁过程中,冷却介质的温度下降。如果在磁场B降低到零之前达到设定点温度,则可以调节冷却功率以在一段时间内提供恒定温度,例如持续几个小时甚至几天(步骤6)。当磁场最终减小到零时,冷却过程停止(步骤7),介质再次加热到基本温度(步骤8)。等待一段时间后,可以重新启动该过程。3级电磁冷却系统中的连续ADR对于某些应用,单发冷却是不够的。对于这些应用,kiutra提供永 久冷却动力的无低温磁性热泵。这些系统基于多级磁制冷,其中几个磁制冷单元相互连接并控制温度稳定性,如上图所示。原理:在n个磁化冷却单元释放的热量是由第(n-1)个单元消散,等等...这确保了连接到样品台的最终冷却单元永远不会耗尽了磁场,因此可以永 久连续提供开尔文甚至亚开尔文温度。 kiutra的磁性制冷系统以高度模块化的组件提供单次和连续ADR。根据客户的特定需求,单次ADR系统可以升级为多级CADR恒温器。创新点:kiutra结合了多级磁性制冷和闭环预冷功能,在无致冷剂下,可提供连续不断的开尔文至亚开尔文温度。我们的冷却系统提供了一种便捷的方式来生成非常低的温度,达到接近绝对零值(–273.15° C)。 绝热退磁制冷机 绝热去磁制冷系统 ADR恒温器
  • 德国baltic FuelCells大电流密度燃料电池夹具QCF12在大连化学物理研究所顺利安装
    德国baltic Fuelcells的大电流密度燃料电池夹具QCF12在近期在大连化学物理研究所顺利安装。中国科学院大连化学物理研究所是燃料电池技术领域开展研发工作的佼佼者,研究领域包括:燃料电池流场、燃料电池堆、燃料电池系统及可再生燃料电池系统研发等,此次安装的大电流密度燃料电池夹具用于燃料电池发动机系统。最新版本快速连接夹具测试单元在温度管理方面具有显着的改进;qCF 高效液体冷却系统可用于高电流密度下操作,而电池发热是最关键问题,与ISE共同合作,将液体冷却层尽可能靠近流道,甚至接触石墨流道双极板,从电池中更有效地带走产生的热量;阴极气体出口与冷却液之间的温差达到很小,在5A / cm2和80℃下能实现1K左右;快速连接设计的所有优点被保留,如活动区域上的接触压力可调节、自调节的单级活塞、无需拆卸工具的组件、样品厚度的独立性等功能,可以确保操作容易和最高的结果重现性。更多详细信息请联系德国baltic Fuelcells公司在中国总代理:嘉盛(香港)科技有限公司。
  • 独特的产学研合作模式 打破热分析与量热仪器欧美50余年垄断——访2021年“朱良漪分析仪器创新奖”青年创新奖获奖者、中国计量大学副教授丁炯
    导读:“朱良漪分析仪器创新奖”于2017年设立,宗旨是为纪念朱良漪同志矢志不渝推动我国分析仪器事业发展的精神,发现、鼓励、宣传分析仪器界在新原理、新方法、新技术及新应用方面的创新成果,加速推动我国分析仪器技术的发展,激发企业及广大科技工作者的创新热情,促使科技人员投身于中国分析仪器研发、制造与应用工作,为发展我国分析仪器做出应有贡献。该奖共设立了“青年创新奖”和“创新成果奖”两个奖项。“青年创新奖”候选人要求具有“献身、创新、求实、协作”的科学精神,评选当年1月1日不超过40周岁的科技工作者,且作为主要完成人在分析仪器研究、开发、设计、试验、工程化或产业化工作中取得创新成果,产生了显著的技术效益、经济效益或社会效益。这里的主要完成人是指为项目完成在技术上起决定性作用者,或解决关键技术和疑难问题的直接性重要贡献者。2021年“朱良漪分析仪器创新奖”共评选出创新成果奖3项、青年创新奖4名。仪器信息网与中国仪器仪表学会分析仪器分会对获奖者进行了联合采访,本期的采访对象是“青年创新奖”获得者中国计量大学副教授丁炯。丁炯及其所在团队一直致力于量热技术与仪器研究,对新能源、新材料、精细化工安全等领域的热测试需求开展量热方法创新、量热共性关键技术攻克、量热数据处理方法研究,突破热分析与量热核心关键技术,成功研制具有自主知识产权的绝热加速量热仪、快速筛选量热仪等系列仪器。在中国计量大学将关键技术交给杭州仰仪科技有限公司进行仪器产业化的同时,作为中国科学技术大学和杭州仰仪科技有限公司联合招收的博士后入驻企业,顺利实现相关仪器技术的产业化,其中绝热加速量热仪成功打破欧美长达50余年的垄断。首先恭喜您获得“2021年朱良漪分析仪器创新奖-青年创新奖”,请向广大网友介绍一下您自己以及您所在的单位?丁炯:实际上,我有教师和技术专家两个身份。我的第一身份是中国计量大学仪器科学与技术学科的教师。中国计量大学仪器科学与技术学科以计量测试技术与高端仪器自立自强为己任,是以测量、测试、计量、校准为研究特色的省一流学科。我的第二身份是杭州仰仪科技有限公司资深技术专家,负责热分析与量热产品线产品研发。杭州仰仪科技有限公司是专注于化工与新能源领域测试需求,以实验室高端分析仪器设计、研发、制造、销售为主营业务的的国家高新技术企业、浙江省“专精特新”企业。中国计量大学副教授 丁炯请介绍您进入热分析与量热仪器领域的机缘?您在热分析与量热仪器的研制和产业化方面开展了哪些工作,取得了怎样的创新成果?丁炯:我本硕博就读于浙江大学生物医学工程专业,从事医学分析仪器的学习和研究,自此与仪器研制结缘;进入中国计量大学工作以来,加入工业与商贸计量技术研究所科研团队,从事热分析和量热技术研究和仪器研制。十三五期间,我们立足于化工安全生产国家重大需求,针对化工安全风险分析仪器被垄断的现状,通过量热原理方法的提升、传感器的自主设计制备、热学信号测控关键技术突破等研制了绝热加速量热仪等多款高端量热仪器,性能达到国际先进水平;并通过产学研合作,在杭州仰仪科技有限公司实现了仪器的产业化、系列化,解决了该类仪器完全依赖进口的“卡脖子”问题,国内市场占有率超过四成;并通过CE认证,实现了向法国、英国等欧美发达国家出口,新增销售额超5000万。另外,我们还将绝热加速量热仪的应用扩展至锂离子电池热安全评估领域,研制并产业化了专门用于锂电池热安全和热管理测试的大型绝热加速量热仪,同样获得了良好的市场反响。