当前位置: 仪器信息网 > 行业主题 > >

白光干涉测试系统

仪器信息网白光干涉测试系统专题为您提供2024年最新白光干涉测试系统价格报价、厂家品牌的相关信息, 包括白光干涉测试系统参数、型号等,不管是国产,还是进口品牌的白光干涉测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合白光干涉测试系统相关的耗材配件、试剂标物,还有白光干涉测试系统相关的最新资讯、资料,以及白光干涉测试系统相关的解决方案。

白光干涉测试系统相关的论坛

  • 白光干涉仪是什么?有哪些作用?

    白光干涉仪目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了[url=http://www.chotest.com/detail.aspx?cid=686][b][color=#333333]白光干涉仪[/color][/b][/url],其它的仪器无法达到其测量精度要求。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][align=center]中图仪器SuperView W1白光干涉仪[/align]白光干涉仪测量原理:  白光干涉仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分威两束光,分别投射到样品表面和参考镜表面。从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。[align=center][img]http://www.chotest.com/Upload/2019/5/201905302500097.jpg[/img][/align]白光干涉仪的测量应用:  以测量单刻线台阶为倒,在检查仪器的各线路接头都准确插到对应插孔后,开启仪器电源开关,启动计算机,将单刻线台阶工件放置在载物台中间位置,先手动调整载物台大概位置,对准白光干涉仪目镜的下方。  在计算机上打开白光干涉仪测量软件,在软件界面上设置好目镜下行的最低点,再微调镜头与被测单刻线台阶表面的距离,调整到计算机屏幕上可以看到两到三条干涉条纹为佳,此时设置好要扫描的距离。按开始按钮,白光干涉仪可自动进行扫描测量,测量完成后,转件自动生成3D图像,测量人员可以对3D图像进行数据分析,获得被测器件表面线、面粗糙度和轮廓的2D、3D参数。[align=center][img]http://www.chotest.com/Upload/2019/5/201905303281565.png[/img][/align]  白光干涉仪具有测量精度高、操作便捷、功能全面、测量参数涵盖面广的优点,测量单个精密器件的过程用时2分钟以内,确保了高款率检测。白光干涉仪独有的特殊光源模式,可以广泛适用于从光滑到粗糙等各种精密器件表面的测量。

  • 【讨论】白光干涉仪 操作经验交流

    最近一直在使用 研究所里的白光干涉仪(Talysurf CCI 2000)做表面检测,发现了不少问题,比如说: 1. 如何调整能快速获得干涉条纹; 2. 如何能减少数据丢失点; 3. 如何校准我一直在钻研随机带的说明书,不过Taylor Hobson这些英国人太懒了,很多东西都是笼统的讲,根本不细说! 所以,希望 有白光干涉仪操作经验的朋友,能在本楼讨论下,您也可给我发email:chenjc18@126.com。

