当前位置: 仪器信息网 > 行业主题 > >

海克斯康工具显微镜

仪器信息网海克斯康工具显微镜专题为您提供2024年最新海克斯康工具显微镜价格报价、厂家品牌的相关信息, 包括海克斯康工具显微镜参数、型号等,不管是国产,还是进口品牌的海克斯康工具显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合海克斯康工具显微镜相关的耗材配件、试剂标物,还有海克斯康工具显微镜相关的最新资讯、资料,以及海克斯康工具显微镜相关的解决方案。

海克斯康工具显微镜相关的论坛

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 工具显微镜

    有谁在使用工具显微镜?请高手指点:透明的塑料制品是否可以用工具显微镜来检测尺寸

  • 求助工具显微镜问题

    我有一朋友,他们公司现在用的是OLYMPUS的STM6工具显微镜,因为需要可能要增加一台,现在在做计划书想知道一下其他进口的工显(和STM6差不多规格的)有什么特点和优点,需要一些详细资料,我代他请各位老师帮忙提供一些信息,谢谢!

  • 【原创】TM510显微镜介绍

    透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。 TM-500系列工具显微镜,下可調光源方便觀察物件的表面與輪廓;載物台行程可達50X50mm;X,Y軸外接電子測頭,最小表示量為0.001m;目鏡附十字線,最高總倍率為200X;可量測角度。 显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。

  • 【原创】我对四个厂牌显微镜的了解

    N,O,L,Z四个品牌。显微镜有好坏,各家各个型号都有独特的特点。NIKON在偏光金相方面,实力最弱,市场占有份额不到其他几家的10%。具体原因,我想可能是NIKON的某个代理商太注重利润。这是公司的营销策略问题,无可厚非。但NIKON工具显微镜的地位在中国无人能撼动。O牌市场占有份额也有些,真的很便宜。哦,如果你要买内窥镜什么的,它应该是你的第一选择。LEICA遭遇了很多诋毁,不太清楚是什么原因。但是徕卡在偏光和传统金相创造了一个又一个神话:看看地质方面的研究所或高校的偏光显微镜,徕卡的偏多;看看MM6,MEF4等在金相领域的传奇。ZEISS,沾了SONY,NOKIA的光罢了,大家除了用显微镜,还会用相机手机,所以它号称第一。大家只关注显微镜了,没有关注显微镜是什么人卖,卖显微镜的给你什么东西。大家要了解一个现象:除徕卡可以直接销售,其他家都是代理公司在做。公司都是为了赚钱----业务员要赚钱。好,既然是这样,买显微镜的面对的是卖显微镜的业务员,业务员靠什么赚钱?提成。提成从哪里来?大部分公司都是利润!这中间的猫腻,你自己去想吧。你买显微镜,业务员赚钱,天经地义,别想着卖显微镜有多么高尚的情操----为中国发展贡献什么力量的。所以,就有了13万RMB的玩具卖3,4万欧元的例子了,所以,就有了用好机器搭配烂摄像头软件的公司了。选机器,除了选品牌,还要选业务员的。德国鬼子的东西大体来说,比日本鬼子的更耐用。如果你只需要玩几年想换,买便宜的日本货更实在,反之,德国的更皮实些。别只相信无聊的诋毁,别只相信广告,别只相信表面的效果。