绝热加速量热仪快速筛选量热仪大型电池绝热量热仪您所研制的仪器成果解决了哪些实际问题?仪器的主要用户有哪些?成果的市场前景如何?丁炯:我所研制的仪器主要面向三个方面的市场,分别是精细化工、锂离子电池、国防军工。在精细化工方面,近年来,国家陆续提高了精细化工新建项目的准入门槛,精细化工反应安全风险评估已成为必须。我们的量热仪是实验室安全条件下开展化工过程安全评估的重要手段。在这方面,我们的仪器被众多科研院所、高等院校、精细化工及医药领军企业和第三方检测机构等客户的使用和认可。在新能源方面,随着国家“双碳目标”的提出,锂离子电池扮演者重要能源载体的角色,锂离子电池的热安全评估也越发被国家、行业和企业重视。我们在原有的绝热加速量热技术上进行升级、应用拓展,将我们的仪器应用于锂电池安全评估领域,得到了各高校、央企的广泛认可。在国防军工方面,我们的仪器已应用于含能材料的开发、生产、研究过程的安全评估,致力于将国产仪器应用于国防建设,避免被“卡脖子”。我所在的仰仪科技作为国产自主仪器品牌,打破了面向化工过程安全、锂电池、含能材料领域高端量热仪器被国外品牌垄断的现状,并以出色的产品质量和服务为海内外市场提供了另一种可靠选择,得到了广大仪器用户的欢迎和信任。您所研制的仪器从研发阶段走向产业化这一过程有哪些经验或体会?丁炯:首先要感谢国家倡导的产学研合作机制,杭州仰仪科技有限公司通过横向项目合作和技术服务的形式委托中国计量大学开展所需研制仪器的测量原理、控温算法等关键技术的研究。中国计量大学在完成研究后,将关键技术交给杭州仰仪科技有限公司的工程师,进行仪器的产业化。此外,我也积极响应《浙江省人力资源和社会保障厅 浙江省科学技术厅关于鼓励高校青年博士教师到企业从事博士后研究工作的意见》,作为中国科学技术大学和杭州仰仪科技有限公司联合招收的博士后,入驻企业,帮助企业攻克技术难题,指导企业工程师吸收新技术,实现技术转化。对于此次获奖您有何感受?您认为“朱良漪分析仪器创新奖”将给青年人带来怎样的影响?丁炯:感谢朱良漪先生和中国仪器仪表学会分析仪器分会设立了“青年创新奖”,这是对我们从事分析仪器科研创新工作的青年科技工作者最大的鼓励。此次获奖,是对我前期工作的肯定,更是对我今后工作的鞭策,更加坚定了我打破热分析仪器“卡脖子”问题的信心和决心,我将继承和发展老一辈创新精神,继续努力奋斗,产学研紧密结合,研制并产业化更多性能国际领先的热分析量热仪器,希望能为我国热分析仪器行业的健康发展和科技进步作点滴贡献。获奖证书和奖杯后续您还将开展哪些创新工作?丁炯:未来我们计划继续针对专业领域开展更深入的量热技术和仪器研制工作,围绕“卡脖子”仪器开展重点突破,例如DSC差示扫描量热仪和TG热重分析仪的技术攻关和产业转化。有兴趣的专家同仁可以与我们的科研团队联系,也请关注和支持杭州仰仪科技有限公司的产品和服务。后记:国产仪器的发展之路任重而道远,“朱良漪分析仪器创新奖”的设立就是为了鼓励更多像丁炯老师这样的青年人才投身到国产仪器研发,这样才能源源不断地产出更多国产仪器创新成果,相信在不久的将来会有越来越多的国产仪器打破国外垄断,同时也期待丁炯老师和仰仪科技未来能够在国产量热仪研发和产业化道路上更进一步。
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
  • 德国耐驰西安技术研讨会圆满结束
    10月12日,德国耐驰公司在13朝古都西安举办热分析技术研讨会,来自西安交通大学、西北工业大学、西北大学、西安理工大学、航天43所、西航公司等多个高校和研究机构的51名科研人员参加了此次会议。会场上气氛热烈,与会者与耐驰公司的技术专家曾智强博士热烈讨论了有关热分析方面的技术问题,会议在热烈的讨论中圆满结束。 耐驰公司在西安的热分析用户众多,并且很多用户是做航空航天方面的研究,这些客户对仪器的测试要求非常苛刻,在某些方面代表了目前测试的最高要求,耐驰公司的仪器都可以很好的满足,从另外一个方面也反映了耐驰仪器的性能和品质。此次会议主题以高温仪器为主,同时介绍了耐驰仪器的最新进展。耐驰公司不但能够全线提供热分析仪器,而且近几年在仪器研发方面投入了大量的精力,新近又推出一系列新款仪器,F3系列的同步热分析仪,差示扫描量热仪、热机械分析仪等。同时在绝热量热领域也有新品推出,绝热量热仪(ARC244、ARC254和APTAC264),针对不同的应用需求,可以灵活配置不同的模块,该仪器非常适用于工业安全领域,可以测量放热化学反应的热量和压力,帮助研究者掌握过程安全的关键因素,实现制造、运输、贮运等方面的安全评估,应用领域涵盖化工、医药、能源(电池、煤炭、石油)、军工(爆炸物)等。 会议就客户经常碰到的技术难题做了现场解答,并提供给客户详实的应用实例,对于新仪器应用方面客户感兴趣的问题,耐驰的技术专家也给予了全面的解答,会议内容充实,讲解仔细,得到与会者的一致肯定,会议在愉快的气氛中顺利结束。 耐驰下一站将移师天津,如果想了解更多关于热分析方面的技术问题,欢迎您参加耐驰的热分析技术研讨会,或者登录耐驰的网站:www.netzsch.cn。
  • 燃烧吧,卡路里!经典膨化食品热量的科学测试——自动氧弹量热仪 ATC300A
