当前位置: 仪器信息网 > 行业主题 > >

手持房屋面积测量

仪器信息网手持房屋面积测量专题为您提供2024年最新手持房屋面积测量价格报价、厂家品牌的相关信息, 包括手持房屋面积测量参数、型号等,不管是国产,还是进口品牌的手持房屋面积测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持房屋面积测量相关的耗材配件、试剂标物,还有手持房屋面积测量相关的最新资讯、资料,以及手持房屋面积测量相关的解决方案。

手持房屋面积测量相关的资讯

  • 夏季汛期该如何避免房屋发霉?这三点很重要
    图片源于网络,侵删雨暴雨特大暴雨全国多地的降雨持续不断接连而至的强暴雨带来的危害除了城乡积涝、资产泡水、山洪泥石流、山体滑坡等还有令人头疼的、“霉完霉了”的发霉夏季与强降水带来的高温高湿“桑拿天”非常适宜多种霉菌生长繁殖,持续的暴雨潮湿天气过后,你会发现,墙面、瓷砖缝隙、冰箱、洗衣机、砧板,甚至是衣服、书籍、窗帘上……都长出了一片片霉斑。霉菌虽小,威力却不小,霉菌产生的大量孢子是已知的强过敏原,长期接触或吸入,还可能诱发过敏反应、哮喘、难治性肺炎等疾病,严重危害人体健康。1暴雨过后的湿气检测暴雨过后的房屋可能会面临水损和水侵的情况,仅用眼睛检查可能漏掉积聚在石棉水泥板或隐藏于地板下的水分,而且仅凭视觉图像不一定能窥见全貌,这可能会导致修复报告出错。传统标准水分计的确可以确认某件东西湿不湿,但查找隐藏的湿气并非易事。您可以选择FLIR红外成像温湿度计,它能让您精准定位湿气,验证湿度是否已恢复正常,是否还有水分残留等。使用集热像仪和水分计于一身的组合式工具,轻松看到水损位置和源头具体解决方案:暴雨严重侵袭房屋,FLIR检测工具助力解决湿气残留问题2辨别不同形态的湿气水分渗透对房屋建筑会造成不同程度的损害,当我们把表面水分清理干净时,其实建筑中的湿气并没有完全消失,热像仪虽无法“看到”墙壁中的水分,但它可以检测出细微的温差,从而用图像揭示水的存在,这样我们才可以彻底祛除湿气。房屋中不同位置的水分残留形态是不一样的,使用FLIR红外热像仪,可以让用户看清水分残留的位置与形态。墙角天花板地面墙角管道具体解决方案:回南天即将结束,房屋的“湿气”一定要彻底清除!3预防湿气侵袭要想减少屋内的水分入侵,屋面防水一定要做好!受连日暴雨的侵袭,建筑防水质量不过关很容易出现渗漏现象,如何修补暴雨侵袭后的屋面防水,首先你得先找到渗漏点!选择合适的时间,使用FLIR红外热像仪对屋面防水进行检测,可以精准找到温度较低的渗漏水部位。实拍:红外热像仪视角下的屋面防水状况具体解决方案:如何精准定位屋面防水渗漏点?选对工具很重要夏季汛期还未结束小伙伴们一定要做好防汛防潮的准备FLIR的多款产品都能为用户提供湿气检测与防水检测功能FLIR专家为您推荐最合适的产品当然您还可拨打官方客服电话直接咨询哦~
  • 梅雨季节来临,你做好房屋的防水检测了吗?
    p style=" text-align: justify text-indent: 2em " 伴随着阴雨绵绵的天气,梅雨季节已经到来。每次梅雨季节的来临都是考验你家防水质量的时刻。地板渗水、返潮、屋顶渗漏、水滴答不尽等都是梅雨季节的经典表现,也是业主们的心头之患。那么,我们应该如何尽量避免以上问题的出现呢? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 提前做好排漏检查 /strong /span /p p style=" text-align: justify text-indent: 2em " strong 1、外墙面的检查 /strong /p p style=" text-align: justify text-indent: 2em " 检查外墙容易发生渗漏的部位,如墙面凹凸槽、饰面上部收头处、块料面层、门窗、雨篷、凸窗、空调机位、阳台与墙体交接处等部位。检查时,可直接观察或用小锤敲击来初步判断损坏部位及损坏程度,更简便的方法是使用红外热像仪拍摄出墙体之间存在的温差,以此推测该部位的损害程度,这种方式比较安全,在远距离就可以检测。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 2、楼顶的检查 /strong /p p style=" text-align: justify text-indent: 2em " 住在顶楼的市民应对屋顶进行渗漏排查,需重点检查以下部位: span style=" text-indent: 2em " 首先,检查屋面平、坡层的排水是否畅通,有没有坑洼现象,阴阳角是否处理得当;其次仔细检查落水口是否堵塞;然后仔细观察屋面、檐口、排水坡度的合理性,以及落水管的位置是否得当,严防落水口、天沟、檐沟发生堵塞,以确保屋面排水系统的畅通。 /span /p p style=" text-align: justify text-indent: 2em " strong 3、地面的检查 /strong /p p style=" text-align: justify text-indent: 2em " 检查管道是否有漏水现场,地面是否干燥、清洁;屋内空气是否太过潮湿,有没有适时开窗,通风换气。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202006/uepic/3b5f8c2b-3365-48a7-8513-253d0f6fa98e.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 阴雨时期的定期检查 /strong /span /p p style=" text-align: justify text-indent: 2em " 房屋的渗漏不仅会干扰建筑物内人们的居住、办公等日常生活,影响房屋使用功能,而且渗透到结构中的水以及其它气体、液体介质也对结构的耐久性构成威胁。因此,在阴雨不断的季节里,要定期检查做好修护,避免房屋出现渗漏情况。 /p p style=" text-align: justify text-indent: 2em " 想要彻底解决房屋渗漏问题的前提是寻检到渗漏源,这是长期以来困扰着工程技术人员的一个难题。因为水具有“无孔不入”的特点,采用传统的目测与经验的检测手段,常常并不能找到真正的渗漏源,其结果往往是“头痛医头,脚痛医脚”,不能根治渗漏的问题,使之成为建筑的“老大难”。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202006/uepic/ec0d4645-774d-44f7-8535-fef52cbe62e4.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 选对工具很重要 /span /strong /p p style=" text-align: justify text-indent: 2em " 想要根治渗漏的问题,首先要选择一款功能齐全的探测工具, FLIR Cx系列红外热像仪就非常符合这个标准,FLIR Cx系列红外热像仪是一款功能齐全、结构轻巧,专用于广泛建筑领域的袖珍型热像仪。使用它,用户可随身携带,能随时通过热图像发现隐藏的热点、能源损耗、结构缺陷、管道堵塞以及其它问题。 /p p style=" text-align: justify text-indent: 2em " strong 功能齐全,方便实用 /strong /p p style=" text-align: justify text-indent: 2em " 对于建筑物来说,因屋顶隔热层的老化受潮产生的渗漏和能耗损失是最常见的问题之一,使用FLIR Cx系列红外热像仪,就可以用红外热像图的形式清楚显示能量损耗、结构缺陷、管道损坏问题等,并且它还配备高灵敏度探测器,能够捕捉细微的温差和精细的热图像,让您可以及时发现细小的泄漏问题和建筑缺陷,防止问题扩大。它还具有红外图像、可见光图像、MSX多波段动态成像功能,可以用不同角度显示建筑中存在的问题,方便后期分析报告。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202006/uepic/292b802d-b713-424b-bdb9-5bfdaf20cfd5.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 小巧易用,抗摔耐用 /strong /p p style=" text-align: justify text-indent: 2em " 在检测房屋渗漏过程中,轻装上阵对于检测工作来说是非常必要的!FLIR Cx系列红外热像仪几乎只有您的手掌那么大,您可以把它装进上衣口袋,随用随拿,非常方便。FLIR Cx系列红外热像仪还采用智能触摸屏,色彩鲜明,并且带有自动定向功能,因此简单易学,新手也很容易学会。 /p p style=" text-align: justify text-indent: 2em " 检测房屋时,爬上爬下无可避免,检测工具掉落也时有发生,幸好FLIR Cx系列红外热像仪可以提供抗2米的跌落,使用它您就可以全神贯注于测量工作本身,两米之内,掉落也不必心疼。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202006/uepic/7d6b3663-7ba1-4bc7-9a5e-15322baab7bd.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong WiFi连接,方便分享 /strong /p p style=" text-align: justify text-indent: 2em " 房屋渗漏问题检测完毕,需要迅速制定出解决方案,FLIR C3支持WiFi连接功能,手机或平板下载FLIR Tools的APP即可端到端图像分享,这样就可以从工地现场及时上传图像、创建报告并发送,远处的同事就能及时作出防渗补漏的方案,以最快的速度解决房屋渗漏的问题。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 253px " src=" https://img1.17img.cn/17img/images/202006/uepic/eca72218-cf9f-48cd-b473-efab56c7b5a9.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 253" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 年中大促,福利滚滚来袭~FLIR决定放大招:凡是在京东任意店铺(带有618标识) /p p style=" text-align: justify text-indent: 2em " 购买FLIR Cx系列红外热像仪的客户,不仅可以享受官方平台的满减优惠,还可以额外获得FLIR车载手机支架,数量有限,先到先得哦~ /p p style=" text-align: justify text-indent: 2em " 面对梅雨季节,防水防渗不容忽视,从源头做好防护工作,就不再惧怕雨季的冲刷!那么,快去抢购防渗防漏的检测“神器”——FLIR Cx系列红外热像仪吧~ /p p br/ /p
  • 房屋检测千亿蛋糕?多家上市公司已布局!行业人士回应“暴利”说:可对标医药集采以价换量
    日前在国新办举行的新闻发布会上,住建部官宣:研究建立房屋体检、房屋养老金、房屋保险制度,构建全生命周期房屋安全管理长效机制。目前,上海等22个城市正在试点。受此影响,A股“房屋检测”概念上周引发市场关注。财联社记者了解到,在“房屋体检”等制度展开试点之前,房屋检测行业已经风生水起,A股不少上市公司早有布局,但目前营收占比相对较小。业内普遍认为,公共账户建立之前,房屋检测行业最大的制约因素是资金问题,相信未来在政策支持下,存量房检测需求有望稳定释放。千亿大市场,被质疑“暴利”根据《民用建筑设计通则》,普通建筑的设计使用年限一般是50年(起)。有数据显示,截至2022年底,我国城镇既有房屋中建成年份超过30年的接近20%,预计到2040年前后近80%的房屋将进入“老年”。近日有研究机构测算,2024年存量房检测市场空间约489.1亿元,随后有望逐年增加,到2035年存量房检测空间有望达到1525亿元。据华测检测(300012.SZ)近日在深交所互动易平台表示,房屋检测主要包括地基基础检测、房屋主体结构以及内外部装饰装修检测、钢结构检验检测、建筑材料及构配件测试、建筑节能及智能检测、消防检测、人防工程检测,既有建筑自动化变形监测等。同济科技(600846.SH)控股子公司上海同济检测技术有限公司(简称“同济检测”)总经理卢希红向财联社记者介绍,房屋检测行业进入门槛较高,需要的资质包括房管部门颁发的房屋质量检测资质、工程检测资质(如江苏省)、建筑设计资质和CMA、CNAS检测资质等。一般来说,资质牌照、技术水平、企业背景、行业地位等条件都是招标单位重点考量的因素。财联社记者了解到,收费贵、检测水平参差不齐等已成为消费者对房屋检测最大的诟病,网上甚至将房屋检测称为“暴利”行业。据悉,房屋安全鉴定综合单价一般按面积计算,价格范围从每平方米几十到几百元不等,同时还存在“最低消费”要求,即起步价不低于1万元。如何平衡市场价格和社会的接受能力,成为房屋检测行业的一道必答题。换句话说,未来房屋检测服务的价格既不能太贵,同时还要把检测结果做到位。卢希红表示,房屋检测收费主要根据检测类型、房屋面积和检测难度三方面综合报价,目前房屋检测全国没有统一指导价,检测机构主要根据自身的水平及业务量的饱满程度提供报价。“有些地方虽有指导价,但目前没法严格执行,比如上海房屋安全检测的指导价是22元/㎡,现在能收5折都不错了。而上海的市场环境还是比较好的,到了北方、西南等地方,房屋安全检测的价格都在1块钱/㎡的水平。”一位不愿具名的行业人士向财联社记者透露。在卢希红看来,未来房屋检测可以对标医药“集采”制度,实现以价换量,让房屋检测行业保持微利。“政府可以通过片区大规模招标从而分摊检测机构的人员设备成本,定价可以低一点,但不能高定价结果低价中标。无序竞争和行业内卷最终会导致无法保证检测的质量。”房屋检测发展遇“瓶颈”,多家上市公司已布局据悉,房屋检测属于工程检测的细分领域之一。国检集团(603060.SH)、华测检测、设研院(300732.SZ)等多家上市公司均对财联社记者表示,目前房屋检测业务占公司营收比重不大,过去房屋检测业务增长一直较为平稳。不过从财务数据来看,这两年房屋检测市场似乎遇到“瓶颈”。8月27日,国检集团发布股票交易异动公告称,经核查,公司涉及房屋检测鉴定业务的成员单位12家,2023年公司工程检测中既有房屋检测鉴定业务收入约占公司整体收入的4%,收入占比相对较小。鉴于各地房屋检测鉴定相关政策细化标准尚不明确,因此,短期内公司收入结构不会发生重大变化。财务数据显示,2023年国检集团实现营收约26.6亿元。据此计算,去年公司房屋检测鉴定业务收入约1亿元。“公司工程检测毛利率在40%左右,高的时候可达50%,这主要得益于公司逐步往鉴定、咨询、检验这类轻资产方向转型。如果是纯做检测业务的(公司),可能毛利率会偏低一点。” 国检集团证券部人士向财联社记者表示。无独有偶,8月27日东华测试(300354.SZ)在投资者互动平台上表示,公司专注结构力学性能研究,产品可应用于桥梁、房屋、隧道、边坡、大坝、港机、机械设备、电力设施以及武器装备等的结构安全在线监测与健康管理。华测检测也在投资者互动平台上称,房屋检测是华测建筑工程业务的核心业务,目前该部分业务发展态势良好。“公司一直在做房屋检测的业务,这两年也在加大技术投入,目前下面有十几家子公司都有这方面的资质。受限于资质要求,房屋检测的集中度较为分散,预计行业龙头企业的市占率在1%-2%左右。房屋养老金制度落地后,预计将对房屋检测产生积极的推动作用。” 华测检测相关人士对财联社记者表示。财联社记者注意到,房屋检测这一刚需领域,除了上述老牌“玩家”外,近两年还有其他上市公司陆续切入这个赛道。2023年8月,华建集团(600629.SH)公告,拟1.08亿元收购上海房屋质量检测站有限公司(简称“房屋检测站”)100%股权。彼时华建集团称,交易完成后,房屋检测站将为华建集团贡献较好主营收入及稳定的利润增长。公告显示,经审计,2022年房屋检测站实现营收、净利分别为6635.38万元、289.95万元;今年前4个月公司营收、净利为4860.37万元和356.94万元。今年7月,同济科技公告,拟以1.66亿元收购同济检测55%股权,以利于公司快速进入工程检测业务领域。官网显示,同济检测业务范围涵盖建设工程质量相关的工程结构类、材料类检测及评估等内容,其中房屋检测鉴定项目包括安全性检测鉴定、改造前检测、危房鉴定、灾后建筑损伤鉴定等。财务数据方面,2023年同济检测实现营收、净利分别为3.22亿元、-1129.01万元;今年一季度,该公司实现营收1947.43万元,净利为-1003.12万元。卢希红透露,今年公司在手订单略有增长,目前业务量与公司人员设备、检测能力的匹配度较为饱和。“疫情过后,大环境下降。我们正在打造一个从房屋检测、房屋鉴定、房屋监测到房屋修缮改造的闭合产业链,为客户提供一站式的服务。”
  • FLIR红外热像仪——精准探测房屋“湿气”,规避后续风险!