  • 显微镜:探索微观世界的奇妙工具

    显微镜:探索微观世界的奇妙工具在人类探索自然的漫长历程中,显微镜无疑是一把开启微观世界大门的钥匙。它以其独特的放大能力,让我们得以窥见那些肉眼无法察觉的奇妙景象——细胞的结构、微生物的形态、甚至是分子与原子层面的奥秘。本文将深入介绍显微镜的发展历程、基本构造、工作原理以及它在科学研究、医学诊断、工业检测等多个领域中的广泛应用。https://ng1.17img.cn/bbsfiles/images/2024/09/202409190935059333_5216_6742570_3.jpeg一、显微镜的历史沿革显微镜的发明可以追溯到17世纪初,荷兰眼镜商汉斯利伯希是公认的现代显微镜之父。他通过组合两片凸透镜,制成了世界上第一台复合显微镜,虽然其放大倍数有限,但已足以让人们初窥微观世界的神秘面纱。随后,罗伯特胡克、安东尼范列文虎克等科学家对显微镜进行了不断改进,大大提高了其放大倍数和成像质量,为后来的微生物学、细胞学等学科的发展奠定了坚实基础。二、显微镜的基本构造现代显微镜的结构复杂而精密,主要由光学系统、机械系统和照明系统三大部分组成。 ? 光学系统:是显微镜的核心部分,包括物镜、目镜和镜筒等组件。物镜位于标本下方,负责将标本放大并成像;目镜则位于观察者眼睛上方,进一步放大物镜形成的图像供人眼观察。镜筒则连接物镜和目镜,确保光线能够准确传输。 ? 机械系统:用于调节显微镜的位置和角度,包括底座、支架、载物台、调节旋钮等部件。通过这些部件的精确调节,可以实现对标本的精确定位和观察。 ? 照明系统:为显微镜提供充足的光源,确保标本能够被清晰照亮。常见的照明方式有透射照明和反射照明两种,分别适用于透明和不透明标本的观察。 三、显微镜的工作原理显微镜的工作原理基于光的折射和放大原理。当光线通过物镜时,由于物镜的凸透镜特性,光线会发生折射并聚焦于一点形成实像。这个实像随后被目镜进一步放大并投射到观察者的视网膜上形成虚像。通过调节物镜和目镜的焦距以及载物台的位置,可以实现对标本不同深度和层次的观察。四、显微镜的应用领域显微镜在科学研究、医学诊断、工业检测等多个领域中发挥着不可替代的作用。 ? 科学研究:在生物学、医学、材料科学等领域中,显微镜是研究微观结构和功能的重要工具。例如,通过电子显微镜可以观察到细胞的超微结构;通过荧光显微镜可以研究生物分子的分布和相互作用。 ? 医学诊断:显微镜在病理学、微生物学等医学领域中具有广泛应用。医生可以通过显微镜观察患者的组织切片或体液涂片来诊断疾病;同时也可以通过显微镜检测细菌、病毒等微生物的存在和类型。 ? 工业检测:在半导体制造、精密机械加工等行业中,显微镜被用于检测产品的微观缺陷和表面质量。通过显微镜的高精度成像能力可以实现对产品质量的严格控制和优化生产流程。 五、结语显微镜作为探索微观世界的重要工具不仅揭示了自然界的无限奥秘也推动了科学技术的飞速发展。随着科学技术的不断进步和创新显微镜的性能和应用范围也在不断拓展和提升。未来我们有理由相信显微镜将继续在各个领域中发挥重要作用为我们揭示更多未知世界的秘密。

  • 新课发布!激光共聚焦显微镜技术应用!

    新课发布!激光共聚焦显微镜技术应用!

    [img=,550,310]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171819522461_4148_5659437_3.png!w550x310.jpg[/img][size=14px]课程兼顾理论与实践的结合,由吴老师[/size][size=14px][color=#3daad6][b]根据自己多年的教学及科研经验[/b][/color][/size][size=14px],组织和整理本次课程内容从共聚焦显微镜的背景、结构、基本操作及注意事项、各类扫描模式及应用等方面展开详细讲解,让我们拒绝做一名只会机械操作,不懂原理的实验工具人![/size][size=14px][img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[b]限时:39元[/b][/size][b][size=16px]讲师介绍[/size][/b][img=,690,812]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171821243917_661_5659437_3.png!w690x812.jpg[/img][color=#3daad6][b][size=14px]吴晶,北京大学医药卫生分析中心教师,助理研究员[/size][/b][/color][size=14px]2013-2015年北京大学神经科学研究所从事博士后研究工作,出站后加入北京大学医药卫生分析中心生物成像与分析实验室,致力于成像技术的研发和创新,掌握多种成像技术如双光子、超高分辨、单分子检测等,支持发表高水平文章如Cell Research, Advanced Materials等多篇。[/size][size=14px]参与多项基金,近5年以一作身份发表SCI文章6篇,专利2项。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖。撰写的“激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用”获第十五届科学仪器网络原创作品大赛三等奖,并收录于《科研仪器案例库》。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖,及第一届“信立方杯”高校分析测试技术培训微课大赛最受欢迎主讲老师。[/size][b][size=16px]课程预览[/size][/b] [size=14px]详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。[/size][b][size=16px]这门课,你将获得什么?[/size][/b][size=14px]激光共聚焦显微镜背景、结构、原理介绍[/size][size=14px]激光共聚焦显微镜基本操作及注意事项[/size][size=14px]激[/size][size=14px]光共聚焦显微镜的扫描模式[/size][color=#3daad6][b][size=14px][/size][/b][/color][size=14px]激[/size][size=14px]光共聚焦显微镜的实际应用[/size][size=16px][b]课程获取[img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img][/b][/size][size=14px]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[/size][size=14px][color=#ff4c00][b]限时:69元[/b][/color][/size][size=16px][b]报名须知[/b][/size]1、本课程为精品课程,无考试无证书,课程有效期内全部学习完可以在线申请培训证明。2、课程为虚拟产品,购买后不支持退换。3、购买时可申请增值税电子普通发票,如需专票请联系客服。4、课程有效期为购买后的360天内,课程有效期内可不限次数学习观看。

