当前位置: 仪器信息网 > 行业主题 > >

气相色谱分配容量

仪器信息网气相色谱分配容量专题为您提供2024年最新气相色谱分配容量价格报价、厂家品牌的相关信息, 包括气相色谱分配容量参数、型号等,不管是国产,还是进口品牌的气相色谱分配容量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱分配容量相关的耗材配件、试剂标物,还有气相色谱分配容量相关的最新资讯、资料,以及气相色谱分配容量相关的解决方案。

气相色谱分配容量相关的资讯

  • 安捷伦推出微型气相色谱仪 用以保障天然气持续安全分配和使用
    p style=" text-indent: 2em " & nbsp 10月15日,安捷伦推出了一种微型气相色谱仪,它体积小、速度快、智能化、使用方便。新的安捷伦990微气相色谱系统用于监测天然气的安全分布、热值和加臭水平。它小巧耐用,随时随地提供实验室质量数据。 br/ /p p style=" line-height: 1.75em text-indent: 2em margin-top: 10px margin-bottom: 10px " strong 990微气相色谱系统将安捷伦成熟的微加工技术和智能连接数字技术结合在一个全新的模块化平台上。该系统的即插即用架构和智能连接用户辅助功能使990微气相色谱系统更易于安装、使用和故障排除,降低成本的同时也提高了生产效率。 /strong br/ /p p style=" line-height: 1.75em text-indent: 2em margin-top: 10px margin-bottom: 10px " “开发更好的工具以确保天然气的持续安全分配和使用,这再次表明安捷伦致力于与我们的客户和市场合作,”安捷伦的市场营销、GC和工作流自动化解决方案总监Eric Denoyer博士说。“这不仅为我们的客户改善了科学和业务成果,也有助于提高我们服务的社区的生活质量。” br/ /p p style=" line-height: 1.75em text-indent: 2em margin-top: 10px margin-bottom: 10px " 可移动系统的电池寿命是以前型号的两倍,可为许多应用提供超过8小时的远程操作。可选的移动浏览器界面允许与笔记本电脑或平板电脑等移动设备进行远程连接,并允许在人类更难或可能不太安全的地方进行免提、无人值守的操作。 /p
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 孰优孰劣?气相色谱、液相色谱大PK
    p style=" text-indent: 2em " 气相和液相是有机检测的两大基本仪器,占据着有机实验室的统治地位,虽然同做有机检测,但就两个仪器本身也有着较大区别,本篇文章将从流动相、固定相、分析对象、检测技术和制备分离5个方面进行比较。 /p p   气相色谱是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。同为色谱技术之一,液相色谱也是一种分离与分析技术,它的特点是以液体作为流动相,固定相可以有多种形式,如纸、薄板和填充床等。那么,气相色谱和液相色谱相比各有什么特点呢?可以从以下几个方面进行比较: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/67f10b1e-e84f-40fc-a467-a87d254ca65a.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 流动相 /span /strong /p p   GC用气体作流动相,又叫载气。常用的载气有氦气、氮气和氢气。与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。 /p p   而在HPLC中,流动相种类多,且对分离结果的贡献很大。换一个角度看,GC的操作参数优化相对HPLC要简单一些。此外,GC载气的成本要低于HPLC流动相的成本。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 固定相 /span /strong /p p   因为GC的载气种类相对少,故其分离选择性主要通过不同的固定相来改变,尤其在填充柱GC中,固定相常由载体和涂敷在其表面的固定液组成,这对分离有决定性的影响,所以,导致了种类繁多的GC固定相的开发研究。迄今已有数百种GC固定相可供我们选择使用,但常用的HPLC固定相也就十几种。 /p p   故LC在很大程度上要靠选用不同的流动相来改变分离选择性。当然,毛细管GC常用的固定相也不过十几种。在实际分析中,GC一般是选用一种载气,然后通过改变色谱柱(即固定相)以及操作参数(柱温和载气流速等)来优化分离,而LC则往往是选定色谱柱后,通过改变流动相的种类和组成以及操作参数(柱温和流动相流速等)来优化分离。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 分析对象 /span /strong /p p   GC所能直接分离的样品是可挥发、且热稳定的,沸点一般不超过500℃。据有关资料统计,在目前已知的化合物中,有20%~25%可用GC直接分析,其余原则上均可用LC分析。也就是说GC的分析对象远没有LC多。 /p p   需要指出的是,有些虽然不能用GC直接分析的样品,通过特殊的进样技术,如顶空进样和裂解进样,也可用GC间接分析。比如高分子材料的裂解色谱就是如此。这在一定程度上扩大了GC分析对象的范围。此外,GC比LC更适合于气体的分析。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 检测技术 /span /strong /p p   GC常用的检测技术有多种,比如热导检测器(TCD)、火焰离子化检测器(FID)、电子俘获检测器(ECD)、氮磷检测器(NPD)等,其中FID对大部分有机化合物均有响应,且灵敏度相当高,最小检测限可达纳克级。 /p p   而在LC中尚无通用性这么好的高灵敏度检测器。商品LC仪器常配的也就是紫外-可见光吸收检测器(UV-Vis)和示差折光检测器(RI)。前者的通用性远不及GC中的FID,后者的灵敏度又较低,且不适于梯度洗脱。当然,不论GC还是LC,都有一些高灵敏度的选择性检测器,GC有ECD和NPD等,LC有荧光和电化学检测器。较为理想的检测器应该首推MS,但在这一点上,GC目前要优于LC。 /p p   因为GC流动相的特点,它与MS的在线联用已不存在任何问题,特别是毛细管GC与MS的联用已成为常规分析方法。而LC与MS的联用就受到了流动相的限制。虽然目前已有多种接口,如离子束、热喷雾、电喷雾等,但流动相的选择还是受到明显的限制。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/dc79324a-3854-4369-a9f5-19ad962fc77f.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 制备分离 /span /strong /p p   在新产品的研究开发过程中,或在未知物的定性鉴定工作中,常需要收集色谱分离后的组分作进一步分析,而某些高纯度的生化试剂则是直接用色谱分离来制备的。就这一点而言,GC在原理上应该是有优势的,因为收集馏分后载气很容易除去。然而,由于GC的柱容量远不及LC,如果用GC作制备,那是相当费时的。因此,制备GC的实用价值很有限。制备LC则有很广泛的应用。 /p p    strong 下面就来介绍一下,相比于气相色谱,液相色谱在以下三大方面所具备的优越性。 /strong /p p   1. 气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。这使气相色谱法的使用范围受到了限制。 /p p   2. 对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因: /p p   ①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。 /p p   ②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。 /p p   ③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。 /p p   3. 和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。 /p p   综上所述,与气相色谱相比,液相色谱在样品的适用性、分离能力以及样品回收方面都具备着一定的优越性。凭借着技术上的这些优势,液相色谱得以在更多领域得到广泛应用。 /p
  • 广西科联招标中心有限公司预算2032.89万元采购液质联用仪器、气相色谱仪等
    近日,广西科联招标中心有限公司发布公开招标公告,总预算达2032.89万元,采购高效液相色谱-质谱联用仪、超高液相色谱串联三重四级杆质谱仪、全自动红外测油仪、可见分光光度计等多台仪器。 政府采购计划文号:广西政采[2021]1875号  项目编号:GXZC2021-G1-000484-KLZB  项目名称:专用仪器设备采购  预算金额:A分标:536.4万元 B分标:514.85万元 C分标:408.15万元 D分标:197万元 E分标:376.49万元  采购需求:  A分标:高效液相色谱-质谱联用仪1台、气相色谱仪(FID、FPD)1台、气相色谱仪(ECD、FPD)1台、液相色谱仪1台、化学衍生装置1套、冰箱(0-8)℃3台、全能型瓶口分配器1个、全能型瓶口分配器1个、酸度计2台、数控超声波清洗器1台、低温恒温槽1台、电子分析天平3台、电子分析天平3台、大容量电动移液器10台、手动单道可调微量移液器3台、瓶口分液器1台、电子天平1台、电子天平1台、移液枪2台、移液枪2台、移液枪2台、实验用铂金坩埚4台。  B分标:氮吹仪3台、旋转式摇床2台、酸度计1台、离心机4台、旋转蒸发仪整体套装2套、24位固相萃取真空装置5台、瓶口分配器4台、原子吸收分光光度计1台、原子荧光形态分析仪1台、微波消解萃取仪1台、恒温培养箱8台、霉菌培养箱8台、精密恒温鼓风干燥箱1台、冷藏柜(非医用)1台、冷冻柜(非医用)1台、均质器1台、光学显微镜1台、移动紫外线消毒车 10台、高压灭菌锅2个、PH计(台式)2台、PH计(便携式)1台、洗衣机1台、高速均浆仪1台 、水质微生物过滤系统1台、刀式研磨仪2台、光能电子滴定器2台、酸度计1台、紫外分光光度计1台、全自动流动注射分析仪1台、瓶口分液器(有机试剂)1台、循环水式多用真空泵3台、消化炉1台、全自动凯氏定氮仪1台。  C分标:低速离心机 2台、激光测距仪5台、冰虎车载冰箱5台、低本底α、β测量仪(8通道)1台、便携式抽滤器2台、全自动固液吹扫捕集仪1台、高通量加压流体萃取仪1台、全自动流动注射分析仪1台、气相分子吸收光谱仪1台、原子荧光光度计1台、超声波清洗机1台、调速多用振荡器3台、旋转蒸发仪1台、离子计2台、全自动流量/压力校准仪1台、全自动多路大气采样器1台、孔口流量校准器2台、智能皂膜流量校准器2台、空气综合采样器1台、多路采样器2台、多路恒温智能空气/TSP采样仪1台。  D分标:超高液相色谱串联三重四级杆质谱仪1台、全自动红外测油仪1台。  E分标:高效液相色谱仪1台、气相色谱仪1台、原子吸收分光光度计1台、超高速全自动氨基酸分析仪1台、原子荧光光度计1台、荧光分光光度计1台、液体封样器1台、微生物气溶胶采样器2台、生化培养箱1、高速台式离心机1、热脱附进样系统1台、数字式撕裂仪1台、水 浴 振 荡 器2台、静音无油压缩机4台、旋转蒸发仪1台、低温冷却液循环泵 1台、旋涡混合仪1台、低速离心机1台、温差补偿器6台、高倍投影仪1台、显微镜(带接口,连接显微镜和摄像头 含数字化纤维样片子系统及样片)1台、直驱超高速包缝机1台、推拉力计1台、电热鼓风干燥箱1台、阀门试验台1台、路缘石砧1台、佩戴装置强度试验机 、(动态绑带拉伸试验机)1台、照明眩光测量系统1台、耐辐照检测仪 1台、安全玻璃透射比测定仪1台、 冲击失效检测仪3台、紫外可见分光光度计1台、可见分光光度计1台、采样泵5台、电动防水卷材不透水仪1台、提袋疲劳试验机1台、陶瓷吸水率真空装置1台、高温电阻炉1台、智能电子拉力试验机1台、全自动低温柔性试验仪1台、超声波测厚仪1台。  开标时间:2021年4月12日9时00分(北京时间)
  • 基于MEMS微型色谱柱技术的便携式气相色谱仪
    气相色谱是英国生物化学家MartinATP等人在研究液液分配色谱的基础上,创立的一种有效的分离检测方法,它可分离和检测复杂的多组分气体混合物。传统的气相色谱系统主要由五个部分组成:载气、进样器、色谱柱、检测器和数据处理系统。可广泛应用于环境监测、石油勘探、生物制药、物质提纯等领域。 色谱柱是气相色谱系统的关键部件,主要用于样品气体组分的分离。传统的气相色谱柱包括毛细管色谱柱和填充柱。当样品随载气流经色谱柱时,由于样品中组分在两相间的分配系数差异,使得各组分在两相间反复多次分配后,依次从色谱柱后流出,从而将气体的不同组分进行分离。分离后的组分再进入检测器中进行检测,最终由微型电脑进行计算和分析。 与传统气相色谱柱相比,基于微机电系统(MEMS)技术制作的微型气相色谱柱是平面二维结构,能大幅度减小柱温箱的体积,具有重量轻、体积小、功耗低、分离快速等优点,便于集成到便携式气相色谱仪中,满足目前对于气相色谱仪小型化、轻便化的需求。 目前,微型气相色谱系统朝着微型化和集成化的方向发展,将进样、预浓缩、分离、检测单元都集成在单个硅片上,大大减小了体积与重量,提高了气相色谱仪器的便携性。 PB-350作为一款微型、便携式气相色谱仪,主要由预浓缩单元、色谱分离单元和检测器单元构成,其用于样品的富集及分离的芯片式预浓缩及气相色谱柱基于MEMS微机电技术,体积小、重量轻、分离速度快、分离效率高,可用于空气、水、土壤中的挥发性有机物的现场测试。
