当前位置: 仪器信息网 > 行业主题 > >

红外光源波长检测

仪器信息网红外光源波长检测专题为您提供2024年最新红外光源波长检测价格报价、厂家品牌的相关信息, 包括红外光源波长检测参数、型号等,不管是国产,还是进口品牌的红外光源波长检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外光源波长检测相关的耗材配件、试剂标物,还有红外光源波长检测相关的最新资讯、资料,以及红外光源波长检测相关的解决方案。

红外光源波长检测相关的论坛

  • 【原创】近红外波长瓦斯浓度检测技术

    近红外波长瓦斯浓度检测技术 检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 求助:近红外光源

    请大神帮助 我想找高功率卤素的近红外光源,波长要求在900nm--1800nm之间,基本接近也行。 是临床试验用,类似于理疗灯,可找了很久,也没有合适波长的光源。 能给我提供一下在哪能找到这样的产品,或定制的地方。 多谢!

  • 【转帖】近红外波长瓦斯浓度检测技术

    瓦斯气体浓度的检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为 5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传 感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝 缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直 到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系 用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放 置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度 的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一 波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 近红外光谱仪器中滤光片波长组合的优选

    如何快速、准确地进行滤光片波长组合的优选, 是滤光片型近红外光谱仪器研究的一个关键技术。利用组合生成算法与多元线性回归分析相结合, 并运用计算机编程语言分析了掺假山茶油的近红外光谱吸光度矩阵, 优选出不同组合数下滤光片波长组合。该方法可在全光谱波长范围内快速的实现滤光片的优选, 且建立的定量分析模型简单、精度高、稳定。 滤光片型近红外光谱仪器是采用滤光片作为分光系统的光谱分析仪器 。在众多的近红外光谱仪器中, 滤光片型近红外光谱分析仪器是一种较为经济实用的分析仪器, 很容易得到推广使用。由于在该类仪器中, 滤光片波长组合的选取是否合适, 会直接影响到仪器的分析精度。因此, 滤光片型光谱分析仪器研究中的一项关键技术便是如何选择合适的滤光片波长组合。 多元线性回归( Mult iple linear regression, MLR) 与相关光谱相结合的方法常用于近红外光谱定标波长优选。该方法是以最优起始定标波长点为起点, 通过逐步增加波长后经F 检验来获得被选定标波长的最优组合, 但此方法所选择的定标波长可能对定标模型产生干扰。所以在每一次定标波长的选取时, 还需要对独立的预测样品集进行预测分析, 以确定经过筛选后的定标模型预测能力是否有所提高, 如果定标模型的预测能力未能提高, 则需要重新筛选定标波长。根据组合数学的原理可知, 如果要在10 个特定波长中任意选出4 个波长的组合作为定标波长组合, 则其组合数将达到C410= 210。若采用这种方法来确定定标波长计算量大、耗时长, 所得到的结果不一定是最优定标波长。对于偏最小二乘回归 , 主成分回归 , 人工神经网络 等相对较为复杂的算法, 210 个波长组合的计算量相当巨大。 组合生成算法 与计算机编程语言相结合能很好的解决以上问题。本文采用组合生成算法与面向矩阵运算的工程计算机语言MATLAB 相结合的方法, 利用计算机编程实现自动从多个波长点组合中挑选出最优定标波长组合。根据这些波长组合, 可以选择最优的滤光片组合方案。

  • 【求助】测单色光源的波长误差

    大家好 我是新手我们公司现在想购买一台光谱仪,用来测单色光源的波长误差,我现在只查到了天津拓普的WDS系列,1.推荐一下测单色光源的波长误差的方法2.推荐几款用于测光源波长的仪器,现在网上很多光谱仪都是用来做金属分析用的光谱仪,我想要的是测光源波长的

  • 【已应助】需要测单色光源的波长误差的设备

    大家好 我是新手我们公司现在想购买一台光谱仪,用来测单色光源的波长误差,我现在只查到了天津拓普的WDS系列,1.推荐一下测单色光源的波长误差的方法2.推荐几款用于测光源波长的仪器,现在网上很多光谱仪都是用来做金属分析用的光谱仪,我想要的是测光源波长的