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 【分享】共聚焦显微镜与普通光学显微镜的比较

    共聚焦显微镜与普通光学显微镜的比较显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。普通光学显微镜与激光共聚焦显微镜同属于光学显微镜。  一、普通光学显微镜  普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。  显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨力(resolution)有关,分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率,用公式表示为:  R=0.61λ /N.A. N.A.=nsinα/2  式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率(numeric aperture)。镜口角总是要小于180?,所以sina/2的最大值必然小于1。  制作光学镜头所用的玻璃折射率为1.65~1.78,所用介质的折射率越接近玻璃的越好。对于干燥物镜来说,介质为空气,镜口率一般为0.05~0.95;油镜头用香柏油为介质,镜口率可接近1.5。  普通光线的波长为400~700nm,因此显微镜分辨力数值不会小于0.2μm,人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 研究院不可缺少工具——体视显微镜

    显微镜,现在是仪器仪表相关产品中的一个大类,同行业仪器仪表供应商的数目也在增加。如果对他细分,可以分为很多小分类。 体视显微镜又称“实体显微镜”“立体显微镜”或称“操作和解剖显微镜”,是一种具有正像立体感地目视仪器,被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成像后的两光束被两组中间物镜——变焦镜分开,并成一体视角再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为“连续变倍体视显微镜”(Zoom—stereo microscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄像,冷光源等等。 体视显微镜在观察方便具有许多优势,能够低成本实现多人同步预览,并有效减少眼睛疲劳。同时具有录像、测量等功能,能够把观察到的图片保存下来进行传阅。这些优势决定了体视显微镜将拥有广泛的用途。 体视显微镜应用涉及到多个学科、行业等领域,主要应用于动物学、植物学、昆虫学、组织学、矿物学、考古学、地质学和皮肤病学等领域,进行科学研究。同时在工业中也有着应用,如在纺织工业中进行原料及棉毛织物的检验,在电子工业中进行晶体管点焊、检查等操作工具。 体视显微镜还可以用于对多种材料表面现象如裂缝构成,气孔形状腐蚀情况等进行检查,对精密零件的检查安装等。目前体视显微镜也被用于精密刻度的质量检查,以及文书纸币的真假判辨等领域。

  • 【讨论】关于激光共聚焦显微镜版

    最近观察了一段时间激光共聚焦显微镜版,人气不是很旺。当初是我提出来要将激光共聚焦显微镜单独开版,主要是考虑到国内激光共聚焦显微镜的用户日益增多,而且激光共聚焦显微镜的应用领域与光学显微镜有一定差异,所以作为一个新的设备,应该有很多可以讨论和交流的。但是目前讨论交流确实存在一些问题。激光共聚焦显微镜的用户大头在生物医学研究所和大型医院,似乎这些用户群体不太愿意在论坛上交流,另一个应用领域在材料上,但是国内材料研究领域拥有激光共聚焦显微镜还是少数,所以真正活跃的用户不多。有感于此,建议将激光共聚焦显微镜版划到我的光学显微镜版作为一个子版,我来管理。

