当前位置: 仪器信息网 > 行业主题 > >

红外分析误差分析

仪器信息网红外分析误差分析专题为您提供2024年最新红外分析误差分析价格报价、厂家品牌的相关信息, 包括红外分析误差分析参数、型号等,不管是国产,还是进口品牌的红外分析误差分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外分析误差分析相关的耗材配件、试剂标物,还有红外分析误差分析相关的最新资讯、资料,以及红外分析误差分析相关的解决方案。

红外分析误差分析相关的论坛

  • 【原创】样品处理过程可能对红外分析仪器造成的测量误差

    红外线气体分析仪的样品处理系统承担着除尘、除水和温度、压力、流量调节等任务,处理后应使样品满足仪器长期稳定运行要求。除应保证送入分析仪的样品温度、压力、流量恒定和无尘外,特别应注意的是样品的除水问题。当样气中含水量较大时,主要危害有以下几点:1、样气中存在的水分会吸收红外辐射,从而给测量造成干扰;2、当水分冷凝在晶片上时,会产生较大的测量误差;3、水分存在会增强样气中腐蚀性组分的腐蚀作用;4、样气除水后可能造成样气的组成发生变化。高含水的气样温度降至室温,过饱和的水析出后,各组分的浓度均会发生变化。若气样中有一些易溶于水的组分,这些组分被水部分溶解,会使各组分的浓度变化更大。 工艺要求检测的浓度指标一般是不含水分的“干气”中的含量,而经预处理后的气样中水分不可能完全除掉,仍将占有一定的比例。随着预处理运行状况的变化,环境温度、压力的变化,气样中的水含量亦随之变化。一些极性极强的组分如CO2、SO2、NO等,随着水温、气样压力及水气接触时间长短的不同而有不同的溶解度。 经过预处理后,气样的组成及各组分的浓度变化是十分复杂的,由此造成的示值偏离对微量组分检测尤为严重。但这种偏离并不都是附加误差,其中一部分往往反映了浓度变化的真实情况,对此,应通过样品组成分析及预处理运行条件测试等,从系统误差角度加以消除。而对预处理运行状态变化引起的附加误差则需创造条件,使之降至最低。 为了降低样气汗水的危害,在样气进入仪器之前,应先通过冷却器降温除水(最好降至5摄氏度以下),降低其露点,然后伴热保温,使其温度升高之40摄氏度左右,送入分析器进行分析,由于红外分析器恒温在50至60摄氏度下工作,远高于样气的露点温度,样气中的水分就不会冷凝析出了。

  • 近红外分析误差?

    查看相关的近红外国标,大多提及几个指标?1.重复性,再现性2.sep sec值3.预测值与湿法化学值的偏差。偏差在标准中指的是残差的平均。在具体的分析软件中看到这个样情况?蛋白指标 预测值与湿法化学值的绝对差-0.3 偏差为0.3020.23 偏差为0.345这个怎么来的,请高手解读一下。在判定一个样品具体一个项目的时候如何评价?