  • 白光干涉仪在摩擦学领域的应用

    [table][tr][td][align=left][color=#333333]  摩擦学是一门研究物体相对运动时其表面摩擦、润滑、磨损三者间相互关系的交叉学科,摩擦学实验研究的重点和难点之一在于对磨损量的定量分析。磨损量涵盖了磨损区的轮廓尺寸、粗糙度、体积这线、面、体三个维度方面的参数,量级从纳米到毫米不等,又由于不可破坏性测量,传统的低精度接触式轮廓仪和影像仪无法适用,而以白光干涉为原理、具备高精度、非接触式测量能力的[/color][url=http://www.chotest.com][b][color=#000000]白光干涉仪[/color][/b][/url][color=#333333]登上了摩擦学研究的舞台。[/color][/align][align=center][color=#333333][img=,658,496]http://www.chotest.com/Upload/2018/8/201808238760989.jpg[/img][/color][/align][align=center][color=#333333][img=,639,260]http://www.chotest.com/Upload/2018/8/201808231572145.jpg[/img][/color][/align][align=center][color=#333333]图1 工作中的CSM摩擦磨损测试仪[/color][/align][align=left][color=#333333]  上图展示的是一款工作中的CSM摩擦磨损测试仪,经过十数小时的摩擦,铜板表面出现了一圈圈摩擦痕迹,即为磨损区域,对磨损区域进行尺寸上的定量分析,是研究的重要组成部分,下面我们使用中图仪器白光干涉仪对一块经过摩擦试验处理的铜板进行线、面、体三个维度的定量分析。[/color][/align][align=left][color=#333333]一、一维:线_轮廓尺寸[/color][/align][align=left][color=#333333]  取一块摩擦处理过的铜板,使用白光干涉仪对其中未摩擦过的光滑区域和摩擦过的磨损区域进行扫描,获取其3D图像。[/color][/align][align=center][color=#333333][img=,621,240]http://www.chotest.com/Upload/2018/8/201808239913954.jpg[/img][/color][/align][align=center][color=#333333][img=,548,171]http://www.chotest.com/Upload/2018/8/201808234541029.jpg[/img][/color][/align][align=center][color=#333333]图5 磨损区的剖面轮廓曲线[/color][/align][align=left][color=#333333]  从图中可以看到,相对光滑区细致较浅的划痕,磨损区充满了坑坑洼洼的槽,在磨损区3D图像上提取一条剖面轮廓曲线,可以获取槽深和槽宽的轮廓尺寸数据。[/color][/align][align=left][color=#333333]二、二维:面_粗糙度[/color][/align][align=left][color=#333333]  分别在光滑区和磨损区选取若干点,测量分析显示经过摩擦磨损试验过的区域线粗糙度和面粗糙度均增大了至少十几倍。[/color][/align][align=center][color=#333333][img=,495,157]http://www.chotest.com/Upload/2018/8/201808235791766.jpg[/img][/color][/align][align=center][color=#333333]图6 光滑区域粗糙度[/color][/align][align=center][color=#333333][img=,472,143]http://www.chotest.com/Upload/2018/8/201808237197020.jpg[/img][/color][/align][align=center][color=#333333]图7 磨损区域粗糙度[/color][/align][align=left][color=#333333]三、三维:体_体积[/color][/align][align=center][color=#333333][img=,642,234]http://www.chotest.com/Upload/2018/8/201808238604911.jpg[/img][/color][/align][align=center][color=#333333]图8 磨损区3D图像&孔洞体积测量[/color][/align][align=left][color=#333333]  如右上图,利用分析工作“孔洞体积”对磨损区进行区域体积分析。在选择的分析区域中,位于基准面(蓝色方框)上面的顶点区域显示为红色,位于基准面下方显示为绿色,利用“孔洞体积”分析工具可直接获取该区域内上下两部分的面积、体积、深度数据。[/color][/align][align=left][color=#333333]  一线二面三体,白光干涉仪能让研究人员掌握三个维度精确的数据信息,从而对摩擦磨损区进行全面的分析判断,如同穿上了酷炫的滑板鞋,在摩擦学研究这个舞台秀出华丽的舞步。[/color][/align][/td][/tr][/table]

