当前位置: 仪器信息网 > 行业主题 > >

液相色谱正向系统

仪器信息网液相色谱正向系统专题为您提供2024年最新液相色谱正向系统价格报价、厂家品牌的相关信息, 包括液相色谱正向系统参数、型号等,不管是国产,还是进口品牌的液相色谱正向系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相色谱正向系统相关的耗材配件、试剂标物,还有液相色谱正向系统相关的最新资讯、资料,以及液相色谱正向系统相关的解决方案。

液相色谱正向系统相关的论坛

  • 【原创大赛】从系统论角度去看高效液相色谱

    高效液相色谱是分析界应用最广泛的仪器之一。对于高效液相色谱的应用和维护,有许多网友已经写了大量的文章,很值得学习。然而,qignqingcao这次在准备这篇文章的时候,阅读了《系统论》,突然灵感凸显,觉得我们可以用一些理论来解释来研究我们的高效液相色谱。用理论这个工具,让我们更好地认识仪器,从而上升到一个哲学的思考。 为了写这篇文章,我首先推荐一下青青草在2004年写的一篇文章。关于液相色谱一些故障的原因的查阅和排除。http://bbs.instrument.com.cn/topic/2205295_1?order=threadid 在写那篇文章的时候,我也是一种经验性的积累,今天看看,实际上,如果当时用系统观点去看,也许会更有理论性。 言归正传,我们继续用系统论去看高效液相色谱。 我们知道,基本的高效液相色谱分为五大系统:动力传输系统(流动相,泵);进样系统;分离系统(色谱柱);检测系统;数据采集系统。这五大系统,如果拿出一个系统来看,都可以独立形成一个系统,而我们把这五大系统整合在一起,那么就形成了一个大的高效液相色谱大系统。系统论知识告诉我们:凡是系统在一定意义上必定是整体。而系统的整体性并不是各个元素的简单加和。各组成部分和各层次的充分协调和链接,提高系统的整体运行效果。 我们可以看,泵泵出流动相会有好多因素影响。主要包括泵流速,流动相组成,流动相是否干净,流动相组成和样品的联系等等。这些因素都有可能会影响到后续的分析。举一个简单的例子:如果我用的是反相色谱柱,流动相用的是非极性溶剂(二氯甲烷,氯仿,正己烷等)那么就会影响到后续的分析。比方说,流动相在使用前经过滤膜的过滤,那么发生柱压增高的几率就减少。 我们再以进样系统为例:如果进样中有一个小气泡,那么,这个小气泡影响分析的几率会很大。而且这个小气泡在进样者看来是一个小小的问题,但是,通过系统的放大,可能就在检测器和数据采集中会有极大的显现。 这给我们一个很大的启示:系统的整合性并不是各元素的简单加和。如果某一个系统的小小疏忽,就有可能造成整个系统的极大问题。这就是“蝴蝶效应”。所以,我们在做高效液相色谱时候,一点点的马虎,可能引起很大的问题。 系统论知识还告诉我们:一个系统和包围该系统的环境之间通常都有物质、能量和信息的交换。外界环境的变化会引起系统特性的改变;相应地引起系统内各部分相关关系和功能的变化。 我记得当年检测食品中的糖,用的是示差折光检测器。一开始做的时候,总是发现基线很不稳。根本就不能很好地分析。检查了色谱柱,泵,流动相,都没有什么问题。后来,我们发现晚上测试比白天测试,基线要好很多。后来,我们立刻明白了对于示差折光检测器,对于环境是相当敏感的。而恰好头顶有一个空调,空调的运转,引起了气流的变化。而晚上,我们把空调关闭,气流影响就小,基线就变好。后来,我们通过实验,验证了我们的假设。我们就把仪器搬到一间相对封闭的屋子中,这台高效液相色谱的基线极其的好。 又有一个例子。我们单位购买了一台HPLC,放在一个狭长的单独屋子中,但是,在使用这台仪器一段时间后,仪器的电路板烧坏了。找了工程师来,更换电路板,还是在一段时间依然烧坏。尤其在夏天更容易烧坏电路板。这是什么原因呢?我和几位工程师分析了房屋的结构。终于明白了,这个狭长的屋子一面是封闭的。而仪器恰好是放在那个封闭的面。上海的夏天空气湿度很大,空调开的冷,外部的气流进入狭长的半封闭屋子,恰好把气流堵在那个封闭面上。后来,我们购买了一台空气干燥吸收器,每天开启,没到一天,就能够收集到一大桶水。而这台HPLC仪器在添加了一台空气干燥器后,从没有发生相似的故障。 对于使用高效液相色谱,我们还可以发现,一开始用仪器的时候,仪器不是很听话。原因我觉得也是可以用系统论解释。因为HPLC作为一个系统和环境之间的物质,能量,信息交换,需要有一个适应过程。操作者也需要对仪器有一个认识。而当我们用熟悉了仪器,随便怎么用,好像仪器都不会出问题。这就是系统和环境达到了一个正向反馈。 当然,系统论还告诉我们:任何物质的运动过程都包含着无序的热运动和有序的定向运动。一切物质系统都是有序和无序的对立统一。这是系统内耗的普遍性。而我们知道,hplc在用的过程中必定会有系统的内耗问题,也就是突然仪器出现故障。那么这个故障,并不是头痛医头,脚痛医脚。好多原因我们需要用系统的观点去看到。包括大到操作环境问题,小到密封圈问题。漏液问题,气泡问题。检测器污染问题,管路堵塞问题,静电问题等等。问题的产生,需要我们去研究,解决。实际上,对于初学HPLC的朋友们,遇到各种HPLC的问题,就是自己能力提升的一次机会。如果你能够用整体的观点去排查故障,那么,你就有可能掌握如何驾驭HPLC,使得仪器为你所用。 在这个炎热的夏季,qingqingcao的面前只是一台电脑,我已经离开HPLC测试了。写下这些文字,我自己也在回忆以往的点滴。也希望我们的90后的从事HPLC分析的同志们,能够有些启示。