  • 【原创大赛】FOSS在线近红外Profoss误差分析

    使用ProFoss过程中,也许会碰到ProFoss误差较大,跟化验室的结果对不上。而且似乎也不能简单通过调截距来改善,因为截距不稳定,有时差这些,有时差那些。今天调了一个截距,明天系统误差又变化,结果又不好了。有的时候,ProFoss结果跟化验室结果不一样,不知该相信哪一个?还经常有人问, ProFoss准确度能达到多少?比如水分误差能不能小于±0.1%?蛋白误差能不能小于±0.3%?这样的问题,困扰着很多人,影响我们愉快的使用ProFoss。所以在此分享一下我对这些问题的看法,希望对ProFoss使用有帮助,开始之前,先举个例子吧:小明是一家公司的ProFoss技术员,这天他们生产豆粕,假设蛋白真实值是43%。假设ProFoss检测结果100%准确,也是43%。(这些假设小明都不知道)。为了验证一下ProFoss误差,小明到线上取样化验,化验结果是42.7%。跟ProFoss结果比,实验室低了0.3%,为了让ProFoss跟实验室一致,小明就把ProFoss结果下调了0.3%。然后ProFoss结果变成了42.7%。然后小明又取了一个样品,还是相同的样品,真实值还是43%(小明不知道),这次实验室化验结果是43.3%,跟ProFoss结果对比,实验室高了0.6%。小明心想:调了截距后误差怎么变大了呢?于是又根据这次结果把ProFoss往上调了0.6%。ProFoss结果变成了43.3%。为了验证这次有没有调好,他又取了个样品,豆粕还是相同的豆粕(小明不知道),化验结果,这次是42.5%。这次,ProFoss结果高了0.8%!误差怎么越调越大呢?!小明疑惑了!ProFoss不好用吧?!100%准确的ProFoss最终被算出有0.8的误差,为什么?小明忽视了什么问题呢?答案是:重复性,即精确度。这个例子,是我们假设ProFoss本身误差为0,没有取样误差等因素的影响情况下,我们得到的误差,真实情况下,还要考虑ProFoss的本身误差,取样误差等的影响,所以我们得到的误差可能会更大,但这个误差是不真实的,真实误差其实并没有这么大!从这个例子我们得到的最重要的信息是:要想准确衡量ProFoss的误差,实验室本身的重复性,即精确性非常重要。相同的样品我们要保证能得到相同的结果!下面我们就来分析一下影响“ProFoss误差”的一些重要因素:1、取样误差取样误差是指,取样取到的样品跟ProFoss检测到的样品不一致造成的误差。比如ProFoss检测到的样品是A,而取到的样品是B,用B的化验结果去跟A的结果对比,当然会有误差。当检测的产品不均匀时,最容易出现取样误差。最常见的,用巴西豆生产43规格的豆粕时,就很容易有取样误差。这也是有人反映巴西43粕误差较大的原因。那怎么检验有没有存在取样误差呢?最简单的方法就是,短时间内连续取至少5个样品做常规化验,然后对比这几个样品各指标,比如水分、蛋白的差异情况。差异越大,波动越大,说明越容易存在取样误差。此外,我们可以通过计算这几个样品的标准偏差、极差来评价取样误差具体有多大。2、样品制备误差样品制备误差是指对样品进行前处理的过程中带来的误差。最常见的样品制备误差,可以由分样不均匀,或者混合不均匀造成,导致实际化验的样品不能代表这份样品的真实结果。所以不均匀的样品,容易出现样品制备误差。最常见的例子,还是43规格的巴西豆粕,非常容易出现样品制备误差。评价样品制备误差的简单方法是,将样品按日常处理方法,分成至少5份进行化验,然后比较这几个样品的化验结果。差异越大,波动越大,样品制备误差越大。可以通过计算这几个样品的标准差、极差来评价样品制备误差的具体大小。3、化验误差化验误差是指化验过程中造成的误差。化验误差受化验方法,设备,试剂,人员熟练程度等因素的影响。评价化验误差可以用化验精确度跟化验准确度来衡量。对校正ProFoss来讲,化验的精确度比准确度更加重要,且重要的多!评价化验误差(主要指精确度)的方法是:相同的样品重复化验5-10次,或者更多次数。比较各指标的差异,波动情况,差异越大,则化验误差越大,精确度越差。可以用标准偏差、极差来衡量精确度的具体水平。最好的方法是让平时实际操作的不同人员,在不同时间,按照平时的方法,分别做重复检测,然后做综合的标准偏差、极差。这样最能接近实际情况下实验室的真实的精确度情况。4、ProFoss本身误差ProFoss误差是指ProFoss本身的误差,这才是ProFoss的真实误差。它主要由ProFoss硬件条件,ProFoss使用的定标方程决定。目前ProFoss硬件能够达到0.02nm的精确度,所以硬件方面带来的误差很小。所以ProFoss本身误差主要是指定标方程的误差。定标方程的好坏,由做定标方程的标准样品的质量决定。需要注意的是:前面提到的三种误差,即取样误差、样品制备误差、化验室误差此时还决定了做定标方程时,使用的标准样品的质量,最终影响了定标方程的质量。因此,想用好ProFoss,有一个精确度足够好的化验室很重要。综上所述,我们最终计算得到的误差实际上是:取样误差+样品制备误差+化验误差+ProFoss本身误差的一个综合误差。即使ProFoss误差本身很小,如果这些误差过大,我们也会得到一个很大的误差。有的时候这几个误差互相抵消,我们就能得到很小的误差,有的时候这几个误差互相叠加,我们就得到很大的误差。但是无论抵消还是叠加情况下的误差,都不是真实的误差。从一定意义上讲,真正的ProFoss误差应该是扣除了这些误差的影响时的误差,即与真实值的误差。而如果你不明白这个道理,那么当你得到一个较大误差时,你很可能就会像小明那样得出一个结论:ProFoss不好用!同样的ProFoss,有人用的好,有的不理想,非常大一部分就是因为这个原因。那么存在这么多影响因素,是不是ProFoss根本就没法用好呢?其实,这些误差跟ProFoss没有任何关系,是一直存在的,只不过之前没有对比,我们没有发现罢了,而当我们有了ProFoss,跟化验室结果对比时,才发现了这个问题。所以有时实验室结果也并不是非常可靠的!比如还是小明这个例子。同样是43蛋白的豆粕,有时化验结果是42.5,有时是43.3。这样的结果报给生产控制人员,就会误导他们一会调高蛋白,一会调低蛋白。最终导致产品波动过大,不合格率增加。在这方面,实验室就不如ProFoss可靠了!因为ProFoss结果只受它本身误差的影响。跟其他刚刚进入应用领域的设备一样,目前人们对ProFoss的使用有误区,不熟练。这是很正常的。随着我们不断使用,以及对在线近红外使用的不断探索,对在线近红外这门技术的使用肯定会越来越纯熟,在线近红外带给我们的帮助也会越来越多。