  • 仪器选型篇 | 一文了解“气相色谱”的前世今生和庞大家族
    气相色谱(gas chromatography 简称GC)是二十世纪五十年代出现的一项重大科学技术成就。它是一种新的分离、分析技术,在工业、农业、国防、建设、科学研究中具有广泛应用。今天我们就其发展史、检测原理、结构及应用等和大家进行探讨,一起来学习一下吧~(还有哪些您想听的知识点文中没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎积极留言~)0一、“气相色谱仪”的诞生和发展GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。从仪器来看,历史上最早的气相色谱仪是实验室自建仪器。1947年,捷克色谱学家Jaroslav Jank发明的“杨那克型气相色谱仪”,在历史上曾经流行过一段时间。该仪器以CO2为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CO2进入测氮管之前,通过KOH溶液吸收掉CO2,按时间记录气体体积的增量。不足的是,它只能测室温下为气体的样品,样品中的CO2不能被测定,没有实现自动化;另外它结构简单,很多实验室自行搭建,没有发展到“让非专家能轻松使用”的商品化仪器阶段。▲ 图源网络虽然Jaroslav Jank的发明对于气相色谱的发展有很大的利好,但是真正气相色谱的发展要从诺贝尔化学奖得主英国的马丁(A.J.P.Martin)和辛格(R.L.M.Synge)聊起......▲ 属于“气相色谱”的关键时间点(图源网络)1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD出现了衡电流、衡热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。▲ 图源网络20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。▲ VARIAN 气相色谱仪(图源网络)二、“气相色谱仪”的结构及原理气相色谱仪的六大系统气相色谱仪的种类繁多,功能各异,但其基本结构相似。气相色谱仪一般由气路系统、进样系统、分离系统(色谱柱系统)、检测及温控系统、记录系统组成。▲ 图源网络1. 气路系统气路系统包括气源、净化干燥管和载气流速控制及气体化装置,是一个载气连续运行的密闭管路系统。通过该系统可以获得纯净的、流速稳定的载气。它的气密性、流量测量的准确性及载气流速的稳定性,都是影响气相色谱仪性能的重要因素。气相色谱中常用的载气有氢气 、氮气 、氩气,纯度要求99.99% 以上,且化学惰性好,不与相关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。气相色谱选择载气,是根据色谱柱系统及色谱仪的检测器等条件来确定的。氢气(H2)具有相对分子质量小、热导系数大、黏度小等特点,是热导检测器常用的载气、氢火焰离子化检测器中必用的燃气,但氢气易燃、易爆,使用时要特别注意安全。氮气(N2)相对分子质量较大、扩散系数小、柱效相对较高、安全、价格便宜,因此,氮气是最为常用的载气,在氢火焰离子化检测器中常用,但由于其热导系数低、灵敏度差、定量线性范围较窄,因此在热导检测器中少用。氦气(He)相对分子量小、热导系数大、黏度小、使用时线速度大,与氢气相比,更安全,但成本高,常用于气一质联用分析。氩气(Ar)相对分子量大、热导系数小,但由于成本高,因而应用较少。2. 进样系统(1)进样器:根据试样的状态不同,采用不同的进样器。液体样品的进样一般采用微量注射器。气体样品的进样常用色谱仪本身配置的推拉式六通阀或旋转式六通阀。固体试样一般先溶解于适当试剂中,然后用微量注射器进样。(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,其作用是将液体或固体试样瞬间气化为蒸气。为了让样品在气化室中瞬间气化而不分解,因此要求气化室热容量大,无催化效应。(3)加热系统:用以保证试样气化,其作用是将液体或固体试样在进入色谱柱之前瞬间气化,然后快速定量地转入到色谱柱中。3. 分离系统分离系统是色谱仪的核心。其作用就是把样品中的各个组分分离开来。分离系统由柱室、色谱柱、温控部件组成。其中色谱柱是色谱仪的核心部件。色谱柱主要有两类:填充柱和毛细管柱。柱材料包括金属、玻璃、融熔石英、聚四氟乙烯等。色谱柱的分离效果除与柱长、柱径和柱形有关外,还与所选用的固定相和柱填料的制备技术以及操作条件等许多因素有关。4. 检测系统检测器是将经色谱柱分离出的各组分的浓度或质量(含量)转变成易被测量的电信号(如电压、电流等),并进行信号处理的一种装置,是色谱仪的眼睛。通常由检测元件、放大器、数模转换器三部分组成。被色谱柱分离后的组分依次进检测器,按其浓度或质量随时间的变化,转化成相应电信号,经放大后记录和显示,绘出色谱图。检测器性能的好坏将直接影响到色谱仪器最终分析结果的准确性。根据检测器的响应原理,可将其分为浓度型检测器和质量型检测器。(1)浓度型检测器:测量的是载气中组分浓度的瞬间变化,即检测器的响应值正比于组分的浓度。如热导检测器、电子捕获检测器。(2)质量型检测器:测量的是载气中所携带的样品进入检测器的速度变化,即检测器的响应信号正比于单位时间内组分进入检测器的质量。如氢火焰离子化检测器和火焰光度检测器。5. 温度控制系统在气相色谱测定中,温度控制是重要的指标,直接影响柱的分离效能、检测器的灵敏度和稳定性。温度控制系统主要指对气化室、色谱柱、检测器三处的温度控制。在气化室要保证液体试样瞬间气化;在色谱柱室要准确控制分离需要的温度,当试样复杂时,分离室温度需要按一定程序控制温度变化,保证各组分在最佳温度下分离;在检测器要使被分离后的组分通过时不在此处冷凝。控温方式分恒温和程序升温两种。(1)恒温模式:对于沸程不太宽的简单样品,可采用恒温模式。一般气体分析和简单液体样品分析都采用恒温模式。 (2)程序升温:程序升温是指在一个分析周期里色谱柱的温度随时间由低温到高温呈线性或非线性地变化,使沸点不同的组分,各在其最佳柱温下流出,从而改善分离效果,缩短分析时间。对于沸程较宽的复杂样品,如果在恒温下分离很难达到好的分离效果,应使用程序升温方法。6. 记录系统记录系统是记录检测器的检测信号,进行定量数据处理。一般采用自动平衡式电子电位差计进行记录,绘制出色谱图。一些色谱仪配备有自动积分仪,可测量色谱峰的面积,直接提供定量分析的准确数据。三、“气相色谱仪”的分类按固定相状态不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的担体作固定相的叫气液色谱,在实际气相色谱分析中,气液色谱占90%以上。 按色谱分离原理,可分为吸附色谱和分配色谱两类。吸附色谱是利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱;分配色谱是利用不同的组分在两相中有不同的分配系数以达到分离的色谱。气固色谱属于吸附色谱,气液色谱属于分配色谱。按色谱柱外观形态,可分为填充柱色谱和毛细管柱色谱两类。一般填充柱是将固定相装在一根玻璃或金属管中,管内径为2~6毫米。毛细管柱色谱通常为常用内径0.1~0.5mm的玻璃或弹性石英毛细管。毛细管柱比填充柱有更高的分离效率,但因其内径小,柱容量小,且对进样技术要求高,载气流速控制要求更为精确。四、“气相色谱仪”的应用气相色谱仪利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。气相色谱法作为近代迅速发展起来的一种新型分离分析技术,具有分离效能高,分析速度快,样品用量少等特点,被广泛用于石油化工、环境监测、医药生产、以及食品分析等领域。1、石油化工气相色谱常用于石油化工行业中常量气体组成及痕量杂质分析,一般采用热导池检测器(TCD)和氢火焰离子化检测器(FID)色谱法。汽油馏分组成分析也石化分析的一个重要部分,主要包括汽油中烃族、芳烃、含氧化合物、含硫化合物的组成分析,均离不开气相色谱的身影。2、环境监测气相色谱技术在土壤中的应用主要体现在对有机污染物的检测,包括农残、多氯联苯、多环芳烃等持久性污染物的分析等。环境水和生活饮用水中卤代烃、苯系物、有机酸、挥发性有机物(VOCs)等沸点较低,易汽化,气相色谱技术在上述物质的分析检测中具有广泛应用。伴随着工业生产,不可避免的会有有毒有害的挥发性有机物分散到空气中,利用空气采样管吸附,然后通过石油醚解析,并使用气相色谱外标法定性定量,可满足大气中多种有毒有害组分的分析。3、医药分析气相色谱在中药定性鉴别、杂质检查、含量测定、中药挥发油分析、中药农药残留量等各项指标分析中都有广泛应用。随着气相色谱与质谱、红外光谱等技术的联用,为未知试样的定性分析提供了新的手段,特别是与质谱联用适合于中药中挥发性成分指纹图谱的研究。中药的安全性控制,包括毒性成分、有害元素、农药残留等是其质量评价的重要内容。《中国药典》附录中收载有“农药残留量测定法“,对有机磷、有机氯类以及拟除虫菊酯类农药采用GC法测定。4、食品分析食品安全检测一直是重要的民生问题之一,气相色谱因其灵敏度高、分离效果好,在食品检测中已经得到广泛应用。主要应用之一为对水果蔬菜农药残留方面的检测。使用气相色谱法,可以对几十种农药同时进行检测。一般来说,主要通过毛细管色谱柱分离并使用ECD或FID进行检测,该方法具有速度快、结果准确的优势。主要应用之二为对食品添加剂的检测,如甜味剂、防腐剂等,一般都是采用GC/FID气相色谱技术。气相色谱还可以用于食品理化性质的分析,如白酒中甲醇含量、酯类成分分析等,以此来确定白酒品质和等级。五、“气相色谱仪”的安装及调试(一)色谱仪的安装准备 1、对色谱仪分析室的要求a. 分析室周围不得有强磁场,易燃及强腐蚀性气体。b. 室内环境温度应在5~35度范围内,湿度小于等于85%(相对湿度),且室内应保持空气流通。有条件的实验室最好安装空调。c. 准备好能承受整套仪器,宽高适中,便于操作的工作平台。一般要求高0.6~0.8米,平台不能紧靠墙,应离墙0.5~1.0米,便于接线及检修。d. 供仪器使用的动力线路容量应在10KVA左右,且仪器使用电源应尽可能不与大功率耗电量设备或经常大幅度变化的用电设备公用一条线,电源必须接地良好。2、气源准备及净化a. 气源准备一般用氮气,氢气,空气这三种气体,有的实验室使用氢气发生器和空气压缩机也可以,但空压机必须无油。当钢瓶气压下降到1~2Mpa时,应更换气瓶。上述气体一般要求纯度达到99.99%,电子捕获检测器必须使用高纯气源(纯度达99.999%及以上)。b. 气源净化为了除去气体中可能含有的水分,灰分和有机气体成分,在气体进入仪器之前应先经过严格净化处理。气相色谱净化装置装填的主要有5A分子筛(吸附气源中的水分和低摩尔质量的有机杂质),在5A分子筛之后装入少量变色硅胶(当分子筛失效时,水开始被变色硅胶吸附),硅胶变红说明分子筛需要重新活化。还需装入一些活性炭(吸附烃类杂质)。应定期进行各种净化剂的更换或烘干,以确保气体纯度。注意:净化管的出口和入口处应加标志;出口处应当用少量纱布或脱脂棉塞上,防止净化机粉尘流入气相色谱仪。(二)色谱仪成套性检查及安装仪器开箱后,按资料袋内附件清单,进行逐项清点,并将易损零件的备件予以妥善保存。然后按照仪器的使用说明书上要求,将其放置于工作平台上,并对着接线图和各插头,插座将仪器各部分连接起来,最后连接记录仪和数据处理机。注意各接头不要接错。1、外气路的连接a. 减压阀的安装有的仪器随机带有减压阀,若没有的则要购买。所用的是2只氧气,1只氢气减压阀。将2只氧气减压阀,1只氢气减压阀分别装到氮气,空气和氢气钢瓶上(注意氢气减压阀螺纹是反向的,并在接口处加上所附的O形塑料垫圈,以便密封),旋紧螺帽后,关闭减压阀调节手柄(即旋松),打开钢瓶高压阀,此时减压阀高压表应有指示,关闭高压阀后,其指示压力不应下降,否则有漏,应及时排除(用垫圈或生料带密封),有时高压阀也会漏,要注意。然后旋动调节手柄将余气排掉。b. 外气路连接把钢瓶中的气体引入色谱仪中,有的采用不锈钢管(φ2×0.5mm),有的采用耐压塑料管(φ3×0.5mm)。从钢瓶到仪器的管路长度视需要而定,不宜过长,然后用不锈钢管或耐压塑料管把气源和仪器(气体进口)连接起来。c. 外气路检漏把主机气路面板上载气,氢气,空气的阀旋钮关闭,然后开启各路钢瓶的高压阀,调节减压阀上低压表输出压力,使载气,空气压力为0.35~0.6Mpa(约3.5~6.0kg/cm3),氢气压力为0.2~0.35 Mpa。然后关闭高压阀,此时减压阀上低压表指示值不应下降,如下降,则说明连接气路中有漏,应予排除。2、色谱仪气路气密性检查气密性检查是一项十分重要的工作,若气路有漏,不仅直接导致仪器工作不稳定或灵敏度下降,而且还有发生爆炸的危险,故在操作使用前必须进行这项工作。方法是,打开色谱柱箱盖,把柱子从检测器上拆下,将柱口堵死,然后开启载气流路,调低压输出压力为0.35~0.6Mpa,打开主机面板上的载气旋钮,此时压力表应有指示。最后将载气旋钮关闭,半小时内其柱前压力指示值不应有下降,若有下降则有漏,应予排除。若是主机内气路有漏,则拆下主机有关侧板,用肥皂水(最好是十二烷基磺酸钠溶液)逐个接头检漏,最后将肥皂水擦干。3、仪器开机检查及调试仪器的调试把气路,仪器等按上述接好,安置好后,便可进行下面检查和调试工作。a. 将接通载气,调节主机面板上的载气旋钮(即:载气稳流阀),使载气流量为20~30ml/min。b. 启动主机,检查是否有异样声响及仪器运转情况;若无异常,检查仪器温控准确度,包括柱温箱、进样器、检测器温度控制精度,一般要求温控精度达到0.01度。4、色谱柱安装及老化色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤:a. 检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。b. 