  • 白光干涉仪在摩擦学领域的应用

    [table][tr][td][align=left][color=#333333]  “摩擦,摩擦,在这光滑的地上摩擦…..”还记得庞麦郎的一首《我的滑板鞋》风靡大街小巷,广场上卷起了一股溜滑板鞋的浪潮。尔今浪潮已退,但摩擦声却未消失,作为一柄对社会发展起着双刃剑作用的武器,各大高校和科研机构一直都在对摩擦学进行着持续的研究,而中图仪器[b]SuperView W1白光干涉仪[/b],就是该领域最时尚的滑板鞋,载着研究人员疾驰,手持武器,所向披靡。[/color][/align][align=left][color=#333333]  摩擦学是一门研究物体相对运动时其表面摩擦、润滑、磨损三者间相互关系的交叉学科,摩擦学实验研究的重点和难点之一在于对磨损量的定量分析。磨损量涵盖了磨损区的轮廓尺寸、粗糙度、体积这线、面、体三个维度方面的参数,量级从纳米到毫米不等,又由于不可破坏性测量,传统的低精度接触式轮廓仪和影像仪无法适用,而以白光干涉为原理、具备高精度、非接触式测量能力的白光干涉仪登上了摩擦学研究的舞台。[/color][/align][align=center][color=#333333][img=,658,496]http://bbs.21ic.com/data/attachment/forum/201908/20/173108zmy3uxwyyf44pvay.jpg[/img][/color][/align][align=center][color=#333333][img=,639,260]http://bbs.21ic.com/data/attachment/forum/201908/20/173108wggtggagt4vy684g.jpg[/img][/color][/align][align=center][color=#333333]图1 工作中的CSM摩擦磨损测试仪[/color][/align][align=left][color=#333333]  上图展示的是一款工作中的CSM摩擦磨损测试仪,经过十数小时的摩擦,铜板表面出现了一圈圈摩擦痕迹,即为磨损区域,对磨损区域进行尺寸上的定量分析,是研究的重要组成部分,下面我们使用中图仪器[b]SuperView W1白光干涉仪[/b]对一块经过摩擦试验处理的铜板进行线、面、体三个维度的定量分析。[/color][/align][align=left][color=#333333]一、一维:线_轮廓尺寸[/color][/align][align=left][color=#333333]  取一块摩擦处理过的铜板,使用[b]SuperView W1白光干涉仪[/b]对其中未摩擦过的光滑区域和摩擦过的磨损区域进行扫描,获取其3D图像。[/color][/align][align=center][color=#333333][img=,621,]http://bbs.21ic.com/data/attachment/forum/201908/20/173109uq6666gog6pg2h8q.jpg[/img][/color][/align][align=center][color=#333333][img=,548,]http://bbs.21ic.com/data/attachment/forum/201908/20/173109tzxq34yyc522tj4j.jpg[/img][/color][/align][align=center][color=#333333]图5 磨损区的剖面轮廓曲线[/color][/align][align=left][color=#333333]  从图中可以看到,相对光滑区细致较浅的划痕,磨损区充满了坑坑洼洼的槽,在磨损区3D图像上提取一条剖面轮廓曲线,可以获取槽深和槽宽的轮廓尺寸数据。[/color][/align][align=left][color=#333333]二、二维:面_粗糙度[/color][/align][align=left][color=#333333]  分别在光滑区和磨损区选取若干点,测量分析显示经过摩擦磨损试验过的区域线粗糙度和面粗糙度均增大了至少十几倍。[/color][/align][align=center][color=#333333][img=,495,]http://bbs.21ic.com/data/attachment/forum/201908/20/173109n3blb9399tawzdkk.jpg[/img][/color][/align][align=center][color=#333333]图6 光滑区域粗糙度[/color][/align][align=center][color=#333333][img=,472,]http://bbs.21ic.com/data/attachment/forum/201908/20/173109itiu8uaizt5ti8f5.jpg[/img][/color][/align][align=center][color=#333333]图7 磨损区域粗糙度[/color][/align][align=left][color=#333333]三、三维:体_体积[/color][/align][align=center][color=#333333][img=,642,]http://bbs.21ic.com/data/attachment/forum/201908/20/173110iuynrork3en0offq.jpg[/img][/color][/align][align=center][color=#333333]图8 磨损区3D图像&孔洞体积测量[/color][/align][align=left][color=#333333]  如右上图,利用分析工作“孔洞体积”对磨损区进行区域体积分析。在选择的分析区域中,位于基准面(蓝色方框)上面的顶点区域显示为红色,位于基准面下方显示为绿色,利用“孔洞体积”分析工具可直接获取该区域内上下两部分的面积、体积、深度数据。[/color][/align][align=left][color=#333333]  一线二面三体,[b]SuperView W1白光干涉仪[/b]能让研究人员掌握三个维度精确的数据信息,从而对摩擦磨损区进行全面的分析判断,如同穿上了酷炫的滑板鞋,在摩擦学研究这个舞台秀出华丽的舞步。[/color][/align][/td][/tr][/table]