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学高分辨率近红外光谱仪扩展了波长测量范围新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。http://ng1.17img.cn/bbsfiles/images/2012/12/201212191311_413838_2432394_3.jpgNIRQuest512-1.9配置具有很高的稳定性,512像素Hamamatsu InGaAs线阵探测器,适用于多种光栅和光具座,用以优化1100至1900纳米之间的性能。标准的NIRQuest512-1.9光栅常数为150线/毫米,25微米的入射狭缝,以及一个非荧光长波通滤光器配置,可传输1000纳米以上的波长。该滤光器有助于缓和二阶效应。NIRQuest512-1.9外部配有一个硬件,通过该硬件,在出现外部情况时,用户可以通过外部触发获取相应数据信息,或者在数据获得之后再次引起触发。光谱仪操作通过SpectraSuite软件来控制,该软件是一个基于Java的模块化光谱学平台。NIRQuest的低沉噪声让其具备集成光谱仪的潜力(或者将光谱仪中的探测器暴露在光线下),从而延长使用时间,这在光线暗的环境中非常有用。满信号条件下的信噪比在每100毫秒积分时间内大于15000:1。因此,在对敏感性要求极高的应用环境中可以实现高效操作模式。

  • 海洋光学高分辨率近红外光谱仪扩展了波长测量范围

    海洋光学推出了新款小型近红外光谱仪NIRQuest512-1.9 。这款高分辨率近红外光谱仪NIRQuest512-1.9的响应范围可达1100-1900纳米,从粮食生产和化学处理的变化监测到为半导体装配和医疗进行激光特征分析,该光谱仪可应用于各种领域。NIRQuest512-1.9配置具有很高的稳定性,512像素Hamamatsu InGaAs线阵探测器,适用于多种光栅和光具座,用以优化1100至1900纳米之间的性能。标准的NIRQuest512-1.9光栅常数为150线/毫米,25微米的入射狭缝,以及一个非荧光长波通滤光器配置,可传输1000纳米以上的波长。该滤光器有助于缓和二阶效应。NIRQuest512-1.9外部配有一个硬件,通过该硬件,在出现外部情况时,用户可以通过外部触发获取相应数据信息,或者在数据获得之后再次引起触发。光谱仪操作通过SpectraSuite软件来控制,该软件是一个基于Java的模块化光谱学平台。NIRQuest的低沉噪声让其具备集成光谱仪的潜力(或者将光谱仪中的探测器暴露在光线下),从而延长使用时间,这在光线暗的环境中非常有用。满信号条件下的信噪比在每100毫秒积分时间内大于15000:1。因此,在对敏感性要求极高的应用环境中可以实现高效操作模式。

  • 双波长在线近红外光谱仪

    我们现在有一台近红外光谱,只测量两个波长,一个参考波长一个测试波长;参考波长只定在CH的吸收峰,我的想法是参考波长和测试波长的差值就是CH键的变化,但是我发现加水的时候,水越多,结果越没有规律,请大侠赐教

  • 中红外光谱仪光源问题

    小弟刚接触红外光谱仪,最近在搞一个中红外项目。使用的检测器是热释电红外检测阵列,光源为卤素灯。由于刚接触,所以对现在市场上的红外光谱仪使用的光源不是特别了解。所以想请问一下现在市场上的红外光谱仪(特别是进口仪器)所使用的光源大多数都是什么?不知道现在市场上有用热释电红外检测阵列做检测期间的么,如果有的话有什么品牌可以推荐么?谢谢!~~~~注:我现在的项目为便携式一起,故体积太大,重量太大的光源就不适合了