  • 【原创大赛】液相色谱柱维护之正向使用、反向冲洗

    【原创大赛】液相色谱柱维护之正向使用、反向冲洗

    液相色谱柱维护之正向使用、反向冲洗前言: 液相色谱柱是比较昂贵的色谱耗材,正确的使用和维护对发挥色谱柱的最佳性能和延长寿命至关重要。对于新柱的首次使用要平衡活化、按照标签标示的方向使用、保证流动相和样品洁净、在规定pH范围使用等使用注意事项本文就不在此一一赘述,今天我们主要来讨论一下其维护方法。关键词: 色谱柱、维护、柱压、塌陷、冲洗、反向正文: 色谱柱维护是个长期复杂的工作,如果维护得当会得到满意的试验结果,即提高了工作效率,又延长了色谱柱寿命、节约成本。分析色谱柱受损伤的因素发现,填料被污染是最常见的问题。而解决这个问题最有效、方便、省钱的办法就是冲洗色谱柱。现在以大家应用最为常见的硅胶基质键合C18填料的色谱柱为例,如果您的色谱柱前后端筛板是相同的,那么,本文给您的这个建议对您的色谱柱维护将非常实用,即:正向使用、方向冲洗! 色谱柱正常的工作状态即流动相在泵的外力下带着样品流入色谱柱,然后在柱内把样品分离,而后流出色谱柱进入检测器(如下图一)。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012313_320698_1622024_3.jpg图一看似简单的过程却会由于流动相、样品的洁净度不够等原因把污染物带入色谱柱(如下图二),也就是说色谱柱本身的使用就是一个被污染的过程,随着时间越来越长,污染越来越来重,直到报废。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012313_320699_1622024_3.jpg图二 色谱柱最先被污染的部位就是柱前段,即使是添加保护柱或在线过滤器,也只能减少污染,而并不能杜绝污染。随着使用时间的延长,色谱柱长期接受来自一个方向的污染和冲击,会带来两个严重后果:一是柱前段被高度污染,柱压升高等;二是色谱柱头填料塌陷,即由于色谱柱头填料长期接受来自同一个方向的力量冲击造成的松懈,如果不及时修复会来到柱效下降、峰型变差甚至分叉等情况(如下图三)。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012314_320700_1622024_3.jpg图三被污染后得到的试验图谱自然不合我们的要求,如下图四为某样品在柱前段被污染的色谱柱中检测得到的图谱,理论塔板数、拖尾因子都明显下降,并不符合规定。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012314_320701_1622024_3.jpg图四 我们解决这个污染的办法就是冲洗色谱柱,如果您怕麻烦采用正向冲洗,很显然,根据污染物被流动相带出的方向看,污染物会进过整个柱管内的填料,因此这对色谱柱来说又是一次污染的过程。因此我在这里给您的建议是反向冲洗,使污染物经过最小的路线流出色谱柱(如下图五)。如果您在平时试验中使用此方法,不但能快速的把柱前段的污染物冲洗走,还能把由于流动相冲击照成的柱头填料塌陷修复好,并且采用此方法越早对柱子的修复率越高,色谱柱性能也能保持的越长久。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012315_320702_1622024_3.jpg图五经过反向冲洗后,对某样品同样方法检测,图谱明显变好(见下图六)塔板数、拖尾因子都恢复到原来水平。http://ng1.17img.cn/bbsfiles/images/2011/10/201110012315_320703_1622024_3.jpg图六 为保证反向冲洗时二次污染色谱柱,大家一定要保证色谱柱前端的管路、流动相等的洁净度。如不能保证流动相的纯度,建议使用前抽滤。因此,此种方法对于色谱柱的日常维护效果明显,值得大家借鉴!也欢迎大家共同讨论,发表自己看法!

  • 液相色谱清洗液

    液相色谱清洗液 液相色谱的清洗液,也就是液相泵柱塞清洗液,大家一般采用10%的有机试剂。有人选择10%的甲醇水溶液,说甲醇水溶液接近流动相,粘度也小,更适应系统。有人用10%的异丙醇水溶液,说10%的异丙醇溶液粘度大,清洗能力强,更适合清洗。也有少数人用10%的乙醇水溶液,说乙醇毒性小,便宜,粘度也小,清洗能力也还不错。当然也有人采用纯净水,说纯净水更便宜,更环保。 大家都知道,液相泵柱塞清洗,主要是清洗柱塞往复运动带出的缓冲液(当然有时也要清洗流动相中的酸、碱性溶液),理论上采用纯净水就可以,但纯净水时间长了会有细菌滋生,污染系统。一般大家都会在纯净水中加入一定量的有机试剂,有机试剂一般加5-20%。5%以上的有机溶液具有较强的杀菌功能,20%以下的有机溶液,缓冲液不至于析出。至于加甲醇还是乙醇还是异丙醇、丙酮那就得看实际需要和实际情况了,各有优缺点。 当然这个清洗液远不止这些。如果是正向色谱,流动相是极性较弱的试剂,那样清洗液也尽量选择极性较弱的试剂,比如正己烷、正丁烷等。有时使用树脂填料类的色谱柱,清洗液中最好不要加有机试剂,用纯净水或在纯净水中加一点酸或碱。这个也得看具体要求和具体情况了。 所以液相色谱柱塞清洗液的选择有一些说法。我们常用的是反相色谱,清洗液一般采用10%的甲醇水溶液,10%的乙醇水溶液,10%的异丙醇水溶液,纯净水等。其它色谱法或色谱柱如有特殊需要,那就得特殊处理。这个得看具体要求和实际情况,折优选择。

  • 背压是什么?对液相色谱系统有什么影响?