  • 【转帖】奥科学家开发出氦原子显微镜

    新华网维也纳1月10日电 奥地利新闻社日前报道说,奥地利格拉茨技术大学科学家开发出一种利用氦原子束作为显微光源的显微镜,它能够克服普通电子显微镜的部分缺点。 科学家的研究发现,无论如何完善光学显微镜的透镜和结构,其放大倍数和分辨率只能被限定在1000多倍和几百纳米的水平。由于光学显微镜的分辨率最多也只能是其所使用光源的半波长大小,所以光学显微镜分辨率存在极限。 电子显微镜利用电子束和电子透镜代替光束和光学透镜,分辨本领远胜于光学显微镜,其最大放大倍率超过300万倍,所以通过电子显微镜能观察到某些重金属的原子和晶体中排列整齐的原子点阵。 但电子显微镜也有缺点。格拉茨技术大学的科学家博迪尔霍尔斯特介绍说,电子显微镜需要在真空条件下工作,所以很难观察活的生物,带电电子束的照射也会使生物样品受到辐射损伤。氦原子束能量很低,而且作为一种惰性气体,氦的化学性质非常稳定,这些因素使氦原子显微镜在观察纤细柔弱的生物组织结构等方面具有明显优势。 不过,奥地利科学家开发出的氦原子显微镜分辨率目前还很低,甚至不及高质量的光学显微镜。据报道,科学家正在努力进一步提高氦原子显微镜的分辨率。

  • 脑切片共聚焦显微镜

    [url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]脑切片共聚焦显微镜[/b][/url]是专业为大脑研究设计的[b]脑切片共聚焦成像显微镜[/b],非常适合大面积[b]脑切片共聚焦成像[/b],具有[b]共聚焦反射成像[/b]CRM和[b]共聚焦荧光成像[/b]CFM模式,[color=#333333][color=#333333]方便获得活体组织共聚焦图像.[/color][/color]脑切片共聚焦显微镜采用全球领先的图像缝合技术和条带图像镶嵌技术,快速创建亚像素精度的细胞尺度图像,并能够快速从脑切片图像中定位某个区域.脑切片共聚焦显微镜还可以用于动物研究,得益于其较大的成像视场,能够快速获得动物各个生长阶段的共聚焦图像和荧光细胞突出的图像,成像面积覆盖微米分辨率到30x30mm,实现微观成像和宏观成像.脑切片共聚焦显微镜还提供785nm和830nm激光,用于动物活体成像,成像传统深度高达250微米.脑切片共聚焦显微镜可广泛用于病理学研究,提供共聚焦反射成像CRM和共聚焦荧光成像CFM,有效获得活体组织图像.[img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/RS-G4.jpg[/img][img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/rsg4brain-section-.JPG[/img]脑切片共聚焦显微镜:[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]http://www.f-lab.cn/microscopes-system/rs-g4.html[/b][/url]

  • 光学显微镜概述

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。 1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。 目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。