  • 【原创】白光干涉显微镜的Z轴分辨率

    [em0808] 请教:白光干涉显微镜(3D轮廓仪)的Z轴分辨率有这么高吗?0.01nm!是如何达到的?如下是英国TAYLOR HOBSON的一款产品简介,不知什么原因图片没有贴上.Talysurf CCI 3000AFor applications requiring the ultimate in high precision 3D profile analysis, Talysurf 3000A brings an unparalleled level of performance with specifications never seen before.△ 0.01 nm resolution △0.003 nm Rq repeatability△ 100μm vertical range △ 0.3 – 100% reflectivity△ 1,048,576 data points △300mm capacityTalysurf CCI 3000A delivers high accuracy, repeatability and stability by using an advanced type of interferometer and a patented correlation algorithm. This method provides both high resolution and excellent sensitivity to returning light. Measurement set-up is easy: place the component on the stage, set the focus height and push the start button. Cycle time is 10 – 20 seconds. Motorised stages are available to increase throughput and virtually eliminate operator errors.

  • 优可测国产白光干涉三维形貌测量仪-高精度高速度测量

    优可测国产白光干涉三维形貌测量仪-高精度高速度测量

    [align=center][b][color=#ff0000][/color][/b][/align][align=center][b][size=24px][color=#ff0000]AM-7000白光干涉三维形貌测量仪[/color][/size][/b][/align][align=center][/align][align=center][url=https://img1.17img.cn/ui/simg/instrument/child/2022/edm/bg/index.html?v=a1http://]点击打开链接[img=,303,734]https://ng1.17img.cn/bbsfiles/images/2022/11/202211251256261550_4854_5842670_3.png!w303x734.jpg[/img][/url][/align]

  • 傅里叶红外 干涉与光谱图关系 求助

    傅里叶红外 干涉与光谱图关系 求助

    请问各路高手,傅里叶变换红外光谱仪的原理:1.是不是用红外光源先产生干涉光,通过样品后,得到干涉图。关键:干涉图是如何变成光谱图的?基于什么原理?我个人的理解是,得到的总的连续的干涉图,可以分解为一系列不同强度的连续正弦干涉图,而这一系列不同强度的正弦干涉图,就是一系列不同波数的光谱。对不对?(傅里叶变换:任何连续周期信号可以由一组适当的正弦曲线组合而成)2.光源里面为什么要有激光发生器?有何用途?3.好像还有一个白光源,用来校准??4.动镜的移动速度有什么要求么?鄙人干仪表维修,看化学专业的东西真心头疼,看了一晚上,没看出个所以然。百度了一下傅里叶变换,看到高数公式,直接崩溃。。。再次先谢过!能提供有用回答,再额外加分!http://ng1.17img.cn/bbsfiles/images/2013/01/201301192226_421457_1620528_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/01/201301192224_421454_1620528_3.jpg

  • 曲率半径测试和干涉仪

    由于客户这边需要,现需询问谁家有曲率半径测试仪和干涉仪的,请来咨询相关技术要求!谢谢!

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 激光干涉法低热膨胀系数测试

    现有客户委托对一种材料进行热膨胀系数进行测量,说是微晶玻璃,据说热膨胀系数非常小,想用这种材料做长度计量中的量块材料。用顶杆法测量后,测试数据在零附近无规则波动,甚至出现负值,顶杆法测不出随温度变化的热膨胀系数 查过资料后,发现微晶玻璃是一种低膨胀系数材料,对这种低膨胀材料需要采用激光干涉法才能进行测量,国内哪家机构有这激光干涉法热膨胀仪呢?迫切需要进行测试,温度范围25~100℃。急需。。。谢谢!!!