    [font=&][size=15px][color=#2f3034]背压指的是液体在流动过程中所遇到的阻力或压力。在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统中,当流动相通过色谱柱时,由于填料颗粒、柱内径、柱长以及流动相的粘度等因素,会产生一定的阻力,这种阻力就是背压。背压的大小对[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统的性能和稳定性有着重要影响。如果背压过高,可能会导致色谱柱的破损、流动相的泄漏、泵的损坏等问题,从而影响实验结果的准确性和可靠性。因此,在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]实验中,需要严格控制背压的大小,以确保实验的顺利进行。为了降低背压,可以采取一些措施,如选择合适的色谱柱、优化流动相的组成和粘度、调整流速等。同时,也需要定期对[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统进行维护和保养,以确保其处于良好的工作状态。[/color][/size][/font]

  • 安捷伦科技推出最新一代液相色谱系统

    1月23日,安捷伦科技推出了该公司最新一代Agilent 1200系列液相色谱系统,该系列将是安捷伦科技著名的1100系列液相色谱的换代产品。作为一种常规的分析测试手段,全球有超过250,000家的用户在使用液相色谱产品,其市场规模约为二十亿美金,这也是安捷伦科技LSCA部收入的主要来源之一。 自从1995年1100系列液相色谱问世以来,安捷伦总计售出了大约60,000套液相色谱系统(如果按单个系统模块计算,则超过400,000),使得1100系列成为液相色谱市场最为成功的产品之一。最新推出的1200和现在的1100具有良好的兼容性,从而最大限度地保障了用户单位在资金和时间方面的投入不受损失。用户单位可以根据自己的需要,选择新的模块和现有的模块进行组合,也可以继续使用已有的分析方法而无需花费资金去开发新的方法以及重新培训操作人员。对于那些暂时使用非安捷伦操作软件的用户,安捷伦科技还可以专门为他们提供一种1100仿真模拟模式。 据安捷伦科技有关人士介绍,Agilent 1200是一款功能极其完善的液相色谱系统,其可选的仪器模块数量超过60个,可以灵活组合以满足液相色谱不同应用领域的需要,包括:快速分离液相(最新推出)、制备液相、标准液相、窄柱液相、毛细管液相、纳升级液相以及安捷伦科技开创性的芯片液相等。目前,芯片液相技术既可以用于小分子领域也可用于大分子领域,即可用于色谱分离,也可作为进样装置。而采用纳流喷雾离子化的HPLC-Chip/MS技术,其灵敏度较之常规的LC/MS提高了1000倍。

  • 高效液相色谱仪的系统压力

    请问常规高效液相色谱仪不接柱子(接检测器)时的系统压力是多少呀?一般说的系统压力,是泵到色谱柱那一段的压力还是泵到检测器的压力?谢谢。

  • 温度对液相色谱系统的影响

    [align=center][size=21px]温度对[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统的影响[/size][/align][size=16px] [/size][size=16px] [/size][size=16px] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]能进行很多微量和复杂样品分析,在分析界算是精密仪器。很多精密仪器都有一个共同点,那就是工作时受温度影响,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]也不列外,一般仪器都受温度影响较大,其中流动相、色谱泵、色谱柱、检测池、氘灯等受温度影响较大。[/size][size=16px] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]工作温度[/size][size=16px]大多[/size][size=16px]都是1[/size][size=16px]5[/size][size=16px]℃[/size][size=16px]-35[/size][size=16px]℃,[/size][size=16px]当然每个厂家,每个型号的仪器也都不太一样,[/size][size=16px]2[/size][size=16px]0[/size][size=16px]℃[/size][size=16px]-30[/size][size=16px]℃一般仪器都能较好的工作,[/size][size=16px]但[/size][size=16px]有的[/size][size=16px]苛刻些,最佳工作温度可能是2[/size][size=16px]2[/size][size=16px]℃[/size][size=16px]-27[/size][size=16px]℃,或者2[/size][size=16px]0[/size][size=16px]℃[/size][size=16px]-25[/size][size=16px]℃等等,要求就更高一些,在这个最佳工作温度内使用,温度影响不大,超过这个温度影响相对就较大。[/size][size=16px] 流动相受温度影响。[/size][size=16px]流动相温度要和系统温度相匹配,不能过低也不能过高。温度过低,流动相中会溶解进较多空气,影响泵流速,如果色谱柱和检测器没有控温装置的,可能还[/size][size=16px]会影响色谱分离、影响基线噪声和基线漂移[/size][size=16px]等。温度过高也可能[/size][size=16px]会影响色谱分离、影响基线噪声和基线漂移[/size][size=16px],甚至会损坏仪器。[/size][size=16px] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵受温度影响。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵主要是指[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]泵泵头,泵头温度过高或过低,一是会影响流动相流速,二是会影响流动相温度,从而导致色谱问题。[/size][size=16px] 色谱柱受温度影响。色谱柱是[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]中非常核心的部件,工作中对温度要求一般都很高,大多都是常温到4[/size][size=16px]5[/size][size=16px]℃,有的是3[/size][size=16px]0[/size][size=16px]℃到4[/size][size=16px]5[/size][size=16px]℃,有的分析要求温度稳定在一个温度,否则可能会对分离度,定性、定量检测,基线漂移等指标影响较大。[/size][size=16px] 检测池受温度影响。检测池是检测器的核心部件,它对温度也很敏感,受温度影响比较明显。直接影响就是定量不准确,基线不稳定[/size][size=16px],有漂移,可能伴随有不规律波动等。[/size][size=16px] 氘灯受温度影响。氘灯温度不稳定,氘灯发出的光能量就不稳定,波长准确性和光路特性可能也会受影响。光能量不稳定,波长不准确,光路不正等情况对检测影响都很大,所以为了保证检测结果的准确、有效,氘灯温度或光路温度也得严格控温。[/size][size=16px] [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]是精密仪器,所做的分析都[/size][size=16px]有较[/size][size=16px]高[/size][size=16px]要求[/size][size=16px],它的各个重要、核心部件对温度要求都较高,为了保证所做的分析结果的准确、有效,控温[/size][size=16px]必不所少(有些实验室实验室温度控制的较好,最后效果也较好)。[/size]