  • 光源每个波长下的光强测定

    做光解的时候,需要光源每个波长下的光强,但是实验室只有一个光功率计,可以测光源总的光功率我想要每个波长下的光强,不知道这个在哪里可以测

  • 近红外光谱仪的选购

    初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器最好?如何选择一台合适的近红外光谱仪器?实际上,“最好”仪器的定义是很难确定的,“最好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定的需要选择合适的仪器,本文将根据不同类型、不同设计方式近红外光谱仪器的特点向选用者作简要介绍,以供参考。   为了使近红外光谱获得可靠的分析结果,近红外光谱必须按照详细的技术规格设计生产。下面反应的就是现近红外光谱仪器的规范。当然也是使用者选择仪器时的主要依据。  对现代近红外光谱仪器的要求性能要求: 系统特点及对仪器的要求可靠性: 波长准确,光谱稳定性好多样性: 提供多种测样方式,波长范围宽快速性: 快速扫描系统,多功能计量学软件灵敏性: 信噪比高可分辨性: 分辨率高在线持久性: 可靠性样品导入系统,仪器无运动部件模型可转换性: 波长准确,光谱稳定  近红外光谱仪器不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等六部分构成。  近红外光谱仪的分类比较多,但市场上分类主要还是按照仪器的分光器件不同来分,一般可分为四种主要类型:滤光片型、光栅色散型、博立叶变换型和声光调制滤光器型。其中光栅色散型又有光栅扫描单通道和非扫描固定光路多通道检测之分了。  滤光片型近红外光谱仪可分为固定滤光片和可调滤光片两种形式。固定滤光片型光谱仪是近红外光谱仪器的最早设计形式,这种仪器首先要根据测定样品的光谱特征选择适当波长的滤光片。该类型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用。但这类仪器只能在单一波长下测定,灵活性较差,如样品的基体发生变化,往往会引起较大的测量误差。可调滤光片型光谱仪采用滤光轮,可以根据需要比较方便地在一个或几个波长下进行测定。这种仪器一般作专用分析,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。  扫描型仪器通过光栅的转动,使单色光按波长高低依次通过测样器件,与样品作用后,进入检测器检测。与滤光片型的近红外光谱仪器相比,色散型近红外光谱仪器具有可实现全谱扫描、分辨率较高、仪器价位适中和便以维护等优点,其最大的弱点是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性,抗震性较差,一般不适合作为过程分析仪器使用。  博立叶变换光谱技术是利用干涩图和光谱图之间的对应关系,通过测量干涩图和对干涩图进行博立叶积分变换的方法来测定和研究光谱的技术。与传统的色散型光谱仪相比,博立叶变换光谱仪能同时测量、记录所有波长的信号,并以更高的效率采集来自光源的辐射能量,具有更高的波长精度、分辨率和信噪比。但由于干涉仪中动镜的存在,仪器的在线长久可靠性受到一定的限制,另外对仪器的使用和放置环境也有较高的要求。  声光可调滤光器(缩写AOTF)是利用超声波与特定的晶体作用而产生分光的光电器件。用AOTF作为分光系统,被认为是90年代近红外光谱仪器最突出的进展。与传统的单色器相比,采用声光调制产生单色光,即通过超声射频的变化实现光谱扫描。光学系统无移动部件,波长切换快、重现性好,程序化的波长控制使这类仪器的应用具有更大的灵活性。声光可调滤光器近红外光谱仪器的这些优点使今年来在工业在线中得到越来越多的应用。但目前这类仪器的分辨率相对较低,价格也较贵。  非扫描固定光路多通道近红外光谱仪器是因为仪器的检测器采用多通道光敏器件而得名。这类仪器的色散系统一般采用平面光栅或全息光栅,与光栅扫描型相比,光栅不需要转动即可实现确定波长范围的扫描。多通道检测器的类型主要有两种:二极管阵列(缩写PDA)和电荷耦合器件(缩写CCD)。该类型仪器测量的波长范围取决于检测器光敏元件的材料(波长范围受到一定限制),如硅基光敏元件的影响范围在短波近红外区域,由于该波i段检测到的主要是样品三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往教长。这类仪器的最大特点是仪器内部无可移动部件,仪器的稳定性和抗干扰性能好;另一个特点是扫描速度快,一般单张光谱的扫描速度只有几十毫秒。这两特点的结合,使该类仪器特别适合作为现场或在线分析仪器使用。多通道型仪器的分辨率取决于光栅性能、检测器的像素以及狭缝的尺寸。在确定波长的范围内,检测器的像素越高,所检测道的样品信息越丰富,但一般像素越高的检测器价格也越高。(选自网络,侵删)