  • 【有奖讨论】你的近红外预测值与标准方法分析数据可比吗?

    哈哈,本版主从火星回来啦~~~~http://simg.instrument.com.cn/bbs/images/brow/em09502.gif有奖讨论,参与有奖:你的近红外预测值与标准方法分析数据可比吗?你是怎么评价你的近红外预测值是否满足应用需求呢?是通过与标准方法分析数据比较吗?是完全依赖模型的预测偏差吗?标准方法的分析精度是ASTM标准提供的,还是多次实验计算的标准偏差呢?近红外预测值满足标准方法误差要求吗?近红外预测值大于标准方法误差要求,又如何判断数据是否可以接受呢?大家有什么关于近红外数据方面的心得和疑惑,都一起来讨论讨论吧!http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 【分享】------红外光谱分析的优缺点

    红外光谱分析的优缺点优点1 应用范围广。红外光谱分析能测得所有有机化合物,而且还可以用于研究某些无机物。因此在定性、定量及结构分析方面都有广泛的应用。2 特征性强。每个官能团都有几种振动形式,产生的红外光谱比较复杂,特征性强。除了及个别情况外,有机化合物都有其独特的红外光谱,因此红外光谱具有极好的鉴别意义。3 提供的信息多。红外光谱能提供较多的结构信息,如化合物含有的官能团、化合物的类别、化合物的立体结构、取代基的位置及数目等。4 不受样品物态的限制。红外光谱分析可以测定气体、液体及固体,不受样品物态的限制,扩大了分析范围。5 不破坏样品。红外光谱分析时样品不被破坏。缺点1 不适合分析含水样品,因为水中的羟基峰对测定有干扰;2 定量分析时误差大,灵敏度低,故很少用于定量分析;3 在图谱解析方面主要靠经验。

  • 关于AAS分析结果的误差问题

    最近测了一批含有锶的水样。给出结果时,需要给定分析结果的误差(R+-u)。其中的u是怎么计算的?不考虑称量误差和体积误差的基础上,误差主要来自仪器本身。每个样品测量三个吸光度值。三个吸光度值的相对标准偏差可以看做分析误差么?还是这个相对标准偏差还要经过误差传递公式计算才可以看做分析结果的误差?