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 新型干涉光谱成像技术研究取得重要进展

    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限;离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。

  • 红外中麦克逊干涉仪的作用·

    昨天参加了赛默飞世尔的FTIR的培训,一直不明白为什么要用麦克逊干涉,干涉之后的光,没啥特别的变化呀,,为啥不直接用光源呢,我的意思是不经过干涉器,直接照射 样品,,望解答,,在最后价格光栅分光系统分下光就OK了呀~~~~用干涉仪,,我真的想不明白它不能分光光呀,,有啥用呢~~~

  • 美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足长度1m以上大尺寸构件的超低热膨胀系数测量,多数航天器用大尺寸构件需要精确测量整个构件的超低热膨胀系数。本文对美国波音公司在太空望远镜大尺寸桁架超低热膨胀系数整体测量方面的研究工作进行了综述,以了解国外技术发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以1m以上长度的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍美国波音公司在太空望远镜桁架超低热膨胀系数测试方法和测试设备方面所开展的工作。2. 波音公司激光干涉法第一代热膨胀系数测试技术 早在1971年波音公司的Bond等人就开始研究一种用于监测大直径天线在空间模拟腔体内动态行为的多通道激光干涉法测试技术【1】,其中采用了可反转条纹计数技术来测量安装在试验箱体外测量装置与安装在腔体内天线上7个光学反射镜之间的距离。 试验腔外测试仪器距离腔体内部天线的距离将近5m,干涉仪采用了Twyman-Green干涉仪,其中参考光束的相位在13.5kHz频率处进行调节以便对每个通道进行可反转条纹计数,每根条纹计数对应的距离变化增量为7.9nm(0.125倍激光波长),整个光学系统结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615105_3384_3.png图 2-1 多通道激光干涉仪光学系统结构示意图 基于上述技术,波音航空公司在1974年至1975年期间针对大型空间望远镜(LST)项目中的石墨环氧测量支架进行了热膨胀系数测试考核【2】。具体测试考核包括了两方面的内容,一方面是测试管状支架和H型支架的热膨胀系数,另一方面是对管状支架热膨胀系数进行了热循环效应考核。 热膨胀系数测试试件为91.44厘米长的截面分别为圆形和H型的管材,被测试件放置在真空腔内并稳定24小时后再进行测试,图 2-2所示为测试装置的结构示意图。如图所示,被测试件悬浮在含有加热套的真空腔内,激光干涉仪的光学部件放置在真空腔外的底部位置,形成立式结构热膨胀系数测量装置,用来测量试件长度变化的聚焦光束垂直进入真空腔底部的光学窗口,整个测量装置实物如图 2-3所示,激光干涉仪测量装置实物如图 2-4所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615106_3384_3.png图 2-2 热膨胀系数测试系统结构示意图http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615107_3384_3.png图 2-3 热膨胀系数测试系统整体照片http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615108_3384_3.png图 2-4 热膨胀系数测试系统激光干涉仪测量装置 每个被测试件上安装了三只测温热电偶和四个角反射镜,如图 2-5所示。激光干涉仪测量得到四个角反射镜的位移变化,由此得到热变形量和监视试件的倾斜。在被测试件的顶部安置一个参考反射镜用来抵消被测试件和干涉仪之间相对运动所带来的影响。 测试中真空腔内部气压低于1Torr以下并使真空度稳定16个小时,然后使试件温度升到37.8℃(100℉)后在冷却下来,整个加热冷却过程中,每隔2.8℃(5℉)测试一次热变形量,每隔14℃(25℉)进行一次30分钟的恒温。整个温度变化过程直到试件冷却到-73.3℃(-100℉)停止。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615109_3384_3.png图 2-5 热膨胀系数测试系统测温传感器和光学器件安装位置示意图 铺层方向为(02±50)s 的管状试件热变形量测试结果如图 2-6所示,整个过程的平均线膨胀系数为 7.2E-08/℃(4E-08/℉)。图 2-7所示为管状构件热膨胀系数测试与计算之间的比较结果,从比较结果可以看出板层方向的有效性,这种特性可以用来设计特殊性能的复合材料。 在进行管件热膨胀系数热循环考核试验中,先沿着试件长度方向上安装两只1英寸宽的电阻加热器以建立起与热真空试验相同的试件状态,在热真空试验中,电阻加热器是用来控制管件的温度,而在管件热膨胀系数热循环试验中,加热电阻器只是实现相同的结构状态,热循环试验的温度控制则是采用真空腔内的加热套来实现。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615110_3384_3.png图 2-6 试件热变形量随温度变化的测试结果http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615111_3384_3.png图 2-7 测试与设计结果的比较 在热膨胀系数热循环考核试验中,反射镜和温度传感器的安装与热膨胀系数测试时完全相同。热循环测试时也是先抽真空使得试件进行一两天的除湿,然后进行+38℃~-78℃(+100℉~-100℉)温度范围内的208次的冷热循环,大约间隔50次循环进行一次测量,在最后一次循环时,测试将电阻加热器取出后的试件热膨胀系数。热循环过程中试件的热膨胀系数随温度变化测量结果如图 2-8所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615112_3384_3.png图 2-8 热循环过程中试件热膨胀系数随温度变化的测量值[/