  • 想用傅里叶红外光谱仪测固体表面辐射特性可问题很多

    各位大神你们好: 本人因学习需要,现在打算搭建一套测量固体表面辐射特性的台架。调研了很多国内外的台架尤其是哈工大戴教授的团队做的测试平台后,思考着怎样结合起来搭建一套适合我自己实验需求的平台。 现在遇到一下困难:1、相关的测量行业标准非常缺乏,国标也是1987年的,并且没有具体误差指标等2、一般的傅里叶红外光谱仪本身是自带有激光光源并且用于化学测量居多,本人测量侧向于物理测量,希望得到的是全波长的辐射特性,光源希望是黑体炉或者样品加热炉发出的红外辐射。这问题不知道怎样解决。3、大部分红外光谱仪测量的波长范围中红外,我希望测量的波长范围确实近红外到中红外1~25μm,不知道是否有合适的光谱仪 问题较多,希望各位大神能给小虫一点宝贵的意见!

  • 红外光谱仪中干涉仪部分疑问?

    1. 单色光的干涉图是正弦波,波长与单色光相同2. 既然干涉波的波长与单色光相同,那两者岂不是一样的光,干嘛要多此一举转化成干涉光呢?3. 当连续光源发生干涉后,自然产生对应的正弦波,这些.波是同时产生的,自然相互作用,应该不是呈分开的谱带状,即没有呈色散状,这样一起作用在样品上,咋就能成连续波数的光谱图,有点想不通?注:本人看了红外光谱检测技术这本书