  • 【分享】近红外光谱分析数据的前处理

    【分享】近红外光谱分析数据的前处理

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析必须借助于各种相应的数学模型,分析的关键是建立预测效果优秀的数学模型。数学模型预测样品的效果决定于建模所用数据,以及(用算法)对建模数据中信息的充分提取。NIR分析大致有一半的误差来自于建模数据。因此优化建模数据在NIR分析中具有特殊的意义。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要从样品复杂的光谱中提取有关的信息,这些信息包括两部分:样品光谱中关于待测量的定性或定量信息,以及与待测量信息重叠在一起的、确定的、因此是可以通过模型加以校正的背景信息;由于分析过程必须把背景的信息加以校正后才能提取待测量的信息,因此待测量信息和能确定的背景信息这两部分信息合在一起都是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析需要的有效信息。另外,每个光谱数据除了包含有效信息以外还包含测量误差等不确定的、难以校正的、干扰测定的无效信息或称干扰信息,分析过程根据这两部分有效信息通过数学处理消除干扰信息,才能完成分析。  建模过程应用的光谱数据越多,得到的有效信息就可能越多,预测误差减少、预测准确度也得以提高。这就使模型在不同时间与空间的稳定性得以提高;另一方面,建模过程中每引入一个光谱数据的同时会带来影响提取有效信息的干扰信息,使模型的预测误差增加、测定准确度下降。组成建模数据的两个部分:建模样品光谱的数目与每个光谱包含的数据点(谱区的前处理都应符合“少而精”,且有一个最佳值,即有效信息率最高点。优化建模数据的目标就是确定或接近该最佳点,使数学模型的预测效果达到或接近最佳值。优秀的软件应能辅助确定数学模型的最佳参数。  建模数据也就是建立数学模型所用校正样品集。校正样品集包括直接用于建立模型的建模样品集与检验模型的检验样品集。现代NIR分析包括一系列优化校正样品集光谱的技术,包括建模集与检验集的分割,优化校正样品集总体的样品组成以及优化各样品的光谱两个方面,如对建模样品集光谱的各种前处理方法,优化选择用于建立数学模型的谱区以及优化选择各种NIR定量分析算法的最佳参数等等多种多样的处理技术,由上节可知这些前处理技术的本质都是压缩和恢复,目标都是提高建模数据的有效信息率。  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析建模数据的各种前处理技术,以及这些技术针对解决的问题见下图。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806161740_93295_1604460_3.jpg[/img]

  • 【原创】有分析误差的国标吗?

    向各位同行请教,有分析误差的国标吗?如:我做铸铁中硅的含量时我们不同的人在同一个实验室测定结果是2.52%和2.57%,同一个人在不同的实验室测定的结果是2.52%和2.59%,这在误差范围之内吗?误差是多少可认为是合格呢? 注:我们工厂化学分析. 感谢您的回答!

  • 求指点误差分析

    取0.3g氨基丙酸样品用0.1mol/L氢氧化钠滴定消耗体积大概是30ml,用25ml的滴定管计算出来含量约为99.1,用50ml的滴定管计算含量约为98.00。多人分析都一样。滴定管应该不会有这么大误差吧。求分析哪个滴定管的误差更大原因,

  • 【讨论】仪器分析和化学分析的误差谁大谁小??

    【讨论】仪器分析和化学分析的误差谁大谁小??今天在实验室和一个同事讨论仪器分析和化学分析的误差谁大谁小??争的很热烈啊!最后还搬出了《仪器分析,〈〈分析化学〉〉,武汉大学出版,但是还是没完全弄清楚谁的误差大,谁的小???大家做仪器分析的(气谱,色谱等)说说到底谁大谁小?????