  • 【网络会议】:2015年07月03日 10:00 如何优化您的液相色谱/超高压液相色谱的流路系统

    【网络会议】:2015年07月03日 10:00  如何优化您的液相色谱/超高压液相色谱的流路系统

    【网络会议】: 如何优化您的液相色谱/超高压液相色谱的流路系统【讲座时间】:2015年07月03日 10:00【主讲人】:赵秀苔IDEX Health & Science分析仪器行业技术经理,具有多年进口仪器研发和技术经验。【会议介绍】 随着液相色谱行业的稳步发展,用户对于仪器的可靠性以及高效率提出了更高的要求,这也使得仪器制造商不断寻求更好的优化方案。本次讲座主要将从流路连接、阀门、泵、脱气、柱管、多岐管板等关键部分来介绍如何优化系统,以及针对下一代液相色谱新技术和应用的关键部件。 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年07月03日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15165、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 【转帖】第八课 液相色谱仪-输液系统

    第八课 液相色谱仪-输液系统 输液系统高效液相色谱的输液系统包括流动相贮存器、高压泵和 梯度淋洗装置。流动相贮存器为不锈钢或玻璃制成的容器,可以贮存不同的流动相。高压泵是高效液相色谱仪最重要的部件之一。由于高效液相色谱仪所用色谱柱直径细,固定相粒度小,流动相阻力大,因此,必须借助于高压泵使流动相以较快的速度流过色谱这。高压泵需要满足以下条件:能提供150-450kg/cm2的压强;流速稳定,流量可以调节;耐腐蚀。目前所用的高压泵有机械泵和气动放大泵两种。梯度淋洗装置可以将两种或两种以上的不同极性溶剂, 按一定程序连续改变组成,以达到提高分离效果,缩短分离时间的目的。它的作用与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的程序升温装置类似。梯度淋洗装置分为两类:一类叫外梯度装置;一类内梯度装置。外梯度装置是流动相在常压下混合,靠一台高压泵压至色谱柱;内梯度装置是先将溶剂分别增压后,再由泵按程序压入混合室,再注入色谱柱。

  • 液相色谱系统压力过低

    如果[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的系统压力过低的一般操作是:1、拧开排液阀,设置流速2ml/min后开泵,观察有无液流,若有再观察液流是否有倒吸现象2、上述若无液流,多数为主动阀的问题,可以尝试拆下主动阀阀芯超声波清洗,或出口球阀超声清洗,若仍有问题,可考虑更换阀芯。注意不要讲整个主动阀放入超声波清洗,会损坏主动阀。3、若上述问题没出现,再仔细检查有无漏液,包括色谱柱,泵,进样阀等。

  • 液相色谱系统高压问题排除

    液相色谱系统高压问题排除

    [align=center][b]液相色谱系统高压问题排除 [/b][/align]小序:五一长假过后,打开液相色谱仪,准备测样,结果系统压力居高不下,开始一一进行排查,终于找到原因恢复正常。1 引起系统压力升高首先想到的是色谱柱堵塞引起,将色谱柱卸下来换成两通进行冲洗,压力依然很高,排除色谱柱的问题。[align=center][img=,592,453]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081659023354_9406_1858223_3.png!w592x453.jpg[/img][/align]2 怀疑是六通阀和管道有问题,对其进行排查,将六通阀上的接口从1号依次分别取下,发现5号接口是堵的,然后对其进行拆卸清洗。[align=center][img=,542,483]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081700150684_651_1858223_3.png!w542x483.jpg[/img][/align]3 拆卸六通阀并用色谱甲醇超声清洗卸下来的筛板(30min),然后风干,待用。[align=center][img=,449,390]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081705538364_2915_1858223_3.png!w449x390.jpg[/img][/align][align=center][img=,528,494]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081706248324_3945_1858223_3.png!w528x494.jpg[/img][/align][align=left][/align]4 按照顺序重新安装,进行系统压力测试,压力正常。小结:1 、对于液相体系进样之前一定要对流动相进行过滤膜抽滤、超声排气; 2、样品溶液均要过0.45微米滤膜,防止样品中的微粒阻塞进样阀,减少进样阀的磨损; 3、流动相中如果含有磷酸盐,防止缓冲盐盐析出堵塞六通阀,一定要在样品测定结束后,用高比例水缓冲40-60min,然后再用有机相冲洗系统。技术人员一定不要存在侥幸心理,为了省时间,减少抽滤,过膜,排气这些步骤,严谨操作才能保护好仪器。