将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平。c. 将色谱柱连接于进样口上。(色谱柱在进样口中插入深度应视仪器不同而定)正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后,如果针尖与色谱柱入口相差1-2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4~1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,还有可能对色谱柱造成永久损坏。d. 接通载气当色谱柱与进样口接好后,通载气, 调节柱前压以得到合适的载气流速。将色谱柱的出口端插入装有己烷的样品瓶中,正常情况下,我们可以看见瓶中稳定持续的气泡。如果没有气泡,就要重新检查一下载气装置和流量控制器等是否正确设置,并检查一下整个气路有无泄漏。等所有问题解决后,将色谱柱出口从瓶中取出,保证柱端口无溶剂残留,再进行下一步的安装。e. 将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。f. 确定载气流量,再对色谱柱的安装进行检查。(注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。)g. 色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。将色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10-20℃左右,但是一定不能超过色谱柱的温度上限。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5-10分钟开始下降,并且会持续30-90分钟。当到达一个固定的值后就会稳定下来。如果在2-3小时后基线仍无法稳定或在15-20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。六、“气相色谱仪”的使用注意事项1、使用纯度满足要求的载气:载气一定要用高纯级的,以避免干扰分析和污染色谱柱或检测器。2、及时更换进石墨密封垫:石墨密封垫漏气是GC常见故障之一。尽量不要在不同色谱柱上重复使用同一密封垫,即使同一根柱卸下重新安装时,最好也要换新密封垫,这样能保证更高的工作效率。3、定期更换气体净化器填料:变色硅胶可据颜色变化来判断其性能,但分子筛等吸附有机物的净化器就不好用肉眼判断了,所以须定期更换,最好3个月更换一次。如果硅胶与分子筛装在一起,则更换硅胶时也要更换分子筛。4、使用性能可靠的气体减压阀:新的减压阀在使用时一定要试漏,在长期的使用过程中也要经常检漏。如果不注意该问题,轻则造成气体浪费,重则出现安全问题。5、定期更换进样衬垫:进样口衬垫漏气也是GC常见故障之一。另外,衬垫的老化降解也会给色谱分析带来干扰。比如其碎屑掉进汽化室内也可能导致鬼峰。至于多长时间换一次衬垫,则要看所分析的样品性质和分析条件而定。一般不建议,一个衬垫连续使用时间超过一周。6、及时清洗注射器:保持注射器清洁能避免样品记忆效应的干扰。更换样品时要清洗,用同一样品多次进样时也要用样品本身清洗注射器。一支注射器暂时不用时,更要彻底清洗,否则残留其中的样品可能将针芯粘牢,造成注射器报废。7、定期检查并清洗进样衬管:仪器长期使用后,进样衬管内会有焦油状物质,这是样品中的不挥发成分造成的。此外还会有颗粒状物质积存(隔垫碎屑,样品中的固体物质)这些都会干扰分析的正常进行。因此要定期检查,及时清洗。在衬管中填充一些经硅烷化处理的石英玻璃毛,既可提高样品的汽化效率,又能防止隔垫碎屑进入色谱柱造成堵塞。8、做好仪器使用和分析记录并定期归档:这是仪器的履历,应逐日记录,包括操作者、分析样品及条件、仪器工作状态等,一旦仪器出现问题,这是查找原因的重要资料。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》七、“气相色谱仪”的常见故障及排除1、进样后不出色谱峰气相色谱仪在进样后检测信号没有变化,不出峰,输出仍为直线。遇到该情况,应从进样针、进样口到检测器的顺序逐一检查。a. 首先检查进样针是否堵塞;b. 再检查进样口和检测器的石墨垫圈是否紧固、不漏气;c. 检查色谱柱是否断裂或漏气;d. 检测器是否出现故障,如堵塞或者未点火。2、基线出现负峰a. 载气不纯:当样品中的物质含量比载气低时便会有负峰,此时更换纯度更高的载气;b. TCD中,样品热导率大于载气热导率,或使用氮气作载气,或TCD电源接反;c. 积分仪或记录仪输入线接反,倒相开关位置改变;d. 在双柱系统中,进样时进错色谱柱;e. 离子化检测器输出选择开关的位置错误,放射源或电极被污染;f. 脉冲发生器不正常,收集极接触不良或短路。3、基线漂移在温度不变的情况下,若基线有漂移通常可考虑以下几种情况:a. 检查色谱仪本身和积分仪的接地线是否良好,保证接地可靠;b. 载气漏气、流速不稳也会使基线漂移,检漏;c. 柱箱密封性要好,使箱体周围没有间隙,防止室内空气进入箱内而造成温度不稳定;d. 载气阀(包括色谱内部阀)有故障,气源压力不稳;e. 从进样系统到检测器的连接管,或者TCD的池体受到污染需要清洗掉污染物;f. 若色谱柱填充物流失,需要重新老化色谱柱。在高灵敏度操作时,由于柱流失使基线漂移是正常现象;g. TCD 故障,检修或更换;h. 检测器的温度过高(或过低)。对于TCD,检测器质量较大,当温度改变时,热容大,温度平衡慢,允许有一定时间使基线稳定;i. 检测器检测元件被氧化,用不锈钢管或铜管替代四氟乙烯管,这样空气中的氧气不会渗透到载气管线中,从而减少元件的氧化;j. 基线漂移很大,色谱柱老化不充分,再次进行老化,色谱柱被污染也会发生大的漂移,只有充分老化色谱柱才行。色谱柱老化后又出现了大的基线漂移,可能是有高沸点液体样品在程序升温过程中没有被吹出去,在色谱柱允许的最高使用温度下,通载气,升温清洗;k. 如果是双柱系统操作时,两路载气不平衡,设置相同的柱流速即可。4、程序升温过程中基线上升在程序升温过程中基线上升,可能的原因以及排除方法如下:a. 色谱柱内固定相流失现象相对上升,可以老化色谱柱并进行柱补偿;b. 两柱的流速不一样,设置相同的柱流速;c. 色谱柱有可能被污染,充分老化色谱柱2h以上。5、基线不在零位基线不在零位,故障原因较多,主要考虑以下几种:a. 积分仪零点没调合适,重调其零点;积分仪接线错误,检查各条连接线,特别检查屏蔽线的接法;积分仪滑线电阻故障,检修或更换;b. TCD 电源故障或没有调平衡,检修或更换新件,重调平衡;c. 柱的固定相流失大,改用低流失柱;d. 检测器可能被污染,需要清洗。6、基线出现尖峰基线出现无规律或有规律的尖峰,其原因有:a. 房间内的开关门,排气扇的启动等使大气压迅速改变,拨打手机时产生的电磁信号流也会影响,可以通过改善仪器放置环境来解决这一问题;b. TCD电源故障,检修或更换新件;c. 热丝老化不好,充分老化;d. 温度不稳,桥流过大,设置合适的参数;e. 载气被污染,用大流量载气吹洗管路,净化载气或更换过滤器,或更换新的载气钢瓶;f. 有其他高沸点液体残留在TCD 检测器出口,将检测器温度升高,但不能超过其使用温度,使凝聚物蒸发, 或在检测器排气口注入少量的丙酮等溶剂热清洗,除去管内的凝聚物;g. TCD的检测器元件故障或桥流不稳定,更换有故障的元件。7、出现拖尾峰出现拖尾峰,可进行如下几种操作:a. 减少样品的进样量;b. 进样器气化管有残渣或破损,清洗或更换,检查检测器是否被污染,必要时清洗;c. 检查载气流量、隔膜清洗流量是否设置正确,分流比或其他条件设置是否合理;d. 气化温度设置是否正确,若柱箱温度过低,增加其温度,提高检测器温度;e. 色谱柱安装方法是否正确,在柱入口端切除1~2 m,使用的柱不合适,致使样品和固相担体相互作用,更换合适的色谱柱,填充柱使用时间过长,重新装填柱子。8、出现圆顶或平顶峰出现圆顶或平顶峰,有如下可能:a. 操作超出检测器输出范围,针对此种情况可以减小进样量,降低灵敏度;b. 积分仪故障或重新调整。9、信号陡然下降到原基线信号陡然下降到原基线,故障原因如下:a. 样品量过大,减小样品量;b. 检测器信号值太高,调零;信号线发生短路,或检测器已坏,进行修理更换;c. 载气流速太大,调整流速。更多内容,请查看仪器信息网牵头编写的《气相色谱实战宝典》八、“气相色谱仪”的采购建议气相色谱仪厂家众多,我们如何从众多气相色谱仪厂家之中找出合适自己样品分析的气相色谱仪呢?下面针对以上问题,为大家列举你在购买气相色谱仪的时候需要考虑的事情。1、被分析样品情况a. 样品本身的组成和状态,是气态,液态,固态还是混合态,能直接用气相色谱仪分析吗?b. 被测组分是热不稳定,易分解,还是易催化反应。时间,温度,压力等变化是否会引起被测组分的变化;c. 样品中是否有烟尘,悬浮物,高佛点组分和有腐蚀性成分。以考虑样品如何采集获得,如何进行样品的预处理;d. 样品来源容易吗?允许样品的消耗量,有利于选择进样方式;e. 不需分析的组分及大致的浓度范围;f. 每天需要分析样品的次数,两次分析的间隔时间。2、分析的目的a. 做定性分析:被分析组分已知或未知,有无标准物;b. 定量分析:在哪个范围—常量(10-1~10-3);半微量(10-3~10-5);微量(10-5~10-7);痕量(10-6~10-9)或超痕量(≤10-9);c. 定量精度和分析准确性,若是半定量要求就简单的多。3、单位需求定位a. 科研院所——各方面要求高;b. 监测和分析中心——数据准确可靠;c. 在线的现场分析用——重现性高。4、检出限仪器的检出限表示在一定的置信范围内能与仪器噪音相区别的最小检测信号对应的待测物质的量,是评价仪器的重要指标——简单的说,检出限越低,那么检测出来低浓度物质含量的能力越强。因此,在痕量分析中,应当尽可能的选择检出限较低的仪器。目前来说,国内外气相色谱仪中,FID和ECD检测器的检出限差别不大,其他检测器则有一定的差距。 5、相关标准及同行咨询寻找有无被分析样品的国标、行标、企标或国外有关参考资料,若有,在标准中会给出在一般场合下,应使用气相色谱仪的功能和技术要求。同行有无做同类样品的分析者,若有,对选型和日后建立色谱分析方法会有直接帮助。6、同一种样品,从理论上讲可能有用多种仪器的分析方法,从仪器的性价比,操作特性,维修服务等多方比较,列出选用气色谱仪分析的理由。7、实用性实用性指标某种程度上来说就是性价比。评价实用性应该从两个方面来谈:一方面是自己的仪器预算是多少,在预算的范围内购买合适档位的仪器;另外一方面是能不能满足自己分析要求,只要可以满足自己的分析要求,不一定要购买贵的。九、“气相色谱仪”检测器的分类及选择1、气相色谱仪检测器分类检测器是气相色谱仪的重要部件,其作用是将色谱柱分离后各组分在载气中浓度或质量变化转换成易于测量的电信号,然后记录并显示出来。根据检测原理的不同,气相色谱检测器可分为浓度型检测器和质量型检测器。浓度型检测器测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如热导检测器和电子捕获检测器。质量型检测器测量的是载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的量成正比。如火焰离子化检测器和火焰光度检测器等。根据样品是否被破坏,气相色谱检测器又可分为破坏性检测器和非破坏性检测器。破坏性检测器有:FID(氢火焰离子化检测器)、NPD(氮磷检测器)、FPD火焰光度检测器)等;非破坏性检测器有:TCD(热导池检测器)、PID(光离子化检测器)、ECD(电子捕获检测器)等。根据对被检测物质响应情况,气相色谱检测器又可分为通用型检测器和选择性检测器。常见的通用型检测器有:TCD(热导池检测器)、FID(氢火焰离子化检测器)、PID(光离子化检测器)。常见的选择性检测器有:FPD(火焰光度检测器)、ECD(电子捕获检测器)、NPD(氮磷检测器)。2、气相色谱常见的6种检测器a. 氢火焰离子化检测器(FID)通过有机化合物在氢气-空气的扩散火焰中燃烧形成离子流,产生电信号,经过放大,然后由记录器记录电压随时间的变化,从而得出色谱图。其特点是只对含碳有机物有明显的响应,而对非烃类、惰性气体或在火焰中难电离或不电离的物质,则讯号较低或无信号,如一些氮的氧化物(NO、N2O等)、一些无机气体(SO2、NH3等)、CO2、CS2和H2O等,甲酸因氧化态较高不易在火焰中形成离子也不产生显著的信号。FID检测器具有灵敏度高,线性范围宽,响应快等特点,常用于微量有机物分析。b. 热导检测器(TCD)根据各种物质均具有不同的热传导系数,当载气中混入其他气态物质时,热导率发生变化,利用被测组分与载气的热导率不同来检测组分的浓度变化。其结构简单,性能稳定,对无机和有机物都有响应,通用性好,而且线性范围宽,可用于常量、半微量分析。c. 电子捕获检测器(ECD)利用放射性同位素作为放射源轰击载气生成正离子和自由电子,在所施电场的影响下,电子向正极移动,形成了一定的离子流,称为基流。当载气带着微量的电负性组分(含卤素、硫、磷、氰基等的化合物)进入时,这些亲电子的组分将捕获电子形成负离子而使基流下降,从而产生检测信号。ECD检测器对电负性物质有极高的灵敏度,对非电负性的物质则没有响应。常用于有机氯农药残留分析。d. 火焰光度检测器(FPD)通过燃烧分解从色谱柱中流出的含P和S的化合物分子,使之碎片化,然后把这些碎片激发到高能级,这些激发态的分子回到基态,发射出特征的带状光谱。这些发射光谱通过392nm(对于硫)或526nm(对于磷)处的滤光片,用光电倍增管测定其强度。FPD检测器对含硫、磷化合物有高选择性和高灵敏度,常用于有机磷农药残留量测定、大气中痕量硫化物的微量分析。e. 氮磷检测器(NPD)具有与FID相似的结构,只是将一种涂有碱金属盐(如硅酸钠或硅酸铷)的陶瓷珠放置在燃烧的氢火焰和收集气之间,当试样蒸汽和氢气流经碱金属盐表面时,含N、P的化合物便会从被氢气还原的碱金属蒸汽上获得电子而离子化;失去电子的碱金属则形成盐再沉积到陶瓷珠表面上。