  • 激光扫描共聚焦显微镜在医学领域中的应用

    一、在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量 共聚焦显微镜的分辨率超过普通光学显微镜,染色过程简便,可以在活细胞上进行无创伤性的染色,最大程度地维持细胞的正常形态。多种自发性的荧光染料,已被广泛地用于诸如RNA、DNA细胞核、线粒体、内质网、肌动蛋白、细胞膜等结构的标记。运用免疫荧光技术,将不同波长的两三种荧光物质标记在内部不同结构的相应抗体上,以这几种荧光物质特定的光谱特性选择激发光和滤光片,则可以观察到细胞内部各结构间的毗邻关系。特别是在荧光着丝点易被遮盖(如荧光原位杂交实验)的情况下,这种三维图像的多角度观察提供了极大的优越性。细胞有丝分裂中细胞核内染色体数目(双倍体、多倍体)、形态和位置的变化,一直是细胞生物学肿瘤研究中的热点。着丝点是细胞核内的重要结构,被认为在有丝分裂中起重要的作用,应用共聚焦显微镜的定量测量技术,可以较精确地测定着丝点在不同分裂期的位置。共聚焦显微镜生成厚度小于0.2微米的依次相连的光学切片,即使较厚的组织的三维数据也可被计算机获取,运用适当的图像分析软件,可以测量并确定所观察结构的表面特征,体积等参数,为相互结合定量测量提供了新手段。2. 活细胞生理信号的动态监测:活细胞的功能监测在细胞生物学、神经生理学、药理学等领域都有重要意义。许多荧光染料可以聚集在细胞的特定结构,而对细胞的活性基本上不产生影响。可以利用这一特性来反映细胞受到刺激后形态或功能的改变。如亲脂性染料DiOC6(3)主要聚集在内质网,且对细胞的毒副作用极小。肌细胞中的肌浆网与ER有相同的属性,是胞内钙库,应用共聚焦显微镜,就可以动态观察肌细胞兴奋时SR的变化。许多参与神经元兴奋传导的离子如K+、Na+、Ca2+及H+、Cl-、Mg2+ 等,都有其自发性的荧光染料。Ca2+ 在细胞的兴奋、分化、死亡等过程中都起重要作用,是许多生理反应的胞内第二信使,是目前研究得最为充分的离子; 通过激光扫描共聚焦显微镜对胞内、核内钙转移的研究、对心肌细胞的钙变化研究、免疫细胞钙信号的研究、对Ca2+信号在凋亡细胞中作用的研究都取得了可喜的结果,而更多的研究则是将激光扫描共聚焦显微镜应用于神经生物学中对神经元Ca2+动态测量的研究。目前激光扫描共聚焦显微镜以其独特的优势成为钙研究中的重要手段之一。3. 粘附细胞的分选(adherent cell sorting) 对特异细胞的分选和克隆,是研究单个细胞或细胞系生物特性的先决条件。 将细胞贴壁培养在特制培养皿上,培养皿底部有一层特殊的膜,用高能量激光在欲选细胞四周切割成八角形几何形状,掀去培养皿底部的膜,非选择细胞则被去除。目前对粘附细胞分选方法多用于对杂交瘤和突变细胞的分选,也有用于对经转化的平滑肌细胞,卵巢癌细胞及人畸胎瘤干细胞等的分选和克隆,还可用于基因调控、基因治疗等研究。4. 细胞激光显微外科和光陷阱功能: 激光扫描共聚焦显微镜可将激光当作一把“光刀子”使用,完成诸如细胞膜瞬间穿孔,染色体切割,神经元突起切除等一系列细胞外科手术。光镊是利用激光的力学效应,将一个微米级大小的细胞或其它结构钳制于激光束的焦平面上,也称为光陷阱。光镊可以用来进行细胞融合(如卵细胞受精)、机械刺激或细胞骨架弹性测量等,特别是在测量植物细胞的细胞骨架时很有意义。5. 光漂白后的荧光恢复(FRAP): 细胞在相互接触后彼此间即有低阻抗的通道形成,以进行细胞间通讯;被经合成肽测试法证明只允许低于1.5KD分子通过的通道被称作缝隙连接。缝隙连接是存在于相邻细胞间的一类蛋白通道,普遍认为缝隙连接通过介导细胞间的信息传递,在诸如增殖、分化、代谢等过程中发挥极其重要作用。FRAP技术借助脉冲式激光照射细胞的某一区域,从而该区域荧光分子的光淬灭,该区域周围的未淬灭的荧光分子将以一定速率向受照区域扩散,而此扩散速率可通过低强度激光扫描探测。在研究细胞骨架构成、跨膜大分子迁移率、细胞膜流动性、胞间通讯等领域中有较大的意义。6. 在细胞凋亡研究中的应用细胞凋亡是由体内外因素触发细胞内预存的死亡程序而导致的细胞死亡过程,细胞凋亡作为生理性、主动性过程,能够确保正常发育、生长、维持内环境稳定,发挥积极的防御功能。