  • 油品近红外光谱分析的主要误差来源?

    [font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])取样及样品保存过程。油品取样过程要注意样品是否均匀,不均匀的样品会造成性质测定和光谱测定的样品有差别,导致模型建立或预测的误差。因此需要按照相关标准方法取样,不当的保存方式会导致轻质组分挥发,使得馏程、闪点等与轻质组分相关的性质测定结果不准确。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])校正过程。校正过程中误差主要来源于校正样品空间分布畸形,校正样品参考值有较大的误差,以及校正参数选择不适当等,可以通过模型验证的方式来考察校正误差。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])光谱测量过程。光谱测量过程引入的误差在炼厂比较常见,主要为气泡,颗粒的影响,样品池污染等,采用自动进样、多次测量比较的方式可以在较大程度上减少光谱测量过程产生的误差。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]4[/font][font=宋体])仪器性能。仪器长期使用,更换部件,更换仪器,都会使得模型不再适用,需要采用质量监控样品保证仪器的长期稳定性,更换部件或仪器后,需要重新进行模型验证。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]5[/font][font=宋体])模型适用性。模型适用性是比较常见的误差来源,需要确定适合的界外样品检测方法,保证数据是由模型内插分析而得。[/font][/font]

  • 食品分析的误差的来源及控制和消除误差的方法

    食品分析的误差的来源 一个客观存在的具有一定数值的被测成分的物理量,称为真实值,测定值与真实值之差称为误差。根据产生误差的原因,通常分为两类,即系统误差和偶然误差,系统误差是由固定原因造成的误差,在测定的过程中按一定规律重复出现,有一定的方同性,即测定值总是偏高或总是偏低,这种误差的大小是可测的,所以又称“可测误差”。它来源于分析方法误差、仪器误差、试剂误差和主观误差,如分析人员掌握操作规程与操作条件等因素。偶然误差是由于一些 偶然的外因所引起的误差,产生的原因往往是不固定的、未知的,且大小不一、或正或负,其大小是不可测的,这类误差的来源往往一时难于觉察,可能是由于环境(气压、温度、湿度)等的偶然波动或仪器的性能、分析人员对各份试样处理时不一致所产生的。 控制和消除误差的方法 误差的大小,直接关系到分析结果的精密度和准确度。减少误差的措施: 1·正确选取样品量。样品量的多少与分析结果的准确度关系很大。在常量分析中,滴定量或重量过多或过少都直接影响准确度。在比色分析中,含量与吸光度之间往往只在一定范围内呈线性关系。这就要求测定时读数在此范围内,以提高准确度。通过增减取样量或改变稀释倍数可以达到此目的。 2·增加平行测定次数。减少偶然误差测定次数越多,则平均值就越接近真实值,偶然误差亦可抵消,所以分析结果就越可靠。一般要求每个样品的测定次数不应少于两次,如要更精确的测定,分析次数应更多些。 3·对照试验。对照试验是检查系统误差的有效方法。在进行对照试验时,常常用已知结果的试样与被测试样一起按完全相同的步骤操作,或由不同单位、不同人员进行测定,最后将结果进行比较。这样可以抵消许多不明了因素引起的误差。 4·空白试验。在进行样品测定过程的同时,采用完全相同的操作方法和试剂,惟独不加被测定的物质,进行空白试验。在测定值中扣除空白值,就可以抵消由于试剂中的杂质干扰等因素造成的系统误差。 5·校正仪器和标定溶液。各种计量测试仪器,如天平、旋光仪、分光光度计,以及移液管、滴定管、容量瓶等,在精确的分析中必须进行校准,并在计算时采用较正值。各种标准溶液(尤其是容易变化的试剂)应按规定定期标定,以保证标准溶液的浓度和质量。 6·严格遵守操作规程。分析方法所规定的技术条件要严格遵守。经国家或主管部门规定的分析方法,在未经有关部门同意下,不应随意改动。 本文参考了国家标准物质网资料中心的相关资料。

  • 近红外光谱分析方法预测馏程是否准确?