这个碱金属陶珠是作为电子转移反应的催化剂来起作用的。NPD检测器只对含磷和氮化合物有很高的选择性和灵敏度,用于有机磷、含氮化合物的微量分析,主要用于食品、药品、农药残留以及亚硝胺类等物质的分析。f. 光离子化检测器(PID)是一种非破坏性的检测器,通过光子激发使载气中的样品分子电离而产生信号。10.2eV的光源使用得最广,它能使大多数分子电离(永久性气体、低于5个碳数的烃类、甲醇、乙腈和各种氯代甲烷除外)。PID检测器已经成功用于测定工业环境中的CS2、H2S、CH3SH和四乙基铅,水中芳香烃,无机组份,农药和药品中的含硫、氯组分等。十、“气相色谱仪”的常见品牌看到这里,相信各位已经对‍‍‍‍‍‍‍‍‍‍气相色谱仪有了较深的了解。那么目前,气相色谱的品牌都有哪些呢?最受关注的又是哪些呢?(以品牌简称首字母排序)A. 安捷伦产品:Agilent 8890 气相色谱系统Agilent 7890B 气相色谱仪等▲ Agilent 8890 气相色谱系统B. 北分瑞利产品:SP-3420A气相色谱仪北分瑞利气相色谱仪SP-3500等▲ SP-3420A气相色谱仪C. 岛津产品:岛津旗舰级气相色谱仪 Nexis GC-2030岛津气相色谱仪 GC-2010 Pro等▲ 岛津旗舰级气相色谱仪 Nexis GC-2030D. 东西分析产品:GC-4100系列气相色谱仪东西分析GC-4000A系列气相色谱仪等▲ GC-4100系列气相色谱仪E. 福立产品:福立GC9790Plus气相色谱仪福立GC9720 plus气相色谱仪等▲ 福立GC9790Plus气相色谱仪F. 磐诺产品:磐诺A91 Plus实验室高端气相色谱仪磐诺V5000实验室气相色谱仪等▲ 磐诺A91 Plus实验室高端气相色谱仪G. 珀金埃尔默产品:气相色谱仪PerkinElmer Clarus 680气相色谱系统PerkinElmer Clarus 590/690等▲ 气相色谱仪PerkinElmer Clarus 680H. 赛默飞产品:赛默飞TRACE 1300系列 模块化气相色谱仪赛默飞TRACE 1310 气相色谱仪等▲ 赛默飞TRACE 1300系列 模块化气相色谱仪I. 上海炫一产品:炫一M6物联网气相色谱分析平台等▲ 炫一M6物联网气相色谱分析平台J. 上海仪电分析产品:上海仪电分析-GC128 气相色谱仪(GC)上海仪电分析-GC126N 气相色谱仪(GC)等▲ 上海仪电分析-GC128 气相色谱仪(GC)K. 舜宇恒平产品:舜宇恒平GC1120气相色谱仪舜宇恒平GC1290 气相色谱仪等▲ 舜宇恒平GC1120气相色谱仪L. 天美产品:天美GC7980气相色谱仪Scion GC气相色谱仪436-GC/456-GC等▲ 天美GC7980气相色谱仪本文出现品牌由仪器信息网仪器导购专场大数据(品牌指数、3i指数等)综合计算得出最终解释权归仪器信息网所有十一、小结 以上,就是小编为大家整理的气相色谱百科知识大全,附上部分市场主流仪器品牌及型号,更多仪器,请点击进入“气相色谱仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,900余个仪器品类,收录3万+台优质仪器。也可微信扫描下方二维码关注仪器信息网公众号观看更多资讯及内容
  • 气相色谱客户常见问题整理(一)
    气相色谱仪,其实是一种用气体作为流动相的色谱分析仪器,在很多领域都有其身影。原理主要是利用物质的沸点、极性及吸附性质的差异实现混合物的分离。不过,一些客户对于气相色谱的相关概念和问题还是知之甚少,今天,我们就先整理一部分内容供大家参考。一、气相色谱的分离原理是什么气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。二、气相色谱法的一些常用术语及基本概念1.相、固定相和流动相:一个体系中的某一均匀部分称为相 在色谱分离过程中,固定不动的一相称为固定相 通过或沿着固定相移动的流体称为流动相。2.色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。3.基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。4.峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以 x1/2表示。5.保留值与相对保留值:保留值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。以一种物质作为标准,而求出其他物质的保留值对此标准物的比值,称为相对保留值。6.仪器噪音:基线的不稳定程度称噪音。7.基流:氢焰色谱,在没有进样时,仪器本身存在的基始电流(底电流),简称基流。8.峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。9.死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。从进样到出现色谱峰*值所需的时间称保留时间,以tr表示。保留时间与死时间之差称校正保留时间。以Vd表示。10.死体积、保留体积与校正保留体积:死时间与载气平均流速的乘积称为死体积,以Vd表示,载气平均流速以Fc表示,Vd=tdxFc。保留时间与载气平均流速的乘积称保留体积,以Vr表示,Vr=trxFc。三、何谓气相色谱?有几种类型?凡是以气相作为流动相的色谱*,通称为气相色谱。一般可按以下几方面分类:A、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂。(2)气液色谱:固定相是涂在担体表面的液体。B、按固定相类型分类:(1)纸色谱:以滤纸为载体。(2)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。(3)薄膜色谱:固定相为粉末压成的薄漠。C、按过程物理化学原理分类:(1)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。(2)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱 利用温度变化发展而来的热色谱等等。D、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。四、气相色谱法简单分析装置流程是什么?气相色谱法简单分析装置流程基本由四个部份组成:1.气源部分 2.进样装置 3.色谱柱 4.鉴定器和记录器。五、一般选择载气的依据是什么?常用的载气有哪些?作为气相色谱载气的气体,要求要化学稳定性好、纯度高、价格便宜并易取得、能适合于所用的检测器。气相色谱常用的载气有氢气、氮气、氩气、氦气、二氧化碳气等等。以上是今天整理的关于气相色谱的相关内容,后续还将继续分享,*关注我们。
  • 气相色谱VS液相色谱
    什么是气相色谱、液相色谱?气相色谱法是一种以气相为流动相的色谱方法。样品流经气体系统并被气化,最后进入充满填充物的色谱柱以实现有效分离。气相色谱法具有高灵敏度、样品用量少、分离能力强、选择性好、应用范围广、分析速度快等优点。液相色谱法使用填充层、纸和薄板作为固定相。液相色谱在室温下操作,不需要考虑在物质分离过程中样品挥发性和热稳定性的影响。因此,液相色谱可用于分离和分析高热敏性、难汽化和非挥发性物质。根据其分离原理,液相色谱可分为四种类型:吸附色谱、分配色谱、离子交换色谱和凝胶色谱。液相色谱法的工作原理与经典液相色谱法类似,主要区别在于填充颗粒的大小。液相色谱法主要用于分离分子量大、沸点高和不同极性的有机化合物。由于运输流动相需要高压,因此液相色谱也被称为高压液相色谱。怎么读取气相色谱谱图和液相色谱谱图?气相色谱谱图和液相色谱谱图可以用相同的方法解析。检测器输出的数据为线形图,检测到的化合物数随时间不同而变化。挥发性的化合物的峰首先出现在图表上。图中随后出现的峰表示混合物的挥发性逐渐降低。研究人员可以使用这些色谱图进一步分解样品中混合物的化学性质。峰尺寸的比例与样品中物质的含量有关。峰下的面积用于确定样本大小。例如,要确定样品中的成分,首先需要分析已知浓度的标准样品,将标准品色谱图上的保留时间和峰面积与测试样品进行比较,获得样品中的目标化合物浓度。气相色谱和液相色谱工作流程在气相色谱中,样品溶液进入蒸发室后,由载气(载气通常为氮气或氦气)输送进入色谱柱。在色谱柱中分离出不同的成分,最后流出色谱柱。柱中的活动由检测器进行检测。每个成分逐一检测之后,记录器、积分器或数据处理系统会记录下这些色谱信号。在液相色谱中,液相流动相流经输液泵,与样品溶液混合,最后流出色谱柱。吸附分离在柱中进行。在色谱检测站,检测器最终将所有成分转换成电信号,或相应的样品峰。气相色谱和液相色谱的应用气相色谱可用于手性化合物的化学分离实验、对羟基苯甲酸酯食品防腐剂中对羟基苯甲酸酯的分离与测定、各种农药的分离、血浆中掺杂的检测以及环境污染物化学成分的检测等多方面研究。液相色谱法在食品检测,例如食品中有毒有害物质、微生物产品、营养物和添加剂的检测、环境中农药污染的潜在生物标志物的研究以及血浆和尿液中毒素的测定等。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 气相色谱技术在饮用水水质检测中的应用
    饮用水水质检测包括水质的理化指标及水中微生物指标的检测。 生活饮用水理化检测技术主要包括化学分析法与仪器分析法两大类,色谱法属于仪器分析法。 气相色谱技术可以依据固定相、色谱原理、色谱操作形式等进行分类,其优点包括操作简单、灵活性高、分辨率高、选择性强、应用范围广等。 利用气相色谱技术能够实现饮用水中常见污染物的检测,从而实现饮用水水质检测目标。1 前言  气相色谱法(Gas Chromatography,GC)是一种利用气体作流动相的色层分离分析方法。随着各种各样污染的出现,人们已经逐渐意识到环境污染带来的严重问题。以水污染为例,水是人类赖以生存的重要资源,饮用水的安全与人们的身体健康息息相关。本文以饮用水水质检测的重要性为切入点,对饮用水的水质检测技术进行了简要概述,并分析了气相色谱技术在饮用水水质检测中的应用。  2 饮用水水质检测的重要性  水是人类生命的源泉,饮用水的安全是人们健康生存的基本保障。然而资料显示,我国许多江河水质检测时发现了污染物,水质相关指标超过了正常限值标准。水体污染是指在自然过程或人类生产活动过程中,某些有害污染物进入天然水体影响水体发挥正常功能。饮用含有污染物的水会对人体的胃、肝、肾等造成一定影响,如果长期饮用被污染的水,极有可能诱发一系列严重疾病。这就需要有效、准确的水质检测工作来确保饮用水的质量安全。  3 饮用水水质检测技术概述  我国饮用水水质检测技术主要包括化学与仪器分析法两大类。其中,化学分析法的原理就是依据化学反应、颜色变化来判断饮用水水质的优劣;而仪器分析法中主要是通过“光化学分析”“色谱分析”来判断饮用水水质的好坏。 色谱分析包括气相色谱分析和液相色谱分析。近年来,水质检测工作受到的重视度越来越高,有关部门在已有的检测标准中加入了新的方法。由于气相色谱法的诸多优点,使得饮用水水质检测效果大大提升,在环境检测领域得到了广泛应用。  4 气相色谱技术在饮用水水质检测中的应用  4.1 气相色谱技术的分类  4.1.1 依据固定相分类  气相色谱技术的分类依据固定相的不同可以划分为两大类。 采用固体吸附剂作为固定相的称为气固色谱;采用涂有固定液的单体作为固定相的称为气液色谱。  4.1.2 依据色谱原理分类  依据色谱原理可以将气相色谱技术分为吸附色谱和分配色谱。上文提到的气固色谱为吸附色谱,而气液色谱为分配色谱。  4.1.3 依据色谱操作形式分类  气相色谱的色谱操作形式为柱色谱[3]。 依据色谱柱的粗细可以将其分为两类。其一为填充色谱,是指将固定相装在一根金属或者玻璃管中,内径 2~6mm;其二为毛细管柱,毛细管柱可以分为填充与空心两类。空心毛细管柱是指将固定液涂在内径为 0.1~0.5 mm的金属或玻璃毛细管内壁;而填充毛细管柱是指将某些多孔性的颗粒装入厚壁玻璃中加热拉成毛细管,是一种新型技术,内径一般为 0.25~0.5 mm。  4.2 气相色谱技术的优点  4.2.1 分辨率高、选择性强  采用气相色谱技术能够在一根色谱柱形成上千甚至上百万个分离的搭板,可大大提升分离效率,尤其是在分离一些多组分物质时具有良好的有效性。另一方面,检测一些相似度高的物质时,采用气相色谱技术能够有效地将复杂物质分离开,实现定性和定量分析,反映出该技术强大的选择性。  4.2.2 灵活性强、应用范围广  气相色谱技术能够实现水质检测、 空气检测等,对液体、气体、固体进行检测的同时不影响其含量,反映出气相色谱技术具有强大的灵活性和广泛性。  4.2.3 分析速度快  采用传统方法进行水质检测往往需要较长时间,气相色谱技术可以通过自身的自动分析处理能力提升结果获取速度,缩短检测时间,具有较快的分析速度。  4.3 气相色谱技术在饮用水水质检测中的应用举例  4.3.1 检测有机磷农药  有机磷农药是饮用水中常见的污染物, 常见的有机磷农药有马拉硫磷、甲基对硫磷、对硫磷等[5]。有机磷农药是一种不溶于水的液体,但可溶于动植物油且容易被碱性物质分解。水中有机磷检测时,可以利用气相色谱技术并配置火焰光度检测器, 检测时可以固定 5%苯基+95%二甲基聚硅氧烷的毛细管柱,通过有效程序升温检测饮用水中的有机磷农药。  4.3.2 检测有机氯农药  有机氯农药(常见的种类有七氯、狄氏剂、硫丹等)是饮用水中常见且对人体健康危害较大的污染物一。资料指出,有机氯农药具有神经毒性和肝毒性,其不仅会危害人体健康, 还会对环境造成巨大的不良影响。有机氯农药的物化特征为分解困难、残留时间长。采用气相色谱技术检测时,需要配置电子捕获检测器和毛细管柱,并利用程序升温进行检测。  4.3.3 检测(半挥发性)有机物  饮用水中常见的有机物与半挥发性有机物如甲苯、硝酸苯、四氯化碳等都是对人体有害的物质,采用气相色谱技术可以进行有效的检测并将有害物质分离出来,从而实现饮用水水质检测。  5 结语  饮用水的水质污染问题关乎人类的健康和安全。随着人们健康意识的不断提高,对水质质量要求也在不断增加,水质检测是控制饮用水安全的关键。 目前我国对饮用水水质检测方法较多,气相色谱技术是其中应用最广泛的技术之一,该技术具有操作简单、分辨率高、选择性强、灵活度高等诸多优点,可得到广泛应用。