用激光扫描共聚焦显微镜观察凋亡细胞,可见凋亡细胞体积变小,细胞质浓缩,细胞核变小,出现染色质沿核膜内侧排列的核边聚集现象。细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。细胞凋亡(Apoposis)是生物体内广泛存在的,由细胞特定基因控制,以细胞DNA 降解为特征的细胞自发过程,与机体中多种生理及病理过程密切相关。因而,对Apoposis 的研究现已成为研究细胞生物学研究的热点之一。而激光扫描共聚集显微镜结合众多荧光探针的应用,成为细胞Apoposis超微结构及分子水平变化的有力手段。二、在神经科学中的应用1. 定量荧光测定:对活细胞进行定量测定,具有很好的重复性,分析神经细胞和胶质细胞的某些物理及生物化学特性;监测抗原表达,细胞结合和杀伤等特征。在多发性硬化病人大脑活检标本上观察病变组织的微血管内皮细胞特异性地表达。2. 细胞内离子的测定:使用多种荧光探针,对神经细胞的Ca2+、PH及其它各种细胞内离子进行定量和动态分析。3. 神经细胞的形态学观察:激光扫描共聚焦显微镜使用模拟荧光处理,可将系列光学切片的数据合成三维图像,并可从任意角度观察。如Joshi等观察了细胞突触的骨架的三维图像。三维重建图像可使神经细胞及细胞器的形态学结构更加生动逼真。三、在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用:1993年Ikeda等应用激光扫描共聚焦显微镜研究内耳毛细胞的亚细胞结构,用Rhodamine 123染色,见线粒体分布于表皮板下和核下,加入1mmol/L三硝基酚使线粒体膜电位减小,荧光强度明显减弱。用DIOC6(3)染色,观察到内质网分布于表皮板下直至细胞核区域,呈网状、核下及侧膜下也有分布,胞质中则极少,探讨了蛋白激酶(PKC)在三磷酸肌醇/钙信号系统中的作用。2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用钙离子在细胞的生命活动中起着重要作用,它参与调节细胞功能,如肌肉收缩,细胞运动,递质合成与释放,信息传递,细胞换能等。激光扫描共聚焦显微镜的荧光测钙技术可探测到细胞内钙浓度的细微变化,当内耳毛细胞受到各种生理及病理因子刺激时,可用荧光测钙技术观察细胞内钙离子浓度的变化。为研究毛细胞的机能提供了新的手段。3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用Issa等用膜片钳的全细胞记录法将Fluo-3已导入毛细胞,用激光扫描共聚焦显微镜观察,当毛细胞去极化时其底部侧膜上平均有18个亮点(钙内流所至),然后对同一毛细胞进行连续超薄切片电镜观察,证明这些亮点即为突触前活性区。4. 激光扫描共聚焦显微镜在嗅觉研究中的应用:Schild等用激光扫描共聚焦显微镜和钙荧光探针研究嗅觉感受器神经元的钙通道分布,以Fluo-3和Fura-red 染色后行双发射比例测量,测出其胞内游离钙呈不均匀分布,观察显示嗅觉感受器神经元的钙通道位于胞体部,与同一部位的钾通道一起构成适应性调节机制,而对树突尖端纤毛的钙依赖性换能过程无干扰。四、在肿瘤研究中的应用激光扫描共聚焦显微镜的出现,在一定程度上推动了肿瘤的研究进展。它为肿瘤细胞生物学、分子生物学、细胞通讯、细胞形态学研究、细胞的抗药物代谢、细胞膜及其受体等领域的研究,提供了有效手段。1. 定量免疫荧光测定:激光扫描共聚焦显微镜采用免疫荧光对肿瘤细胞的抗原表达、细胞结构特征、抗肿瘤药物的作用及机理等方面进行定量的观察和监测,为较理想的形态学观察方法。先采用荧光标记特异性抗原或抗体,使其与特异性抗体或抗原结合,再采用激光扫描共聚焦显微镜对其进行定性、定量和形态学分析。近年来报道较多的是P53肿瘤相关抗原等的定位、定性和定量分析。采用荧光标记某些蛋白分子,然后测定其平均荧光强度和积分荧光强度,从而对某些细胞结构蛋白分子进行定量分析。2. 细胞内离子分析激光扫描共聚焦显微镜可以准确地测定细胞内Ca2+ 、 K+ 、 Na+ 、 Mg2+ 、 pH等