    摘要本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品(薯片、仙贝、小馒头、干脆面)的燃烧热值,测试结果与其包装上营养成分表的能量值差值在0.16~0.53 kcal/g之间,RSD(相对标准偏差)均在0.2%以内。图1测试样品展示前言卡路里(calorie)作为一种热量单位被广泛应用于营养计量和健身指导中,它和食品包装上营养成分表里单位为焦耳(joule)的能量值一样,都反映了食品氧化过程中所释放的热量,我们可以根据 1 cal= 4.1868 J对其进行换算。那么食物能提供给我们的热量与其完全燃烧后所释放的热量有什么区别?食物在人体内的消化吸收过程是非常复杂的,对于一些食物组分例如蛋白质中的氮元素等,人体无法消化吸收,在代谢产物(尿素、尿酸、肌酐等)中仍存在一定能量。但尽管人体氧化的方式与氧弹量热仪有所不同,食物完全氧化所释放出的总热量却是相同的。为了得到食物的生理热值,我们可以在氧弹量热仪燃烧测试的基础上进行一些代谢校正。例如,不考虑人体基础代谢等复杂因素,分别测量食物的燃烧热值以及排泄物热值,就可以确定某种食物的有效热值。食品营养成分表中的能量值就是三大营养素的能量系数(脂肪37 kJ/g、碳水化合物17 kJ/g,蛋白质代谢校正后17 kJ/g)与其含量的乘积之和。本文利用ATC 300A自动氧弹量热仪测得四种膨化类食品的燃烧热值并与营养成分表中的能量值进行了对比,同时计算了不考虑蛋白质代谢校正(能量系数为22 kJ/g)时的能量值;可以发现代谢校正所带来的总体偏差不大,但不同食品样品的燃烧热值偏差不同。除了蛋白质含量的因素,可能还因为相同营养素有着不同来源;像牛肉、牛奶中脂肪的燃烧热值实际是不同的,但营养素归类下却有着相同的能量系数。图2 自动氧弹量热仪 ATC 300A实验方法1. 实验条件&bull 测试仪器:之量科技 ATC 300A自动氧弹量热仪&bull 测试方法:GB/T 213-2008&bull 环境温度:24.4~ 26.3 oC&bull 实验样品:薯片、仙贝、小馒头、干脆面2. 测试过程&bull 打开ATC 300A自动氧弹量热仪;&bull Step1:在样品池中称取一定质量样品,用棉线连接点火丝与样品并固定;&bull Step2:安装氧弹,并设置实验参数,填写样品质量等;&bull Step3:开始实验,在测试环境准备好后,仪器自动进行测试;&bull Step4:实验结束,取下氧弹并进行清理;&bull Step5:重复三组测试,记录实验数据。实验结果在实验开始前,我们对每种样品分别进行了碾碎与压片处理以保证测试样品的均匀性与一致性,如图3所示。在压片过程中需控制压片力度,如薯片含油量较高,力度过大会导致油分析出影响测试结果。图3样品预处理(a)碾碎后样品(b)小馒头压片展示(c)压片后样品(d)装样薯片、小馒头、仙贝和干脆面每种样品进行3次重复测试,燃烧热测试结果汇总见表1。测试结果重复性较好,RSD均在0.2%以内。表1 燃烧热测试结果汇总燃烧热J / g薯片小馒头仙贝干脆面123935.0 16548.921535.522750.7223925.716558.121505.322766.8323995.116544.921505.222771.6平均值23951.9 16550.6 21515.3 22763.0 包装能量值22666.715870.0 20620.0 20550.0 无代谢校正能量值22967.6 16017.3 20860.7 21018.1 RSD(%)0.1570.0410.0810.078燃烧热平均值与包装上营养成分表(如图4所示,蛋白质能量系数17 kJ/g)里的能量值相比,差值在680.6~2213.0 J/g之间,不考虑蛋白质代谢校正(能量系数22 kJ/g)的差值在533.3~1745.0 J/g之间。图4(a)薯片(b)小馒头(c)仙贝(d)干脆面样品包装上的营养成分表由于本次选择的样品为膨化类食品,成分以脂肪和碳水化合物为主,蛋白质含量较低,代谢校正对测试结果的影响相对较小,更多考虑为营养素能量参数对不同来源的相同营养素存在一定偏差导致的。根据上述测试结果,燃烧热值一定程度上可以代表我们能够从食物中获取的“卡路里”。除了人体代谢外,不同来源的相同营养素用同样的能量参数去计算也会带来一定误差;以本文测试的膨化类食品为例,不考虑蛋白质代谢修正的燃烧热值与包装能量值差值为12.7~41.7 kcal(大卡)/100g,对“卡路里”摄入严格的人群可能需要考虑该影响。结论本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品的燃烧热值,测试结果与其包装上营养成分表的能量值较为接近,其差值可能包含了营养学上对于不同营养素的燃烧热值基于人体代谢的修正,以及不同来源的相同营养素能量参数的差异。 仪器推荐自动氧弹量热仪 ATC 300A符合GB 384、GB/T 213、ASTM 4809、ASTM D240等标准,测试时间<10min(快速法),热容量波动≤0.20%,功能高度自动化,能快速准确地测试各种可燃物的燃烧热值。欢迎联系我们,了解更多技术亮点、参数规格及应用案例。
  • 藉由以GDA和SnO2形成的分子桥接触的材料介面达成高效且稳定的太阳能电池
    █ 重点摘要最近,陕西师范大学向万春团队利用光焱科技公司的测试设备,开发出以甘蓝胺(GDA)埋入SnO2/钙钛矿界面上分子桥优化钙钛矿太阳电池。该研究结合先进的测试设备与材料开发策略,实现了电池转换效率从22.6%提升到24.7%,并显著改善了稳定性。1. 使用分子改性剂甘蓝胺(GDA)在SnO2/钙钛矿的埋底界面上构建分子桥,从而产生优异的界面接触。2. 通过GDA和SnO2之间的强烈相互作用实现的,明显调节能级。此外,GDA可以调节钙钛矿晶体的生长,产生晶粒尺寸增大且无针孔的钙钛矿薄膜,缺陷密度显着降低。3. 经过 GDA 修改的钙钛矿太阳电池表现出开路电压(接近1.2V)和填充因子的显着改善,从而使功率转换效率从 22.6% 提高到 24.7%。此外,GDA 器件在最大功率点和 85°C 热量下的稳定性均优于对照器件。█ 研究背景钙钛矿太阳能电池因具理论上可达25%的高转换效率,受到广泛关注,但钙钛矿材料易受温湿度影响降解,SnO2与钙钛矿界面难以实现有效电荷传输,使实际效率较预期低,制约了商业化进程。如何提升钙钛矿太阳电池转换效率和长期稳定性是当前研究热点。充分发挥精密量测设备的优势,开发高性能钙钛矿材料与界面工程技术,实现电池效率和稳定性的同步提升,是目前的研究方向。█ 研究成果陕西师范大学向万春团队设计开发出甘蓝胺(GDA)分子材料,优化SnO2与钙钛矿界面。