    有一种崩溃,叫南方人的崩溃!春季万物复苏,春暖花开大地呈现出一片生机盎然而此时对于天气多变的南方来说却是一种无法言喻的痛!“回南天”可谓是广东人的噩梦在此期间墙壁、地面整日“冒水”水分渗透对房屋建筑会造成不同程度的损害长时间的浸泡导致即使我们把表面水分清理干净建筑中的湿气也并没有完全消失为了保障建筑和房主的健康安全我们需要选择一款合适的检测工具及时查找并处理屋内残存的湿气并在雨水较多的季节也能探寻湿气“看见”内部湿气,避免霉菌的产生湿气往往只会造成细微的热差异,能够检测湿度的红外热像仪需要有高分辨率和高热灵敏度(NETD),这意味着微小的温差也能被显示出来。此外,最好使用允许您手动调整热图像的水平和跨度的热像仪。当图像调整到大约10℃或20℃的范围时,湿气问题最容易被发现,这样即使微小的温度差异也能显现出来。湿气在热像仪的镜头下清晰显现全新FLIR Ex Pro系列红外热像仪配备了3.5英寸触摸屏,以及FLIR多波段动态成像MSX® 功能(专利号:CN201380073584.9),结合内置的500万像素数码相机和LED补光灯,用户可更深入地了解房屋状况,即使是在昏暗地下室等环境中也能捕捉视觉细节,您还可使用全新的屏幕注释功能突出关键检测结果,记录房屋湿气的程度。检测屋面防水,防止损害扩大除了回南天,梅雨季、暴雨季等也是湿气弥漫的重灾区,这时候屋面防水的重要性就体现出来了。众所周知,为避免屋面防水问题造成更大的损失,一定要“早设防、早发现、早治理“。出现问题后一定要尽早定位渗漏的位置和范围,以防渗漏部位继续发展扩大和恶化,从而减少接下来修补工作的难度和工作量,提高修补的可靠性和成功率!由于红外热像仪能可视化温度的细微变化,精准定位防水材料的故障位置,因此已广泛应用于屋面防水材料质量的检测。实拍:红外热像仪视角下的屋面防水状况菲力尔最新推出的新型分离式红外热像仪——FLIR ONE Edge Pro,从检测人员的角度设计,可最大限度的满足用户对狭窄区域的检测。房屋常见的渗漏点有防水层、屋面板周边与女儿墙连接处、屋面与排水口连接处、窗周边与墙体之间、窗扇底部等。分离式的设计,让用户面对屋顶等较高较远和低矮难以探身的检测部位时,只需要将探头伸出去,就能在手机等智能设备上看清具体状况,最远可以检查30米远的区域,当然你也可以将其夹在设备上单手进行操作。参考案例:实用干货|屋面防水质量检测“看得见”,杜绝渗漏通病!定期检测电器电路,规避火灾风险据了解,“回南天”还极易发生电气火灾,这是因为:一、电线老化长时间被水侵蚀短路;二、电器内灰尘杂质因潮湿而变成导体,通电状态下被浸湿的灰尘杂质极易被电流击穿,引起燃烧;三、电源插头接触不良,空气潮湿导致电器导电参数变化而发生漏电、电弧短路等现象。这时候的用电安全也是要十分注意的事情,稍不留神就可能引发火灾风险!FLIR C5红外热像仪是一款坚固耐用的袖珍型红外热像仪,它能够检查房屋中的热保险丝、电器电路和电源线等,特别适用于检查潮湿老旧、能源效率低下的房屋。这款热像仪配备一键式电平/跨度区域调节功能,测温范围为-20至400°C,可承受从两米处跌落, 防护等级为IP54,可抵御灰尘、污垢和恶劣天气。FLIR C5还提供FLIR Ignite云连接功能,让您可以在线存储和整理图像,方便分享与访问检测结果。屋内湿气过重不仅会影响建筑和电器电路的使用寿命时间久了还会对人的健康状况有侵害因此我们要及时采取措施补救选择FLIR红外热像仪它能帮您赶走“湿气”,守卫健康
  • 房屋雨水泄漏寻根难?FLIR热像仪让检测结果有理有据
    每年的七八月全国各地纷纷迎来雨季突来的降雨不仅带来了夏日的气息也给房屋建筑带来了不小的影响暴雨过后房屋中残存的水分肉眼难以发觉这样就很难有针对性的维修房屋通常情况下屋顶、墙体以及窗框和门框的漏水问题难以发现是因为人肉眼无法看见水分即使专业建筑维修人员发现了泄漏问题也可能无法确定其来源无法验证维修是否完成今天,小菲就来带大家看看日本的SHIMURA KENSO建筑维修公司是如何克服并完美解决这个难题的~初试FLIR红外热像仪SHIMURA KENSO是日本的一个家族企业,最初向客户提供涂装服务,随着其在当地社区不断获得认可和信任,其业务逐渐扩展到了屋顶维修和防水领域。现在,作为防水建筑的专家,SHIMURA社长深知这项工作的艰巨性。他说:“传统检测房屋潮湿部位一般是凭借检测者的感官和经验,但感官无法为问题得到解决拿出凭证,也不能让客户安心。因此之前,我们一直在寻找能够合理查找、修复和解释雨水泄漏问题的完美工具。”SHIMURA社长大约在八年前开始对热像仪产生兴趣,他知道红外热成像技术能够可视化温差,有可能解决他面临的问题。如果热像仪能清楚地显示雨水泄漏问题和维修结果,这将成为公司的一笔宝贵财富。为此,他登门拜访了东京的FLIR公司,试用了几款热像仪。了解精度和可操作性之后,他决定选用手持式FLIR E50bx热像仪,当墙体和天花板变湿时,FLIR E50bx能迅速检测到温度的变化,从而缩短测试时间,同时即使很少的漏水量它也能够轻松可视化泄漏。随着菲力尔技术的革新,这款产品的升级款FLIR E98也已经上市啦~★升级款:——FLIR E98★FLIR E98是具有640×480红外分辨率的手持式热像仪,它可提供优异的灵敏度和性能,能检测到细微的温差,较宽的视场角能瞄准宽广的区域,因此,用户可快速地定位并解决问题。配备可互换的AutoCal™ 镜头,提供对不同距离目标的全面覆盖,而激光测距仪有助于快速地自动对焦,获得精确的温度测量值。FLIR E98标准配备FLIR巡检选项(FLIR Inspection Route)功能,另外还有以年度订阅方式单独销售的带 Route Creator 插件的 FLIR Thermal Studio Pro 软件,完整的巡检包使专业人员可以简化检查并加快后处理和报告速度。同时内置用于添加语音注释的麦克风和报告生成功能,有助于简化您的日常工作。四年前,SHIMURA购进了一台FLIR T620,用于检查外墙。其公司目前有三台FLIR热像仪,凭借它们赢得了很多大型建筑物检查和维修大单。SHIMURA社长说:“我们的大部分工作都要用到热像仪,热像仪是我们公司最重要的资产。”FLIR热像仪协助建筑检修工作目前,SHIMURA仍在使用FLIR E50bx识别建筑内部雨水泄漏和侵入路径,检查维修情况等。公司会在维修前后进行水分侵入测试,在此过程中有可能拍摄100多张红外图像。这些图像不仅可以用于确定雨水泄漏的原因和需要修复的区域,还可以有效地向客户解释问题所在和维修原因。最重要的是,借助红外图像和水分计提供的可视图像,客户可以亲眼看到漏水问题已得到解决。FLIR T620通常用于发现建筑物的外部故障,例如瓷砖翘起、砂浆冷接缝和壁板漏水等。它不仅可以有效地以非接触方式检测外墙缺陷,还能以可视化方式帮助客户了解这些故障的风险。公司出具的书面报告会采用红外图像,这种做法可以帮助他们在屋顶维修和大型建筑物全面防水领域屡获大单。为此,他登门拜访了东京的FLIR公司,试用了几款热像仪。了解精度和可操作性之后,他决定选用手持式FLIR E50bx热像仪,当墙体和天花板变湿时,FLIR E50bx能迅速检测到温度的变化,从而缩短测试时间,同时即使很少的漏水量它也能够轻松可视化泄漏。随着菲力尔技术的革新,这款产品的升级款FLIR E98也已经上市啦~★升级款:——FLIR E98★FLIR E98是具有640×480红外分辨率的手持式热像仪,它可提供优异的灵敏度和性能,能检测到细微的温差,较宽的视场角能瞄准宽广的区域,因此,用户可快速地定位并解决问题。配备可互换的AutoCal™ 镜头,提供对不同距离目标的全面覆盖,而激光测距仪有助于快速地自动对焦,获得精确的温度测量值。FLIR E98标准配备FLIR巡检选项(FLIR Inspection Route)功能,另外还有以年度订阅方式单独销售的带 Route Creator 插件的 FLIR Thermal Studio Pro 软件,完整的巡检包使专业人员可以简化检查并加快后处理和报告速度。同时内置用于添加语音注释的麦克风和报告生成功能,有助于简化您的日常工作。四年前,SHIMURA购进了一台FLIR T620,用于检查外墙。其公司目前有三台FLIR热像仪,凭借它们赢得了很多大型建筑物检查和维修大单。SHIMURA社长说:“我们的大部分工作都要用到热像仪,热像仪是我们公司最重要的资产。”FLIR热像仪协助建筑检修工作红外热成像技术在建筑行业的应用早已广泛菲力尔专为建筑工程师们也设计了多款产品
  • 新品:FLIR MR277——多项专利技术合一的房屋检测专业工具
    众所周知,房子和人一样,也需要定期保养维护。身体的保养,既要持之以恒,也需与时辰密不可分,同理,住宅的维护,四季不同,效果各异。春天,是一个万物复苏的季节,也是修缮房屋的好时候,及时修整住宅,才能放心应对多雨的夏季!今天小菲给大家介绍一款简单易用的多合一式高精度工具——专业型水分计:FLIR MR277,具体有哪些优势,听小菲一一道来~多项专利技术MR277是FLIR结合了红外成像引导测量技术(IGM™ )、专利性多波段动态成像(MSX)以及先进的环境传感器的建筑物检测系统的专业型水分计,可帮您查找、发现和记录各种相关问题。★ 高性能160×120红外成像传感器助您清楚观察目标区域;★ IGM技术助您快速发现可疑问题;★ MSX技术将可见光场景细节叠加于全红外图像之上,助您轻松发现隐藏的问题;★ 集成式激光指示器助您精确对准问题根源。无损探测更准确FLIR MR277利用集成的非侵入式传感器准确定位受潮问题,并凭借随附的外置探针和专业的水分含量探测器(可选)捕获问题区域的精确读数。★ 集成非介入式无引脚传感器助您快速扫描,发现水分;★ 外部引脚探针(随附)和多种选配水分探针助您获得精确的测量值;省时效率高,简单易分享FLIR MR277内置的湿度计和现场可更换的温度/相对湿度传感器等特性有利于加快故障排查速度,同时,通过METERLiNK® 可以连接移动设备、把数据上传至FLIR Tools® 应用程序以供报告使用。★ 可现场更换的温度/湿度传感器,能够自动计算并显示环境读数,使您能够快速完成工作,缩短停机时间;★ 创建单个文件,全面记录红外和可见光图像信息、湿度计读数和激光定位;★ 无线或使用随附的USB连接线可下载图像和数据;★ 使用免费的FLIR Tools软件,分析图像,快速生成报告;★ 界面采用直观式设计,简单易用专业人士就要配备专业设备,FLIR MR277是支持高画质成像的多合一手持式水分计,帮您精确查找水分源头,快速决策,立即开展补救修复工作。所以,想要房屋检测工作更快更准确的完成,快来pick它吧~
  • 小菲课堂|房屋“湿气重”应该怎么办?方法在这里