  • 科捷仪器-气相色谱(仪)法测定涂料中的VOC分析
    【科捷仪器】 随着人们对室内环保质量的日益重视,室内装饰装修材料&mdash &mdash 水性涂料中挥发性有机化合物(VOC)的含量受到广泛的关注。虽然在HJ/T 201-2005《环境标志产品技术要求&mdash 水性涂料》中,明确了VOC的定义,并规范了测定方法。但是该标准对一些操作细节并没有做出明确规定,造成在实际生产中,检测人员按上述标准检测VOC时,出现诸如操作困难、检测周期长等问题。本文对如何解决上述问题进行了深入探讨。 采用气相色谱法对涂料中的VOC及二甲苯进行分析,分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。而采用气相色谱法检测时,则具有操作简单、定量准确、分析速度快、一次进样即可获得准确结果。 1.涂料中的VOC色谱图: 2.GC5890专用色谱仪性能: 全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD). 2.引用标准 GB50325-2001民用建筑工程室内环境污染控制规范 1999/13/EC 一定的活动和设备安装中使用的有机溶剂挥发性有机物的逸散 2004/42/EC 油漆、室内和车内装饰中使用的有机溶剂挥发性有机物的逸散 3.方法应用范围:  本方法适用于室内环境中的VOC检测,或从建筑材料、清洗剂、化妆品、蜡制品、地毯、家具、激光打印机、影印机、粘合剂以及室内的油漆中散发出来的有机溶剂。为此我们对涂料中的总挥发性有机化合物(TVOC)的成分进行分析研究。VOC是指在一般压力条件下,所测得的空气中沸点低于或等于250℃的挥发性有机化合物的总量。(主要为二甲苯等) 4.方法原理: 采用气相色谱法对涂料中的VOC及二甲苯进行分析,分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。而采用气相色谱法检测时,则具有操作简单、定量准确、分析速度快、一次进样即可获得准确结果。 5.涂料分析配置清单: 随着人们对室内环保质量的日益重视,室内装饰装修材料&mdash &mdash 水性涂料中挥发性有机化合物(VOC)的含量受到广泛的关注。虽然在HJ/T 201-2005《环境标志产品技术要求&mdash 水性涂料》中,明确了VOC的定义,并规范了测定方法。但是该标准对一些操作细节并没有做出明确规定,造成在实际生产中,检测人员按上述标准检测VOC时,出现诸如操作困难、检测周期长等问题。本文对如何解决上述问题进行了深入探讨。 采用气相色谱法对涂料中的VOC及二甲苯进行分析,分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。而采用气相色谱法检测时,则具有操作简单、定量准确、分析速度快、一次进样即可获得准确结果。 1.涂料中的VOC色谱图: 2.GC5890专用色谱仪性能: 全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD). 2.引用标准 GB50325-2001民用建筑工程室内环境污染控制规范 1999/13/EC 一定的活动和设备安装中使用的有机溶剂挥发性有机物的逸散 2004/42/EC 油漆、室内和车内装饰中使用的有机溶剂挥发性有机物的逸散 3.方法应用范围:  本方法适用于室内环境中的VOC检测,或从建筑材料、清洗剂、化妆品、蜡制品、地毯、家具、激光打印机、影印机、粘合剂以及室内的油漆中散发出来的有机溶剂。为此我们对涂料中的总挥发性有机化合物(TVOC)的成分进行分析研究。VOC是指在一般压力条件下,所测得的空气中沸点低于或等于250℃的挥发性有机化合物的总量。(主要为二甲苯等) 4.方法原理: 采用气相色谱法对涂料中的VOC及二甲苯进行分析,分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。而采用气相色谱法检测时,则具有操作简单、定量准确、分析速度快、一次进样即可获得准确结果。 5.涂料分析配置清单: 色谱仪器配置 色谱柱及试剂   FID检测器、 色谱柱:30*.32*0.5 GC5890型色谱仪 配毛细管进样系统 聚乙二醇20M 色谱工作站N2000 (电脑1台自备) 顶空进样器1台DK-300A 氮氢空发生器 GX-300A 1台或高纯、氢气、空气钢瓶各一瓶 20ml顶空瓶40只
  • 关于气相色谱仪的操作规程你了解么
    气相色谱仪,是指用气体作为流动相的色谱分析仪器。其原理主要是利用物质的沸点、极性及吸附性质的差异实现混合物的分离。待分析样品在气化室气化后被惰性气体(即载气,亦称流动相)带入色谱柱内,柱内含有液体或固体固定相,样品中各组分都倾向于在流动相和固定相之间形成分配或吸附平衡。那么接下来就让我们来详细的了解一下气相色谱仪的操作规程。一、开机前准备1、根据实验要求,选择*的色谱柱 2、气路连接应正确无误,并打开载气检漏 3、信号线接所对应的信号输入端口。二、开机1、打开所需载气气源开关,稳压阀调至0.3~0.5 Mpa,看柱前压力表有压力显示,方可开主机电源,调节气体流量至实验要求 2、在主机控制面板上设定检测器温度、汽化室温度、柱箱温度,被测物各组分沸点范围较宽时,还需设定程序升温速率,确认无误后保存参数,开始升温 3、打开氢气发生器和纯净空气泵的阀门,氢气压力调至0.3~0.4Mpa,空气压力调至0.3~0.5Mpa,在主机气体流量控制面板上调节气体流量至实验要求 当检测器温度大于100℃时,按《点火》按钮点火,并检查点火是否成功,点火成功后,待基线走稳,即可进样 三、关机关闭FID的氢气和空气气源,将柱温降至50℃以下,关闭主机电源,关闭载气气源。关闭气源时应先关闭钢瓶总压力阀,待压力指针回零后,关闭稳压表开关,方可离开。四、 注意事项1、气体钢瓶总压力表不得低于2Mpa 2、必须严格检漏 3、严禁无载气气压时打开电源。以上便是本次为大家分享的关于气相色谱仪操作的全部内容,希望大家在看完之后能够对该仪器的使用有更多的了解。
  • 业界首款基于纳米硅元件的气相色谱问世(图)
    2013年2月14日,APIX(Analytical Pixels Technology)公司宣布推出其第一款专为工业、石化等领域设计开发的商用产品:GCAP™ 气相色谱仪,可用于过程监控、能源分配,安全以及环境控制等。 GCAP™ 气相色谱仪   GCAP™ 由APIX公司设计、组装并测试,代表了新一代的气体色谱仪器。在GCAP™ 灵活且多功能的体系结构中安装有小型的纳米硅元件。据悉,这一元件已获得CEA-Leti以及加州理工学院授权,并由CEA-Leti位于格勒诺布尔的先进半导体工厂生产,而整个系统的组装与测试工作则在APIX公司设在格勒诺布尔的工厂完成。   APIX联合创始人兼CTO Pierre Puget博士表示:“GCAP建立在高密度硅柱和传感器的基础上,可允许在多种不同模式中运行,包括常规、多维或并行分析,这使GCAP成为了一款可用于工业应用、研究实验室、先进气体分析和生物医学筛查等领域的理想工具。”   Pierre Puget博士补充到,GCAP的主要功能之一是它可以在多种不同的载气中运行,这得益于系统内部超级灵敏的纳米硅传感器。尤其是GCAP可以过滤空气作为载气,从而代替昂贵且笨重的瓶装气体,可以做到现场操作,实时分析,并显著减少运行成本。   据悉,2013年3月17-21日,APIX将出席在美国费城举办的PITTCON 2013,展位号是441。   APIX公司成立于2011年,总部设在格勒诺布尔,主要生产并销售由CEA-Leti和加州理工学院共同研究开发的气相色谱仪产品。CEA-Leti是法国著名的科研机构,专门从事微电子学和精微技术研究的实验室。
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 变压器油检测专用气相色谱仪的主要特点与参数
    变压器油检测专用气相色谱仪的简介    变压器油分析气相色谱仪是根据电力部部颁标准,广泛吸收国内外同类仪器的优点而创新设计的多用途气相色谱仪。仪器采用双柱并联分流柱系统,具有热导和双氢焰三检测器及转化炉,能一次进样实现油中溶解气体组分的全分析。仪器主要应用于电力系统充油电气设备内部故障检测,仪器兼有一机多用功能,可用于六氟化硫杂质分析,氢冷发电机冷却介质分析,锅炉烟气分析,天然气分析和环境检测分析等。另外,还广泛应用于石油.化工.矿山等系统的气体分析。    变压器油检测专用气相色谱仪的主要特点    1、采用微机控制,键盘设定,液晶显示,有随即记忆功能;    2、检测器的信号,加热器的数值,加热炉温度,流量传感器读数或储存的柱补偿基线的信号都可以分配到一个模拟的输出通道;    3、自机检测及故障诊断,断电保护储存的实验数据,秒表和运转定时器,键盘锁定功能;    4、氢火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴,操作简单;输入信号可进行对数放大,减少了干扰,灵敏度高,线性好,量程宽。可安装美国HP-5890气相色谱仪微型热导检测器,实现完全对接;    5、高性能检测器及甲烷转化器,检出能力完全满足电力部对变压器油中气体组分含量的测定及环保监测对微量CO,CO2检测;    6、采用二次分流柱系统,分析速度快,重现性好;    7、双氢焰设计,使低含量的烃类和高含量的CO,CO2分别检测,避免相互干扰,提高了检测灵敏度;    8、可安装本公司生产的顶空进样器,减少了对样品的污染;    9、采用新型柱填料,双柱温流程,使C2H2检出时间提前,灵敏度提高,分析周期缩短。    10、测定组分:TCD:H2,O2。    变压器油检测专用气相色谱仪的技术参数    1、柱室温度:室温+5℃~400℃,控温精度±0.05℃    2、检测室温度:室温+15℃~400℃,控温精度±0.05℃    3、转化炉温度:室温+15℃~360℃,控温精度±0.1℃    4、TCD灵敏度,对H2的最小检测浓度5ppm    5、FID检测限    对C2H2的最小检测浓度0.1ppm;对CO,CO2的最小检测浓度2ppm    6、电源条件:220V±10%,50±0.5HZ    7、功率:约2kw
  • 气相色谱仪详细解析以及未来发展趋势?
    随着技术水平的不断提高,气相色谱仪作为一种高效、快速、高灵敏度的分析仪器正逐渐普及并广泛应用。信息时代的来临,气相色谱仪的更新换代十分迅速,研究如何在色谱仪系统开发中应用计算机技术、电子技术,从而提高色谱仪的智能化水平有着重要的现实意义。 近日,有研究机构发布2017-2021年气相色谱市场报告,指出,未来全球气相色谱市场将以5.2%的年符合增长率增长。 气相色谱法作为色谱法的一种,是一种广泛使用的分离分析方法。它以气体为流动相,固体或均匀涂渍在载体上的液体为固定相,通过组分在气液(固)两相间不断分配,实现混合组分的分离。混合物分离后按顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组份的色谱峰,达到鉴别和定量的目的。分离过程在柱内进行,色谱柱所用的填充物是固体吸附剂,也可以是涂在惰性担体上的高沸点液体。被分析的样品在高温气化后被气体流动相带入柱内,由于不同组分在柱内受到的阻力不同,流动中被逐渐拉开达到分离的目的。且由于每种样品组分吸附、脱附的作用力不同,所反应的时间也不同,最终结果使混合样品中的组分得到完全地分离。样品前处理自动化是市场发展的趋势之一。在全球气相色谱仪市场,实验室和研究设施的自动化已经获得较大程度的发展。样品前处理设备有助于帮助简化实验操作。实验室自动化技术被广泛的应用在生物、化学领域,尤其是在高通量筛选、自动化临床分析测试、诊断学、组学以及大规模生物制剂复制。报告分析,新兴市场的制药市场是气相色谱仪市场增长的主要驱动力。由于广泛使用仿制药,投资减少,报销环境的变化以及严格的政府有关产品安全和价格的规定,全球制药业正在经历危机。因此,制药厂商转而开拓快速增长的新兴市场以寻求发展。这些地区由于其高速增长潜力、快速增长的GDP、医疗保健支出增加、可用的高成本效益的资源以及不断变化的监管环境而被称为“新兴”市场。 北京华盛谱信仪器有限责任公司生产的6000型气相色谱仪是在吸收了国内外先进技术的基础上,自行研制的新型气相色谱仪。大部分元器件还是引用进口,并且采用了进口的电子技术,采用美国进口技术,进样死体积减少,结构设计合理,操作简便,使灵敏度,稳定性大大提高。该仪器可广泛应用于石油、化工、食品、卫生防疫、质检、科研院校等领域。 该仪器六路控温,控温精度达到±0.1℃,柱箱温度为室温20℃~400℃,进样器温度为室温20℃~400℃,检测器温度为室温20℃~400℃,五阶程序升温,升温速率为0.1℃~39.9℃/min,且各阶恒温保持时间设定范围为0~655/min,除具以上参数外,其还具有以下特点:数字化控制、中文键盘、操作简单;液晶屏幕显示、同时显示多组参数;双自动后开门;可装配各种专用仪器;可以同时安装两套填充柱注样系统和一套分流/不分流毛细管柱注样系统;该仪器技术指标详细介绍:热导检测器灵敏度大于5000mv.ml/mg;氢焰检测器敏感度小于 8×10-12g/s,自动点火功能;氮磷检测器检测限≤1×10-12g/s(N)检测限≤1×10-13g/s(P);火焰光度检测器检测限≤8×10-11g/s(S)检测限≤4×10-12g/s(P)公司提供的售后服务在购买仪器前,我们会协助您全面了解仪器的性能特点及仪器选型的全面咨询服务。根据客户需求可以为您提供仪器的配套设备,如:色谱工作站、氮氢空发生器、标准气体、色谱柱等。购买仪器后会派专业技术人员上门免费安装、启动和调试,并且本公司长期供应仪器的易损、易耗件.