X射线衍射分析表明,GDA调控钙钛矿晶粒生长,生成高质量钙钛矿薄膜,增加晶粒尺寸,降低缺陷密度。此外,GDA 可以调节钙钛矿的生长以形成高质量的薄膜,从而减少缺陷和相关的非辐射电荷复合。因此,经过GDA修饰的 PSC 表现出接近1.2 V的令人印象深刻的VOC和 24.70%的效率,高于对照器件的22.60%和离子类似物醋酸胍(GAAc)修饰的PSC的24.22%,同时迟滞现象减少最后,与对照和GAAc修改的器件相比,GDA 修改也大大提高了最大功率点 (MPP)跟踪和85 °C热量下的器件稳定性。该研究成果发表在《Angewandte Chemie International Edition》█ 研究方法采用设备本研究采用光焱科技AM1.5G太阳光模拟器(AAA class solar simulator)以及Si标准参考电池SRC2020(NREL-certified silicon cell ),量子效率量测设备 QE-R。█ 结果与讨论要点1:分子与SnO2和钙钛矿的桥接作用研究团队选择GDA作为钙钛矿界面改性剂的原因有两方面:其一,GDA具有高热稳定性和良好的溶解性,在界面形成和沉积过程中能够提供稳定的支撑。其二,GDA分子含有羧基和GA基团,可以与SnO2和钙钛矿形成强的配位作用,从而在两者之间建立桥梁,改善界面接触,有助于提高载流子传输效率和减少电荷复合。研究团队通过实验和密度泛函理论计算证明了GDA与SnO2之间的化学相互作用,主要源于GDA中的羧基与SnO2表面的欠配位Sn4+结合。傅里叶变换红外光谱(FTIR)测量也支持了这一观点,显示出GDA分子与SnO2层之间的相互作用。要点2:GDA对SnO2层的改性研究团队使用顶视扫描电子显微镜(SEM)和原子力显微镜(AFM)表征了GDA对SnO2层形貌和粗糙度的影响。GDA修饰导致SnO2表面的纳米粒子层变得更加均匀和连续,粗糙度减小,有利于钙钛矿薄膜的均匀成核和结晶,从而提高界面电荷转移效率。通过紫外光电子能谱(UPS)测量,研究团队观察到经过GDA修饰的SnO2能级发生改变,费米能级上升,有利于界面电荷传输。这些结果进一步表明,GDA修饰影响了SnO2的能级结构,从而改善了PSC界面性能。要点3:下界面改性对钙钛矿层的影响研究团队研究了经过GDA改性和未经GDA改性的SnO2层上钙钛矿层的性能。通过SEM和XRD表征,研究团队发现GDA修饰有助于形成更平坦和致密的钙钛矿薄膜,提高了结晶度。这对于减少电荷缺陷和提高电荷传输效率非常重要。要点4:下界面改性对钙钛矿薄膜结晶的影响通过原位XRD测量,研究团队研究了GDA修饰对钙钛矿薄膜结晶过程的影响。结果显示,GDA改性影响了中间相的形成,导致晶格膨胀。此外,研究团队发现GDA修饰还影响了钙钛矿薄膜的晶粒尺寸和结晶动力学,进一步改善了薄膜质量。要点5:器件性能与稳定性研究团队制备了经过GDA修饰和未经GDA修饰的PSC,并评估了它们的性能和稳定性。结果显示,经过GDA修饰的器件在光电转换效率(PCE)和稳定性方面都表现出优势。GDA改性有助于抑制非辐射电荷复合,提高载流子提取效率,并减少界面陷阱密度。这导致了更高的PCE和更好的稳定性。█ 结论该研究运用精密的光伏测试设备,开发出甘蓝胺分子材料修饰SnO2/钙钛矿界面,显著提升了钙钛矿太阳电池的转换效率和长期稳定性。研究证明先进测试设备的应用为材料开发提供了有力支撐,也为实现高效稳定钙钛矿太阳电池的低成本批量生产提出了新的设计思路。期待不同领域的产学研单位通力合作,加快高效钙钛矿太阳电池的实际应用进程。
  • ATEC阿泰可燃料电池管道式环境舱
    atec阿泰可为某重型汽车集团研制的燃料电池发动机管道式环境舱成功交付客户验收,该产品针对燃料电池在高原状态下的管道式气候模拟,实现了燃料电池吸气端的高原温度、高原气压、高原含氧量的准确模拟波动试验,并具备整机氢气防爆功能。  在研制过程中,技术部攻克了若干难点:  1、解决燃料电池工作时瞬间产生大热量从而导致舱内温度波动;  2、燃料电池吸气需求量与新风的高原温度、高原气压、高原含氧量的同步控制;  3、燃料电池工作时瞬间产生大排气量而导致排气端的高原气压的稳定性。  该试验系统主要由8大部分组成,分为试验仓、制冷机组、新风系统、控制系统、排放系统、真空系统,氢气预冷系统,防爆安全系统。  整套设备具备模拟自然环境中温度、湿度、气压等环境条件的功能,可对燃料电池发动机经常遇到的温度、湿度、低气压等综合叠加环境效应进行模拟考核, 适用于燃料电池发动机单体的环境试验项目测试以及其他部件的温度、湿度试验,管道高度试验。  并满足功率为150kw的燃料电池发动机环境模拟的以下试验:  低温试验(低温存储、起动、性能);  高温试验(高温存储起动、性能);  湿热试验(高温湿热);  温度海拔高度试验(气压模拟);  可以用于商用汽车的冷启动试验。
  • 3月23日~24日!之量科技参加第九届全国储能科学与技术大会
    会议预告会议时间:2024年3月23日-24日(22日报到)会议地点:江苏溧阳(溧阳天目湖豪生大酒店)主办单位:天目湖先进储能技术研究院、中国化工学会储能工程专业委员会、中国电机工程学会电力储能专业委员会、化学工业出版社有限公司、江苏省溧阳高新技术产业开发区管委会会议背景第九届全国储能科学与技术大会将重点围绕储能技术基础理论、核心技术、关键材料与装备、应用场景及商业模式等话题展开,并邀请来自材料、器件、装备、应用、投融资等相关行业代表参会,汇聚国内外政产学研资用等多方主体参与,共同探讨储能技术发展的关键问题,把握储能产业发展脉搏。作为浙仪旗下实验室事业群成员,仰仪科技、之量科技共同参加本届大会(展位号:3-17号),分享我们在全尺寸大容量电芯及模组热失控测试领域的技术成果——BAC系列大型电池绝热量热仪。