    又到了一年一度的雨季各地暴雨接踵而至长时间的雨水侵蚀可能会对房屋造成不同程度的伤害如何检测房屋内部是否渗水?你需要专业工具进行检测今天小菲就来给大家推荐几款水份测量仪帮您慧眼识“漏”?给房屋“去湿气”探针式水份测量仪探针式水份测量仪需要将两个探针物理插入目标墙壁或材料中。该方法是通过测量两个探针之间的电阻为您提供可量化的读数,缺点是这种方法需要对被测材料造成一些损坏。比如FLIR MR55是一款探针式测量仪,利用含11种材料类别的内置数据库将水份测量仪调节为与测试材料相对应,包括木材、干墙和混凝土等,用户使用手机等移动终端扫描仪器背部的二维码可访问与被测材料相对应的材料组别。球形探头水份测量仪球形探头水份测量仪的独特之处在于其无针球形探头湿度传感器,它可在短时间内进行大面积测量而不留任何痕迹,还能轻松测量一些难度较大的区域,比如角落、不平坦的表面和墙裙周围等区域。比如FLIR MR59是一款球形探头水份测量仪,它配有蓝牙无线连接,允许用户在移动设备上获取湿度读数。其设计目的都是帮助专业人员提高工作效率,轻松检查任何位置的湿度,并获得最准确的湿度读数。无探头水份测量仪无探头的红外热成像水份测量仪有助于您快速定位湿度问题,明确指引测量位置,令您安心进行测量和分析读数。在检查湿气这方面,热像仪可以快速、非侵入式地检查大片区域,判断建筑整体湿度过高的可能性。当房屋湿度修复完成后,再用FLIR红外热成像水份测量仪验证湿度是否已恢复正常,是否还有水分残留。比如FLIR MR277是结合了红外成像引导测量技术(IGM)、FLIR多波段动态成像(MSX)专利技术(MSX专利号:201380073584.9)以及先进的环境传感器的建筑物检测系统,可帮您查找、发现和记录各种相关问题。其不仅能用来做建筑建成后的巡检,还能防止施工阶段中出现问题。例如,施工人员可以用它来检查一堵墙是否已充分干燥。MR277还可以加快施工速度,让施工人员随时掌握工程状态。”通过添加正确的附件,能让您的水份测量工具利用更充分。FLIR配套产品有FLIR MR08锤式和壁腔探头组合或FLIR MR05冲击探针式水分含量探测器,有助于扩展FLIR MR277、MR265和MR176等红外热成像水份测量仪的广泛功能。建筑水份可视化的时代已到来检测墙体内的受潮情况根本无需臆测将FLIR水份测量仪加入工具箱
  • “房屋养老金”刷屏!将为建材、房屋检测行业带来哪些机遇?(附仪器清单)
    2024年8月23日,国务院新闻办公室举行“推动高质量发展”系列主题新闻发布会,住房和城乡建设部副部长董建国在会上表示,研究建立房屋体检、房屋养老金、房屋保险制度,构建全生命周期房屋安全管理长效机制,上海等22个城市目前正开展试点。此消息迅速在社会各界引起广泛反响,再度引发全民对于“房屋养老金”制度的热烈讨论与关注。什么是“房屋养老金”?从公开的消息看,目前,国内关于房屋养老金还没有统一的定义。中央财经大学教授、法学院院长尹飞发文表示,房屋与普通商品相比,其生命周期较为漫长。在这个过程中,为了保障房屋安全与正常使用,必然会出现房屋及其附属设施设备的保养、维护、维修乃至更换、重建的费用。这类费用就可以称作“房屋养老金”。它包括个人账户(现行的住房专项维修资金)和公共账户两部分。公共账户的建立是为了解决涉及公共安全的问题,如地震后房屋检测或楼盘出现重大安全隐患等情况,这是现有专项维修资金制度难以满足的需求&zwnj 。为什么要设立“房屋养老金”?近年来房屋安全恶性事件频发,如长沙自建房倒塌事件、建筑外墙脱落事件等。2022年4月,长沙自建房坍塌事故后,住建部在次月部署开展全国自建房安全专项整治,指出要研究建立房屋养老金制度,更好解决既有房屋维修资金来源问题。此前在2023年3月,住房和城乡建设部等15部门发布关于加强经营性自建房安全管理的通知,要求各地开展房屋定期体检、房屋养老金和房屋质量保险试点。另外,中指研究院市场研究总监陈文静表示,随着我国房地产市场逐渐进入存量时代,截至2022年底,中国城镇既有房屋中建成年份超过30年房屋占比接近20%,需要维护、改造的老旧房屋占比快速提升。现行的住宅专项维修资金整体资金量有限、提取效率低、使用效率不均,现有住宅专项维修资金不能满足房屋“应修尽修”问题,而且这些改造多集中于基础设施的更新,对房屋本体的维修和养护关注不足,也难以解决存量时代大规模的城市更新和老旧小区改造问题,尤其是现阶段老旧小区设施设备老化维修的需求。探索建立房屋养老金制度,为房屋提供全生命周期安全保障,有利于更好解决老旧小区改造资金问题,深入实施城市更新行动,进一步推动建筑业转型升级,加快构建房地产发展新模式。建筑材料、房屋检测市场迎来新机遇此制度必然带动新一轮城市老小区的改造和管理,自然也给建筑建材、房屋检测等行业带来很多新机会,其中包括电梯、燃气管道、墙面粉刷、传感器等市场领域。与此同时,工程质量保险评估行业也将迎来一定机遇。此次会议将“房屋安全保险”作为房屋安全管理长效机制三项制度之一,后续预计将在更多省市铺开,将带动工程质量保险评估需求上行,相关业务包括前期质量风险识别与评价、全过程质量风险控制、辅助制定承保策略等。后续,随着此制度的推行,必然会催生并拉动对仪器设备的采购需求。鉴于此,小编精心汇总了房屋检测与建筑工程质量评估中不可或缺的仪器设备清单,以飨读者。(如有纰漏,可文末留言或邮件:zhangxir@instrument.com.cn)序号仪器名称作用(一)结构材料强度检测1混凝土回弹仪检测一般建筑构件、桥梁及各种砼构件(板、梁、柱、桥架)的强度2混凝土取芯机从结构混凝土中钻取芯样以检测混凝土强度或观察混凝土内部质量3里氏硬度计检测钢筋表面硬度4砂浆贯入仪测量砂浆强度5钢筋扫描仪检测建筑物的钢筋布局和保护层厚度(二)损伤状况检测6超声波混凝土检测仪用于检测混凝土和钢筋混凝土中的裂缝、空隙以及其它缺陷7超声探伤仪用于检测建筑物结构中的隐患,如杆件、梁、板等的裂缝、穿孔、疲劳和腐蚀等问题8裂缝测量仪测量建筑物的裂缝宽度和深度,用于评估建筑物是否存在安全隐患,并制定相应的维修和加固措施9电磁辐射探伤仪墙体裂纹检测、钢筋锈蚀检测等10混凝土碱含量检测仪测量混凝土的碱含量,用于评估混凝土的耐久性和防腐蚀(三)变形检测与监测11沉降观测仪监测和记录建筑物或地基在垂直方向上的变形情况,以确保建筑物的安全稳定12水准仪房屋沉降检测13经纬仪检测结构变形、地基沉降、结构振动等14全站仪测量建筑物的倾斜角度、倾斜方向和高度等多种参数,快速获取建筑物的三维坐标数据,并进行数据处理,得出房屋倾斜情况的分析报告(四)建筑节能15红外热像仪检测热工缺陷,确保建筑性能及质量,评估建筑节能;建筑质量检测,用于建筑渗漏、电气系统、管道系统等16傅里叶变换红外光谱仪建筑节能检测17导热系数测定仪建筑节能检测18保温系统测定仪建筑节能检测19门窗气密性测定仪门窗气密性检测此外,该制度的实施无疑将为涉足房屋检测领域的公司带来积极影响。据东方财富网的数据显示,近期房屋检测概念板块发生异动,多家相关企业股价迎来上涨潮。同时,已有部分上市公司积极回应,宣布着手布局或加强在房屋检测业务上的投入与发展。因此,小编还整理了具有房屋检测资质的公司,以飨读者。(如有纰漏,可文末留言或邮件:zhangxir@instrument.com.cn)序号公司名称业务布局1华建集团公司目前拥有上海市房屋质量检测证书、检验检测机构资质认定证书,中国合同评定国家认可委员会检验机构认可证书、中国合同评定国家认可委员会实验室认可证书、测绘资质证书、上海市既有建筑幕墙现场检查组认定证书、上海市建设工程检测机构评估证书。2建科股份深耕建工领域多年,具有丰富的房屋检测、体检、鉴定经验。具备结构检测鉴定所需的资质,能够开展各类建(构)筑物的工程质量检测和结构鉴定,以及房屋安全的实时在线监测工作,并可为其修缮加固提供一体化解决方案。3华测检测在建筑领域的服务主要包括新建工程检测和既有工程鉴定评估两大板块。新建工程检测包括地基基础和工程变形监测检测服务、主体结构及装饰装修检测服务、钢结构检测服务、建筑材料及构配件检测服务、建筑节能及智能检测服务、消防工程检测服务、人防工程检测服务等。既有工程鉴定评估包括房屋建筑安全鉴定评估、道路桥梁及水利工程鉴定评估、户外设施鉴定评估、电气安全检查等服务。4上海建工下属天津市房屋质量安全鉴定检测中心有限公司,是天津市的专业检验检测机构,被中国建筑业协会授信为工程质量检测AAA级信用机构。5建科院房屋检测鉴定服务依托全资子公司开展,立足于深圳市、雄安新区,在上海市、惠州市及珠海市均设有分支机构,可满足华南地区和华北地区的检测服务需求,提供地基基础、主体结构、外墙幕墙、装饰装修、空气质量及节能设备的检测检验。6国检集团既有房屋检测鉴定业务仅为检验检测板块的细分领域之一。7设研院全资子公司中犇检测认证有限公司持有河南省住房和城乡建设厅颁发的“地基基础、室内环境、钢结构、主体结构、见证取样、建筑节能、建筑幕墙”等检测资质,8垒知集团旗下子集团健研检测集团作为建设综合技术服务的领军企业,为工程全寿命周期提供测绘、勘察、设计、鉴定、检测、评估、认证、咨询和培训等技术服务,其中包括房屋结构鉴定及加固业务。9华蓝集团持有广西住房和城多建设厅颁发的检测资质证书,广西区质量技术监督局颁发的检验检测机构资质认定证书,检测设备先进,检测手段完善,检测能力优秀,业务遍布全国,为建筑工程质量提供科学、公正、权威的检测数据和验收评估结论。10中钢天源通过中钢国检(国家金属制品质量检验检测中心/中钢集团郑州金属制品研究院股份有限公司)开展检验检测业务,拥有见证取样、地基基础、主体结构工程、钢结构工程等检测资质。
  • 暴雨严重侵袭房屋,FLIR检测工具助力解决湿气残留问题
    7月本就是全国各地的汛期,与此同时,今年的台风、暴雨、洪水还猛烈地袭击着上海、浙江、河南等地。虽然我们不能去灾区支援,但我们可以尽可能做好防汛排涝的工作。当遭遇汛雨洪水灾害后,房屋受到严重侵袭,我们应该做好修复重建挽回损失的准备,今天小菲就给大家推荐几款得力工具!1洪灾侵袭后的房屋暴雨洪水侵袭后的房屋,至关重要的是解决水损和水侵,预防发霉、腐烂等问题,尽可能挽回房屋的损失,让生活重回正轨。在这种情况下,选择专业的检测工具,可以更快速、高效、准确地确定水损的严重程度,确定修复成本,抽取剩余的水,更换受影响的材料,修复受影响区域,确保后续无水分残留,全面解决问题。水灾造成的严重水损仅用眼睛检查可能漏掉积聚在石棉水泥板或隐藏于地板下的水分,而且仅凭视觉图像不一定能窥见全貌,这可能会导致修复报告出错。传统标准水分计的确可以确认某件东西湿不湿,但查找隐藏的湿气并非易事。使用传统方法记录大面积的水分计读数不但要耗费大量时间,而且无法全面了解损坏情况,这就使洪水后的重建工作面临着巨大的挑战。2定位湿气:红外成像温湿度计FLIR红外成像温湿度计采用红外成像引导测量(IGM)技术,有助于您快速定位湿度问题,明确指引测量位置,令您安心进行测量和分析读数。在检查湿气这方面,热像仪可以快速、非侵入式地检查大片区域,判断水损区域湿度升高的可能性。由于蒸发的水分会使材料表面冷却,因此受损区域在图像上通常表现为较暗(较冷)的区域。当房屋修复完成后,再用FLIR红外成像温湿度计验证湿度是否已恢复正常,是否还有水分残留。使用集热像仪和水分计于一身的组合式工具,轻松看到水损位置和源头目前,FLIR红外成像温湿度计包含FLIR MR277/176/160。其中,FLIR MR277是结合了红外成像引导测量技术(IGM™ )、专利性多波段动态成像(MSX)以及先进的环境传感器的建筑物检测系统,可以帮助您快速定位问题、清晰识别问题并轻松记录问题;FLIR MR176集成无探针式传感器及外置探针,使您能够灵活选择执行非插入式测量还是插入式测量,可现场更换的温度与相对湿度传感器提供更大便利;FLIR MR160可作为您进行故障排查的“开箱即用”型工具,亦可用作您已拥有的任何高分辨率热像仪的完美补充工具。MR277MR176MR1603确定含水量:FLIR水份测量仪FLIR水份测量仪包含FLIR MR59和MR55,这两款产品均配有蓝牙无线连接,允许用户在移动设备上获取湿度读数。它们设计目的都是帮助专业人员提高工作效率,轻松检查任何位置的湿度,并获得最准确的湿度读数。FLIR MR59FLIR MR59是球形探头水份测量仪,它的独特之处在于其无针球形探头湿度传感器,它可在短时间内进行大面积测量而不留任何痕迹,还能轻松测量一些难度较大的区域,比如角落、不平坦的表面和墙裙周围等区域。FLIR MR55是一款探针式测量仪,利用含11种材料类别的内置数据库将水份测量仪调节为与测试材料相对应,包括木材、干墙和混凝土等,用户使用手机等移动终端扫描仪器背部的二维码可访问与被测材料相对应的材料组别。将损失尽可能降低!