  • 浅析中图仪器白光干涉仪在光学行业中的应用

    引言:  光学,一门古老又现代的学科,伽利略借助光学望远镜,研究了天体运动;生物学家借助光学显微镜,观察到了细胞结构;人类借助相机镜头,留住了无数难忘的瞬间。光,无可触摸,却又无处不在,借助光学,我们能直接感受和探索未知的世界,而作为光的载体,各种光学器件在其中承担着重要的角色,借助中图仪器[url=http://www.chotest.com/detail.aspx?cid=686][color=#0000ff][b]白光干涉仪[/b][/color][/url],我们可以对光学器件进行严格的表面质量检测。  光学器件,例如各种光学镜片和玻璃,属于超精密加工的产物,因此其表面质量等级都非常高,会划伤表面的接触式轮廓仪出师未捷身先死,由于其高透明度,一般的非接触式光学影像方法也束手无策,而中图仪器利用光学干涉原理研制而成的SuperView W1光学3D表面轮廓仪,能完美解决这两个难题,为光学镜片和玻璃的表面质量检测提供了标准解决方案。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][img=说明: C:\Users\ztyf007\Desktop\电脑显示图 拷贝副本 拷贝.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png[/img][b]光学透镜检测:[/b]  在可见光领域,球面透镜是一种基础的光学器件,其表面粗糙度和曲率半径都关系着光的传播效果,光学3D表面轮廓仪可以一次完成这两项参数的检测;[align=center][img]http://www.chotest.com/Upload/2018/3/201803073907984.jpg[/img][/align][align=center]剖面轮廓曲线[/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803076094888.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803077344152.jpg[/img][/align][align=center] [/align]  上图为某型号双胶合透镜,取透镜上表面进行检测,得其粗糙度小于1nm,曲率半径为61.2mm左右,与理论值61.5mm仅差0.3mm左右,考虑到光学透镜的加工容许误差为2%,因此所测值与理论相符。[b]蓝宝石玻璃检测:[/b]  蓝宝石俗称刚玉,主要成分是氧化铝(Al₂ O₃ ),由于其优良的物理和化学特性,常用于制成各种光学元件,如摄像头保护玻璃、表镜、窗口片、棱镜等。一般加工出来的蓝宝石玻璃分为单面抛光和双面抛光两种,抛光程度——也就是表面粗糙度直接决定了其表面质量等级,下图为一片单面抛光蓝宝石玻璃的光面和糙面的粗糙度检测图像及数据。 [align=center][img]http://www.chotest.com/Upload/2018/3/201803078750797.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803070000051.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803071250325.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803072344327.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][img=说明: C:\Users\ztyf007\AppData\Local\Temp\376d7fe4-3704-4c79-a481-0253bd1b2a1f.tmp]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png[/img]  如上图所示,光面的粗糙度曲线显示,光面上分布的凸点只有1nm左右的高度起伏,其表面粗糙度为0.1nm左右,而糙面的高度起伏则达到了3.2um,表面粗糙度则为500nm左右。[b]玻璃屏检测:[/b]  玻璃屏常见于我们日常所用的智能产品中,例如智能手机、智能手表,还有平板电脑等,为了获得更好的触屏体验,需要对玻璃屏的表面粗糙度和微观轮廓进行检测。以手机玻璃屏为例,说明光学3D表面轮廓仪在其中的应用: [img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png[/img][img=说明: C:\Users\ztyfdell014\Desktop\2.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png[/img][align=center][img]http://www.chotest.com/Upload/2018/3/201803073750962.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803075469804.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803072576961.