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 相差尼康显微镜的成像和结构之间的联系

    (一)阿贝成像原理 为了理解相差尼康显微镜的原理,不得不回顾普通显微镜的成像原理。德国光学家阿贝(E. Abbe)从1874年以后创立了成像原理.在现代波动光学的发展基础上兴起的变换光学中的空间信息滤波和信息处理概念,就是奠基于阿贝成像原理。 据阿贝的看法,尼康显微镜的透镜或透镜组不只是反映物平面和像平面的共扼关系,而且也反映透镜前后的无数个对应平面的共扼关系。当然,显微镜的成像光路中最为重要的共扼面还是物平面和像平面(图10-18,0--0').显微镜成像光路中同样具有重要的共扼面是发光平面((KY1000显微镜)和光源的像平面(L')。 但是如果在显徽镜结构中在聚光镜的前焦面上放置孔径光栏时,那么光源和光源像两平面的共辘关系,代之以聚光镜前焦面的光栏平面和物镜后焦面的L"平面的共扼关系。 阿贝认为发光平面的共扼面即L’平面,是显微镜的初级成像平面,而物平面是次级成像平面。若通俗一点来讲,L‘烛光是L烛光的像,而O‘空间是L'烛光的像。 如果我们在尼康显微镜的初级成像光路上在聚光镜和物镜之间,擂入一张不同光密度的标本O(图10-20上是光栅)时,立即破坏了初级成像光路.这是因为标本细节的光密结构(栅)和光疏结构(间隙)的折射率不同,而产生光的衍射。其结果如图10-20所示,L烛光在它的像平面上出现了数支烛光。与此同时,在像平面上出现标本0的干涉像.这些干涉纹是由次波源。,一1,+1发射的衍射光的重叠所造的。这样由于标本的干涉次级成像过程,已由CM100的共扼面改变成CM300FL的共扼面。也就是说像平面上不是L,的像,而是标本0的像了。 总之,相干成像过程的第一步是形成衍射斑,而第二步是相干干涉.当然未染色生物标本细节的折射率有很小的差异,在像平面上的对比度非常小。为了提高物像的对比度(反差),荷兰物理学家(F. Zernike(1935)设计了相差显微镜的基本部件如环状光栏和位相板。 从阿贝成像原理已经知道尼康显微镜的聚光镜前焦面上放置孔径光栏时,这个平面就成为物镜后焦面的共扼面。F. Zernike在这个平面上放置了环状光栏,按空间滤波概念,称带通滤波器。 环状光栏给物镜后焦面提供的是照射在环形甲像平面上的相干光束。照射在环形像平面上的相图10-20显徽镜的成像光路干光束,不同于线形窄缝所提供的相干光束.前者不能造成带有方向性衍射斑.在共扼面上的光分布强度也不像窄缝衍射那种零级强度。它所造成的衍射光是均匀的无方向性的. F. Zernike在相差尼康显微镜的物镜后焦面上放置了位相板。恰巧位相板的吸收环变成环状光栏的成像平面。其结果就像F. Zernike指出的,如果人工地改变照射到不吸光物体而形成初级成像光束的光波,以此来改变衍射光和直射光的位相和振幅,使之近似乎吸光物体的初级成像光束时,那么其结果就造成完全像吸光物体的次级成像,也就是加强了物体细节的反衬度。巧妙地使用位相板,就能够使物像平面上的光强度分布与物体细节的位相信息成为线性关系.也就是人工地用物体细节的位相分布调整像平面的光强分布。甚至巧妙地选配不同类型的位相板,使之适合于物体细节的折射率时,可以强使物像平面上的反衬度出现逆转,即由明反差改变为暗反差,或者反之。

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 【分享】真实色共聚焦显微镜(new!)

    [size=3]1台真实色共聚焦扫描显微镜综合了以下6种设备的功能:[U]高分辨率光学显微镜SEM扫描电镜ROUGHNESS TESTER表面粗糙度仪3-D PROFILER 三维表面形貌轮廓仪STEP TESTER 台阶仪R.G.B不同波长单色激光共聚焦显微镜[/U]特点:1.真实颜色、形状同时准确的立体观察成像,避免同色异像,同像异色现象的产生;2.根据样品选择最合适R.G.B三原色进行单波长测定;3.高精度彩色图像输出1280*1024;4.图像拼接实现高放大、高分辨、大视场;5.每秒85桢的高速图像读取;6.高度差、粗糙度、三维尺寸等的直接测量。产品应用:MEMS、半导体、液晶相关产品、金属材料、化学材料、其他各种应用领域。[/size][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=64576]真实色共聚焦显微镜材料观测图片[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制