    [font=宋体]馏程是炼化生产过程物料的重要参数指标,馏程测定是炼厂化验室最繁重的工作任务之一。采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术可以测定馏程,替代传统分析方法,减轻化验室工作压力。从应用实践来看,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术测定初馏点和终馏点误差较大,主要是由于决定初馏点和终馏点的组分在样品中的含量很低,而且与样品的本底接近,比较难以确定它们的数学关系。[/font]

  • 【资料】近红外光谱法在药物分析中的应用

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析中的应用冯艳春 胡昌勤(中国药品生物制品检定所 北京 100050) 近红外(Near Infrared,NIR)光谱的波长范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100nm)和近红外长波区(1100~2526nm)。由于该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以虽然该谱区发现较早,但分析价值一直未能得到足够的重视。近年来,由于巨型计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使其成为发展最快、最引人注目的光谱技术[1]。而且由于该技术方便快速,无需对样品进行预处理,适用于在线分析等特点,在药物分析领域中正不断得到重视与应用。1[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的测量根据NIR光谱的获得方式,通常有透射(Transmittance)和漫反射(DiffuseReflectance)两种[2]。透射测定法的定量关系遵从Lambert-Beer定律,主要适用于液体样品,其正常的工作波长范围是850~1050nm[3]。浙江大学的史月华等人用该原理,在93%~97.4%的浓度范围内利用维生素E在6061~5246cm-1处的近红外吸收峰面积积分值和其浓度关系建立回归方程,对已知浓度的样品进行预测,误差及相对误差均在0.79%~0.9%内[4,5]。漫反射测定法是对固体样品进行近红外测定常用的方法。当光源垂直于样品的表面,有一部分漫反射光会向各个方向散射,将检测器放在与垂直光成45o角的位置测定散射光强的方法称为漫反射法。漫反射光强度A与反射率R的关系为 式中,R1为反射光强,R0为完全不吸收的表面反射光强。国内已有人先后用漫反射技术测定了精氨酸阿司匹林[6] 、安乃近[7] 、芦丁和维生素E[8] 等的含量,并且用反射光谱法对磺胺噻唑[9]进行质量评价。 以透射和漫反射为测试基础,为适应不同物质在不同状态时直接测定其[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],90年代以来光纤技术在NIR中得到了广泛应用。光纤不仅可方便的传输光谱信号,各式各样的光纤探头还极大地方便了NIR进行各类快速在线分析。2[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在药物分析中的应用2.1应用范围[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法在药物分析领域中的应用范围相当广泛,它不仅适用于药物的多种不同状态如原料[10]、完整的片剂、胶囊与液体等制剂[11],还可用于不同类

  • 红外透射法分析中,散射、反射和折射对红外的影响

    红外分析中,散射、反射和折射都会对样品的分析结果产生影响,给谱的解析和定量带来困难和误差,而消除这些因素对测量结果的影响就要在制样阶段做很多的工作,大家讨论一下如何通过制样来消除这三方面的影响吧。

  • 【讨论】光谱分析的误差

    我用3460分析H13,生产中取样鉻光谱结果较化学分析值低0.18,但两个不同含量的H13标钢校正结果还行,但是钼之间有0.06个误差。一块是钢院的,另一块是山东的

  • 【讨论】仪器分析和化学分析的误差谁大谁小??

    【讨论】仪器分析和化学分析的误差谁大谁小??做仪器分析的和化学分析的到是来讨论讨论这个问题?最好能具体说明,现在我也糊涂了,不知如何来回答这个问题?但我坚持是仪器分析误差小这个问题大家最好翻翻书或有根据后再讨论得出结论可以吗?〉?????