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 傅若农:PLOT气相色谱柱的诱惑力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   第五讲:傅若农:气-固色谱的魅力   看看下面这张图1,1 min 多一点时间就把苯到二甲苯几个难分离的混合物分开了,而且把间位和对位二甲苯也给分开了,遗憾的是间位和邻位二甲苯没有分开,当然只用了15 m 长的毛细管色谱柱,这种色谱柱叫做PLOT柱,这是半个世纪前在英国&ldquo 自然&rdquo 杂志(Nature)上一篇简短论文上报道的(Halasz I,Horvath C,Nature,1963,197:71-72)。这一工作是最早使用石墨化炭黑作固定相PLOT柱完成的,这一实例对想利用气相色谱用于石油和石化工业分析的人员来说有很大的诱惑力,为什么?这是因为色谱柱短、固定相耐温性好、无流失、分析时间短,可以把在气相色谱中最难分离的间、对二甲苯基线分离。   再看看图 2,这是最近云南师范大的袁黎明研究组把手性向列结构的介孔材料制备成PLOT柱分离手性化合物,这样的PLOT柱,柱高温、分辨率高、可作手性分离,扩展了PLOT柱的应用范围。在新的应用领域又体现了它的诱惑力。   图1 石墨化炭黑作固定相PLOT柱分离苯、甲苯、乙苯和二甲苯   色谱柱:15 m x 0.25mm,5.4mg 石墨化炭黑/m,柱温:245 ℃,   分流比:1:1050,进样:0.2&mu L   图2 手性相列内消旋硅胶PLOT柱分离手性化合物   (Anal Chem,2014,86:9595)   1、什么是PLOT柱   PLOT柱是多孔层开管柱(Porous Layer open tubular column)的缩写,早在上世纪50年代末毛细管色谱柱的发明人 Golay就指出:如果把光滑的毛细管壁变成均匀多孔的细颗粒,就会大大有利于毛细管柱的效能(M J R Golay,Gas Chromatography 1957),他在1960年又进一步详细阐述了这一方法,这种多孔层毛细管色谱柱可以降低相比率,同时又使固定液液膜比较薄,有利于传质阻力提高柱效,在具有多孔层毛细管内壁上涂渍一层可以增加内壁的表面积,多孔层物质可以用化学方法处理,也可以用颗粒悬浮物沉积到管壁上,于是早期的气相色谱开拓者们就循这一思路研发,1962-1963年Horvâ th等开发了这一类型的毛细管多孔层色谱柱。   大家知道Csaba Horvâ th (1930-2004)是液相色谱的开拓者之一,他是匈牙利人,上世纪50年代在匈牙利受到化学工程方面的高等教育,1962-1963年间在德国法兰克福大学(美音河畔的法兰克福)Halâ sz的实验室攻读博士期间,研究了无机色谱固定相,使用Golay的静态涂渍技术制备出多孔层气-液色谱柱(在氧化铁颗粒上涂渍聚乙二醇),这种色谱柱叫做载体涂渍开管柱(support-coated open-tubular ,SCOT),属于多孔层开管柱(PLOT)的一种,同时也制备了吸附型气-固色谱柱(见上图1)(Nature,1963,197:71-72)。   PLOT柱发展早期,很多研究是针对SCOT柱,即把填充柱使用的载体用某种胶粘附在毛细管壁上,然后再在这一载体上涂渍固定液。现在商品PLOT柱则严格地限于把多孔吸附剂以化学或物理方法粘附在毛细管内壁上,进行气-固色谱,所以有人也把它叫做&ldquo 吸附固相开管柱&rdquo (adsorption solid-phase open-tubular column,ASPOT)。   2、早期的填充毛细管柱到PLOT柱   由于填充气相色谱柱的分离能力有限,致使许多复杂的混合物无法分离,尽管开发了许许多多固定相,但是仍然由于填充柱柱效不高,无法满足实际工作的需要,而壁涂毛细管柱(WCOT),由于其液膜厚度的限制柱容量小,对低沸点物质保留作用小,对一些永久气体不能分离,而气-固色谱可以分离低沸点物质,但是柱效低对难分离的混合物受到限制,所以出现了填充毛细管气-固色谱柱,1962年Halasz和 Heine就制备了氧化铝的填充毛细管柱,他们把一根1mm直径洁净的钢丝穿入直径为2.2mm的玻璃管,在玻璃管和钢丝的空隙中装入吸附剂,把填充好吸附剂的玻璃管水平放在毛细管拉制机上,并小心地把钢丝移除,把玻璃管拉制成直径为0.3mm的毛细管。在作者的实验中使用的吸附剂是在400℃ 加热9h的氧化铝,吸附剂颗粒直径在 0.10-0.15mm之间,然后把毛细管在120℃下用氢气吹扫24h,以除去吸附剂吸附的水分。用这种10m长的色谱柱就可以把15个C5的烃类在6min 内分离开(Nature,1962,194:971),见下图3。   图3 填充毛细管气-固色谱柱分离芳烃的色谱   色谱柱:10m 柱温:80℃,色谱柱脱活:用晶体硫酸钠湿润载气   载气:氢气,流速:2.5ml/min , 分流比:1:600,FID 检测器   1&mdash 甲烷,2&mdash 乙烷,3&mdash 乙烯,4&mdash 丙烷,5&mdash 丙烯,6&mdash 乙炔,7&mdash 异丁烷,   8&mdash 正丁烷,9&mdash 丁烯-1,10&mdash 反丁烯-2,11&mdash 异丁烯,12&mdash 顺丁烯-2,   13-异戊烷,14&mdash 正戊烷,15&mdash 丁二烯(Nature,1962,194:971)   这种填充毛细管柱可能是由于制作麻烦未能普及,而1963年,Kirkland在开管柱中沉积氧化铝,制备了氧化铝PLOT柱(Anal Chem,1963,35(9):1297),之后,人们把Kirkland作为PLOT柱得第一发明人。前面我们提到Horvath C同时在1963年制备了石墨化炭黑的PLOT柱,因为Horvath C的工作发表在Nature上,可能被人忽视。不过很有意思,后来Kirkland和Horvath二人都成为赫赫有名的液相色谱先驱。由于PLOT柱在许多领域实际工作中得到应用,直到现在有大量商品化的PLOT气相色谱柱,得到广泛的应用。   3、现代商品化PLOT柱所使用的固定相和色谱柱类型   按照季振华1999年的综述(J Chromatogr. A, 1999),842:115&ndash 142),商品化PLOT柱所使用的吸附剂有:氧化铝、石墨化炭黑、分子筛、有机多孔聚合物等,见下表1。   表1 商品化PLOT柱所使用的吸附剂(固定相)   目前世界上几个著名的色谱柱生产厂家都有上述固定相的PLOT柱,比如安捷伦公司就有专门生产PLOT柱的生产线。这些PLOT柱可用于分析干气、低分子量的轻烃异构体和挥发性极性化合物(见表2)。HP家族中的PLOT柱有各种不同的规格,可满足不同领域的使用,有适用于大容量分析的530&mu m柱,如果要进行快速分析或进行GC/MS分析可以选择250&mu m或320&mu m的PLOT柱。   表2 HP-PLOT柱的应用   (1)HP-PLOT 分子筛柱   使用HP-PLOT 分子筛柱分析永久气体和惰性气体, HP-PLOT 分子筛柱是在柱内涂渍有固定化的5A分子筛,涂层厚度为12 ~50&mu m。这样可以保证对氮、氧、氩、甲烷和一氧化碳的分离。   把吸附剂键合到毛细管壁上,减少颗粒脱落的机会,以免颗粒进入系统的阀或检测器里,这样可以大大提高检测器的灵敏度和整个系统的精确性。   分析永久气体一般使用分子筛柱,HP-PLOT 分子筛柱有足够的柱效和柱容量用以很好地分离氮、氧、甲烷和一氧化碳。这种色谱柱适合于多种气体分析样品阀所要求的时间选择。在进行等温40℃分析时,氧和氩只能部分分离。如果要把它们完全分离,可以不用冷冻低温而使用厚膜HP-PLOT 分子筛柱, 可在接近环境温度下分析环境中的惰性气体。在35℃下可以把惰性气体及氧和氮很好地分离,分析时间不到10min。   HP-PLOT 分子筛柱的柱径规格为0.32和0.53mm, 为了能在不使用冷冻低温下分离氧和氩气,可以使用厚膜柱HP-PLOT MoleSieve/5A分子筛柱。薄膜HP-PLOT 分子筛柱是多种应用分析(包括常规的空气监测)的色谱柱,分析时间小于10s。使用薄膜HP-PLOT 分子筛柱可以在低温下分离氧和氩。   (2)HP-PLOT 三氧化二铝柱   HP-PLOT 三氧化二铝柱系列,包括使用三氧化二铝颗粒和各种脱活的三氧化二铝颗粒的涂层开管柱。所有HP-PLOT 三氧化二铝柱都适用于烃气流中C1-C6异构体的分离,每种类型的HP-PLOT 三氧化二铝柱都各有其特点和优点,如表3所述。   HP-PLOT 三氧化二铝柱的柱径从0.25mm到0.53mm, 0.53mm 柱的使用更为普遍,因为它的柱容量大,适合于大体积进样阀的应用。如使用0.53mm HP-PLOT 三氧化二铝KCl柱可分析乙烯和丙烯气体中的组分,用HP-PLOT 三氧化二铝柱检测烃类的检测限为10ppm。对0.32mm和0.53mm内径的所有三种色谱柱其温度上限均为200℃,对0.25mm柱可以在250℃下短时间使用。由于0.25mm柱的柱效高并且使用温度上限也较高,所以它可以用于高达C10的烃类 。   表3 HP-PLOT 三氧化二铝柱   (3)HP-PLOT Q柱   HP-PLOT Q柱是HP公司PLOT柱中应用广泛的色谱柱,HP-PLOT Q柱适合于以下对象的分离:   * 烃类(所有C1-C3异构体,一直到C14的链烃,天然气,炼厂气,乙烯,丙烯气体),   * 二氧化碳,空气/一氧化碳,水,   * 极性溶剂,含氧和含硫化合物。   HP-PLOT Q柱具有以下的点:   a 具有优良的机械稳定性,很少或没有碎片脱落,使其适合于有阀控制的分析和GC/MS的分析   b流失量小,减少老化时间,提高灵敏度   c 重复性好,节省工作时间和购置费用   d 最高恒温使用温度为270℃   4、近年出现新材料制备的PLOT柱   (1)金属有机框架材料(MOFs)制备的PLOT柱   近年金属有机框架材料(MOFs)风靡一时,趋之若鹜,尝试在各个领域中应用的文章数不胜数,在分析化学中的应用如下图 4 所示。   图4 金属有机框架材料(MOFs)在分析化学中的应用领域   何谓金属有机框架材料(MOFs)?金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用(Li J, Sculley J, Zhou H,Chem Rev,2012, 112:869&ndash 932)。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景(Gu Z,Yang C, N Chang,et al,Accounts Chem Res,2012),MOFs在分析化学中有多种应用,也是气相色谱固定相很好的选项。   2006年陈邦林等(Chen B, Liang C,Yang J,Angew Chem,Inter Ed,2006, 45:1390 &ndash 1393)首次把金属有机框架化合物 MOF-508用作气相色谱固定相,用以分离直链烃和叉链烃,MOF-508的分子式为 Zn(BDC)(4,4&rsquo -Bipy)0.5(MOF-508:BDC=1,4-苯羧酸, 4,4&rsquo -Bipy=4,4&rsquo -联吡啶),其空间结构如图5,它据有简单的立方体带孔的框架,孔径可由两个互相穿插的情况来调节,其一维通道横截面大约为 0.4x0.4 nm,这样的结构对气相色谱分离烷烃具有很好的选择性。但是陈邦林是把金属有机框架材料MOF-508 制备成填充柱进行研究的。   图5 MOF-508 的空间结构   真正制备成毛细管柱,即多孔层毛细管色谱柱(PLOT柱)的研究是南开大学的严秀平研究组(Gu Z,Yan X, Angew Chem,In ted. 2010,47:1477)和云南师范大学的袁黎明研究组(Xie S,Zhang Z, Wang Z,et al, JACS,2011, 133:11892&ndash 11895)的工作。严秀平等在2010年在德国&ldquo 应用化学&rdquo 上发表了使用MOF-101作固定相分离二甲苯位置异构体和乙苯混合物以及其他苯取代化合物的工作,MOF-101是铬和对苯二甲酸的金属框架配位化合物(Cr3O(H2O)2F(BDC)3),具有较大的孔径(2.9&ndash 3.4 nm),适合于做气-固色谱的固定相,他们用动态法把MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,所用的涂渍方法类似于1963年Horvath所用的方法:首先把MOF-101和乙醇制备成悬浮液,然后以气体压力灌注到毛细管(15m x 0.53mm id)中,以动态涂渍技术把固定相沉积到毛细管壁上,这一色谱柱,自然是PLOT柱了,色谱柱的横截面图如图6所示。用这一色谱柱分离三个二甲苯位置易购体得到十分漂亮的基线分离图,而且分离时间很短见图 7。   图6 MOF-101 毛细管柱的电镜横截面图   图7 MOF-101 毛细管柱分离二甲苯异构体的色谱   袁黎明研究组主要是研究MOFs的手性固定相,2011年他们合成了[{Cu(sala)}n] (H2sala = N-(2-羟苄基)-L-丙氨酸),涂渍成毛细管色谱柱,用以分离外消旋的烃类、醇类和Grob试剂,分离效果见表5。   2013年他们合成了三维开放框架手性MOF,Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam=D-樟脑酸 bdc=1,4-苯二羧酸酯,tmdpy=4,4&prime -三亚甲基联嘧啶),制备成毛细管手性色谱柱,这种Co(D-Cam)1/2(bdc)1/2(tmdpy)化合物具有手性构架的三维结构,具备内在手性的拓扑网络。把它制备成两种毛细管色谱柱,柱A为30m长的530&mu m的大内径柱,柱B为2m长的75&mu m小内径柱,用动态法制备毛细管色谱柱,在120℃下以正十二烷测试它们的柱效,分别为1450 plate/m和3100plate/m.使用烷烃、醇类、外消旋化合物和Grob试剂测试色谱柱。用柱B和商品手性柱分离一些外消旋化合物的分离因子对比见表4。   表4 [{Cu(sala)}n]柱上分离一些外消旋化合物的分离因子   2013年华南师范大学章伟光和郑盛润研究组也涉足MOFs用作气相色谱固定相的研究,他们把管状金属有机框架化合物 MOF-CJ3动态涂渍在毛细管柱中,研究色谱保留行为。MOF-CJ3是以1,3,5-苯三羧酸(TBC)为有机桥联基的管状MOFs,具有一维沿着C的方向延伸的管道,孔壁由TBC有机桥联基组成,它可以提供苯环和羧基形成超分子作用。研究者选择直链、叉链烃、二甲苯和乙苯以及芳香族位置异构体(如甲酚、对苯二酚和二氯苯)作分离测试物,并测定了麦氏常数见表5   表5 MOF-CJ3 色谱柱的麦氏常数      表6是近年使用各种MOFs作固定相的PLOT柱。   表6 各种MOFs作固定相的PLOT柱(J Chromatogr A,2014,1348:1-16)   (2) 介孔分子筛固定相的PLOT柱   1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,扩大了用作气相色谱固定相的范围。 1998年赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15,其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保要求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。( 赵东元等. Science ,1998,279:548)   以前有人利用这类介孔材料的填充柱分离烃类混合物。最近袁黎明研究组把手性向列结构的介孔材料(CNMS)制备成PLOT柱分离手性化合物,这是PLOT柱向高温、高分辨、特殊分离型毛细管色谱方向发展(Anal. Chem. 2014, 86: 9595&minus 9602)。下表7是CNMS柱与典型手性色谱柱分离性能的比较。   表7 CNMS柱与环糊精和氨基酸聚硅氧烷手性色谱柱分离性能的比较   (3)碳纳米材料作固定相的PLOT柱   2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性(Anal Chim Acta,2010,675 :207&ndash 212)。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相(Anal Chem,2006,78:2064&ndash 2070)。2003年至今发表的一些有关碳纳米材料作气相色谱固定相的研究的工作见表9   表8 有关CNTs作PLOT柱的研究的工作   小结   常规PLOT柱在石油和石化等领域有十分成功的应用,而各个大色谱柱生产商都供应各种类型通用和专用类型的PLOT柱。近年各种新材料的出现促使人们把它们制备成PLOT柱进行研究,有很成功的案例,但是没有看到有深入进行色谱柱工艺优化的研究,还没有达到商品色谱柱的性能。希望研究者自己或联合厂家协作进行深入的柱工艺研究,完成这类PLOT柱商品化的过度。下一讲和大家聊一聊&ldquo 顶空进样技术的过去和现在&rdquo 。(未完待续)   (作者:北京理工大学傅若农教授)
  • 绿绵巨贸公司取得美国ZOEX全二维气相色谱代理
    ZOEX公司成立于1991年,是最早将二维气相色谱技术商品化的公司,经过二十多年的历炼和发展,目前Agilent, Thermo, Leco,Shimadzu均是ZOEX的授权合作商。全二维气相色谱是传统气相色谱技术的一大突破,对于复杂成份的分析大家经常感觉到一根色谱柱的峰容量根本不能满足需求,采用了最新的二级循环调制器技术的全二维气相色谱,可以将两根不同极性,不同长度的色谱柱一起应用于复杂成份的分析,从而大大提高了气相色谱的分辨率和灵敏度,在石油化工,天然产物,环境化学中都得到非常广泛的应用。作为二维色谱的心脏,也就是所谓的调制器,是一个将两根不同的色谱柱连接到一起的关键部件,ZOEX公司的调制器采用的是热交换的方式,将第一根色谱柱的馏出组份进行&ldquo 切片&rdquo ,得到一系列适合第二根色谱柱快速分析的切片,全套系统只有一个冷喷嘴和一个热喷嘴组成,结构简单,没有任何机械移动组件,性能可靠,可以得到非常窄的脉冲式进样。 全二维气相色谱产生的是一个三维谱图,GC image分析软件可以自动进行峰辨别,自动基线校正,并能对样品进行定量分析。
  • 未来五年气相色谱仪全球市场年复合增长率为5.2%
    p   近日,有研究机构发布2017-2021年气相色谱市场报告,指出,未来全球气相色谱市场将以5.2%的年符合增长率增长。 /p p   样品前处理自动化是市场发展的趋势之一。在全球气相色谱仪市场,实验室和研究设施的自动化已经获得较大程度的发展。样品前处理设备有助于帮助简化实验操作。实验室自动化技术被广泛的应用在生物、化学领域,尤其是在高通量筛选、自动化临床分析测试、诊断学、组学以及大规模生物制剂复制。 br/ /p p   自动化机器人适合那些重复移动或操作的实验,如混合、加热、冷却以及各种各样样品或溶液的添加。自动化样品前处理减少了实验过程中以及实验间产生错误的概率,采样和分配人员可提高样品或溶液定量分析的控制精度。目前,市场上已经有多款新的仪器和配件通过串联来实现采样、分离、纯化于一体的色谱分析。 /p p   报告分析,新兴市场的制药市场是气相色谱仪市场增长的主要驱动力。由于广泛使用仿制药,投资减少,报销环境的变化以及严格的政府有关产品安全和价格的规定,全球制药业正在经历危机。因此,制药厂商转而开拓快速增长的新兴市场以寻求发展。这些地区由于其高速增长潜力、快速增长的GDP、医疗保健支出增加、可用的高成本效益的资源以及不断变化的监管环境而被称为“新兴”市场。 /p p br/ /p
  • 技术解读 | 动态色谱法和静态容量法比较
    动态色谱法和静态容量法都是常用的比表面测试方法,目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。动态色谱法是将待测粉体样品装在样品管内(一般为U型,国仪精测具备专利直管技术,中国实用新型专利,专利号:ZL202120620155.0),通入一定比例的载气(He)和吸附质气体(N2)的混合气体,待混合气体流过样品后,根据吸附前后气体浓度变化,得到待测样品吸附量。静态容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量。两种方法比较而言1、动态法的优点是适合快速比表面积测试,如电池材料、有机材料、金属粉体等的生产监控,分析速度快,分辨率高,重复性好;缺点是由于通过浓度变化来测试吸附量,当浓度为1的情况下吸附前后将没有浓度变化,所以只能测试较低的分压范围,使得孔径测试受限;动态法是相对测量,其结果的准确性受标样与待测样吸附行为异同的影响。2、静态容量法的优点是氮气分压可以实现从极低真空到接近饱和蒸汽压范围的连续且精准的控制(国仪精测已实现分压比低至10-9的极限测量),所以静态容量法可以实现比表面积及孔径的全面分析,尤其适合中大比表面和孔隙发达的样品,例如催化剂、分子筛、碳材料等样品的比表面及孔径分布分析测试。在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以测试过程相对动态法省时;但静态法需要有抽真空、暖自由体积和冷自由体积标定的过程,加上部分样品吸附平衡过程较慢等因素,所以测试效率并不是该方法的优势。但静态法是绝对测量,其测试结果不受标样影响,在准确性上更能得到研究者的青睐;且随着真空系统和压力传感器的硬件技术发展,静态容量法在分辨率、稳定性方面都得到了很好的发展,是目前比表面积及孔径分析的主流技术。欢迎扫码咨询!