与此同时,浙仪应用研究院的资深应用工程师王旭博士也将在“先进表征技术在储能中的应用”报告论坛分享《绝热量热技术与锂电池热安全测试》,欢迎您莅临现场,与我们进行技术交流!BAC系列大型电池绝热量热仪BAC系列大型电池绝热量热仪是专为满足超大型电芯单体及其小型模组进行热特性测试的绝热量热仪,具备最新版GB/T 36276-2023《储能用锂离子电池》绝热温升特性测试功能。该仪器通过模拟电池热失控过程绝热环境,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,可获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数,为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。在样品容量方面,BAC系列大型电池绝热量热仪已成功完成包括130Ah 9系超高镍NCM、190Ah NCM811、230Ah NCM622、320Ah LPF等在内的数百款电芯绝热热失控和热物性参数测试。仪器性能方面,BAC系列可针对长边≤1500mm范围内的电芯开展安全、精准、可靠的绝热热失控测试。与目前国内外厂家的标准产品相比,BAC系列大容量腔体的抗爆性和产气测试能力显著提升,能够承受大型电芯的热失控温压冲击。*文中样品不代表仪器最终测试能力极限,详情可咨询销售01 严密的结构设计:标准款量热腔直径 (420~1000)mm, 各自设计有泄压型与密封型结构,可承受9系锂电池热失控时的剧烈压力与冲击。02 独特的量热性能:基于半导体控温的高精密低漂移测温模块设计,提升系统测试稳定性与准确性,确保实时跟踪、环境绝热、精确量热。03 随心的定制功能:可定制1000mm以上炉腔,并自行选配集气、针刺、低温冷却、多通道测温、比热容测试等丰富的功能模组。04 专业的安全防护:泄压型炉体设置内部爆破片与外部抗爆箱双重保护,为实验构建防护屏障;密闭型炉体符合标准压力容器规范,隔绝失控危险。
  • 锂离子充电电池电解液以及正极材料的安全性评价
    锂电池的应用十分广泛,如手机、笔记本、电动汽车等已成为生活中不可或缺的产品。随着其在汽车以及电力储藏等领域大型化的应用、对其高性能和安全性要求也越来越高。锂离子电池具有极高的能量密度,这是因为电池中封装了更多活性材料,且电极和隔膜越来越薄、越来越轻。这些均需要电池组成材料之间的完美搭配、若设计不足或者滥用,就会出现热失控现象,导致冒烟、起火甚至爆炸等事故。 因此对锂电池的生产和使用过程中的安全性评价非常重要,下面就让我们用日立DSC7000系列对锂离子充电电池电解液以及正极材料进行安全性评价。 样品处理和容器■ 样品处理的气氛LIB的构成中包含很多反应性高的材料。实际产品被封装在惰性气氛中,因此DSC测定也必须将其密封在惰性气体中进行。(为了避免大气中的水分、氧气、二氧化碳等气氛对样品的影响、样品处理在手套箱中进行。)■ 容器样品分解产生的气体、会污染DSC传感器、可能造成仪器功能损坏,因此需选择密封形的容器。另外测试时容器内部压力增大,故需要选择高耐压值的SUS密封容器。电解液正极材料的热特性的研究■ 电解液电解液的DSC结果如上图所示:样品中溶剂为高介电常数溶剂碳酸乙烯酯(EC)和低粘度溶剂碳酸甲基乙基酯(EMC),电解质为六氟磷酸锂(LiPF6)。在升温过程中,该电解液先熔融再分解,在244℃开始熔融,分解放热峰温度278℃,同时还可以得到其分解放热量。■ 电解液+正极材料这里显示把电解液和正极材料混合密封在容器中的样品的DSC测定结果。正极材料是充电状态的锰酸锂(LixMn2O4、X=0(充电状态))。183℃附近有一个放热反应,随后有一个放热峰,放热峰峰值约为290℃,与上述的电解液相比、在低温测得(183℃)开始放热,这是正极材料的热分解,释放氧气、使得电解液氧化分解。从上述DSC测定中,可观察到热分解的起始温度、可以评价LIB的热稳定性、起始温度越高热稳定性越高。本资料显示的是完全充电状态的结果、也有充电越多,Li脱离量越多、热稳定性也会越降低的报告。综上所述,通过差示扫描量热仪DSC对电解液以及正极材料进行热特性的评价,我们可以了解电解液以及正极材料在程序升温过程中的吸放热现象,为锂电池安全生产、加工和使用过程作参考。关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 讲历史 | SETARAM卡尔维式3D微量热技术在中国的扎根与发展
    拥有70余年高端热分析制造经验的法国凯璞科技集团,其旗下的塞塔拉姆仪器凭借其独特的三维量热技术在业内斩获众多拥趸。鉴于任何物理、化学反应体系以及新陈代谢过程中均涉及不同级别的热量变化及交换,而法国塞塔拉姆卡尔维式3D微量热仪是准确获捕获体系热量变化的唯1有效手段,他能够揭示反应体系的能量内涵,获得热力学及动力学规律。接下来我们将介绍SETARAM卡尔维式三维(3D)微量热仪的起源、发展,并着重介绍卡尔维量热技术在中国的发展及应用历程,让不同领域的科学工作者能有机会深入了解卡尔维式量热技术的应用优势,从而能够更好的实现量热技术与其他学科的交叉发展。1现代量热技术起源现代量热法发源于法国马赛,量热技术鼻祖之一的Albert TIAN教授曾执教于马赛的一所大学。Albert Tian教授在1920年代初完成的大部分研究工作成为现代量热的基础。1924年,Albert TIAN 在给普罗旺斯大学自然科学专业的学生上课1922年,Tian第1次描述了他的补偿式微热量计,当时他和他的同事柯特用它来研究昆虫的新陈代谢。随后在1924年和1926年,Tian改进了这台基于热电偶的仪器。1948年,Tian的继任者,Edouard CALVET引入了差示设计,以及两个成对的量热元件结构的理论,并将Tian的设备转化为一台真正的实验室仪器。Professor Edouard Calvet(1895-1966)▲ 塞塔拉姆卡尔维式(CALVET)3D传感器1.