  • 加速BET表面积和孔隙度测量
    micromeritics® tristar® ii plus表面积和孔隙度测试仪可自动并同时测量多达三个样品,以减少分析时间,更快地提供数据。 tristar ii plus表面积和孔隙度测试仪tristar ii plus专为建立和维持稳定的测试环境而设计。分析过程中无任何可移动组件。由等温夹套为测试提供温度控制,简化操作的同时为用户提供精确且重复性高的测试结果。micromeritics microactive数据处理和控制软件提供了简单易用的界面,可将数据实时转换为精确的表面积和孔隙度信息。观看视频,了解tristar ii plus如何帮助您加快表面积和孔隙度测量!点击播放视频 关于麦克仪器公司麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问 www.micromeritics.com.cn 服务热线:400-630-2202
  • 三思纵横三轴五面液压试验系统“全球第一”
    历时270天的全力奋战、凝聚全公司之力打造,三思纵横与徐州矿大合作开发的280项目(三轴五面液压试验系统)于2012年12月26日正式通过双方验收! 此三轴五面液压试验系统项目最大垂直加载压力为20000kN、4面水平侧向加载压力各8000kN,五面同时作用于岩石试样,整个系统的结构和同步协调加载要求堪称国内首创,其最大加载力在全球范围内(同类设备)也是第一。 此系统的研发成功将为国内岩石与地质结构研究提供可靠的测试手段,攻克了地质结构学上一直以来对复杂地壳内部运行的岩石土壤无法准确进行受力分析和模拟测试的难题。 三思纵横上海公司成立了专门的技术团队,项目负责人刘亚东总工程师带领胡铮峰、高超、肖若冰、林意斌、王俊峰、侯密、王臣、王绍友等一批骨干成立了280项目组。从技术交流到方案确定、从实地考察到物料加工、从过程控制到总装测试、从系统交付到顺利验收;整个项目组不分昼夜,协同作战,不辞辛劳,不负众望,圆满完成任务。 设备主机现场安装起吊 中国矿大张农院长是国内地质学界的权威,张院长与其他几位资深专家对五面三轴系统进行了详细验收,并最终确认宣布该系统获得通过。此后,张院长带领赵一鸣博士等人将通过该项目对地球环境力学进行大量的数据测试,这些数据将填补国内在地质力学研究领域中的空白。 主机及送料系统就位 三思纵横公司致力于中国试验机技术在地质力学材料领域的应用,通过自身的研发及开拓,为国内该领域的技术提升提供了可靠的保障。本次项目的成功也将鼓舞三思纵横继续引领中国自有试验机技术向着更高的目标迈进。
  • 探究比表面积物理吸附仪的稳定性可靠性问题
    近些年随着国内科技水平的提高和零配件全球化采购的发展,部分高端分析仪器陆续已经可以实现自主的生产、研发和制造,而在比表面积分析仪的研发和生产过程中,仪器的稳定性和可靠性一直是衡量物理吸附仪品质的关键因素,这也决定了生产企业的品牌是否真的能够让市场和用户同时认可。国产的物理吸附仪经过二十余年的技术发展,相关技术应用已经逐渐追赶上了进口产品的水平,但在设备的稳定性和可靠性上表现欠佳。在我国的仪器仪表行业发展过程中,分析仪器的稳定性和可靠性问题一直困扰着业内人士,并且在我国的仪器仪表行业国家规划中,这也是最为重要的组成部分。一些问题没有得到根本解决,导致国产高端比表面积物理吸附仪的稳定性和可靠性无法得到客户认知。1、基础和核心技术上的研究工作不足,导致缺乏创新及颠覆性技术的缺失。2、对外部环境对仪器的稳定性和可靠性所能造成的影响缺乏考虑,从而导致了在高端仪器的生产过程中可靠性和稳定性不够,市场竞争力明显不足。3、在生产过程中,往往对质量缺乏严格的要求,只以市场为导向,不以客户为中心,很少会对产品进行自主的研发和改进,而是只做技术的追随者。4、在核心传感器应用环节,关注方向过于片面,往往只考虑了仪器的灵敏度而忽略了稳定性和可靠性。如何解决高端比表面积物理吸附仪的稳定性和可靠性问题:1、改善仪器稳定性可靠性的根本在于对仪器的整体设计,也就是说在设计、材料选择、零部件加工、安装、性能调试、投入使用等一系列过程中,都应该制定严格的标准并准确无误的执行。2、在生产过程中开展质量控制工作也是保证仪器可靠性和稳定性的主要工作,严格执行设计方案,对仪器各个环节的生产制造进行管理和监督,严格控制质量,从而实现仪器的可靠性和稳定性。3、选用技术最为稳定的零配件,建立成熟稳定的供应商体系,也是保证高端比表面积物理吸附仪可靠性和稳定性的重要因素。4、建立勇于探索和敢于创新的研发团队,推动颠覆性技术的发展,真正意义上摆脱技术追随者的影子。5、解决系统干扰对于分析测试的影响,其主要分为三种形式:电器、电磁和背景非测量组分干扰。这些干扰因素往往具备不确定性和随机性等特点。理化联科(北京)仪器科技有限公司出品的iPore400型比表面积分析仪采用的最新的32位电路控制系统,将电气干扰最大程度的进行屏蔽。6、在比表面积分析仪的使用过程中,对其性能稳定性影响最大的因素就是系统气路和仪器内部由于系统的缺陷造成的污染问题,这种污染往往会造成仪器的分析误差,有效的设计方案可以最大程度的降低甚至杜绝气路污染的情况出现. iPore400型比表面积分析仪同时采用三套主动和被动式防污染技术,极好的保证了气路系统的清洁度,让具备EP级别的气路系统长期为客户提供有效的数据保证。7、在比表面积分析仪实际的应用过程中,仪器系统不稳定通常也会由于相关人员没有掌握正确的操作方法而引起,这种现象是较为普遍的。对此理化联科建立了行业内极为专业的服务团队为每一台iPore400型比表面积分析仪提供最为切实有效的售后服务。理化联科坚信优质产品与贴心服务的有机结合是建立行业名品必然的践行之路。结语从上述分析可知,我们在比表面积分析领域的发展已经取得了突破性的进步,不但可以满足中低端市场的应用需求,还可以在解决高端比表面积分析仪稳定性和可靠性的同时,更好的解决高端用户的使用需求。
  • 基于智能终端叶面积指数快速测量系统—LAISmart
    table width=" 626" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 124" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 502" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 基于智能终端叶面积指数快速测量系统—LAISmart /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 124" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 502" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京师范大学 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 124" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 100" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 屈永华 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 146" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 204" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" qyh@bnu.edu.cn /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 124" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 502" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 124" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 502" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:207px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 626" height=" 207" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/9c3d5c7f-dc46-495c-af6c-efc6463a0779.jpg" title=" 6.jpg" style=" width: 400px height: 121px " width=" 400" vspace=" 0" hspace=" 0" height=" 121" border=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/b390b317-9db5-43cd-b361-c32ce364aa0d.jpg" title=" 7.jpg" style=" width: 250px height: 379px " width=" 250" vspace=" 0" hspace=" 0" height=" 379" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" LAISmart是一款基于智能手机实现植被参数测量与科学数据远程共享的设备。LAISmart集成了GPS、光照度、姿态传感器,同步获取测量现场的图像、位置与定量分析信息,可以实现植被覆盖度、郁密度、叶面积指数的自动测量,具有体积小便携操作的特点。测量结果可以通过云服务器实现数据自动网络存储与远程共享。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family:宋体" 主要技术指标: /span /strong /p p /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/a6ce265d-b466-4598-b42f-ab31bd2c4e7b.jpg" title=" 2018-03-22_143547.jpg" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 便携:适应个人智能终端的快速发展,提供便携的植被参数测量设备 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 适用性广:多角度拍摄,向上可拍郁密或高大冠层;向下可拍稀疏或低矮冠层;对测量环境和光环境无要求。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 云存储:与云存储无缝对接,将野外测量数据实时传输到网络。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 测量连续性:只要设计好样方点便可进行连续测量。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 626" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 智慧农业、农业遥感、生态监测 /span /p /td /tr /tbody /table p br/ /p
  • 三思纵横2000吨三向五面加载实验系统获客户赞誉
    近日,上海三思纵横收到中国矿业大学的感谢信,对上海分公司研发生产的2000吨(20000KN)三向五面竖向主加载实验系统给予了高度评价,并对三思纵横在与之合作的过程中所表现出来的专业技术和优秀服务给予了肯定和表扬。 上海三思纵横2012年9月按时将设备交付于客户后,经过2个月的现场调试和安装,2012年12月正式通过验收。经过近半年的使用体验,客户反映运行状态良好、数据精确、稳定可靠,完全达到了合同要求的技术指标。 2000吨(20000KN)三向五面竖向主加载实验系统主要用于深井高地压条件下开挖巷道和支护结构等复杂应力条件下的结构稳定性模拟研究,承担大尺寸混凝土试块的单轴、双轴或三轴的抗压、保载等试验。整个系统的结构和同步协调加载要求堪称国内首创,其最大加载力在全球范围内(同类设备)堪称第一。此系统的成功研发和使用将为国内岩石与地质结构研究提供可靠的测试手段,攻克了地质结构学上一直以来对复杂地壳内部运行的岩石土壤无法准确进行受力分析和模拟测试的难题,将为地质力学研究领域提供更多的精确数据。
  • 回南天即将结束,房屋的“湿气”一定要彻底清除!
    如果说有一种天气能让南方人瑟瑟发抖那“回南天”一定榜上有名每年的回南天空气中是满满的水 沝 淼 㵘shuǐ zhuǐ miǎo màn“回南天”出现时空气湿度接近饱和墙壁、地面甚至都会开始“冒水”水分渗透对房屋建筑会造成不同程度的损害当我们把表面水分清理干净时其实建筑中的湿气并没有完全消失热像仪虽无法“看到”墙壁中的水分但它可以检测出细微的温差从而用图像揭示水的存在这样我们才可以彻底祛除湿气湿气显现湿气渗透的不同形态当房屋建筑的湿气长期过重时,墙体表面就会发霉变质导致长霉长毛,因此我们要时刻观察房屋中的水分情况,及时作出清理,避免造成更大的损失。使用红外热像仪,在适当的情况下,不需要进行破坏性测试,就可以发现隐藏的水和湿气问题。建筑物中的水分通常以可识别的模式扩散,这取决于水的位置:墙角湿气墙角——由上而下的三角形形状,是由水向下扩散而形成的。天花板——潮湿区域呈现的是不规则、无条理的形状,湿气和潮湿的材料在不同温度下向外扩散。地面湿气地面墙角——水沿着墙向上渗透到隔热层和墙柱。热水管道——泄漏显示为一个温暖的区域。湿度是建筑物中最难检测到的问题之一,因为在建筑表面出现明显水分之前,这些迹象很细微,很容易被漏掉,因此我们要挑选合适的检测工具。“看见”湿气的红外热像仪高分辨率、高热灵敏度:湿气往往只会造成细微的热差异,能够检测湿度的红外热像仪需要有高分辨率和高热灵敏度(NETD),这意味着微小的温差也能被显示出来。在热灵敏度方面,越低越好,因此灵敏度为30mK的热像仪最适合湿度检测,而100mK灵敏度的热像仪更适合工业应用和检测大温差。手动调节:此外,使用允许您手动调整热图像的水平和跨度的热像仪。当图像调整到大约10℃或20℃的范围时,湿气问题最容易被发现,这样即使微小的温度差异也能显现出来。用来检测湿气问题的红外热像仪包括基础款FLIR E6,以及用于更高分辨率选项的FLIR E8和FLIR E98。精确读数的温湿度计
  • 3D面积测试系统 | 满足不规则物体面积的自动检测需求
    3D面积测试系统 3D面积测试系统为实验室提供了一个先进的测量平台,用于快速、准确地计算不规则物体的面积,包括任意面积、外表面积、内表面积、液体面积、体积等,开拓了自动化计算面积的新模式。复杂样品轻松测量,任意面积一扫即得01产 品 展示02知识产权针对3D面积测定仪,上海汇像信息技术有限公司已取得多项具有业界标杆意义的权威证书,其中包括但不限于《发明专利证书》、《计算机软件著作权登记证书》、《上海市计量测试技术研究院华东国家计量测试中心校准证书》等多项荣誉证书。专利证书软件著作校准证书03参 与 标 准GB/T 材料表面积的测量高光谱成像三维面积测量法QC/T 紧固件镀层表面积计算方法T/SLIA 001-2019食品接触材料及制品、饰品表面积的测定三维模型重建法GBT 38009-2019眼镜架镍析出量的技术要求和测量方法计量技术规范两项发表论文多篇数据对比活动多次全国多家计量机构提供CNAS校准支持04合 作 机 构、持续更新中......• 国内外著名第三方权威检测机构:SGS通标标准技术服务有限公司、Intertek天祥集团、德国莱茵TÜV集团、TÜV南德意志集团、必维国际检验集团、华测检测认证集团、东莞市中鼎检测技术有限公司等。 • 国家质检机构:上海质检院、深圳计量院、山东质检院、浙江方圆检测集团、广州质检院等、南京质检院、新疆质检院、宁夏质检院; • 国家海关机构:广东海关、常州海关、宁波海关、上海海关、北京海关等; • 国际知名企业:宜家家居IKEA、周大福珠宝、浙江小商品城集团等; 05产 品 特 点• 批量测量根据样品大小,可一次同时检测30-50个样品批量选取样品测量• 自带软件处理完全针对检测检验行业需求定制开发,系统自带软件直接检测,无需切换自带软件进行处理• 任意面积计算根据标准的不同要求,鼠标轻松选取标准所需的接触面积鼠标轻松选取接触面积• 多种输出模式实现对检测结果的多种输出方式,例如:Excel、PDF报告导出报告导出06应 用 领 域目前3D面积测定仪已广泛应用于食品接触材料、药品包装材料、工艺品、日用品、纺织品、工业零部件、玩具、婴儿用品、医疗用品、首饰饰品等。 07配 套 产 品智能显像仪——采用光学原理的仪器,对于透明材料、反光材料、黑色材料会产生吸光效应,检测前须进行前处理。智能显像仪• 使用方法1.置入样品→2.自动处理→3.处理完成• 产品特点干净卫生、不粘手改变传统手摇罐式显像剂喷雾方式,更卫生、高效、方便触摸屏智能控制自动调节速度、处理时间、操作过程全程监控• 配合3D面积测定仪使用上海汇像信息技术有限公司领先的实验室自动化智能化系统供应商上海汇像始终坚持将人工智能技术与检验检测技术相融合,致力于为生物化学,医疗医药及安全检验检测提供领先的实验室自动动化智能化综合解决方案,产品范围涵盖从食品安全、药品安全、到生命科学领域的智能机器人工作站系统、全流程检验检测实验室自动化、智能化整合系统以及配套自动化、智能化仪器设备及相关耗材等。我们立志成为全球最为领先的生命健康自动化、智能化解决方案提供商、立志让世界每一个人都享受健康安全品质的生活,立志为业界提供最好的技术、产品与服务。
  • 天津市房屋安全鉴定检测中心静海工作站挂牌
    日前,天津市房屋安全鉴定检测中心静海工作站正式挂牌成立,成为全县首家拥有专业资质的房屋安全鉴定检测机构,进一步拓宽了房屋鉴定检测领域。天津市房屋安全鉴定检测中心和县房管局负责同志出席揭牌活动。   天津县房屋安全鉴定检测中心主要受理房屋产权人、使用人及相关人委托的全县范围内各类房屋安全鉴定,受理全县范围内司法委托鉴定,负责对房屋安全,房屋修缮及装饰装修工作,危险房屋,危房处理建议等项进行鉴定和检测。
  • 精准医疗 | 准确测量皮肤表面积,3D扫描仪助力整形外科手术高效开展
    近年来,3D数字化技术在医疗行业的应用十分广泛,尤其是在口腔医学、骨科手术、矫形康复、生物医学工程等细分领域中,已成为数字化精准医疗基础手段之一。随着3D数字化技术在医疗领域的不断普及,在整形外科领域也逐渐被应用于临床治疗中,为患者带来福音。本期,小编将分享一则使用3D扫描技术帮助临床医生准确测量软组织扩张患者皮肤缺损表面积的应用案例。案例背景软组织扩张术作为一种革命性的整形外科治疗手段,已广泛应用于全身多个部位各种病损的治疗,在瘢痕修复、耳、鼻等多器官再造及体表肿瘤、先天性巨大痣等多个领域发挥着重要的作用。图片源自于网络小编解读:软组织扩张术是指将硅胶制成的软组织扩张器,经手术植入皮下或肌层下,通过定期注入生理盐水,使表面皮肤及软组织逐渐被延伸扩大,从而提供“额外”的皮肤和软组织,用以修复邻近组织的缺损。传统测量手段目前在临床上测量扩张皮肤面积的主要手段为薄膜涂色法、几何测量法、湿布取样法等。但这些方式存在一些弊端,如:1、测量过程较为复杂繁琐2、无法精确地实时评估扩张皮肤的表面积有多大3、无法精确地实时评估皮肤缺乏需要多少皮肤基于此,广州中山大学附属第一医院整形外科 刘祥厦课题组提出了一种创新性的方法,就是利用三维扫描技术在术前对皮肤缺损面积及扩张后获得的皮瓣表面积进行精确的评估。3D数字化解决方案(部分患者案例展示)3D扫描临床医生为患有先天性巨大痣及小耳畸形症病人实施皮肤软组织扩张术后,深圳木比白科技的技术人员利用先临三维EinScan Pro系列多功能三维扫描仪获取了患者软组织扩张后的皮肤表面积。扫描过程展示部分扫描数据展示测量分析获取患者耳、痣及扩张器的三维模型后,课题组李泽泉医生利用软件对患者正常耳表面积、先天性巨痣&小耳畸形、每次扩张后的组织扩张器及其底面积进行三维测量及对比分析。数据重建最后,根据这些三维扫描的测量结果和其他相关因素,如皮肤的质地和扩张的总体积,综合判断是否进行第二阶段的重建。目前,这个新型技术手段在深圳木比白科技有限公司的协助下已应用于临床治疗中,帮助医生准确地做出了11例软组织扩张器重建患者的术前决策,并成功进行软组织扩张的重建。经临床研究证明,3D扫描技术与其他测量方式相比具有简单快捷,测量精度高,抗干扰能力强,立体构建图像逼真等优点,在软组织扩张术治疗中为确定扩张器的尺寸和第二阶段手术时间提供了有效的基础数据保障,为整形外科医生的决策提供帮助,让术前设计更客观、更科学。END非常感谢广州中山大学附属第一医院整形外科和深圳木比白科技有限公司为此案例提供素材。
  • 应用 | 可喷涂超疏水牙齿保护剂:具有光敏抗菌、耐酸、防污功能
    KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS研究背景世界卫生组织(WHO)提出了“8020”的目标,即在80岁时保留20颗功能性牙齿。由于牙齿没有任何再生功能,如何确保牙齿健康长寿成为了备受关注的问题。目前的牙齿护理方法(刷牙、漱口、使用牙线、使用牙签等)只是将沉积在牙齿表面的污垢清理干净,然后让它们直接接触新出现的复杂刺激。护理工具的延误或不当使用不仅不能消除外界的不良刺激,有时甚至会导致牙齿损伤。因此,一种更可靠、更有效的日常牙科护理策略正处于迫切需要的阶段。近年来,耐用且生物相容的超疏水材料在生物医学应用中显示出巨大的潜力。然而,据我们所知,目前还没有可用的“添加剂”保护牙齿的方法伴随我们的生活,更不用说将超疏水材料应用于常规牙科护理策略。因此,本文首次提出的由ZnO、FSNs和PDMS(简称ZFP)组成的保护剂可以喷涂在牙齿表面形成具有优异超疏水特性的透明膜,这种安全、方便、高效的牙齿保护策略将超疏水性与光动力学相结合,通过简单的喷涂实现对牙齿的抗粘连、抗菌、抗酸和防污等多种保护作用。图1 ZFP喷涂膜多重防护效果示意图实验方法将上述三种保护剂喷洒在制备的牙片上,干燥后分别得到T-P、T-FP和T-ZFP。采用KRÜSS DSA100 (Germany)液滴形状分析仪测定了不同齿片的水滴角。结果与讨论超疏水性和自清洁性分析为了检测ZFP在牙齿表面的疏水行为,将上述三种保护剂(P、FP和ZFP)喷洒在制备的牙齿切片上以获得T-P、T-FP 和T-ZFP。T-ZFP 的水滴角为 151.00°±0.63°,滚动角为 1.95°±0.25°(图2(a)和2(b))。此外,图2(c)说明了T-ZFP表面和水滴之间的低粘度,这进一步证明了ZFP的超疏水效应。此外,TZFP对不同的液体表现出自清洁效果,而在此期间保持牙齿表面清洁(图3)。我们还惊喜地发现TZFP对血液也表现出出色的超疏水性。上述数据表明,ZFP的超疏水自洁特性可有效防止食物残渣粘附,确保应用于牙齿时的抗污能力。图2 T-ZFP的超疏水性。(a)不同齿片的水滴角。(b) T-ZFP的滚动角。(c) T-ZFP与水滴之间的低粘度。(d)刷洗循环、(e)温度循环和(f) pH值变化处理后水滴角的变化图3 T-ZFP对不同液体的自清洁效果生理稳定性分析与人体接触的牙科材料也应具有生理稳定性。考虑到这一点,测量了T-ZFP在刷涂(每10次为一个循环)、温度循环(4和60°C)和酸处理(pH = 3和7)下的水滴角变化,以验证ZFP保护剂的稳定性。图 2(d) 显示T-ZFP 的接触角随着刷牙次数增加而逐渐减小,但在 100 次后仍保持在 145.0° ± 0.6°。这一现象也说明ZFP可以通过一定时间的刷牙有效去除,促进了其在日常生活中的周期性应用。ZFP的生理稳定性通过在温度循环(4到60 °C之间)和pH变化(从3到7)期间超过150°的稳定接触角得到证明(图2(e)和 2(f))。综上所述,ZFP能够适应口腔内的温度变化,对酸刺激具有稳定的耐受性,从而有效地保护牙齿免受腐蚀。小结本工作针对食物残渣黏附、细菌侵入、酸腐蚀、色素沉着等一系列口腔问题,以及公众难以及时标准地刷牙和使用牙线,研制了一种专为日常牙齿保护的可见光响应型抗菌超疏水剂。ZFP保护剂有效地将超疏水性与光动力学相结合,通过简单的喷涂即可发挥抗粘附、抗菌、耐酸、防污等多种功能。因此,这种增材喷涂ZFP护甲有望成为日常生活中的一种新型牙齿保健策略,为牙齿的健康和美观提供有利保障,适应老龄化社会的发展。本文有删减,详细请参考原文S. Zhao, X. Yang, Y. Xu, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Research.
  • Nova 系列全新升级 | 重新定义低表面积测试性能
    Nova X00 系列低表面积材料应用于多个行业,如电池,建筑材料和制药等。可靠的BET比表面测量可以帮助理解表面积的微小差异会如何影响应用。安东帕Nova X00系列仪器能实现低至2 m2(或0.01 m2/g)的BET比表面测量,并且结果重复性高。01介绍对于低表面积或样品量少的材料,精确和可重复的BET-比表面积(SSA)测量是至关重要的。储能(电池)、制药配方、水净化和建筑材料生产等行业尤其需要这些进行这一方面的质检。本报告描述了重复性达到02样品管中的总表面积在测量BET比表面积时,样品的总表面积(m2)是获得准确和可重复性结果的关键。必须有足够的面积使氮气吸附,以产生仪器能够准确检测到的压力变化。使用标准样品BAM P102在安东帕Nova 800(长样品管)和Nova 600 BET(短样品管)上进行总表面积(m2)和重复性之间的相关性研究。在这两种仪器上,都使用了带有填充棒的9毫米大球泡样品管。表1给出了用于测量的分析参数。表1 用于BAM P102测量的分析参数3台Nova 800和3台Nova 600 BET仪器的结果如表2所示。所有测试结果都符合BAM P102要求。结果发现,在所有6台仪器上,样品管的总表面积为2 m2时,重复性03低表面积样品——0.01 m2/gBET 比表面积(m2/g)是材料的一项重要性质。根据孔隙度、颗粒大小和颗粒形状,材料可以具有非常低的比表面积。在Nova 800(长样品管)和Nova 600 BET (短样品管)上,仪器可靠地测量了比表面积的下限和重复性。所有测试都使用了9 mm 的球形管和填充棒。表3 给出了实验中使用的分析参数。由于在此范围内没有标准样品,通过将BCR-169(比表面积为0.10 m2/g) 与铜珠混合(稀释),得到表面积约为0.01 m2/g 的样品。表 3 低表面积测量的分析参数Nova 800 和Nova 600 BET 的结果如表4 所示。对于Nova 800,加入了27.9311 g(总表面积0.37 m2)的样品用于测量,对于Nova 600 BET,加入了30.7453 g(总表面积0.36m2)的样品用于测量。所有测量结果的BET 相关系数都大于0.999。Nova 800 的重复性为3.54%,Nova 600 BET 的重复性为4.04%。三种测量方法的BET 表面积值仅变化0.001 m2/g,但由于整体表面积较低,即使是很小的差异也会导致重复性变大, 约3-4%。表 4 BCR-169/铜珠样品的重复性04总结安东帕 Nova X00 系列仪器能够测量样品管中的低总表面积和低比表面积样品。当总表面积为2 m2 时,重复性在线商城:shop.anton-paar.cn
  • 杨正红:氮吸附仪表征药物超低比表面积的技术突破
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020年版中国药典,增加了0991比表面积测定法,并将于2020年12月30日起正式实施。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为毕业于药学院并从事气体吸附比表面和孔径分析20余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展。 /span span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " strong span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun " 一、中国药典2020版要求在相对压力P/P sub 0 /sub 为0.05-0.3范围内至少进行3个压力点的测试,且BET方程相关系数需大于0.9975 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1、有关BET比表面积的测量和计算: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先需要明确的是,BET比表面积是通过多层吸附理论(BET方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P sub 0 /sub 0.05-0.3的范围内,吸附曲线在这里进入平台区(图1)。BET理论恰恰需要这个阶段的吸附数据来计算比表面积。完整的BET报告必须包括比表面值、回归曲线、相关系数和C常数(C值,图2)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/31a57e2c-4f93-4cd4-89eb-10ed26bc5031.jpg" title=" 0000.png" alt=" 0000.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2、有关BET计算的P/P sub 0 /sub 取点: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品和药用材料的研发成功,已经开始应用多微孔的纳米载体材料控制药物缓释速度,而这些材料的多层吸附区域会前移,也就是可能到P/P sub 0 /sub 为0.01~0.15的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET计算结果可靠性的标准应该是C值大于0和回归系数大于0.9999。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (延伸阅读:杨正红:《物理吸附100问》化工出版社,2016年) /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3、有关BET方程相关系数: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 回归曲线的相关系数R=0.9975是对吸附等温线测定质量的过于粗放的低端要求,来源于20年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET差5%不算差”的说法,由此,按允许偏差± 5计算: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0500)x (1-0.0500)= 0.997500 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于BET的计算是取自多层吸附已经完成,孔中的毛细管凝聚尚未发生的平缓线性阶段数据,这显然是一个到达极限的最低标准。以这么低的标准去进行比表面测定的质量控制,实际上等于没有控制。目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过± 2,这意味着: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0200)x (1-0.0200)= 0.999600 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 也就是说,R值不应该低于0.9996。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果按常规质检要求,重复性允许偏差± 1计算,则对R值的最低要求为: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0100)x (1-0.0100)= 0.999900 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 即回归曲线的相关系数不小于四个9(R & gt 0.9999)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 二、表征超低比表面积的技术突破 /span /strong /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于真空体积法气体吸附分析仪等温线测定依据的是理想气体方程,影响结果的主要因素不外乎温度、压力和体积。当样品的吸附量远大于这些因素引起的误差时,温度、压力和体积的波动或精度误差(仪器的本底噪音)可以被忽略不计,但是当药品这样的小表面材料所能吸附样品总量不足以克服本底噪音时,就带来了测试结果的不稳定性,甚至测不出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了解决超低比表面材料的质量控制的痛点问题,我们专门开发设计了iPore 400,该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括: /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2260669a-9557-4d2e-b89a-72e7994aee06.jpg" title=" 111.png" alt=" 111.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (1)& nbsp 全域自动恒温系统:拥有双路进气预热管路及包括12个静音风扇组成的高精度恒温系统(图4),可根据需要在35-50℃之间设定恒定温度。系统实时显示全区域气路和歧管的温度,避免环境因素带来的误差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " a)& nbsp 内部整体恒温,可在35-50℃之间设置:真空体积法是通过压力传感器读取压力的变化而计算吸附量的,其准确性和有效精度对温度变化极其敏感,尤其在微孔和超低比表面分析中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " b)& nbsp 0.02℃温控精度:三个温度传感器,实时显示各区域温度。高精度和高稳定的全恒温控制,可将压力变化控制在0.05%以内,远小于传感器本身的不确定度(0.1%),可彻底避免因环境温度变化造成的分析误差。可根据地区需要和数据对比需要调节恒定温度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " c)& nbsp 进气预热恒温: 由于涉及安全管理问题,大多数实验室气瓶置于室外,造成吸附气进气温度与室温或仪器内温差距巨大,定量注气失准。该系统消灭了地区差别和早晚温差对钢瓶气造成的误差,尤其为锂电材料,药物材料,膜材料的等小比表面质量控制带来福音。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " d)& nbsp 新型电磁阀:常规电磁阀的发热问题由来已久,严重影响气体定量和压力读数的准确性,该问题在超低比表面和微孔分析时尤为突出。为解决这一问题所开发的带有自锁功能的电磁阀,无需持续供电便可保持开启或关闭状态,发热量等效为零,消除了电磁阀工作中发热引起的测量误差,极大地提升了分析性能。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (2)& nbsp 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持过程中死体积恒定。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 【专利号:ZL 2019 & nbsp 885784.5】 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 真空体积法物理吸附是在一个密闭空间进行的。自由空间是系统中吸附质分子传递、扩散的区域,如果要精确计算样品的物理吸附量,死体积值是准确采集数据的基础。因为真空体积法的测量基础是压力,吸附量的计算基础是理想气体状态方程,所以吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。 系统死体积越小,对压力变化的灵敏度越高,吸附量计算越准确。换句话说,在同样的条件下,系统死体积越小,则仪器测量精度越高。由于在氮吸附分析过程中,液氮是不断挥发的,所以为保证精确计算吸附量,要对死体积进行控制、测量或校准。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9d9ab2a1-3a09-482c-b996-a84f2e8565d1.jpg" title=" 222.png" alt=" 222.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (3)32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。转换精度就是分辨率的大小,因此要获得高精度的模/数转换结果,首先要保证选择有足够分辨率的ADC,同时还必须与外接电路的配置匹配有关。iPore系列不仅采用32位模数转换,而且采用拥有自主知识产权的32位电路设计和制造,从系统上保证了压力传感器精度的进一步提升(见表1)。 /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 表1 & nbsp ADC芯片转换精度与压力分辨率关系(以1000Torr传感器为例) /span /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC转换位数 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 16 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 24 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 32 Bit /span /strong strong /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC有效位数 /span /strong strong /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 15 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 20 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 28 Bit /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力最小分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 2 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0079 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.00003 Pa /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力有效分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 4 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.12 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0039 Pa /span /p /td /tr tr td width=" 568" valign=" top" colspan=" 4" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" *ADC span style=" font-family:宋体" 有效位数是指可靠的转换值 /span /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 这些新技术的采用,带来了意想不到的突破。它不仅可以用氮吸附测定0.005 m sup 2 /sup /g左右的比表面积,大大超越了常规氮吸附的比表面下限极值(0.01m sup 2 /sup /g),而且可以测得微量吸附下的孔径分布(图6)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/4eb6833c-d410-482b-9d03-8f85c54cd03d.jpg" title=" 444.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/1dbb2a52-49ba-426e-a862-cd25a827530c.jpg" title=" 555.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) " 三、突破性吸附技术对制药行业的应用意义 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1.& nbsp 超低比表面样品测定的重复性、重现性和稳定性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221± 0.013m sup 2 /sup /g,氪吸附)的重复性偏差(表2)。结果表明,iPore 400的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET比表面测定长期重复性达到空前水平! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " iPore 400可以配置6个独立的分析站(图4),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6个站BET测定结果具有高度的一致性,重现性偏差同样优于1%(表3)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center " strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 表 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" 3 /span /strong strong span style=" font-family: 黑体 font-size: 14px" & nbsp /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 低比表面石墨样品比表面平行测定实验( /span /span /strong strong span style=" font-family: 黑体 color: rgb(255, 0, 0) font-size: 14px" span style=" font-family:黑体" 红色 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 数据是 /span 12次测量结果的标准差) /span /strong /p table border=" 0" cellspacing=" 0" style=" margin-left: 7px border: none" align=" center" tbody tr style=" height:22px" class=" firstRow" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td valign=" center" nowrap=" " colspan=" 6" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" BET比表面值(m /span /strong strong sup span style=" font-family: 黑体 font-size: 15px vertical-align: super" 2 /span /sup /strong strong span style=" font-family: 黑体 font-size: 15px" /g), & nbsp & nbsp R & gt 0.9999 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 六站测定重现性 /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 测定次数 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 站号 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 1 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 2 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 3 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 4 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 5 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 6 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" RSD /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 1 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定投气量测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8781 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8880 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8940 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8825 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8878 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8800 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.54% /span /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 2 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定压测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8767 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8760 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8744 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8816 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.25% /span /p /td /tr tr style=" height:19px" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 15px" 同站测定重现性,RSD /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.07% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.60% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.96% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.39% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.67% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.08% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" strong span style=" font-family: 宋体 color: rgb(255, 0, 0) font-size: 15px" 0.61% /span /strong strong /strong /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 我们用这些新技术对薄膜超低比表面积进行了重复性测定,得到了相当出色的结果 (BET = 0.0307m sup 2 /sup /g)。这为解决超滤膜和纳滤膜的纳米孔分析奠定了基础(图7)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0e898529-e557-42aa-8499-f7f6d3993be8.jpg" title=" 666.png" alt=" 666.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2.& nbsp 超高比表面样品测定的重复性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 共价有机框架聚合物(COF)是一种低密度、高比表面、易于修饰改性和功能化的新型人工合成材料。在问世的短短十余年之间,就在气体储存与分离、非均相催化、储能材料、光电、传感以及药物传递等领域展现出优异的应用前景,并且已经发展成为一种纳米药物载体。常规气体吸附法比表面容易测定的范围是5~500 m sup 2 /sup /g之间。因为吸附量巨大,需要长时间的平衡条件,比表面大于1000 m sup 2 /sup /g 的样品重复性控制并不容易做到。为此,对比表面大于2000m sup 2 /sup /g的COF样品比表面进行了长期稳定性测定,结果重复性优于0.07%(图8)! /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3.& nbsp 能力验证——新技术对超低比表面样品测定重复性的重要性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了比较新技术和现有技术在超低比表面应用中的区别,我们用一种极低比表面的金属氧化物对仪器性能进一步进行了验证,并与其它品牌的测试结果进行了比较(图8)。结果表明,新技术不仅两次测定(图8a和b)相关系数都在0.9999以上,而且BET比表面和吸脱附等温线都能很好地重复;而一旦关闭死体积恒定功能,虽然BET =0 .032并且相关系数(R=0.9987)依然满足药典0991要求(图8c),但其数据质量已经迅速下降,脱附等温线已经发生变形,说明这些采用的新技术相辅相成,缺一不可。而没有这些技术的常规氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图8d)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/f6863e5f-cd33-488a-97c4-55f51653c09e.jpg" title=" a.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/69859a06-d2f0-4879-9371-d8406940d9b3.jpg" title=" b.png" / /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" a span style=" font-family:黑体" 和 /span span style=" font-family:Times New Roman" b /span span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 两次测定的结果,比表面积值可以完全重复; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" c span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 关闭死体积恒定功能的结果,可见 /span span style=" font-family:Times New Roman" BET /span span style=" font-family:黑体" 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" d span style=" font-family:黑体" :其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线 /span /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 4.& nbsp 在标准“介孔仪器”配置上实现氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药品多为有机化合物,比表面值一般都很低。新版中国药典0991指出,对于比表面积小于 0.2m sup 2 /sup /g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr吸附一般至少需要配备10torr的高精密压力传感器以及分子泵,以分辨P/P sub 0 /sub 在10 sup -5 /sup ~10 sup -4 /sup 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m sup 2 /sup 的绝对表面积计算。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但是,一般的氪吸附的应用需要配置分子泵和10torr压力传感器,这给企业带来了额外的成本负担。而新技术的突破可以在标准配置(机械泵和1000torr压力传感器)的条件下满足氪吸附的应用要求,P/P sub 0 /sub 下限达到可重复的10 sup -5 /sup (图9),为医药企业节约了检测投资成本! /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ad65b4cb-6898-4bbf-8553-8afc66f8b0c1.jpg" title=" c.png" alt=" c.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 5.& nbsp 用氮吸附完全替代氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 其实,在77.4K的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P sub 0 /sub ?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET方法中,假设吸附质相完全浸润)?在77K的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm sup 2 /sup & nbsp (15.2 Å sup 2 /sup ),但通常会用较大的横截面面积值,甚至高达0.236 nm sup 2 /sup (23.6 Å 2)。采用较多的横截面积值是0.202 nm sup 2 /sup (20.2 Å sup 2 /sup )。除此之外,氪气的成本是氮气的240倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。因此,理化联科气体吸附分析技术上的突破带来了药企行业应用的巨大突破,氮吸附已经成功地实现了氪吸附领域的超低比表面积测定(图6~8)。我们用氮吸附成功测定的极限样品是0.0047m sup 2 /sup /g,这意味着只有当试样比表面小于0.005m sup 2 /sup /g时,才需要氪吸附,而这样的样品凤毛麟角。也就是说,一台全部采用上述新技术的仪器可以全部满足药企各种比表面的测定需求。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 6.& nbsp 建立超滤膜孔径(纳米孔)评价的新方法: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 滤膜孔径评价的经典方法是气体渗透法(即毛细管流动法),但这种方法的适用范围是20nm~500μm。超滤膜是一种孔径范围为1-20nm的纳米孔过滤膜,其范围恰恰在气体渗透法能力之外。该膜的孔径范围虽然被气体吸附法所覆盖,但由于膜的吸附量过低,常规的气体吸附法无法实现测定。国外曾经建立起了液氩温度下氪吸附测量膜孔径的方法,但无论仪器、耗材及方法都很难向工厂推广。制药行业中膜技术应用存在的技术瓶颈亟待解决,需要建立快速可行的超滤膜孔径评价方法。实际上,电池隔膜和电子薄膜也存在类似问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附技术在精度控制上的突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图6右)。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 7.& nbsp 突破传统“介孔仪器”,实现微介孔样品的氮吸附微孔测定: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 新的气体吸附技术标准使1000torr传感器的分辨率提高到了10torr级别,仪器的密封性使机械泵抽空效率发挥到极致。以氮吸附替代氪吸附,以传统介孔仪器成功测定微孔(图10),不仅节约了用户购买仪器的成本,而且降低了用户使用成本;不仅将比表面测定的重复性提高一个数量级,而且微孔分析的重复性也得到充分保障,对MOF/COF样品的研究开发将起到推动作用。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c02cabde-81b1-42d3-a7f5-5b064c381921.jpg" title=" d.png" alt=" d.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 8.& nbsp 气凝胶较大介孔和边际大孔的孔径分析取得突破: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附法介孔孔径分析的经典方法是BJH法,它是基于以毛细管凝聚理论为基础的KELVIN公式。其基本概念是,当压力增加时,气体先在小孔中凝结, 然后才是大孔。因此,孔径与压力有对应关系。但是,当孔径大于10nm以后(对应P/P sub 0 /sub =0.90),压力上升0.05(P/P sub 0 /sub =0.95),对应的孔径已经是20nm了,并且呈指数上升。如:P/P sub 0 /sub =0.98对应50nm,而0.99则已经是100nm了。因此,虽然ISO15901-2指出气体吸附法的孔径测定上限是100nm,但实际上很少有人能做到30nm以上去,因为压力传感器必须能够密集分辨和探知百万分之一的压力变化,这大大超出了常规压力传感器0.15% 分辨率的标称值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气凝胶是一种新型低密度多孔纳米材料,具有独特的纳米级多孔及三维网络结构,同时具有极低的密度(3 500kg/m sup 3 /sup )、高比表面积(200 1000m sup 2 /sup /g)和高孔隙率(孔隙率高达 80 99.8%,孔径典型尺寸为 1 100nm),从而表现出独特的光学、热学、声学及电学性能,具有广阔的应用前景。在医药领域,气凝胶被用于药物可控释放体系。但是,其孔径分布分析却遇到麻烦,因为压汞仪的高压会破环样品的孔结构。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 致病微生物在多孔氧化铝膜上生长不易受到限制,因此氧化铝膜常用于药物敏感性实验(DST)了解病原微生物对各种抗生素的敏感程度或耐受程度来指导临床用药。与气凝胶相反,膜的单位吸附量极低,但孔径可能达到100nm以上。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由表1可知,32位电路新技术可以极大地提高压力传感器的分辨率,至少可分辨3.9*10 sup -8 /sup 的相对压力变化,因此,我们尝试对气凝胶和氧化铝膜进行孔径分布分析。利用精细投气控制新技术,0.99以上的设点间隔达到0.0002的密度,最高吸附点达到了0.9980(对应孔径559nm),在测试方法上取得新的突破,为建立气凝胶和氧化铝膜孔径分析的新方法奠定了坚实的基础(图11)。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px text-indent: 0em " span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun font-size: 18px " 四、总结 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 工欲善其事,必先利其器! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 利用气体吸附分析仪进行比表面积质量控制分析时,经常碰到如下问题:不同厂家仪器之间数据不一致;同一型号在不同地域或不同海拔的数据不一致;同一台仪器在白天晚上或春夏秋冬的数据不一致;同一台仪器长期稳定性不好。这些现象已经成为长期困扰行业质量控制的头疼问题。气体吸附分析技术的突破不仅彻底攻克了这个难题,而且使超低比表面分析达到高稳定性、高重复性、高效率;随之产生的功能性扩展,无论用氮吸附代替氪吸附,还是孔径分布测定向介孔两端范围延伸拓展,都为中国企业全面贯彻中国药典0991带来了超高性价比的惊喜! /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6ca5abfe-f2ab-4486-9fa5-bb34c06304c5.jpg" title=" e.png" alt=" e.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附分析技术的突破,为全面贯彻药典新规和GB/T 19587-2017标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,提供了性能全面优化的可涵盖各种药用试品的分析仪器,也为下一代物理吸附分析仪的发展方向树立了新的标杆,建立了新的标准。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体, SimSun" 作者简介: /span /strong /p p style=" text-align: center " span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b5946e97-b5e2-4749-8815-3ebd6df36529.jpg" title=" f_看图王(1).jpg" alt=" f_看图王(1).jpg" / /span /p p span style=" font-family: 宋体, SimSun " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /span /p
  • 3轴手持式特斯拉计-让狭窄气隙中的磁场高精度3维测量成为可能!