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png[/img]  如上图,选取的测量区域发现了一条宽6um,深6nm的肉眼无法观测到的划痕,玻璃屏表面的粗糙度在1nm附近。[b]玻璃表面台阶检测:[/b]  下图为透明玻璃表面镀的一层金属膜,需要测膜层的厚度,由于其非透明的特性,薄膜测厚仪无法进行测量,而由于其膜层厚度精度在纳米级别,接触式的台阶仪和其它的非接触式光学仪器也存在测量误差较大的风险,而以光学干涉原理为基础研制成的中图仪器光学3D表面轮廓仪,以其亚纳米级别的测量精度,则可对该膜层厚度进行精确测量。[align=center][img]http://www.chotest.com/Upload/2018/3/201803074919227.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803077263920.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png[/img][img=说明: C:\Users\ztyf007\AppData\Local\Temp\b55608cc-0007-44df-8519-7bd0a757c12f.tmp]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png[/img][img=说明: C:\Users\ztyf007\Desktop\IMG20180301085257 拷贝.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png[/img]  上图是利用软件的自动面台阶高检测功能对重建的3D图像两台阶高进行检测,从数值可知,两台阶面平均高度差为82nm,而最大高度差90nm,最小高度差为78nm。  投之以桃,报之以李,中图仪器光学3D表面轮廓仪作为一款光学检测仪器,受益于光学行业的进步与发展,也必将为光学行业的进一步提升贡献自己的力量。

  • Zygo 发布全新 Qualifire 激光干涉仪

    [color=#000000]阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire?。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。[/color][color=#000000]Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。[/color][color=#000000]Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:[/color][color=#000000]Qualire激光干涉仪提供了许多新颖的新功能。[/color][b][color=#000000]智能附件接口[/color][/b][color=#000000]——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。[/color][b][color=#000000]体积小、重量轻[/color][/b][color=#000000]——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。[/color][b][color=#000000]移相器[/color][color=#000000](PMR)[/color][/b][color=#000000]——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:[/color][color=#000000]整体机械稳定性和对准[/color][color=#000000]降低损坏或错位的风险[/color][color=#000000]确保性能一致,减少重新校准的需要[/color][b][color=#000000]改进的用户体验[/color][/b][color=#000000]——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。[/color][b][color=#000000]更易于维护[/color][/b][color=#000000]—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。[/color][b][color=#000000]飞点[/color][/b][color=#000000]——用于减少伪影的可选模块,包括自动对焦功能。[/color][b][color=#000000]稳定变焦[/color][/b][color=#000000]——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。[/color][color=#000000]计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。[/color][来源:仪器信息网译] 未经授权不得转载