  • 液相色谱做农药(克百威)含量的相关问题

    液相色谱检测克百威的含量是用到正向柱时,发现压力正负不停变化,时什么原因,液相色谱室岛津的LC-20AT,单向阀已经拆下来用异丙醇超声震荡1小时了,流动相是99.3:0.7的正己烷和四氢呋喃,求老师指导,谢谢了

  • 【原创大赛】液相色谱系统中系统峰的干扰

    【原创大赛】液相色谱系统中系统峰的干扰

    李军芳/在采用液相色谱法进行油品烃族组成测定试验中,发现由于受系统倒峰的影响,单一饱和烃标准物质(标样)进样极易产生异形峰,异形峰的出现会影响积分面积,导致计算结果偏差。下面对异形峰产生的原因进行分析描述,并对如何规避异形峰进行简要介绍。 仪器配置及色谱条件:Waters高效液相色谱仪,包括Waters1525高压输液泵,Waters 2414示差折光检测器。配备具有2707自动进样器,在线脱气包,柱温箱和Breeze色谱数据处理工作站。色谱柱:Waters Spherisorb 5.0μm NH2 流动相:正庚烷。 实验得到,采用正辛烷(C8)、正壬烷(C9)、正十二烷(C12)作为饱和烃标样,色谱图中在饱和烃出峰位置(4'20"~4'50")出现拖尾小峰(图1-图3)。采用环己烷作为饱和烃标样,色谱图中在饱和烃出峰位置,峰型完好(图4)。采用正十六烷(C16)、甲基环己烷作为饱和烃标样,色谱图中在饱和烃出峰位置出现前伸的小峰(图5、图6)。而采用单纯的流动相正庚烷作为样品进样,在色谱图中饱和烃出峰位置会出现倒峰(峰面积相对很小)(图7)。 根据试验分析,异形峰产生的原因是由于系统倒峰的存在,保留时间稍有差异的饱和烃试样正峰与系统倒峰相互抵消产生的结果。此系统峰是由于进样过程中系统压力波动造成的,一般出现在死体积附近,往往会形成一个正的或者倒的色谱峰,这些色谱峰独立于样品而存在。本次试验,通道大量调试发现系统倒峰无法规避,方法中固定相采用氨基柱,流动相需为非极性的,而待分析的饱和烃物质也是非极性的。这样待分析的组分基本在色谱柱中没有保留直接流出,造成系统倒峰和试样中饱和烃组分正峰无法分离开。鉴于不同饱和烃的标样响应值差异较大。考虑采用混合标样,进行后续标定。这样既可以将系统倒峰完全规避抵消掉(标样、样品积分面积都有内部抵扣),又可以使测试结果更趋于真值。[img=,554,115]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281154_01_3232859_3.png[/img]图1 C8作为饱和烃标样色谱图[img=,554,117]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281155_01_3232859_3.png[/img]图2 C9作为饱和烃标样色谱图[img=,555,134]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281155_02_3232859_3.png[/img]图3 C12作为饱和烃标准物质色谱图[img=,526,113]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281156_01_3232859_3.png[/img]图4 环己烷作为饱和烃标样色谱图[img=,554,102]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281156_02_3232859_3.png[/img]图5 C16作为饱和烃标样色谱图[img=,534,101]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281156_03_3232859_3.png[/img] 图6 甲基环己烷作为饱和烃标样色谱图[img=,555,136]http://ng1.17img.cn/bbsfiles/images/2017/08/201708281157_01_3232859_3.png[/img] 图7 流动相正庚烷作为样品直接进样色谱图

  • 液相色谱冲洗系统很必要

    大家都知道,液相色谱仪及色谱柱、进样阀等仪器或部件使用维护很重要,使用完后进行系统的冲洗也很必要。一是延长仪器或部件的寿命,二是冲洗后仪器能保持良好的状态,稳定的性能。

  • 【转帖】第九课 液相色谱仪-进样系统,分离系统

    第九课 液相色谱仪-进样系统,分离系统 进样系统一般高效液相色谱多采用六通阀进样。先由注射器将样 品常压下注入样品环。然后 切换阀门到进样位置,由 高压泵输送的流动相将样品送人色谱柱。样品环的容积 是固定的,因此进样重复性好。 分离系统 分离系统包括色谱柱、连接管、恒温器等。色谱柱是高 效液相色谱仪的心脏。它是 由内部抛光的不锈钢管制成 ,一般长10—50cm,内径2—5mm,柱内装有固定相。液 相色谱的固定相是将固定该涂在担体上而成。担体有两 类:一类是表面多孔型担体;另一类是全多孔型担体。 近年来又出现了全多孔型微粒担体。这种担体检度为5 —10 um,是由nm级的硅胶微粒堆积而成,又叫堆积硅 珠。由于颗粒小,所以柱效高,是目前最广泛使用的一 种担体。 在高效液相色谱分析中,适当提高柱温可改善 传质,提高桂效,缩短分析时间。因 此,在分析时可以 采用带有恒温加热系统的金属夹套来保持色谱拄的温度。 温度可以在室温到60℃间调节。