  • 红外气体分析仪的一些基本结构组成

    7.1.2.1 光源 光源的作用是产生两束能量相等而又稳定的平行红外光束,光源多由镍锗丝制成。辐射区的光源有两种,一种是单光源,一种是双光源。单光源只有一个发光元件,经两个反光镜构成一组能量相同的平行光束进人参比室和测量室。而双光源结构则是参比室和测量室各用一个光源。与单光源相比,双光源因热丝放光不尽相同而产生误差。 7.1.2.2 切光片 切光片在电机带动下对光源发出的光辐射信号做周期性切割,将连续信号调制成一定频率(一颇为2-25Hz)的交变信号(一放为脉冲信号),以避免检测信号发生时间漂移。 7.1.2.3 滤光部分 吸收或滤去可被干扰气体吸收的红外线.去除干扰气体对测量的影响。滤光系统通常有两种,一种是充以干扰气体的滤光室,另一种是干涉滤光片。其中干涉滤光片能使红外分析仪根据需要更换干涉滤光片,以满足检测不同气体的需要.提高仪器的通用性。 7.1.2.4 测量室和参比室 测量室和参比室的两端用透光性能良好的caF2晶片密封。参比室内封人不吸收红外辐射的惰性气体,测量室则连续通入被测气体。测量室的长短与被测组分浓度有关,根据比尔定律,气体浓度低,测量信号小,采用的测量室较长,一般测量室的长度为0.3—200 mm。在测量腐蚀性气体时,一般采用镀膜气室。比如:防爆型超声波液位计 7.1.2.5 检测室 检测室(检测器)的作用是用来接收从红外光源辐射出的红外线,并转化成电器信号。大多数红外线分析器都采用电容微音器式检测器。检测器的两个接收室分别无有待测气体和惰性气体的混合物。两个接收气室间用薄金属膜片隔开;因此,当样品室发生了吸收作用时,到达接收室试样光束比另一接收气室的参比光束弱,于是检测器参比接收室中的气压大于样品接收室的气压。而金属隔膜和一个固定电极构成了一个扳动电容的两个极板。此电容器的电容变化与试样室内吸收红外线的程度有关。故测量出此电容量的变化.即可确定出样品中待测气体的成分。 7.1.2.6 微机系统微机系统的任务是将红外探测器的输出信号进行放大变成统一的直流电流信号,并对信号进行分析处理,将分析结果显示出来,同时根据需要输出浓度极值和故障状态报警信号:对信号处理包括:干扰误差的抑制,温漂抑制,线性误差修正,零点、满度和中点校准,量程转换、量纲转换、通道转换、自检和定时自动校准等。 返回——仪器仪表网

  • 【分享】误差分析

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=98018]浅谈分析化学实验中的误差问题[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=98019]有关容量分析误差的一些问题[/url]

  • 【求助】如何计算滴定分析中的误差?

    如何计算滴定分析中的误差,例如:酸碱滴定。误差如何合成(如滴定过程中滴定管误差和称样误差)?两种方法比较除了t检验和F检验还有哪些方法?如何检验?

  • 高频红外碳硫分析仪

    高频红外碳硫分析仪

    http://ng1.17img.cn/bbsfiles/images/2012/03/201203070844_352905_2462002_3.jpg主要技术指标:◆ 测量范围:碳 0.0001%-10.0000%(可扩至99.9999%) 硫 0.0001%-2.0000%(可扩至99.9999%)◆ 分析误差:碳符合ISO9556标准 硫符合ISO4935标准 ◆ 分析时间:25-60秒可调 (一般在35秒左右)◆ 电子天平:称量范围:0-120克--------------------------------------------------------------------------------主要特点:◆ 采用低噪声、高灵敏度、高稳定性的红外探测器; ◆ 整机模块化设计,提高了仪器的可靠性;◆ WINDOWS全中文操作界面,操作简便,易于掌握;◆ 动态显示分析过程中的各项数据和碳硫释放曲线; ◆ 进口电磁阀,提高气路系统可靠性;◆ 测量线性范围宽,并可扩展; ◆ 节约电力和材料消耗,高速准确; ◆ 电子天平自动联机,可不定量称样。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制