  • 561万!海关总署2022年科技司气相色谱-三重四级杆质谱仪采购项目
    项目编号:CG2022-PL-GK-HW-068项目名称:海关总署2022年科技司气相色谱-三重四级杆质谱仪采购项目预算金额:561.1000000 万元(人民币)采购需求:(一)货物内容包件号序号品目名称数量单价(元)交货期交货地点质保期包件11气相色谱-三重四级杆质谱仪B2995000产品合同签订后90个日历日内交货。海关指定地点产品安装调试经用户验收合格当天起,质保期1年,在质保期内提供1年整机原厂质保服务,产品因故障停用,质保期相应顺延。2气相色谱-三重四级杆质谱仪J(带特异性识别和分析软件)1930000包件21气相色谱-三重四级杆质谱仪(带异味自动分析软件及气味数据库)112000002气相色谱-三重四级杆质谱仪+顶空F11491000(二)行业类型:工业(三)其它要求1.投标人必须对所投标包中的所有货物进行投标,不允许拆包投标。2.针对同一包,一个投标人不得提交两个或两个以上不同的投标文件或投标报价。3.各品目产品的投标报价不能超过本品目预算(品目预算详见项目需求书中的分配表),否则视为无效投标。合同履行期限:详见采购文件本项目( 不接受 )联合体投标。
  • 安捷伦科技公司推出用于气相色谱的新型外部阀柱温箱
    安捷伦科技公司推出用于气相色谱的新型外部阀柱温箱 阀柱温箱可确保燃料产品的纯度、测试效率以及环境安全 2014 年 1 月 8 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布推出用于 7890B 气相色谱 (GC) 系统的安捷伦大阀箱。 这种多用途、高容量的外部柱温箱可用于复杂的多阀 ASTM 国际标准和 EN(欧洲标准)中的气相色谱应用。 采用精密的设计实现了气相色谱柱温箱的热绝缘,此外,柱温箱可为最多 6 个位置提供一致的等温环境,实现色谱柱和阀的热均一性。 阀箱的垂直方向设计便于进行维护。 安捷伦全球能源和化工市场经理 Wayne Collins 说:“随着燃料资源勘探与生产量的增长,对于使用 ASTM 和 EN 分析方法来鉴别影响燃料流质量和收益的污染物分析仪器的需求也在不断增加。 安捷伦大阀箱是一款优质的气相色谱外部阀柱温箱选件,具有高处理通量和热均一性,支持在同一气相色谱平台上进行多种复杂的分析。” 进行维护时,柱温箱的垂直方向设计有利于工程师完全接触到阀和接头而无需取下驱动器,从而显著减少停机时间。 新设计最大程度降低了重新连接的需要,还减少了维护后所需的故障排除。 气相色谱产品经理 Jason Ashe 说道:“安捷伦致力于帮助石油化工客户应对日益增长的需求和行业发展趋势。 安捷伦大阀箱 7890B 气相色谱系统能够帮助客户确保燃料的纯度,采用多种方法从一个系统中获得更完善的信息,并在常规维护计划中快速轻松地对系统进行维护。” 安捷伦大阀箱支持标准的安捷伦多阀分析仪,例如炼厂气分析仪和天然气分析仪,其具有经过工厂测试的方法和可靠的色谱性能。 新型外部阀箱具有较高的灵活性和可配置性,用户可在一个气相色谱系统中执行多种 ASTM 和 EN 方法。此外,阀箱体积小巧,实验室占用面积小,并且可从一个系统获得更多信息。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所: A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。 公司的 20600 名员工为 100 多个国家的客户提供服务。 在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。 分拆后电子测量公司名字为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 83万!气相色谱仪采购项目
    一、项目基本情况项目编号:XM2022-TZ0041项目名称:气相色谱仪采购方式:竞争性磋商预算金额:83.0000000 万元(人民币)最高限价(如有):83.0000000 万元(人民币)采购需求:*1.1.11标配大容量的柱温箱,内部体积不小于13.8L等,其他详见采购文件。市级财政资金。合同履行期限:合同签订后三个月内本项目( 不接受 )联合体投标。
  • 分配色谱发明人阿切尔•马丁诺贝尔奖奖章被拍卖
    1952年,英国化学家阿切尔•马丁(Archer Martin)和理查德辛格(Richard Synge)因发明分配色谱法获得诺贝尔化学奖。近日,阿切尔•马丁的家人于通过伦敦的拍卖商Noonans将其获得的诺贝尔奖牌拍卖,同时被拍卖的还有他的CDE勋章、旭日章以及Leverhulme Medal等其他荣誉奖章。该诺贝尔奖牌最后以15万英镑成交。马丁发展分配色谱始于第二次世界大战期间。由于他患有胃溃疡,他被允许得到额外的牛奶配给,因为当时牛奶被认为是一种抗炎药。然而,他发现,由于巴氏杀菌技术的发展,牛奶疗法逐渐失效,这让他将他工作目标放在了未经过巴氏消毒的牛奶上。马丁随后使用他开发的色谱技术分离了牛奶中的成分,鉴定了乳清中的活性成分,然后将其浓缩。他说服了多家公司测试这种提取物,最后发现这种提取物可以缓解炎症。马丁和辛格之后继续开发并发展了这种技术,并将其用于确定气体混合物组分。马丁虽然已经于2002年去世,但他的科学遗产意义重大。今天,色谱技术已经成为了化合物分离分析不二选择,在制药、食品、化工等各个领域广泛应用。
  • 酱油中氯丙醇含量的测定 气相色谱质谱法
    前言 氯丙醇(Chloropropanols)是是一种在化学制作豉油的过程中所产生的毒性致癌物,同时具有抑制雄性激素生成的作用,使生殖能力减弱。对人体危害极大。日常比较常见的为以下三种:1-氯-2-丙醇 (ClCH2CHOHCH3);3-氯-1,2-丙二醇 (3-MCPD)及1,3-二氯-2-丙醇 (1,3-DCP)。 本文参考《GB/T 5009.191-2006 食品中氯丙醇含量的测定》,进行了酱油中3-氯-1,2-丙二醇(3-MPCD)的测定,优化改进了用于样品预处理的硅藻土材料,调整活度,成功开发了Cleanert® MCPD氯丙醇专用柱,结果表明满足实验要求,并大大简化了材料预处理过程,提高工作效率。 1 仪器及材料 仪器:Agilent GC-MS 7890-5975c;涡旋混合器;超声仪;氮吹仪;恒温箱。 材料: 3-氯-1,2-丙二醇(3-MPCD)标准品;乙酸乙酯、丙酮、正己烷为色谱纯;七氟丁酰基咪唑;无水硫酸钠;超纯水;氯化钠。 固相萃取柱:Cleanert® MCPD (氯丙醇专用柱),2.5g/12mL,P/N:LBC250012 2 实验方法 2.1 标准溶液配制 准确称取0.1g氯丙醇标准品于100mL容量瓶中,用乙酸乙酯定容到刻度,得到浓度为1mg/mL的储备液。用丙酮将储备液逐渐稀释,得到1&mu g/mL标准工作液。 2.2 饱和氯化钠溶液 称取氯化钠290g,加水溶解并稀释至1000mL,超声20min。 2.3 GC-MS操作条件 色谱柱:DA-5MS 30m*0.25mm*0.25&mu m 进样口:230℃,不分流进样 程序升温:50℃(1min)2℃/min 82℃ 进样量:1&mu L 流速:1 mL/min 接口温度:250℃ 电离方式:EI 电离能量:70eV 溶剂延迟:7min 离子源:230℃ 四级杆:150℃ 检测模式:选择离子检测,SIM离子:253/275/289/291/453 2.4 样品处理 称取2.5g酱油直接上样Cleanert® MCPD固相萃取柱,静置平衡10min,用15 mL乙酸乙酯洗柱,收集洗脱液。将洗脱液在35℃下氮气吹至近干(不可全干)。加入2 mL正己烷,摇匀,快速加入50&mu L七氟丁酰基咪唑,将样品瓶拧紧,涡旋20秒,将样品瓶置于70℃恒温箱中反应30min,取出冷却至室温,向样品瓶中加入2 mL饱和氯化钠溶液,涡旋1min,静置2min,取上层有机相至另一干净的样品瓶中,重复1次洗涤操作以除去杂质。将有机相经少量无水Na2SO4除水后转移至进样样品瓶中,待GC-MS检测 3 实验结果 3.1 标准溶液色谱图 在GC-MS操作条件下(4),得到标准溶液色谱图如图1. 图1 标准溶液色谱图(浓度为50ng/mL) 3.2 样品色谱图 准确称取6份酱油,其中5份分别加入浓度为1&mu g/mL的标准溶液0.1mL,按照样品处理方法(5),将6份样品进行净化衍生,得到酱油样品加标色谱图及酱油样品色谱图如图2、图3. 图2 酱油样品加标色谱图(浓度为50ng/mL) 图3 酱油样品色谱图 3.3 加标回收率及精密度 表1 加标回收率及精密度   1# 2# 3# 4# 5# 平均回收率(%) RSD(%) n=5 回收率(%) 88.0 83.9 90.5 83.6 92.1 87.60 3.84 4 结论 实验结果表明,Cleanert® MCPD氯丙醇专用柱适用于酱油中氯丙醇的预处理,能净化酱油样品,实验加标回收率及RSD能满足定量实验的要求。本实验方案与国标方法相比更简便,使用的化学试剂量仅为国标方法的1/20,有利于操作人员的身体健康及环境;实验时间较国标方法短,更加适合于大批量酱油样品的前处理。 订货信息 产品名称 规格、包装 订货号 价格 Cleanert® MCPD 2.5g/12mL, 20支/包 LBC250012 580 DA-5MS 30m*0.25mm*0.25&mu m;1支 1525-3002 4200
  • 禾信质谱发布全二维气相色谱-飞行时间质谱联用仪新品
    全二维气相色谱-飞行时间质谱联用仪GGT 0620,是一套集合了全二维气相色谱和高时间分辨率飞行时间质谱的分析系统,用于复杂样品的精准定性定量检测。与常规GC-MS相比,该系统具有峰容量大、分辨率高、灵敏度高、族分离、瓦片效应等特点,对复杂样品的全组分分析具有极强的优势。结合飞行时间质谱的快速分析特点,使整套系统具备高采集速率、高灵敏度、高分辨、高质量精度的性能。 产品原理GC×GC是在传统的一维气相色谱上发展起来的一种新的色谱分离技术。其主要原理是,使用核心部件调制器将两支不同固定相的色谱柱以串联方式连接。从第一根柱流出的每个组分都经过调制器聚焦,再脉冲进样到第二根柱继续分离,极大的增强了色谱系统的分离能力。 特点及优势高灵敏度EI源,保证极低检出限EI/SPI 复合电离源可选,软硬电离辅助定性专利设计离子筛选功能,消除背景离子干扰500谱/秒超快采集速度,确保超窄色谱峰的完整呈现自动化前助理进样+系统控制+数据采集+数据处理一体化的软件工作站新型固态热调制器,可调制C2-C40化合物,体积功耗小、无需制冷剂可配备大气、水体VOCs连续在线监测方案模块,可实现在线分析 应用领域 环境中VOCs、POPs等分析 材料、过程VOCs分析 石油化工产品分析 食品风味研究、非法添加与真假鉴别 香精香料分析 中药有效成分分析 代谢组学研究 其他没有良好解决方案的复杂体系或未知物体系分析应用案例1. 环境中VOCs、POPs分析GGT 0620可用于离线或在线分析空气、颗粒物、水样、土壤以及材料中的挥发性有机物(VOCs)和持久性有机物(POPs)化学组成和含量,提供最全面最准确的化合物组分信息和定量结果。 样品:多氯联苯混合标样(直接进样)结果:从1Cl到10Cl,定性检出近100种组分2. 食品风味/香精香料GGT 0620可对食品饮料、烟草、中草药、农产品及天然香料等原料中的挥发性物质进行全面精细分析,为食品、农业、香精香料等行业中风味鉴定、质量控制、工艺优化和真伪甄别等提供技术支持。 样品:大米样品(SPME进样)结果:检测出2-乙酰-1-吡咯啉,多种醇类、酯类、醛酮类及有机杂环类化合物:吡嗪、呋喃等大米的主要风味物质3. 食品接触材料? GGT 0620分析食品接触材料中的矿物油,矿物油中饱和烃MOSH与芳香烃MOAH族类得到完全分离,形成了清晰的边界。 4. 石油石化产品分析GGT 0620对原油、油田沉积物、以及各种中低馏分石油产品(汽油、煤油、柴油等)的化学组成进行分析,可实现族类分离、全组分分析、或目标化合物定量等,广泛用于石油勘探、石油化工、煤化工、化工环境监测等领域。 样品:柴油(直接进样)结果:定性检出816种组分;显著族分离 创新点:1.高灵敏度EI源,具有专利离子筛选功能,显著提高灵敏度 2.配备独特的数据统计分析软件,提供多种分类,比对,鉴定模型 3.可实现大气、水体VOCs连续在线监测 全二维气相色谱-飞行时间质谱联用仪