  • 液相色谱仪常见故障及处理方法简析

    1、液相色谱仪—气泡溢出 流动相内有气泡,关闭泵,打开泄压阀,打开purg键,清洗脱气,气泡不断从过滤器冒出,进入流动相,无论打开purge键几次,都无法清除不断产生的气泡。原因过滤器长期沉浸于乙酸铵等缓冲液内,过滤器内部由于霉菌的生长繁殖,形成菌团,阻塞了过滤器,缓冲液难以流畅地通过过滤器,空气在泵的压力作用下经过滤器进入流动相。处理过滤器浸泡于5%硝酸溶液中,超声清洗几分钟即可;亦可将过滤器浸泡于5%硝酸溶液中12~36小时,轻轻震荡几次,再将过滤器用纯水清洗几次,打开泄压阀,打开purge键清洗脱气,如仍有气泡不断从过滤器冒出,继续将过滤器浸泡于5%硝酸溶液中,如没有气泡不断从过滤器中冒出,说明过滤器内部的霉菌菌团已被硝酸破坏,流动相可以流畅地通过过滤器。打开泄压阀,打开泵,流速调至1.0~3.0ml/min,纯水冲洗过滤器1小时左右。即可将过滤器清洗干净。关闭泄压阀,纯甲醇冲洗半小时即可。 2、液相色谱仪—柱压高原因 (1)缓冲液盐分如(乙酸铵等)沉积于柱内; (2)样品污染沉积。处理对于第一种情况先用40~50℃的纯水,低速正向冲洗柱子,待柱压逐渐下降后,相应提高流速冲洗,柱压大幅度下降后,用常温纯水冲洗,之后用纯甲醇冲洗柱子30分钟;对于第二种情况,由样品的沉积引起污染的C18柱,和纯水反向冲洗柱子,然后换成甲醇冲洗,接着用甲醇+异丙醇(4+6)冲洗柱子(冲洗时间的长短由样品污染的情况而定),再用换成甲醇冲洗,然后用纯水冲洗,最后甲醇冲洗正向冲洗柱子30分钟以上。 3、液相色谱仪—既无压力指示,又无液体流过 (1)泵密封垫圈磨损; (2)大量气泡进入泵体。处理对于第一种情况,更换密封垫圈;对于第二种情况,在泵作用的同时,用一个50ml的玻璃针筒在泵的出口处帮助抽出空气。 4、液相色谱仪—压力波动大,流量不稳定 原因系统中有空气或者单向阀的宝石球和阀座之间夹有异物,使得两者不能密封。处理工作中注意观察流动相的量,保证不锈钢滤器沉入储液器瓶底,避免吸入空气,流动相要充分脱气。如为单向阀和阀座之间夹有异物,拆下单向阀,放入盛有丙酮的烧杯用超声波清洗。 5、液相色谱仪—出峰不佳,峰分叉 (1)色谱柱被污染; (2)柱头填料塌陷。处理对于第一种情况,先用纯水反向冲洗柱子,然后换成甲醇冲洗,接着用甲醇+异丙醇(4+6)冲洗柱子(冲洗时间的长短由样品污染的情况而定),再换成甲醇冲洗,然后用纯水冲洗,最后甲醇冲洗正向冲洗柱子30分钟以上。如冲洗后依然出峰不佳,则考虑第二种情况。对于第二种情况,拧开柱头,检查柱填料是否硬结或塌陷。去除硬结部分(污染的填料),装入新填料,滴一滴甲醇,填料下陷,再填,用与柱内径相同的顶端平滑的不锈钢杆压紧,再填平,滴甲醇,再压紧反复几次,直至装满填平。柱头用甲醇冲洗干净,擦净柱外壁的填料,拧紧柱头,用纯甲醇冲洗30分钟以上。 6、液相色谱仪—峰面积重复性不佳 (1)进样阀漏液; (2)加样针不到位。 (3)液量不足. 处理对于第一种情况更换进样阀垫圈;对于第二种情况保证加样针插到底,注射样品溶液后须快速、平稳地从LOAD状态转换到INJECT状态,以保证进样量的准确。日常工作中,液相色谱仪的保养非常重要,如要注意不要让空气进入输液系统和高压泵中,储液器内的溶液如长时间未用应清洗储液器并更换溶液,每次用完色谱仪后缓冲液要用纯水冲洗干净,防止无机盐析出或沉积;样品的前处理也很重要,任何样品都要尽可能地去除杂质,完全溶解,尽量减少对色谱柱的污染,以延长色谱柱的使用寿命,同时避免注射过浓的样品溶液,以免残留液在进样阀内析出固体引起堵塞;色谱柱作好标记,用于不同分析目的的色谱柱不要混用等。

  • 两大知名厂商超高效液相色谱仪器比拼之蓝方观点:Agilent 1290 Infinity 液相色谱系统

    自从Waters 推出收款超高效液相色谱之后,其他各大厂商也都纷纷推出自己的产品。而沃特世科技(Waters)的 ACQUITY UPLC H-CLASS 液相色谱系统 与 安捷伦科技(Agilent)的 1290 Infinity 液相色谱是超高效液相色谱中的佼佼者。如果您是使用这两款仪器中的其中一款仪器,欢迎您来谈谈在日常使用遇到的问题以及解决的过程,仪器使用心得体会,以及在仪器应用等情况。如果您是这两家厂商技术人员,我们也欢迎您前来谈谈仪器的参数情况,仪器性能情况以及在日常使用需要注意的问题,以便让大家更好的使用该仪器;另外也欢迎您对大家的疑问前来答疑解惑。也欢迎大家就我们的讨论发表您的看法,请勿灌水或相互攻击,否则杀无赦!本次PK仅供参考,如果有什么建议欢迎与我们联系~