  • 中红外定量测量系列之二-波长校准

    中红外定量测量系列之二-波长校准

    傅里叶红外变化光谱技术兴起于上世纪80年代,由于其诸多优点,目前在我国已经得到了广泛应用,在煤炭,石油,医疗,化工,半导体,法庭科学,气象,染织等诸多领域发挥了重要作用。傅里叶红外变化光谱技术的具体实现需要依托傅里叶变换光谱仪,然而限于傅里叶变换光谱仪校准技术的发展以及相关规程规范的不健全,导致大多数使用者只是将傅里叶红外变换光谱仪作为一种定性分析仪器,大大限制了傅里叶变换光谱仪的应用,其中,中红外波段的波长校准技术也是其中一项。影响傅里叶变换红外光谱仪波长测量不确定度的因素很多,例如干涉仪相位误差,切趾函数,分辨率等。傅里叶变换红外光谱仪波长校准的方法有多种,最为精确的方法一般采用低压气体(CO,NO等)的红外吸收峰进行标定,但标准样制备较为繁琐,一般适用于波数精度极高的科研级光谱仪;对于普通傅里叶变换红外光谱仪,可以采用经过标定的聚苯乙烯薄膜进行标定。本文介绍了一种较为简单利用水和二氧化碳吸收峰的校准方法以及应用聚苯乙烯薄膜校准时需要注意的相关事项。1.利用水和二氧化碳标定方法空气中水蒸气,二氧化碳等物质在红外波段均有大量的吸收峰,利用这些吸收峰标定仪器的波长是一种简洁方便的方法。不过需要注意的是,A.大气温度以及压力的变化对吸收峰有一定的影响;B.湿度过低,无法获得足够的吸收深度,湿度过大,会严重影响乃至潮解红外窗片。大气中水和二氧化碳的吸收峰精确位置可以参照NIST相关文献中的水和二氧化碳波长标准数据1],实际应用时选取合适的波长,就可以直接用于校准仪器波长。图 1为在BRUKER,EQUNION 55仪器上,设定波长分辨率为0.5cm[sup]-1[/sup],使用该方法,,连续测量5遍所得到的波长数据的平均与NIST标准数据的差值分布图。[align=center][img]http://ng1.17img.cn/bbsfiles/images/2014/01/201401010923_486281_1795438_3.jpg[/img][/align][align=center]图1波长测量(5次平均)误差[/align]需要说明的是,NIST公布的数据是基于0.2波数分辨率进行测量的,因此,其中部分数据间隔太密的波长点(小于0.5),会引起峰的重叠,该部分峰均已被剔除。实际有效用于校准波长的点为42个。从图 1中也可以看出,波长误差最大不超过0.2波数,这说明我们实验的设备的波长准确度是很高的。尤其需要注意的是,该方法不可常用,否则可能会导致设备红外窗片的潮解,导致一定的经济损失。2.利用聚苯乙烯薄膜进行红外波长校准利用聚苯乙烯薄膜的吸收峰进行傅里叶红外变换光谱仪的波长校准是一种较为简便,也是国际通行的做法。我们国家多部相关规程规范[[url=#_ENREF_2]2-4]中均提到了该方法,不过,在这些规程中对具体的应用方法以及薄膜质量的规定不一,导致在具体实施时存在一定的问题。2.1薄膜厚度在日常校准聚苯乙烯薄膜吸收峰中发现,常用的聚苯乙烯薄膜厚度有三种,分别为0.03mm,0.038mm和0.05mm。其中0.038mm为国际通行厚度。实际测量过程中发现,不同厚度的聚苯乙烯薄膜测得的光谱透射比曲线有所差别,见图2[img]http://ng1.17img.cn/bbsfiles/images/2014/01/201401010923_486282_1795438_3.jpg[/img][align=center]图2.不同厚度聚苯乙烯膜光谱透射曲线[/align]由于薄膜厚度很薄,红外光在样品前后表面之间会形成干涉现象,导致了干涉峰的出现。显然,干涉峰和吸收峰相互叠加,使得聚苯乙烯薄膜自身固有的吸收峰峰位,在实际测量时很可能会出现偏差。在这种情况下,部分规程要求直接查阅标准值的做法会导致校准结果的不确定度偏大,在这种情况下,必须要将聚苯乙烯薄膜送到上级计量机构进行校准,以避免出现较大偏差。实际上,聚苯乙烯薄膜厚度主要影响的吸收峰的深度,对峰位基本没有影响,厚度不是主要原因,NIST的解决方案是,在聚苯乙烯薄膜两面进行粗糙处理,使得两面不再平行,从而避免了干涉峰的出现。但是,即便如此,也不推荐利用聚苯乙烯薄膜吸收峰的标准值直接校准仪器,因为聚苯乙烯薄膜的纯度,加工工艺等诸多因素均可能导致峰值的偏移。2.2光谱参数的影响 在实际校准工作过程中发现,即使聚苯乙烯薄膜的问题得到了很好解决,校准时,仪器光谱参数设定不一致导致的问题也很严重。[img]http://ng1.17img.cn/bbsfiles/images/2014/01/201401010923_486283_1795438_3.jpg[/img][align=center]图3.不同分辨率下对聚苯乙烯某吸收峰测量结果的影响[/align]由于聚苯乙烯薄膜的吸收峰不是由单一的两能级间越迁所致,是多峰叠加的结果,不同分辨率下测量结果会出现一定差异。除此之外,切趾函数和光谱峰值读取方法[[url=#_ENREF_5]5]也是一个极为重要的影响因素,由于该部分比较复杂,此处不再详细展开,具体可以参考相关文献[[url=#_ENREF_6]6, [url=#_ENREF_7]7]。在校准过程中,必须要尽量使得仪器设定和上级计量部门量传时的设定一致,避免产生不必要的不确定度损失。