核技术/军工技术的应用历史/ Nuclear & War Industry上世纪70年代,基于法国政府与中国的良好关系,塞塔拉姆BT2.15微量热仪是最早被引入中国的卡尔维式量热仪,也是历史上最早的进口仪器之一,而核工业及兵器、航天工业则是卡尔维微量热技术率先服务的领域。▲ SETARAM最早进口中国的BT2.15微量热仪彼时高端进口设备的价格对于尚处于艰苦阶段的国内各科研单位而言无疑是一笔“巨款”,而反应热量的测试对于核材料、火炸药、推进剂等含能材料研究更为重要,相关技术发展也是关乎国家安全的重点学科,因此在计划经济体制下,国家统一采购并分领域将量热仪划拨到相关单位,最早的用户有:中国工程物理研究院、中科院兰州化学物理研究所、中科院化学所、中科院青海盐湖所、兵器工业部204所及213所、航天科工46所、42所等科研单位。70年代采购的第1批量热仪最晚使用到21世纪初才退役,有的甚至进行了控制系统及软件的升级,量热仪主机至今仍在发挥余热,为相关科研工作做出了极大贡献,同时国内其他学科也开始熟悉了解卡尔维量热技术,为其日后的广泛使用打开了大门,国内亦出现了逆向工程制品。随着科技发展及新材料的诞生,卡尔维量热技术自身在技术性能、应用功能、数据采集、电子控制等方面也不断升级换代,相关用户单位也随研究需求的变化对已有的量热技术完成更新换代,法国塞塔拉姆仪器公司的各规格的微量热仪也广泛被以上单位使用,如C80 / MS80 / Sensys / C600 / HT1000等。对于核技术及军工技术,卡尔维式量热技术的应用主要包含如下方面:核材料、含能材料、推进剂材料的热稳定性、热安全性的研究;比热容和固体材料导热系数等热物性表征;化学反应热力学、动力学研究;物质晶型转化温度和转化热、溶解热和混合热、生成反应焓的测定;弹道性能及推进剂寿命预测;过程安全评价及工艺探索、改进等。而相关应用同样对其他领域有着重要的借鉴意义,因此在早期用户的带动下,更多跨专业领域客户也开始使用卡尔维式量热仪技术,如下面介绍的过程安全、食品生命科学、催化、能源等领域。2.过程安全应用历史/Process Safety反应动力学及热力学信息均可由高精确度的卡尔维式微反应量热仪获得,从而用于对反应体系的安全性评价。随着国家对安全问题的重视,化工生产过程中的安全评估也得到了越来越多的关注,因此在借鉴前面提到的军工单位在含能材料领域应用经验的基础上,国内众多的安全研究单位也开始引入卡尔维量热技术,如中国石化青岛安工院、国家安监总局北京安全生产科学研究院、北京理工大学、南京理工大学、中化集团沈阳化工研究院等国内知名的安全实验室。安全领域中塞塔拉姆仪器公司的经典型号C80及Sensys Evo量热仪得到了最广泛的应用 :C80微量热仪借助卡尔维式三维量热传感器,保证各种条件下的准确量热,同时可以配置多种样品池,以实现高压、测压、原位混合等功能,配合瑞士AKTS公司的专业动力学软件,将C80的量热结果进行进一步处理,可实现诸多深度安全评估应用:得到动力学基本参数;轻松实现规模放大,模拟绝热及非绝热情况,模拟各种Φ值,即模拟多种包装/储运条件,TMR计算;模拟多种实际温度条件,世界各地,各季节的实时温度变化对于反应进程的影响。C80配合AKTS动力学软件的组合可以看做是热安全研究的力量倍增器,在保证成果高质量的前提下极大提升效率。另外针对评估煤氧化过程中的微弱热量的释放及聚集导致自燃的风险,国内许多煤矿安全实验室也采用C80等微量热仪研究煤自燃的安全问题,如西安科技大学、中国矿业大学等单位。3.生命/食品科学/Life Sciences生命科学及食品研究领域中涉及的物理化学变化所产生的热效应通常比较微弱,因此测试时需要较大的样品量或要求仪器具有较高的灵敏度[4]。另外,相关研究对象的成分及状态通常比较复杂,如固体、液体、胶体等,并且在生产加工过程中,经常需要进行液体或固体等多相混合,这些都是传统DSC难以满足的条件。基于传承数十年的卡尔维式3D量热传感器的独有优势,法国塞塔拉姆仪器的微量热仪已成为生命科学及食品研究领域的理想工具,并得到了广泛的应用。国内诸多高校如北京大学、大连工业大学、西北大学、大连工业大学、西安工程大学、上海交通大学、上海理工大学等食品、化学专业均采购了具有极高灵敏度的Micro DSC系列生物微量热仪并应用多年。4.催化 / Catalysis固体催化剂对气相的吸附一直是异相催化领域的研究重点,而各类吸附仪一直是此类研究中必不可少的基础设备,使用吸附仪可以精确测定样品的吸附量,而吸附过程的另一重要信息,吸附热,则通常需要通过计算得到,通过简介的简化模型计算的吸附热不仅误差难以估量,也无法区分表面吸附过程不同阶段的能量差异,因此其应用非常有限。而卡尔维式3D量热仪使得吸附热的直接测定成为可能,因其具有测量准确、样品适应性强等特点,可以作为吸附热直接测量的可靠工具。如中科院大连化物所催化实验室拥有塞塔拉姆全系列的量热仪设备,中国科学技术大学合肥微尺度物质科学国家研究中心配备了Sensys Evo-化学吸附仪联用吸附热测量系统。此外量热技术的开放性设计使得其方便与各类化学、物理吸附分析仪同步联用,同时得到吸附热及吸附量数据。量热技术也可与光谱/XRD等技术结合, 为催化研究领域提供了最前沿的技术可能。5.能源电池 / Energy & Battery随着科技发展及全球环境问题日益凸显,新能源、尤其是石油替代能源的发展得到了工业及学术领域的重点关注,而电池、尤其是锂电池正是替代能源中的一颗明星,无论是应用现状及应用前景均处于众多替代能源方案中的前列。电池使用过程中的自放热及失控条件下的电池热安全问题一直是锂电池研究领域中的重要课题, 塞塔拉姆C80/MS80微量热仪凭借灵活开放的样品空间及不受测试条件影响的高超灵敏度及准确性,多种尺寸样品池选择,已经成为电池研究领域的有力工具。6.高压反应体系研究 / High Pressure Reaction储氢材料开发、气体水合物能源开采、二氧化碳捕获等研究热点均需要苛刻高压条件下实现,卡尔维式三微量热仪允许实现max 1000bar的耐压及控压能力,且其采用样品池内控压模式,量热传感器不受高压环境的影响,十分适合超高压下的反应研究。