  • 【资料】干涉滤光片

    干涉滤光片interference film利用干涉原理只使特定光谱范围的光通过的光学薄膜。通常由多层薄膜构成。干涉滤光片种类繁多,用途不一,常见干涉滤光片分截止滤光片和带通滤光片两类。截止滤光片能把光谱范围分成两个区,一个区中的光不能通过(截止区),而另一区中的光能充分通过(通带区)。典型的截止滤光片有低通滤光片(只允许长波光通过)和高通滤光片(只允许短波光通过),它们均为多层介质膜,具有由高折射率层和低折射率层交替构成的周期性结构。例如,最简单的高通滤光片的结构为g(L/2)(HL)mH(L/2)a,其中g代表玻璃(光学元件材料),a代表膜外空气,L和H分别代表厚度为1/4波长的低折射率层和高折射率层,L/2则代表厚度为1/8波长的低折射率层 ,m 为周期数 。类似地,低通滤光片的结为g(H/2)L(HL)(H/2)a。一种具有对称型周期膜系的高通和低通滤光片的结构分别为g(0.5LH0.5L)ma和g(0.5HL0.5H))ma 。带通滤光片只允许较窄波长范围的光通过,常见的是法布里-珀罗型滤光片,它实质上是一个法布里-珀罗标准具(见法布里-珀罗干涉仪)。具体结构为:玻璃衬底上涂一层半透明金属层,接着涂一层氟化镁隔层,再涂一层半透明金属层,两金属层构成了法布里-珀罗标准具的两块平行板。当两极的间隔与波长同数量级时,透射光中不同波长的干涉高峰分得很开,利用别的吸收型滤光片可把不允许透过的光滤掉,从而得到窄通带的带通滤光片,其通频带宽度远比普通吸收型滤光片要窄。另外还有全电介质的法布里-珀罗型滤光片,两种典型结构为gHLHLLHLH a,g HLHL HH LHLH a1。根据需要,带通滤光片的通频带可从红外到紫外。在可见光区,彩色电视摄像机中可利用这种滤光片把像分离成不同颜色;在红外区,常用于二氧化碳激光器、导弹制导系统及卫星传感器等。

  • 【分享】参考干涉 采集

    里叶变换红外光谱仪中,干涉数据要实现等光程差采样,一般是通过氦氖激光器作为参考光源,如果只采用一个探测器,请问如何将测量光源与参考光源产生的干涉信号分离?提取出参考光源的干射信号?

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 平晶干涉法

    我们有个零件的密封面平面度要求0.6u, 密封面直径10mm, 在上海或其它地方有试验室采用JB/T 7389标准中的平晶干涉法测定平面度

  • 【原创】FTIR中的Michelson干涉仪

    不同FTIR制造商在宣传各自产品时提到,采用:动态准直磁浮式迈克尔逊干涉仪、机械摇摆式迈克尔逊干涉仪、机械式迈克尔逊干涉仪,三种形式干涉仪主要特点及优势何在?先谢谢了!

  • 【资料】干涉显微镜一点小知识

    干涉显微镜是将光波的干涉技术与显微镜结合起来,利用光的干涉可以精确测量试样表面上高度的微小差别.干涉显微镜主要应用在:1)表面光洁度的测定.精密加工过的试样表面粗糙度常用干涉显微镜进行测量.电解抛光、化学抛光过的试样表面质量也可以用干涉显微镜进行鉴定。2)相变浮凸的研究。材料中的马氏体、贝氏体转变的浮凸现象产生了微小高度差,在相衬显微镜下可以得到很好的衬度差别,易于观察,但不能测量浮凸的高度。利用干涉显微镜,可以根据干涉条纹测得浮凸的高度。3)用干涉显微镜可以研究材料塑性变形的程度。金属在应力作用下超过弹性极限要发生塑性变形。塑性变形过程中晶体要沿一定晶面发生滑移,利用干涉显微镜可以测量滑移台阶高度。干涉显微镜现主要用于高等教学实验中!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制