    3轴手持式特斯拉计-让狭窄气隙中的磁场高精度3维测量成为可能!3轴手持式USB特斯拉计包含一个完全集成的3轴霍尔探头,该探头集成在一个专门设计的碳纤维支架中,为探头提供机械保护。探头支架宽 4 毫米,厚仅 1 毫米,可以测量狭窄气隙中的磁场。霍尔探头连接到紧凑轻巧的电子模块,提供测量信号调节、12 位 AD 转换、设备校准以及与主机的 USB 连接。霍尔探头片上温度传感器允许为每三个磁场分量(Bx、By 和Bz)提供温度补偿输出信号。一.测量原理首先我们可以来看一下磁场矢量和分量。空间中任何一点的磁场都是矢量。这意味着存在与场相关的方向以及场强。考虑下面的箭头:一.测量原理首先我们可以来看一下磁场矢量和分量。空间中任何一点的磁场都是矢量。这意味着存在与场相关的方向以及场强。考虑下面的箭头:我现在可以用 x 和 y 分量来描述箭头的长度或磁场的强度。使用勾股定理:现在假设存在第三方向,因此箭头 B 可以指向页面平面之外(或进入)。现在有第三个组件,即 Bz,在我们的示例中,它是组件从页面向外延伸到箭头尖 端的长度。通过完全相同的数学,我现在可以将 B 描述为:B值是磁场强度。Bx、By 和 Bz 是由三轴特斯拉计(高斯计)测量的三个分量。单轴测量设备将根据敏感轴相对于磁场方向的定向方式改变其读数。要获得空间任意点磁场的完整表示,不仅需要 B 的值,还需要方向,可以表示为 Bx、By 和 Bz 三个分量。一些磁场传感器仅测量磁场的一个分量(磁通门和霍尔效应仪器)。这些被称为单轴设备。其他仪器仅测量总场幅(NMR、ESR)。这是上面的数量B。可以结合三轴传感器在单个探头包中提供三个现场测量。这些被称为三轴设备。昊量光电新推出3轴手持式USB特斯拉计就是可以实现三维分量的磁场测量系统!二.功能性3轴手持式USB特斯拉计在 Windows 计算机、平板电脑或智能手机上运行的易于使用的特斯拉计软件用于数据采集、特斯拉计电源和控制以及测量数据的可视化。测量数据以数字和图形彩色显示 器显示,便于阅读和直观设置警报触发器、保持功能和测量数据存储。显示磁场的总值,以及磁场的所有三个分量和探头温度。此外,还可以显示磁场分量的蕞小值/蕞大值。三.技术信息和规格• 带有 3 轴霍尔探头的特斯拉计/高斯计• 轻巧而坚固的塑料外壳• 很好坚固和灵活的碳纤维探头支架• 用于保存校准数据的 EEPROM• 适用于 PC、平板电脑和智能手机的用户友好型软件• 报警、保持和归零功能• 磁场分量 Bx、By 和 Bz 以及 BTotal、Bmax、Bmin 和探头温度的数值和图形可视化• 霍尔探头(带支架)的厚度:1mm• 霍尔探头的宽度:4mm• 未校准的测量范围:20T• 校准测量范围:0.1T、0.5T、2T• 磁分辨率:± 20µT• 频率带宽:DC-500Hz• AD 转换:12Bit• 接口:兼容 USB2 和 USB3• 精度:± 1%四.应用的方向• 永磁体和磁体系统的控制和监测• 测量周围磁场• 磁体系统和过程控制的开发• 应用于生产线和实验室• 磁场映射五.丰富的配件零高斯室用于将读数归零。尺寸:25mm 外径,21mm 内径,200mm 长度。屏蔽系数:100关于MatesyMatesy GmbH 是一家位于耶拿大学城中心的创新技术公司。该公司成立于 2008 年,是研发机构“ INNOVENT Technology Development ”的衍生公司,专注于 磁场的可视化表征和生成。此外,Matesy 将磁性用于各种应用,例如:磁性标记颗粒和物体的三维定位、人体胃肠道靶向药物释放、安全特性的智能检查和材料开发上海昊量光电作为Matesy公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。对于3轴手持式特斯拉计有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。如果您对3轴手持式特斯拉计有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/details-1863欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
  • 中国国土面积13%土壤存污染 专家建言施重点防控
    中国地质调查局实施的全国多目标区域地球化学调查显示,我国土地质量总体状况良好,达土壤环境质量一、二类标准占87%。但是,占国土面积13%土壤存在污染,污染状况不容忽视。南方以镉、汞、铅、砷等重金属问题为主,在经济发达和人口稠密地区频发镉、汞等重金属中毒问题 而北方以高氟、高砷和低碘等非金属问题为主,在较多贫困农村和边远地带受到砷、氟等地方病困扰。   中国地质调查局副主任奚小环在《生态地球化学:从调查实践到应用理论系统工程》一文中指出,长江流域的重金属主要来源于沱沱河大面积重金属异常和沿江有色金属矿带 城市及周边地区汞、铅等普遍存在,并在城市中心地带形成异常富集区 各大湖泊呈现有害元素污染汇集趋势,其中,鄱阳湖、洞庭湖、巢湖、滇池等湖泊出现以镉、铅、汞、砷、硫等为主的污染,富营养化问题突出。   中国工程院院士张懿说,我国大部分的重金属污染来自于有色金属的采选、冶炼及后期产品加工企业。重金属污染生态环境后,修复的治理技术非常复杂,成本也非常高。应将有色金属矿、重金属冶炼业、含铅蓄电池业、皮革业、化学燃料等作为我国的防控行业 将具有潜在环境危害风险的排放企业作为重点防控企业,将重点防控区域的人群作为体检和诊疗工作的重点对象。   “还要对可能成为污染源的一些企业进行排查,做成一个地理信息系统,对可能造成危害的程度、数量多少、可能发生事故的大小等,进行调查,列成名录,做到心中有数。一旦出了问题,就能把污染局限在最小范围内进行治理,不至于造成大的环境损害。”中国工程院院士魏复盛说。
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 山西农业大学农业基因资源研究中心643.00万元采购叶面积仪,液相色谱仪,纤维测定仪,原子荧光光谱,...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 山西农业大学农业基因资源研究中心公开招标山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置的采购公告 山西省-晋中市 状态:公告 更新时间: 2023-10-14 招标文件: 附件1 项目概况 山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置招标项目的潜在投标人应在政采云平台线上获取招标文件,并于2023年11月07日 09:00(北京时间)前递交投标文件。 一、项目基本情况项目编号:JDZB-GZ-HW-2023003/1499002023AGK02632项目名称:山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置预算金额:陆佰肆拾叁万元整(¥6430000.00)最高限价:陆佰肆拾叁万元整(¥6430000.00)采购需求:第1包:预算金额:贰佰叁拾柒万元整(¥2370000.00) 序号 货物名称 数量 单位 备注 1超高效液相色谱-三重串联四极杆质谱联用仪 1 台 第2包:预算金额:贰佰贰拾叁万元整(¥2230000.00) 序号 货物名称 数量 单位 备注 1 全自动膳食纤维测定仪 1 台 2 粘度分析仪 1 台 3 氨基酸分析仪 1 台 4 全自动原子荧光光度计 1 台 第3包:预算金额:壹佰贰拾壹万元整(¥1210000.00) 序号 货物名称 数量 单位 备注 1 消化炉 1 台 2 重金属消解仪 1 台 3 全自动滴定仪 1 台 4 全自动脂肪酸值测定仪 1 台 5 种子和针叶图像分析系统 1 套 6 便携式玉米果穗穗部考种系统 1 套 7 植物光合生理及环境监测系统 1 台 8 根系分析系统 1 套 9 作物株高测量仪 1 台 10 便携式植物抗倒伏测定仪 1 台 11 作物夹角茎粗测量仪 1 台 12 麦穗形态测量仪 1 台 13 便携式叶面积仪 1 台 14 手持式叶绿素荧光仪 1 台 第4包:预算金额:陆拾贰万元整(¥620000.00) 序号 货物名称 数量 单位 备注 1 物联网数据获取与处理系统 1 套 合同履行期限:自合同签订之日起60日历天内完成运输、安装、调试、培训,达到验收标准。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:无。三、获取招标文件1.时间:2023年10月14日至2023年10月20日,每天00:00至23:59(北京时间,法定节假日除外)2.地点:通过山西省政府采购网-政府采购云平台获取电子招标文件。3.方式:拟参与公开招标的投标人(供应商),在报名期限内,应通过山西省政府采购网上公开信息系统的注册账号(免费注册),登录山西省政府采购网-政府采购云平台免费获取电子招标文件。未报名将导致其不能下载采购文件且投标文件被拒收。凡有意参加投标的投标人(供应商),请按照以下步骤免费获取招标文件:(1)进入“山西政府采购平台-政府采购云平台应用中心”“项目采购”“获取采购文件”,在【待申请】标签页下,找到需要获取采购文件的项目,点击[申请获取采购文件]。(2)填写供应商信息,勾选意向标项,完成后点击[提交]。(3)弹窗提示“提交成功”后,在【获取采购文件-已申请】标签页显示“已获取”状态。(4)请于招标文件获取截止时间前(北京时间、下同)进入山西政府采购平台-政府采购云平台获取招标文件。四、提交投标文件截止时间、开标时间和地点时间:2023年11月7日09点00分(北京时间)地点:电子投标文件上传至政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)备注:1、投标人在招标文件规定的开标时间后使用数字证书(CA)对已递交的电子投标文件进行远程解密。2、纸质投标文件远程解密完成后于当日送达至山西省太原市小店区龙城大街盛锦国际A座13层。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、供应商应在投标文件递交截止时间前按照山西省政府采购平台设定的操作流程将电子投标文件1份上传至山西省政府采购采购平台系统。2、电子投标文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成投标文件上传的,视为无效报价;投标人自行承担责任。 3、针对本项目的质疑需一次性提出,多次提出将不予受理。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息名 称:山西农业大学农业基因资源研究中心地址:山西省太原市龙城北街161号 联系方式:张先生0351-76392332.采购代理机构信息名 称:山西君度宏信项目管理有限公司 地 址:山西省太原市小店区龙城大街盛锦国际A座13层联系方式:杨美花、周洋、韩爱清 0351-7221787、0351-3693369 邮箱:sxjdhxkj@163.com3.项目联系方式项目联系人:张先生电 话:0351-7639233备注:参加本次采购活动的供应商须在山西省政府采购网进行供应商注册并完善信息成为正式供应商。附件信息: 643万--招标文件--山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备项目(定稿).docx472.9K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:叶面积仪,液相色谱仪,纤维测定仪,原子荧光光谱,分子荧光光谱,氨基酸分析仪 开标时间:2023-11-07 09:00 预算金额:643.00万元 采购单位:山西农业大学农业基因资源研究中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西君度宏信项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山西农业大学农业基因资源研究中心公开招标山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置的采购公告 山西省-晋中市 状态:公告 更新时间: 2023-10-14 招标文件: 附件1 项目概况 山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置招标项目的潜在投标人应在政采云平台线上获取招标文件,并于2023年11月07日 09:00(北京时间)前递交投标文件。 一、项目基本情况项目编号:JDZB-GZ-HW-2023003/1499002023AGK02632项目名称:山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置预算金额:陆佰肆拾叁万元整(¥6430000.00)最高限价:陆佰肆拾叁万元整(¥6430000.00)采购需求:第1包:预算金额:贰佰叁拾柒万元整(¥2370000.00) 序号 货物名称 数量 单位 备注 1 超高效液相色谱-三重串联四极杆质谱联用仪 1 台 第2包:预算金额:贰佰贰拾叁万元整(¥2230000.00) 序号 货物名称 数量 单位 备注 1 全自动膳食纤维测定仪 1 台 2 粘度分析仪 1 台 3 氨基酸分析仪 1 台 4 全自动原子荧光光度计 1 台 第3包:预算金额:壹佰贰拾壹万元整(¥1210000.00) 序号 货物名称 数量 单位 备注 1 消化炉 1 台 2 重金属消解仪 1 台 3 全自动滴定仪 1 台 4 全自动脂肪酸值测定仪 1 台 5 种子和针叶图像分析系统 1 套 6 便携式玉米果穗穗部考种系统 1 套 7 植物光合生理及环境监测系统 1 台 8 根系分析系统 1 套 9 作物株高测量仪 1 台 10 便携式植物抗倒伏测定仪 1 台 11 作物夹角茎粗测量仪 1台 12 麦穗形态测量仪 1 台 13 便携式叶面积仪 1 台 14 手持式叶绿素荧光仪 1 台 第4包:预算金额:陆拾贰万元整(¥620000.00) 序号 货物名称 数量 单位 备注 1 物联网数据获取与处理系统 1 套 合同履行期限:自合同签订之日起60日历天内完成运输、安装、调试、培训,达到验收标准。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:无。三、获取招标文件1.时间:2023年10月14日至2023年10月20日,每天00:00至23:59(北京时间,法定节假日除外)2.地点:通过山西省政府采购网-政府采购云平台获取电子招标文件。3.方式:拟参与公开招标的投标人(供应商),在报名期限内,应通过山西省政府采购网上公开信息系统的注册账号(免费注册),登录山西省政府采购网-政府采购云平台免费获取电子招标文件。未报名将导致其不能下载采购文件且投标文件被拒收。凡有意参加投标的投标人(供应商),请按照以下步骤免费获取招标文件:(1)进入“山西政府采购平台-政府采购云平台应用中心”“项目采购”“获取采购文件”,在【待申请】标签页下,找到需要获取采购文件的项目,点击[申请获取采购文件]。(2)填写供应商信息,勾选意向标项,完成后点击[提交]。(3)弹窗提示“提交成功”后,在【获取采购文件-已申请】标签页显示“已获取”状态。(4)请于招标文件获取截止时间前(北京时间、下同)进入山西政府采购平台-政府采购云平台获取招标文件。四、提交投标文件截止时间、开标时间和地点时间:2023年11月7日09点00分(北京时间)地点:电子投标文件上传至政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)备注:1、投标人在招标文件规定的开标时间后使用数字证书(CA)对已递交的电子投标文件进行远程解密。2、纸质投标文件远程解密完成后于当日送达至山西省太原市小店区龙城大街盛锦国际A座13层。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、供应商应在投标文件递交截止时间前按照山西省政府采购平台设定的操作流程将电子投标文件1份上传至山西省政府采购采购平台系统。2、电子投标文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成投标文件上传的,视为无效报价;投标人自行承担责任。 3、针对本项目的质疑需一次性提出,多次提出将不予受理。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息名 称:山西农业大学农业基因资源研究中心地址:山西省太原市龙城北街161号 联系方式:张先生0351-76392332.采购代理机构信息名 称:山西君度宏信项目管理有限公司 地 址:山西省太原市小店区龙城大街盛锦国际A座13层联系方式:杨美花、周洋、韩爱清 0351-7221787、0351-3693369 邮箱:sxjdhxkj@163.com3.项目联系方式项目联系人:张先生电 话:0351-7639233备注:参加本次采购活动的供应商须在山西省政府采购网进行供应商注册并完善信息成为正式供应商。附件信息: 643万--招标文件--山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备项目(定稿).docx472.9K
  • 中关村材料试验技术联盟发布《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》等3项标准征求意见稿
    各位专家、委员及相关单位:中国材料与试验标准化委员会决定对《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》《生物基粉末涂料》《涂料中多种禁限用生物杀伤剂的测定 第1部分:吡啶硫酮锌》团体标准征求意见稿公开广泛征求意见。请登录CSTM官网http://www.cstm.com.cn/channel/details/biaozhunzhengqiuyijian查看征求意见通知并下载相关资料附件。CSTM团体标准《船舶防污漆中禁用防污剂含量的测定 第2部分:气质联用法》征求意见的资料.rarCSTM团体标准《生物基粉末涂料》征求意见的资料.rarCSTM团体标准《涂料中多种禁限用生物杀伤剂的测定 第1部分:吡啶硫酮锌》征求意见的资料.rar
  • 正确的使用手持式电导率计可以提高测量的精准度
    手持式电导率计适用于精密测量各种液体介质的电导率仪、TDS和盐度值的仪器,配置CON1型铂金电导电极,有一点按键自动校准、自动量程转换、自动信息提示等优点。仪器广泛适用于各领域的科研和生产。 手持式电导率计是如何使用的: 1.使用前观察表针是否指零。 2.将校正测量开关扳在“校正”位置。 3.插接电源线,打开电源开关,并预热数分钟调节“调正”调节器使电表指示满度。 4.当使用(1)-(8)量程来测量电导率低于300μS.cm-1的液体时,选用“低周”,这时将高/低周开关扳向低周即可。当使用(9)-(10)量程来测量电导率在300μS.cm-1至105μS.cm-1范围里的液体时,则将扳向“高周”。 5.将量程选择开关扳到所需要的测量范围,如预先不知被测溶液电导率大小,应先把其扳到zui大电导率测量档,然后逐渐下降,以防表针打弯。 6.电极的使用:使用时用电极夹夹紧电极的胶木帽,并把电极夹固定在电极杆上。 7.将电极插头插入电极插口内,旋紧插口上的紧固螺丝,再将电极綅入待测溶液中。 8.接着校正当用(1)-(8)量程测量时,校正时扳到低周,当用(9)-(12)量程测量时,则校正扳到高周,扳到“校正”,调节校正调节器,使指示在满度。 9.当用(0-0.1)或(0-0.3)μS.cm-1这两档测量高纯水时,先把电极引线插入电极插孔,在电极未綅入溶液前,调节电容补偿调节器使电表指示为zui小值。 手持式电导率计的产品特点: 1.仪器配置:CON1型铂金电导电极1支,温度探棒1支,9V电池1节,BEC-530/531/540 型配置CON10型电导电极1支。 2.可设定TDS系数:根据电导分析法,测量水质溶解性总固体时应准确估算,设定TDS系数,530/540可在0.01至1.00之间设定以保障测量值的精确可靠。 3.可设定温度系数:含有不同离子的溶液往往具有不同的温度系数,准确设定温度系数对精确测量至关重要,BEC便携型可在0至3.9%每摄氏度的范围内进行设置。 4.一点按键自动校准:仪器配合标准电导液可以进行每个量程1点自动校准,校准时,仪器自动识别校准液,如果您使用错误的或与设定值偏差较大的电导液进行校准,仪器将自动报警。 5.可设定电极常数:测量高或低电导溶液时,您需要选配不同常数的电导电极,BEC便携型具有三个电极常数可选,您可以根据选用的电极自行设定,仪器将自动转换终点测量值。 6.自动量程转换:测量电导率或溶解性总固体(TDS)时,仪器具有自动量程转换功能。当电极传感器浸入溶液后,BEC便携型将自动扫描当前测量值并转换量程,仪器将以精确的分辨率显示终点测量值。 7.手持式电导率计带有自动信息提示:BEC便携型具有操作信息提示功能,当您进入某一项设置或测量信息栏将帮助您了解仪器在当前状态下可执行什么操作及如何操作,它等同于使用手册的操作步骤说明。通过信息栏的引导,您能轻松完成某项设置或测量任务。
  • 麦克仪器:药物粉体比表面积测定——why and how?