MicroDSC系列高压卡尔维微量热仪已在国内外气体水合物研究领域得到广泛认可,成为本领域研究的标杆型仪器设备之一。中石油/中海油等国内资源开采单位借鉴国外的应用经验引进了数台MicroDSC7高压微量热仪。金属储氢材料吸放氢过程的热力学研究对于储氢的实际应用开发极为重要,通常也只能通过理论计算获得,卡尔维式微量热仪与高压储氢定量吸附分析仪的同步联用为该领域的研究提供了zui新的解决方案。以上我们介绍了部分学科关于卡尔维微量热的应用历史及传承,希望未接触过微量热技术的跨学科研究者们可以通过此文章更好地了解到微量热应用特点及优势,卡尔维量热技术在中国经历50多年的发展,为中我国各领域的科研工作做出了巨大贡献,也成为相关域科研必不可少的重要工具。展望未来,可以预见卡尔维量热技术将被更为广泛的行业所采纳,同时各学科的相互促进也会使得卡尔式3D维量热技术紧跟时代步伐,不断发展进化,与全世界科学家共同面对未来的机遇与挑战。借此文,我们也借机对一直支持与帮助塞塔拉姆量热技术的朋友们表示敬意与感谢。法国塞塔拉姆仪器(SETARAM)
  • 2024固态电池元年,安全是关键,电弛电芯原位产气如何解
    2024年,被誉为固态电池元年。随着新能源汽车市场的持续扩大,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,逐渐成为未来新能源汽车的主流动力电池。然而,在固态电池的研发和产业化过程中,安全性问题始终是关键因素之一。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。 固态电池安全性问题1、高温性能固态电池在高温环境下容易出现性能衰退,甚至热失控。高温会导致固态电解质和电极材料发生分解、氧化等化学反应,释放出气体,从而产生内部压力。当压力超过电池壳体的承受能力时,电池可能会发生爆炸。()2、过充与过放过充和过放是固态电池安全性的重要隐患。在过充过程中,电池内部会产生大量的气体,导致电池内部压力升高。而过放会导致电池内部产生锂枝晶,容易引发内部短路,进一步加剧电池的热失控风险。3、内部短路固态电池在制造和使用过程中,可能会出现内部短路现象。内部短路会导致电池局部热量积累,进而引发热失控。此外,内部短路还可能引起电池内部的气体产生和压力升高,增加电池爆炸的风险。 电芯原位产气的原因及解决方法原位产气的原因电芯原位产气是指在电池充放电过程中,由于电极材料、电解质或其它电池组件的化学反应,导致电池内部产生气体的现象。原位产气会降低电池的性能,增加电池内部压力,甚至引发热失控。固态电池中原位产气的主要原因包括:(1)电极材料的热分解:在充放电过程中,电极材料可能会发生分解反应,产生气体。(2)电解质的热分解:固态电解质在高温或高电压环境下,容易发生分解反应,产生气体。(3)电池组件的化学反应:电池内部的其他组件,如隔膜、粘结剂等,也可能会发生化学反应,产生气体。 (锂电池的内部产气原因) 解决方法为了解决电芯原位产气问题,可以从以下几个方面进行优化和改进:(1)优化电极材料:选择稳定性好、耐高温的电极材料,减少电极材料的分解反应。同时,对电极材料进行表面修饰,提高其结构稳定性。(2)改善电解质:选用具有高离子导率、低界面阻抗的固态电解质,提高电池在高温或高电压环境下的稳定性。此外,可以开发新型固态电解质,如聚合物、硫化物等,以提高电解质的化学稳定性。(3)优化电池结构:设计合理的电池结构,如采用柔性电极、三维导电网络等,以降低电池内部的应力集中,减少内部短路的风险。(4)严格制造工艺:在电池制造过程中,严格控制工艺参数,如温度、湿度等,以降低电池内部产生气体的可能性。 2024年是固态电池元年,安全性问题成为关键因素。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。通过优化电极材料、改善电解质、优化电池结构和严格制造工艺等方法,可以有效降低电芯原位产气的风险。然而,固态电池安全性问题的解决仍需要持续的技术创新和产业化推进。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛GPT-1000S 解决方案 电弛DC GPT-1000S 解决方案,通过特殊设计的GSP采气装置,可从软包电池、方壳电池、圆柱电池直接将电池产气已入到产气体积测量装置。该产气体积测量装置采用超微量气体流量测量技术,可原位、实时、在线、连续地监测电池的产气行为,包括产气量和产气速率等参数。其原理是为由于气体进入特定的介质中,介质分子与气体分子之间的相互作用破坏了介质表面的力平衡,使介质表面张力减少,从而在介质中形成微小气泡。由于该介质具有惰性与电池内产生的气体不发生反应,其形成的气泡可等同于电池产气体积。然后通过光学,超声波,电磁等传感器测量气泡,即可得到产气量。相较于传统的Jeff Dahn法(基于阿基米德浮力原理)、理想气体状态方程计算法等方法,本设备可直接测量微量产气的体积数据(μL),无需数据转换或换算,数据直接、结果精准、重复性高。且测量后的气体尾气可直接进行收集或直接串联GC、GC-MS、DEMS等多种气体成分分析设备,实现产气体积测量和成分分析联动测试,为材料研发和锂电池电芯产气机理的分析研究提供了真实可靠的数据支持。 (计量认证与方法验证) (定制集成化系统多因子耦合测量方案)
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 如何延长动力电池的寿命?FLIR红外热像仪提供专业“秘籍”