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • Zoex全二维气相色谱-飞行时间质谱进入中国
    仪器信息网讯 2010年6月18日,美国Zoex公司GC×GC×HiResTOFMS(全二维气相色谱高分辨飞行时间质谱仪)技术交流会在北京市海淀区汇智大厦举行。本次技术交流会由北京普立泰科仪器有限公司筹划举办,北京林业大学金幼菊教授、军事医学科学院杨松成教授、中国农业大学李重九教授、中国科学院北京化学所王光辉教授等来自色谱、质谱等领域的专业人士近50人列席,仪器信息网作为特邀媒体也参加了本次活动。    技术交流会现场   北京普立泰科仪器有限公司市场部经理王斌先生   北京普立泰科仪器有限公司市场部经理王斌先生首先对该公司的公司概况、发展历程、自主研发产品及代理产品做了简要的介绍。 王斌先生着重介绍了美国Zoex公司的GC×GC×HiResTOFMS,“美国Zoex公司是拥有全二维技术专利的公司,2010年3月,该公司新推出一款具有高质量分辨率和高扫描速度的GC×GC×HiResTOFMS。该仪器获2010年Pittcon金奖提名。”   美国Zoex公司的GC×GC×HiResTOFMS   美国Zoex公司总裁Edward Ledford博士   美国Zoex公司总裁Edward Ledford博士介绍了Zoex公司的发展历史、全二维气相色谱技术的发展现状、产品市场情况以及该技术在各领域的应用情况。   Edward Ledford博士说到:“全二维气相色谱技术是美国南伊诺伊州大学一个教授发明的,Zoex意识到这项技术的重要性与市场潜力,就购买了该项技术的专利。此后,Zoex花了很多时间与精力将这项技术转化为成熟的市场产品,在这个过程中,我们也申请了很多自己的专利,譬如四喷口的冷喷调制器、环形调制器等。”   “Zoex是全二维气相色谱技术专利的唯一拥有者,Agilent、Thermo、Shimadzu、Leco等公司均是Zoex的授权合作商,Zoex与他们的关系是既合作又竞争。我们认为这是一种合理的资源共享方式。世界上大部分的色谱公司都可以是我们的合作伙伴。”   “全二维气相色谱是传统气相色谱技术的一大突破,是将两根不同极性不同长度的气相色谱柱通过一个环形调制器串联起来,第一根色谱柱上分离后的样品在经过环形调制器时被迅速冷却聚焦,然后被脉冲式热气迅速气化,进入第二根色谱柱快速分离,经由快速的高分辨飞行时间质谱检测器进行全二维谱图的准确构建,实现复杂组分的分析。”   “全二维气相色谱技术应用较广泛,可应用在石油化工、农药残留分析、卷烟烟气、代谢组学、香精香料、食品与风味分析、刑事技术、环境分析以及疾病诊断等领域中。”最后,Edward Ledford博士着重介绍了全二维气相色谱在乳腺癌诊断上的应用。    瑞典Umea大学教授Peter Haglund博士   瑞典Umea大学教授Peter Haglund博士作了题为“全二维气相色谱在环境样品分析中的应用”的报告,Peter Haglund博士首先介绍了在运用全二维气相色谱技术时如何选择与第一根色谱柱相匹配的第二根色谱柱。然后,他重点介绍了如何运用全二维色谱技术分析环境样品,他特别指出:“全二维气相色谱技术将在室内空气污染源鉴定、污水成份鉴定、土地污染监测等方面得到较广泛的应用。”   美国Zoex公司技术副总裁吴展频博士   美国Zoex公司技术副总裁吴展频博士介绍了全二维色谱谱图的产生原理以及FasTOF高分辨飞行时间质谱仪。   “之所以需要全二维气相色谱,是因为一维气相色谱不能完全解决样品分离上的问题。对于非常复杂的样品,一维色谱技术只能分离出10%-20%的组份,其他的组份不能完全分离。一维谱图通常只有几十个峰,但二维谱图却至少有几百个峰。全二维气相色谱利用中心切割技术及图像重组技术,大大提高了信噪比,提高了分析的灵敏度。”   吴展频博士介绍了FasTOF高分辨飞行时间质谱仪的组成部件:电子轰击电离源(EI),范围在0eV-100eV;双灯丝设计,手动软件自动更换;离子源与质量分析器通过不同的多级分子涡轮泵和无油隔膜泵抽真空;四级杆过滤器,100%去除氦气离子,防止其轰击微通道板,有效地延长微通道板的寿命;脉冲式质量校正系统保证极高的质量准确度。   “GC×GC×HiResTOFMS有以下主要特点:(1)高质量分辨率:4000-7000,精确到小数点后三位;(2)高扫描速度:500scans/sec;(3)精确质量数计算和元素组分分析;(4)可以进行质谱结构确证;(5)高灵敏度:1pg八氟萘,S/N100/1RMS;(6)高峰容量:最多能够分离1万多个峰;(7)定性可靠性强,可进行NIST谱库检索。”   “Zoex 经典的GC Image分析软件同样适用于FasTOF,并且能够进行精确质量数计算和元素组分分析。GC Image软件分析处理质谱数据,包括精确质量数的计算和元素组分分析,GC Image的数据处理模板使数据分析更加简单、快捷,CLIC程序能够快速识别化合物和族组分,GC Project是一个功能强大的工作站,其中包括色谱方法建立、序列表的建立、数据处理分析、报告模板的建立等等。”  现场样品分析演示   本次技术交流会还设有用户交流与技术答疑环节,在场观众反应热烈,提问踊跃。另外,借助远程工作系统,远在瑞典的Zoex公司工作人员利用现场的GC×GC×HiResTOFMS进行了样品分析。Edward Ledford博士和吴展频博士对GC×GC×HiResTOFMS的GC Image数据分析软件进行了现场演示。   附录1:北京普立泰科仪器有限公司   http://www.polytechinc.com.cn/   http://lumiere.instrument.com.cn   附录2:美国Zoex公司简介   美国Zoex公司成立于1991年,是最早将二维气相色谱技术商品化的公司,也是唯一具有全二维技术的专利者,目前Agilent、Thermo、Leco、Shimadzu均是Zoex的授权合作商。   1999年,首次实现了全二维气相色谱的商品化;   2000年,建立了四喷口的冷喷调制器,第二代商品化全二维气相色谱;   2002年,进一步改进和完善调制器的结构,推出ZX-1和ZX-2环形调制器;   2010年推出GC×GC×HiResTOFMS,并获得Pitton金奖提名。
  • 拓新产品架构 磐诺推出全二维气相色谱新品
    仪器信息网讯 近日,磐诺推出了全新全二维气相色谱产品GC1212,气相色谱家族再添一员,应用领域布局进一步完善。全二维气相色谱技术是一种多维色谱分离技术,利用两种极性不同的毛细管色谱柱,通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱具有分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,是实现复杂样品分离鉴定的有力工具,在石油化工、环境、食品等领域有着很强的应用前景。常州磐诺仪器有限公司(以下简称:磐诺)是国内知名的色谱仪器厂家,一直专注于气相色谱及相关技术的研发和创新。为了深入了解该新产品,本网特别与磐诺就GC 1212全二维气相色谱仪产品相关话题进行了探讨。磐诺:着力推动全二维气相色谱普及化仪器信息网:请介绍磐诺推出全二维气相色谱产品的背景及其市场定位。磐诺:技术创新是一家科技企业,特别是仪器科技企业的灵魂和基石。对于气相色谱这项比较成熟的技术而言,是否能够再创新、在哪些方面进行创新、如何创新,是磐诺一直在考虑的问题。最近几年,全二维气相色谱技术凭借其远超常规一维色谱的分离能力,在石化、环境、食品、代谢等领域获得了越来越广泛的应用,被称为继毛细色谱柱以后气相色谱最具革命性的技术。但到目前为止,全二维技术还大多集中在高端科研实验室,在常规分析领域的渗透不足,在标准化方面的工作也缺乏亮点。更先进便利的分析工具亟待推广和应用,在市场广泛需求的推动、国家和行业政策的助力下,让技术转化为产品,产品服务于市场,进而真正惠及用户,是磐诺有责任也有能力去做的事。磐诺希望借助传统气相色谱技术的积累,能够为全二维色谱技术的推广贡献力量。全二维气相色谱产品GC1212磐诺作为国内领先的色谱厂家,依靠成熟的色谱研发、生产、市场和销售能力,再加上具有多年产品和应用开发的全二维技术专家团队,首次推出全新全二维气相色谱产品GC1212。要实现全二维技术的普及,就不能只聚焦于科研领域,我们希望能将该技术推广到常规应用实验室中,成为一种标准化的分析工具和手段。今后,我们将持续进行产品研发和升级,尽量减少客户的转换门槛,开发更多行业应用方案和前瞻性应用研究。并与相关的行业单位深度合作,建立示范合作点,共同推进方案和标准落地。另外,除了实验室色谱,磐诺全二维技术还可以整合到在线或便携式气相色谱产品中,进一步拓展产品线和应用场景。新品GC1212:一体化+专用软件仪器信息网:新品GC1212有哪些显著创新?磐诺:GC1212全二维气相色谱仪的创新主要有以下几点:第一、设备的整体性。之前几乎所有的全二维气相色谱都是在现有GC或GC-MS平台上加装一个全二维调制器来实现的,可以说,没有一家全二维厂家是基于自有GC产品,而现有的GC都只是为一维色谱分离而设计制造的,并没有考虑到全二维的功能需求。这样的组合产品在整体功能上就存在天生欠缺,最多只能做到信号通讯同步以及参数编辑整合。磐诺作为深耕GC技术的厂家,依托专精技术优势,可以更好地将全二维功能有机整合到GC平台中,从底层设计开始嵌入全二维模块,具有更好的功能兼容性和用户体验感。第二、在软件上实现了完全统一。使用一套软件实现仪器控制、状态监控、方法优化、数据采集和处理以及定制方案,不需要下载使用多套不同厂家的软件来编辑不同设备的对应设备方法;方法编辑更高效,错误率大大减少。软件还配有针对全二维气相色谱的流量计算和方法优化工具,方便用户进行系统配置和参数选择。在采集数据的同时,实时显示一维及全二维谱图,第一时间了解样品组成情况,方便提前进行计划调整和结果估算。第三、灵活定制方案。磐诺全二维GC产品主要针对科研及常规分析应用,对于某些专用分析需求,内置特定方法包:包括专用色谱柱系统、色谱参数方法、定制标样、定制化数据处理流程等,提供一整套完整的“交钥匙”解决方案。同时,对于科研用户,我们专业的技术团队提供从色谱柱配置、方法开发、数据处理到系统维护、方案定制等一系列全面的技术支持和服务。新手操作友好,对于初步接受全二维技术的用户,可以尽快上手使用,节省调试和方法开发,及数据处理的时间,以最快速度最小成本享受到全二维色谱技术带来的效果提升。着重石油化工等领域应用仪器信息网:磐诺的全二维气相色谱产品着力解决哪些实际应用问题?针对特殊领域应用是否推出新的解决方案?磐诺:全二维色谱主要解决复杂样品和复杂基质中的分离难题。我们推出的全二维GC产品也主要聚焦这个方向,特别在化工、环境和食品等行业推出针对性的分析方案,着力解决原有一维分析方案中分析时间长、需要大量预处理和预分离过程、以及设备要求高使用不便等问题。我们已经开发的方案包括:柴油中多环芳烃、航煤中烃组成、凝析油分析、蜡油及润滑油等重油中族组成和含氧化合物、环境中恶臭气体、食品中矿物油、香精香料等分析方案,也和国内一些分析机构进行合作,满足一些行业特定的分析需求。仪器信息网:对于新品的市场表现预期如何?磐诺:任何一种革命性的技术从开始出现到引领市场,都需要很长的一段时间,期间需要技术人员、配套材料、整体方案以及实际需求等各方面要素逐渐完善。我们现在习以为常的色谱技术,不管是毛细管色谱柱,还是色谱质谱联用,无一不是经过十几年甚至几十年的发展,才最终被市场接受。对于这款全二维GC新品,磐诺已做好充分准备,戒骄戒躁,砥砺前行,真正在产品设计和应用开发上下功夫,打造出具有国际领先水平的国产设备和自有方案。当然,我们也充满信心,在磐诺集团强大的研发生产和市场推广能力的保障下,同时得益于国家对高新技术的大力支持,以及各行业对国产新技术的旺盛需求,全二维GC产品会以比较快的速度推进,并得到客户和市场的认可。磐诺对新技术应用前景保有信心,未来全二维色谱系统会在相应应用领域分析工具数据中获得可观份额。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制