  • 液相色谱仪前期的杂峰问题

    本人最近刚学液相色谱,走的样品是雌激素类混合样品,柱子是C18 4.6*250的,所用流动相为甲醇:水,比例最终调节到66:34。问题:我所走的色谱图中在三分钟左右时都会出现一个比较尖的倒峰,紧接着是与之相对称的正向峰。经过查看资料,此峰可能是由于色谱柱死体积引起的。由于我所走样品浓度较小,信号峰也不大,这个杂峰就显得比较显眼。不知道有没有哪位大神有办法帮忙把这个峰能够去除掉。万分感谢

  • 多维液相色谱分离系统的最新进展

    多维液相色谱分离系统一般采用定量环(loop)或富集柱(trap )作为中转环节,按照用途可分为分析型和制备型,按照运行原理可分为并行系统和串行系统。分析型一般采用并行模式,分离速度快,国外产品占用优势。制备型一般采用串行模式,国内产品具有领先优势。

  • 制备型高效液相色谱系统的应用领域

    制备型高效液相色谱系统的应用领域制备型高效液相色谱系统主要应用在植化、合成、制药、生物及生化等领域的产品的提取及纯化工作中。在不同的工作领域中,组份的提取和纯化量的差异是很大的。在生物技术领域中,酶的分离是微克级;在植化和合成化学领域中,为了鉴别未知成份并进行结构测定,需要得到一至若干毫克的纯品;在药品和医药学测试中,需要克级的标准品和对照品;在当今的工业级提纯中,制药成份往往需要千克级的提取。制备型高效液相的应用领域可以归纳在下表中。 成份量:所在领域 微克: 生物技术领域的酶的分离、生物学和生化学测试 毫克: 结构描述和特征鉴定,包括:生产中的副产品、生物矩阵的新陈代谢产物、天然产物 克级: 对照品(分析标准)毒物学分析所需组份:高纯品中的主要成份、副产品的分离提取 千克级:工业规模生产,活性成份,药物 制备方法的发展和扩大规模的计算  在分析液相中色谱柱的典型进样量是微克级,甚至更低。样品量和固定相之比有的甚至小于1:100000。进样体积一般来说都大大小于色谱柱体积(小于1:100)。 在这种条件下,会达到很好的分离效果,峰形尖锐并且很对称。而在制备液相中,最大的区别就是超量进样。其结果,超量进样的方法和分析方法的放大将在下章内介绍。 吸附变化线  分析液相的目的是给一种组份定性、定量。重要的色谱参数有溶解度、峰宽和峰的对称性。如果进样量越来越多,峰高和峰面积会增加,但峰的对称性和容量因子保持不变。如下图。   在分析液相中,最佳的峰形应是一条高斯曲线。峰的标准背离 бV 描述了其对称性和与高斯曲线的相似性。容量因子是与一种不保留物质的保留时间t0相关的保留时间。  如果将超过一定量的样品注射进色谱柱,吸附变化线就会成非线性。这意味着峰形会变的不再对称,表现为严重的拖尾和容量因子的缩小。如下图。在制备液相中,这种效果称作浓缩超量进样。在一些情况中,根据进样量的增加,容量因子也相应变大,并造成很强的前峰。既然吸附变化线取决于组份的多少,那么液相色谱柱的载样能力就必须根据不同的制备液相实验来决定。 色谱柱载样和超量载样  大样品量的纯化有两种可行的方法:分析系统的放大或色谱柱超量载样。分析系统的放大意味着使用直径更大的制备柱、更高的流速和根据色谱柱的长度增加进样量并保持样品浓度不变。峰形仍会保持尖锐而对称。这种方法需要大型的色谱柱和大量的溶剂来分离较少的样品,因此这种方法是不经济的。 因此色谱柱超量载样,暨在相同的分析条件下超量进样通常是一种很好的选择。使用色谱柱超量载样的方法,在分析柱上甚至可以进行毫克级的分离。但更大 量的样品分离就需要整个系统的放大。色谱柱超量载样可以通过两钟方法进行— 浓缩法和体积超载法。 在浓缩法中,样品的浓度会提高,但进样体积保持不变。容量因子k’降低,同时峰形从高斯曲线变为矩形。如下图。浓缩法超量载样只有在样品组份在流动相中具有良好的溶解性的条件下才有可能采用。   如果样品组份的溶解性很差,浓缩法超量载样不能使用。同时更多的样品体积注射到色谱柱中,这种技术称作体积法超量载样。超过一定的进样体积,峰高不变,但峰变宽并且呈矩形。在制备液相中浓缩法超量载样比体积法超量载样更受欢迎,因为可被分离的样品量更高。既然组份的溶解性通常是一个限制因素,所以两钟超量载样技术通常被结合起来使用。两种技术的概览浓缩法超量载样   体积法超量载样 取决于组份在流动相中的溶解性   取决于进样体积 吸附变化线的制备部分   吸附变化线的分析部分 生产效率决定于选择性   生产效率决定于制备柱直径 受固定相粒度大小的影响不大   需要小颗粒填料 方法的放大 浓缩法超量载样和体积法超量载样都会导致组份溶解性的降低。既然组份的分离需要一定的溶解性,那么在放大分析方法的时候,优化溶解性、特别是选择性就是一项很重要的工作。   因为选择性和超量载样潜力是相互依靠的,选择性的提高会提高一次运行中所分离的样品量,因此从分析方法到制备方法的放大和方法的优化需要三个步骤。 1. 优化分析方法的选择性。2. 在分析柱上进行超量载样。3. 放大到制备柱 制备型高效液相色谱的目的  判断制备型高效液相色谱使用的结果有三个重要参数:产品的纯度、产量和生产效率。三个参数之间是相对独立的,因此很难同时使用这三个参数来优化制备型高效液相色谱方法。见图形6。 色谱图1显示在制备型高效液相色谱的使用中有很高的生产效率,但是两种组份的分离效果却是很差的。这种方法很可能得到两种组份的高纯品,但是产量和收率却是很低的。  在色谱图2中峰有很好的分离,因此这种方法可以得到两种组份的高纯品和高产量,但是生产效率却很低。  色谱图3中的情况是三个参数综合后得到的最优化的结果。峰在基线上被完全分开,这使得产品纯度、产量和生产效率都达到最高。  在实际应用中,每个参数的重要性都是不同的。如为了进行活性或药物测试,某种组份必须被完全单独提取,那么组份的纯度是最重要的参数,产量和生产效率是其次的。如果某种合成中间体必须被纯化,并且需要有足够的量为下一步合成作准备,那么纯度就不是最重要的了。而生产效率在这种情况下就是个首先需要解决的问题,因为其直接关系到完成整个合成工作的进程和速度。同时产量也是很重要的,因为高价值组份的损失需要控制在最少的范围内。