    新能源汽车动力电池系统属于高压部件,会影响整车安全性及可靠性。动力电池用于带动车辆电动机,还包括起步、照明、点火等功能,所以提前诊断故障及处理十分重要。为了保障动力电池的安全、稳定、高效运行,在研发、设计、生产和使用的过程中,都要进行严格的检测。FLIR红外热像仪,陪伴动力电池从研究到使用的整个流程,为新能源汽车提供了有效的帮助!研发监控:电池热滥用工况试验电池在批量生产前,要在实验室经过无数次的滥用试验,以确保各个指标的合格,也可以预料新能源汽车出现事故时,所能引起的后果。位于印第安纳州纽伯里的电池创新中心(BIC),曾使用FLIR高速红外热像仪监测电池针刺测试全过程,从而了解到电池极限温度。通过FLIR热成像仪,工程师不仅可以很容易看到在滥用测试时电池外部发生的情况,还可以看到内部发生的情况,以及热量的变化情况。生产监控:查看电池组装防止“热失控”大多数电动汽车的电池模块和电池组在组装时会使用具有一定电量的电池,当各个电池模块连接时,电流将开始在组件之间流动。这种电流会导致电池或模块的温度升高,温度过高会引起“热失控”,从而导致电池损坏甚至爆炸。如果生产商使用FLIR A系列热像仪实时监控组装过程,就能及时发现异常升温情况,发出警报可避免这种情况的出现!点击图片,查看案例详情出厂监控:提高动力电池的合格率新能源汽车电池组由多个电池串联叠置组成。一个典型的电池组大约有96个电池,当电池之间存在不正确的机械连接时,就可能导致高电阻、电源损失甚至电池起火。选择FLIR固定安装式热像仪可用于排查出由不良或松动的电气连接引起的电阻增加而引起的温度升高,及时揪出故障电池,从而保障出厂电池的质量,提高产品合格率!使用监控:监控电动游艇保安全真实案例:通过马耳他海事安全调查局(MSIU)对停泊在意大利奥尔比亚的MY Siempre游艇火灾的报告显示,促使游艇所有者更愿意选用FLIR连续状态和安全监控用红外热像仪,来连续监控各种设施的温度状况,可及时发出预警,避免游艇火灾的发生!点击图片,查看案例详情伪事故监测:锂电池失效性测试如何全方位地测试锂电池的失效性呢?国内某车辆检测研究院测试的方法是将锂电池安装在加热板上,然后进行充放电实验。通常电池加热到100多度时就会失效,有的电池向外喷射气体及液体;有的起火燃烧;有的甚至会发生爆炸。所以,在测试过程中,快速、直观地检测电池的最高温度是重中之重。点击图片,查看案例详情新能源汽车各个部件的研发与质量控制新能源汽车制造厂及其供应商在其产品研发和质量控制过程中,使用FLIR自动化在线式热像仪对汽车的各个部件进行研发与实验检测,包括三电系统、车身设计、轮胎耐久性实验、安全气囊、车灯研发、转向盘加热等,最大限度保证汽车组件的可靠性,实现整车质量的提升。点击图片,查看案例详情消防安全:定期检测电池状况电动汽车充电起火已造成多起严重火灾事故,甚至包括Tata、TESLA及OLA等巨头亦无法幸免。新能源电动汽车在充电的时候会发现其有发热的现象,一般情况下的发热是正常现象,而异常发热很有可能会使电池容量降低、缩短电池寿命,因此我们要定时检测动力电池充电时的状况,确保电池的持久性和安全性!
  • 《浙江省加快新能源汽车产业发展行动方案》发布!之量科技助力产业发展
    近日,省发展改革委、省经信厅、省科技厅印发《浙江省加快新能源汽车产业发展行动方案》。《行动方案》明确,浙江将着力打造国内领先的新能源汽车应用示范区、具有国际竞争力的新能源汽车智造高地和有影响力的新能源汽车产业生态引领区。《行动方案》提出,充分利用省重点研发计划政策,落实财政科技经费超1亿元,支持企业、科研院所开展新能源汽车领域科技创新。同时加大金融支持力度,加大对传统汽车企业技术改造的信贷支持力度,提升中长期贷款占比。《行动方案》将于2023年3月1日起施行,对专注锂电池研发的科研院所及汽车企业而言,正是蓄势增长的好时机。之量科技提供全方位的锂电池实验室测试方案,精准助力锂电池热安全和热管理的技术研究,推动新能源汽车产业的高质量发展。解决方案一:锂电池热管理参数测试本方案主要满足不同工况下的电芯充放电产热、比热容、导热系数等测试需求,能够为BTMS热管理系统设计与仿真提供全面、准确和可靠的关键热物性参数,助力高性能电池系统开发。产品包括:3D热物性分析仪、两状态法热参数测试仪、大型电池绝热量热仪、小型电池绝热量热仪、电池等温量热仪。解决方案二:锂电池产气爆炸特性测试本方案主要用于评价电池热失控产气和其他喷发物质的爆炸特性,测定爆炸极限、最大爆炸压力、爆炸指数和气体燃烧速率等重要参数,全面评估电池产气致灾危害,同时满足UL9540A等检测标准。产品包括:多相高温高压爆炸极限测定仪、气体燃烧速率测试仪、爆炸极限试验仪。解决方案三:锂电池产气成分在线分析本方案主要用于模拟程序控温下的锂电池热失控过程,并对电池产气进行实时采集和在线成分分析,帮助研发人员研究热失控不同阶段产气成分的演变历程。产品包括:大型电池绝热量热仪、小型电池绝热量热仪、定容燃烧弹、气相色谱。解决方案四:锂电池热安全特征参数测试本方案主要满足在热、电、机械等多种滥用条件下进行电芯热安全测试,测定电芯自放热起始温度、热失控起始温度、最大温升速率、热失控孕育时间等表征电芯热稳定性的特征参数。产品包括:大型电池绝热量热仪、小型电池绝热量热仪。解决方案五:锂电池材料安全性评估本方案主要用于表征电池材料的热稳定性和安全性,可测定电池材料热分解特性参数、电解液闪点和蒸气压等。产品包括:绝热加速量热仪、DSC差式扫描量热仪、微量连续闭口闪点仪、微量蒸气压测定仪。
  • 岛津应用:电池材料的热特性评价分析
    锂离子电池被广泛应用于手机以及笔记本电脑等家用电器中。今后,作为交通工具的飞机、混合动力车(HV)以及电动车(EV)等对锂离子电池的需求也将显著增加,为此,锂离子电池需要具备更高的功率、效率,以及更长的使用寿命、更高的安全性。锂离子电池由阳极、阴极、电解液、分离器等部分组成,为提高性能,需要使用仪器对每个组成部分以及整个电池进行详细的特性评价和解析。本文向您介绍使用热分析法对锂离子电池进行热特性评价的示例。岛津热分析仪60系列 了解详情,敬请点击《电池材料的热特性评价分析》 关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制