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 药物粉体是70-80%固体制剂以及部分液体制剂的基础单元,药物粉体加工成型的工艺性及产品质量都极大的受到药物粉体性质的影响和制约,无论在分散、填充、混合等过程中,还是在配方、过程设计与量产中,药物粉体性质都与产品质量、性能和工艺等息息相关,直接决定药物的最终疗效。 /span /p p style=" text-align:center" span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/fa10143b-c46a-4a69-9db1-570ed26867f1.jpg" title=" 1.jpg" alt=" 1.jpg" / /span /p p style=" text-align: justify text-indent: 2em " 药物粉体的比表面积就是备受关注的颗粒性质之一。药物粉体的比表面积直接影响其颗粒粒径、溶解度和溶出度等性质,在一定条件下,同等重量药物粉体的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快,通过对药物粉体比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。 /p p style=" text-align: justify text-indent: 2em " Radha& nbsp R.Vippagunta等人曾进行了三种原料药API无定形含量、比表面积、流动性与辊压成型的相关性研究 [1]。实验均采用相同组分但不同批次的API进行无定形含量、比表面积、流动性和辊压测试,实验结果表明:随着API无定形含量增大,其比表面积增大,而药物粉体的流动性和辊压成型的片剂质量却相应变差;当无定形含量增大到一定比例后,药物粉体的比表面积会随无定形含量的增大而减小;纯无定形API的比表面积最小,且很难辊压成型。Smirnova I等人则是对药物载体二氧化硅气凝胶在提高难溶药物溶出速率方面进行了一系列研究[2]。研究表明二氧化硅气凝胶的比表面积越大则药物担载量越大,药物经过气凝胶的担载后溶出速率显著提高。综上所述,药物粉体的比表面积对控制药物性能非常重要,因此在美国药典USP& lt 846& gt ,日本药典JP 3.02,欧洲药典Ph. Eur. 2.9.26和2020年版《中国药典》通用技术0991中,都明确规定了药物粉体比表面积的测定方法。 !--846-- /p p style=" text-align: justify text-indent: 2em " strong 比表面积是什么? /strong /p p style=" text-align: justify text-indent: 2em " 通常被广泛使用的概念是表面积或外表面积,指物质暴露在外所有表面的面积之和,单位是平方米(㎡)。而比表面积指的是单位质量物质的表面积,单位是平方米/克(㎡/g),即物质的外表面积除以该物质的质量。 /p p style=" text-align: justify text-indent: 2em " strong 药物粉体的比表面积测试 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 药物粉体比表面积的分析测试方法有很多种,其中气体物理吸附法是最成熟和通用的方法。其基本原理是测算出某种气体分子在药物粉体表面形成完整单分子吸附层的吸附量,乘以每个分子的覆盖面积即得到药物粉体的总表面积,再除以药物粉体的质量得到比表面积。 /span /p p style=" text-align: justify text-indent: 2em " 在药物粉体的气体物理吸附测试中,药物粉体被称为吸附剂,被药物粉体吸附的气体称为吸附质。原则上只要和药物粉体不发生化学反应的气体均可用作吸附气体,目前使用最为广泛的吸附气体是氮气。气体分子在药物粉体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出,在各国药典中都明确指出吸附等温线的测定方法分为动态流动法和静态体积法,其中静态体积法是通用的测定比表面积的方法。 /p p style=" text-align: justify text-indent: 2em " 比如麦克仪器公司的TriStar系列(如图1所示)和Gemini VII系列(如图2所示)两款静态体积法气体物理吸附仪就能够为各类药物粉体提供高精度、高效率和高标准的比表面积测试。由于药物粉体在生产和贮存过程中表面可吸附其它气体或蒸汽,因此在测定前一般需要采用真空或流动脱气法在脱气站(如图3所示)上选择合适的温度和时间对药物粉体进行脱气预处理,以确保比表面积结果的精密度和准确度。另外,TriStar系列和Gemini VII系列气体物理吸附仪还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保数据的安全性、真实性和完整性。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 150px height: 209px " src=" https://img1.17img.cn/17img/images/202007/uepic/e48ec2d9-3006-4c83-bbed-eedf968910f2.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 150" height=" 209" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图1 TriStar系列气体物理吸附仪示意图 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 150px height: 195px " src=" https://img1.17img.cn/17img/images/202007/uepic/9ee8de22-9467-4d33-b6d6-1992c14eb81b.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 150" height=" 195" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图2 Gemini VII系列气体物理吸附仪示意图 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 200px height: 130px " src=" https://img1.17img.cn/17img/images/202007/uepic/9b4ee6d2-ae96-4b4e-bf68-c6c50c121f3f.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 200" height=" 130" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图3 脱气站示意图:左为流动法脱气站,右为真空法脱气站 /strong /p p style=" text-align: justify text-indent: 2em " strong 麦克仪器应用的三个典型场景 /strong /p p style=" text-align: justify text-indent: 2em " strong 1.& nbsp 原料药API的比表面积测定 /strong /p p style=" text-align: justify text-indent: 2em " 原料药是用于药品制造中的一种物质或物质的混合物,在疾病的诊断、治疗、症状缓解、处理或疾病的预防中有药理活性或其他直接作用,或者能影响机体的功能或结构。为了表征某种原料药的比表面积,使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行了77K(液氮温度)下的氮气吸附等温线测试。该原料药在相对压力 /p p style=" text-align: justify text-indent: 2em " 0.994时的平衡吸附量仅8.7205 cm3/g STP;使用B.E.T方程处理该吸附等温线,通过计算可得到该原料药的比表面积为4.9453 m2/g,线性相关系数为0.9999(如图4所示)。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6a8ef2cb-654a-4898-a125-334e829e2944.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图4:某原料药的B.E.T比表面积计算结果 /strong /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp 药物辅料硬脂酸镁的比表面积测定 /strong /p p style=" text-align: justify text-indent: 2em " 硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该硬脂酸镁的比表面积为1.1251m2/g,线性相关系数为0.9999(如图5所示)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/9f89dc93-f2fd-4c88-a1d4-32be951dea53.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图5:硬脂酸镁的B.E.T比表面积计算结果 /strong /p p style=" text-align: justify text-indent: 2em " strong 3.& nbsp 药物制剂缬沙坦的比表面积测定 /strong /p p style=" text-align: justify text-indent: 2em " 缬沙坦是一款血管紧张素II受体拮抗剂抗高血压类药物,同样使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该缬沙坦的比表面积为4.6611m2/g,线性相关系数为0.9999(如图6所示)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/47bfccc1-b060-4400-8965-9ecd4d80d866.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图6:缬沙坦的B.E.T比表面积计算结果 /strong /p p style=" text-align: justify text-indent: 2em " 总之,药物粉体的比表面积是需要关注的重要参数之一,直接影响药物粉体的均匀性、流动性、溶解度和溶出度等性能,进而影响药物在体内的崩解、溶解和吸收。研究和掌握药物粉体的比表面积对制备出高性能的药物具有十分重要的意义。根据药典中的明确规定,可以通过气体物理吸附的静态体积法测试出药物粉体在液氮温度下的氮气吸附等温线,再结合B.E.T方程即可精确计算出其比表面积,便于对药物粉体/颗粒的性能进行初步预测,提高整体效率,优化产品质量。 /p p style=" text-align: justify text-indent: 2em " 参考文献: /p p style=" text-align: justify text-indent: 2em " 【1】& nbsp Radha R. Vippagunta, Changkang Pan, et. al., Application of surface area measurement for identifying the source of batch-to-batch variation in processability, Pharmaceutical Development and Technology, 2009 14(5): 492–498 /p p style=" text-align: justify text-indent: 2em " 【2】& nbsp Smirnova I , Suttiruengwong S , Seiler M , et al. Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels[J]. Pharmaceutical Development and Technology, 2005, 9(4):443-452. /p p style=" text-align: right text-indent: 0em " strong 作者: /strong /p p style=" text-align: right text-indent: 0em " strong 谢雨 /strong /p p style=" text-align: right text-indent: 0em " strong 麦克仪器高级应用工程师 /strong br/ /p
  • iPore400 为原料药及辅料的比表面积测定带来惊喜
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020 年版中国药典,增加了0991 比表面积测定法,并将于2020 年12 月30 日起正式实施。用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为药学院毕业并从事气体吸附比表面和孔径分析20 余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展突破:一、中国药典2020 版要求在相对压力P/P0为0.05-0.3 范围内至少进行3 个压力点的测试,且BET 方程相关系数需大于0.9975:1、有关BET 比表面积的测量和计算:首先需要明确的是,BET 比表面积是通过多层吸附理论(BET 方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P00.05-0.3 的范围内,吸附曲线在这里进入平台区(图1)。BET 理论恰恰需要在这个阶段的吸附数据计算比表面积。完整的BET 报告必须包括比表面值、回归曲线、相关系数和C 常数(C 值,图2)。 图1 一种α氧化铝的吸附等温线片段(P/P0 0.05-0.35) 图2 由图1 计算得到BET 曲线及完整的报告信息2、有关BET 计算的P/P0 取点:众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991 的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品的研发成功,需要进行比表面积和孔径分析的材料越来越多,多微孔纳米载体材料控制药物缓释速度已经开始应用。而这些材料的多层吸附区域会前移,也就是可能到P/P0 为0.01~0.15 的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET 计算结果可靠性的标准应该是C 值大于0 和回归系数大于0.9999。(延伸阅读:杨正红:《物理吸附100 问》化工出版社,2016 年)3、有关BET 方程相关系数:回归曲线的相关系数R=0.9975 是一个过于粗放的低端要求,来源于20 年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET 差5%不算差”的说法,由此,按允许偏差±5 计算:R = (1+0.0500)x (1-0.0500)= 0.997500这显然是一个到达极限的最低标准,对于用于质量控制的比表面测定是难以忍受的。而目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过±2,这意味着:R = (1+0.0200)x (1-0.0200)= 0.999600也就是说,R 值不应该低于0.9996。如果按常规质检要求,重复性允许偏差±1 计算,则对R 值的最低要求为:R = (1+0.0100)x (1-0.0100)= 0.999900即回归曲线的相关系数不小于四个9(R 0.9999)。4、iPore 400 多站比表面分析仪测定小表面样品的重复性:iPore 400 是理化联科最新开发的按照欧洲标准设计制造的4 站或6 站比表面和孔径分析仪,专门为了解决超低比表面材料的质量控制的痛点问题。该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括:(1) 全域自动恒温系统:拥有双路进气预热及0.02℃高精度恒温系统,可根据需要在35-50℃之间设定恒定温度;实时显示全区域气路和歧管的系统温度,克服环境带来的误差。(2) 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持分析过程中死体积恒定。图3 iPore 400 全自动物理吸附分析仪和iBox 26 智能脱气站(3) 32 位芯片及电路系统:采用全新32 位芯片及电路系统,相比24 位系统,压力传感器分析精度提升30 倍以上,确保超低比表面测量的极致精度。这些新技术的采用,可以用氮吸附测定0.005 m2/g 左右的比表面积,大大突破了常规氮吸附的比表面下限极值(0.01m2/g)(图4)。仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221±0.013m2/g,氪吸附)的重复性偏差(表1)。结果表明,iPore 400 的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET 比表面测定长期重复性达到空前水平!图4 一种电解质膜的BET 比表面(左图),及吸附等温线和孔径分布(右小图)。BET 比表面积=0.0076m2/g!表1 超低比表面标准品比表面长期稳定性实验iPore 400 可以配置6 个独立的分析站(图5),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6 个站BET 测定结果具有高度的一致性,重现性偏差同样优于1%(表2)。表2 低比表面石墨样品比表面平行测定实验(红色数据是12 次测量结果的标准差)图5 iPore 400 全自动物理吸附分析仪气路结构透视图二、iPore 400 为药企行业比表面积测定带来的惊喜——用氮吸附替代氪吸附:药品多为有机化合物,比表面值一般都很低。新版中国药典0991 指出,对于比表面积小于 0.2m2/g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2 方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr 吸附一般至少需要配备10 torr 的高精密压力传感器以及分子泵,以分辨P/P0 在10-5~10-4 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m2 的绝对表面积计算。但是,一般的氪吸附的应用需要配置分子泵和10torr 压力传感器,这给企业带来了额外的成本负担。iPore400 的黑科技可以在标准配置(机械泵和1000torr 压力传感器)的条件下满足氪吸附的应用要求,P/P0 下限达到可重复的10-5(图6),这给企业带来了第一层惊喜!图6 iPore 400 全自动物理吸附分析仪COF 测定的等温吸附曲线,在机械泵条件下,P/P0 下限可到10-5,并且可完全重复测定!其实,在77.4K 的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P0?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET 方法中,假设吸附质相完全浸润)?在77K 的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm2 (15.2 Å2),但通常会用较大的横截面面积值,甚至高达0.236 nm2(23.6Å2)。采用较多的横截面积值是0.202 nm2(20.2 Å2)。除此之外,氪气的成本是氮气的240 倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。为此,理化联科iPore 400 新一代气体吸附分析技术已经用氮气成功地实现了氪吸附领域的超低比表面积测定(图4)。这给企业带来了第二层惊喜!图7 一种比表面为0.04m2/g 的金属氧化物吸附等温线和BET 比表面曲线a 和b:iPore 400 两次测定的结果,比表面积值可以完全重复;c::iPore 400 关闭死体积恒定功能的结果,可见BET 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ;d:其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线为了进一步验证上述研究成果的可靠性,我们用氮吸附测试了一个比表面积仅0.04m2/g 的金属氧化物的完整吸附等温线和BET 曲线,不仅两次测定(图7a 和b)相关系数都在0.9999 以上,而且BET 比表面完全重复!当关闭iPore 400 的死体积恒定功能再进行测试时,虽然BET =0 .032 并且相关系数R=0.9987,依然满足药典0991 要求(图7c),但可以看到数据质量已经很差,脱附曲线已经完全变形。而常规的氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图7d)。iPore 400 技术突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图4 右)。工欲善其事,必先利其器!贯彻药典新规和GB/T 19587-2017 标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,需要性能全面优化的可涵盖各种药用试品的分析仪器。配合iBox 26 全自动智能脱气站,iPore400 全自动比表面和孔径分析仪的一系列创新和突破,引领了下一代物理吸附分析仪的新标准。它的高稳定性、高重复性、高效率、超高性价比为中国企业全面贯彻中国药典0991 带来了不断惊喜!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制