  • 超高效液相色谱系统选购经验分享

    [font=宋体][font=宋体]超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]是在传统高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的基础上升级改进,使之获得更高的系统耐受压力。这样就可以适配更小填料粒径的色谱柱,因为越小粒径的色谱柱,柱效越高,反压也越高。常规的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系统无法承受亚[/font][font=Calibri]2[/font][font=宋体]微米的色谱柱带来的高反压。超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]搭配小粒径色谱柱,能够提供更高的分辨率、更快的分离速度和更高的灵敏度,是搭载质谱检测器的理想分离系统。目前超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]国产与进口品牌种类繁多,如何选择合适的设备,这里谈谈我的经验。[/font][/font][font=宋体]1、[/font][font=宋体]输液系统[/font][font=宋体]1)[/font][font=宋体]输液泵[/font][font=宋体]目前市面上主流的是凸轮往复泵和直线电机泵两种。凸轮泵因为设计上的原因需要加装阻尼器来稳定压力脉冲,系统的延迟体积要大于电机泵。流量的准确度与精密度上电机泵也要更出色。但成本上电机泵会更高一些。[/font][font=宋体]2)[/font][font=宋体]泵组合[/font][font=宋体][font=宋体]分为二元泵系统和四元泵系统,二元泵是两组输液泵分别控制有机相与水相流路,混合比例靠控制[/font][font=Calibri]A[/font][font=宋体]泵跟[/font][font=Calibri]B[/font][font=宋体]泵的流量,混合点位于泵后,属于高压混合,混合效果更好,不足是只能同时使用四路溶剂中的两路。四元泵系统只有一组输液泵,通过控制比例阀的开合时间,控制溶剂混合比例,混合器位于泵前段,属于低压混合,混合精度上不如二元泵系统。但四元泵可以灵活使用四路流动相中的任意[/font][font=Calibri]1-4[/font][font=宋体]种,更适合方法开发。因为四元泵系统中,有机相和水相共用一组输液泵,泵内更容易析出结晶盐损害密封组件。所以在使用四元泵时,需要特备注意缓冲盐溶液与有机相的混合比例,避免结晶盐析出。[/font][/font][font=宋体]3)[/font][font=宋体]电动放空阀,手动是真的不方便。溶剂压缩补偿技术,这也是很重要的参数,但各厂家技术的优劣难以把握。各厂商一般都会提供流量准确度与紧密度参数,但测试条件各厂家都不一样。漏液传感器、真空脱气、柱塞清洗等功能基本都是标配了。[/font][font=宋体]2、[/font][font=宋体]自动进样器[/font][font=宋体]1)[/font][font=宋体]进样器[/font][font=宋体]主要关注的就是进样误差和进样重复性,这两个厂商基本都会提供,可比性还是很高的。虽然各厂家都会提供交叉污染的测试数据,但我们用户在选择时,更应该关注进样针时流路设计还是旁路设计。旁路设计的进样方式有个天然缺陷,就是无法清洗进样口,导致交叉污染会比流路设计大。而流路针也有缺陷,因为针跟针座会在运行样品时连接到流路中,针座密封就需要做到耐高压。但是在反复进样的过程中,针座密封圈不不断磨损而漏液。[/font][font=宋体]2)[/font][font=宋体]附加功能[/font][font=宋体][font=宋体]类似于瓶位检测、顶针堵针保护等附加功能可以很好避免误操作时带来的仪器损害。温控功能主要考虑组件的耐用程度,温控的准确度和稳定性在[/font][font=Calibri]2[/font][font=宋体]℃以内都是可接受的。[/font][/font][font=宋体]3、[/font][font=宋体]柱温箱[/font][font=宋体]主要关注温控范围、准确度、稳定性,最关键的参数是温度的稳定性,这将直接影响分析测试时保留时间的稳定性与峰面积的重现性。流动相预加热功能可以保障进入色谱柱的流动相与色谱柱的温差尽可能小,提供更好的色谱峰重现性。温控组件目前市面上性能最好的是帕尔帖元件。[/font][font=宋体]近年来国产[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的发展越来越好,性能上并不比进口产品差。但是由于超高效设备主要配置质谱检测器,进口质谱厂商多有配套[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]设备,加上国产质谱发展水平受限,国产超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的市场占有率并不高。希望此次分享能为大家在今后的仪器选购中提供帮助,也祝愿国产仪器越来越好。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制