  • 酶标仪单、双波长检测的比较

    在用酶联免疫法测定抗原或抗体时,不论是定量试验还是定性试验都要求使用酶标仪进行测定。一般的酶标仪在测定中均有单波长和双波长的模式,并且采用的都是垂直光路。但在日常工作中有时会不太重视单波长和双波长的选择,对使用单、双波长给测定结果带来的较大差异也不很了解,并且实际工作中也出现了使用单波长检测导致抗HCV部分弱阳性的漏检。因此,本人就酶标仪在选择单、双波长使用方面谈谈个人的体会,供同道参考。一 材料和方法1.材料 由上海科华公司提供的乙肝表面抗原测定试剂盒;eppendorf 20-20ul的[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url]。2.仪器 上海科华公司的ST-360酶标仪和BIO-RAD 550酶标仪。3.方法 底物液配制:底物液A、B各5ml混合,加入微量酶标记物,再加入5ml终止液,呈微黄色,混匀待用;利用上海科华公司提供的乙肝表面抗原试剂盒的酶标板,用94孔中准确加入150ul配制好的上述底物液,另2孔中加入150ul已终止的空白底物液作空白。在BIO-RAD 550酶标仪上分别进行450nm单波长和450nm及655nm(无630nm)的双波长检测,在ST-360上分别进行450nm单波长和450nm及630nm的双波长检测吸光度各两次。二 结果  1.分别对所得结果进行统计,发现单、双波长测定结果有较大的差异,双波长测定结果的CV值远小于单波长测定,结果见表1。2.对ST-360两次重复测定结果进行分析,结果基本一致,见表2。表1酶标板吸光度在两台酶标仪上的测定统计结果酶标仪 BIO-RAD550 ST-360 波长 450nm 450nm+655nm 450nm 450nm+630nm 最小值 0.125 0.126 0.130 0.131 最大值 0.154 0.139 0.153 0.141 均值 0.1356 0.1329 0.1399 0.1361 标准差 0.00671 0.00267 0.00467 0.00247 CV(%) 4.94 2.01 3.34 1.82 最大值/最小值 1.232 1.103 1.177 1.076 表2 ST-360酶标仪两次吸光度测定统计结果波长 450mnm 450nm+630nm 1 2 1 2 最小值 0.130 0.129 0.131 0.131 最大值 0.153 0.152 0.141 0.141 均值 0.1399 0.1391 0.1361 0.13711 标准差 0.00467 0.00495 0.00247 0.00229 CV(%) 3.34 3.56 1.82 1.67 三 讨论  1.酶标仪与分光光度计、自动生化分析仪等的吸光度测定有所不同,一般分光光度计是水平光路,而酶标仪则是垂直光路,但测定原理相同,都是使用朗伯-比耳定律,测定的都是样本的吸光度。垂直光的特点是标本吸光度受液体浓缩或稀释的影响小,不足之处是受被测样本液面是否水平、酶标板透光性、孔底是否平整等的影响较大。2.酶标仪在用单波长测定吸光度时,除受到测定干扰(样本的浊度、干扰色等)和电路干扰(包括噪音、漂移、电压等)等因素外,受液体表面张力的影响也很大。在检测过程中,由于液体表面张力的作用,液体的表面不是一个平面,而是形成一个凹面,从侧面看似凹透镜,这样不可避免会影响光路的正常通过。由于凹液面的影响,光线在通过液体时,除正常被液体吸收一部分外,尚有部分被折射和反射(如光线通过凹透镜那样),影响吸光度的检测。而酶标仪使用的又是通过光导纤维传播的点光源,如果每次能在同一部位检测,吸光度的重复性将得到保证,但由于机械运动等造成的误差,不可能保证每孔都在相同部位被检测,因此造成了孔与孔之间有一定的差异。结果见表1,整块板单波长检测的CV在3%以上,吸光度最高值和最低值的相对误差达17%以上。3.在双波长测定中,减少了测定干扰和电路干扰,因此测定结果明显好转,结果见表1,整块板样本的CV在2%以下。ST-360在进行稳定性观察中,如表2所示,两次检测结果基本一致,这表明ST-360的稳定性较好。同时,从表1也可以看到,科华公司生产的ST-360与BIO-RAD 550的检测结果一致,两者的检测性能基本相同。4.由于液体表面张力的不同,导致单波长测定时的误差较大。并且用不同的洗涤剂会影响到最后加入底物和终止液后的液面情况,用加入表面活性剂的洗涤液清洗后,形成的液面更凹,对单波长检测的影响更大,并且与表面活性剂的浓度成正比。而且中性蒸馏水洗涤后,单、双波长检测的结果基本一致。5.在酶联免疫法测定抗原抗体中,由于所使用的底物不论是邻苯二胺(OPD)-H2O2,还是四甲基联苯胺(TMB)-H2O2,显色终止后,在630nm和655nm处的吸光度值都只有吸收峰处(492nm/450nm)吸光度值的1%以下,因此,利用双波长检测,不会影响检测灵敏度。建立在进行酶联免疫检测时,酶标仪比色应该首选双波长。这样可以提高临界值处标本的分析正确度,减少实验误差。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制