当前位置: 仪器信息网 > 行业主题 > >

红外热发射显微镜

仪器信息网红外热发射显微镜专题为您提供2024年最新红外热发射显微镜价格报价、厂家品牌的相关信息, 包括红外热发射显微镜参数、型号等,不管是国产,还是进口品牌的红外热发射显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外热发射显微镜相关的耗材配件、试剂标物,还有红外热发射显微镜相关的最新资讯、资料,以及红外热发射显微镜相关的解决方案。

红外热发射显微镜相关的论坛

  • 怀化学院德国蔡司Sigma HD型热场发射扫描电子显微镜

    湖南怀化学院德国蔡司公司SigmaHD型热场发射扫描电子显微镜于2015年10月正式投入使用并可对外提供测试服务。仪器配备:镜筒内二次电子(In-lens)、二次电子(SE2)、背散射电子(BSE)及能谱仪(EDS)等探测器。二次电子像分辨率可达1.0 nm (30 kV)。测试样品基本无需排队、可随到随测,2-4个工作日内给出测试结果。联系人:杨老师联系电话:18152731699

  • 红外显微镜及显微镜ATR,金镜的使用

    哪里有红外显微镜(带显微镜ATR附件,压力池)的资料?使用操作和维护方面的,红外显微镜样品制样方法等等的。我实验室的瓦里安640不经常用,因为几乎没有资料,用起来总是不得法,要么能量不够,要么搞不清楚反射还是透射,聚焦不会调,ATR也不敢使用,害怕压坏锗晶体。请各位高手指导。

  • 改变发射针结构延长热场发射电子源的使用寿命

    大束科技发明并提供了一种发射针结构、热场发射电子源及电子显微镜,涉及电子显微镜技术领域,解决了氧化锆等低逸出功材料团易从发射针上脱落,影响电子源寿命的技术问题。该发射针结构位于电子源中发射电子,其包括针本体和低逸出功材料团,针本体的周壁上设置有容纳部,低逸出功材料团在烧结过程中形成有嵌入容纳部内的结合部位,且结合部位与容纳部的配合结构将低逸出功材料团夹固于针本体上。本发明的发射针结构能够将低逸出功材料团更为牢固的固定在针本体上,既能够增加储备氧化锆的数量,也能够增强低逸出功材料团与针本体结合的强度,防止低逸出功材料团脱落,延长了热场发射电子源的使用寿命。大束科技成立于2018年,是一家以自主技术驱动的电子显微镜核心配件研发制造商及配套服务商。 目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。大束科技致力于成为电子显微镜行业上游配件的研发制造供应商;未来将在满足本土市场的同时,进军国际高端电子显微镜市场。

  • 红外显微镜ATR的使用

    我使用红外显微镜ATR已经一段时间,发现真的很好用,比显微反射和透过都好,谱图质量可以和ATR比较。大家的看法呢?

  • [分享]扫描电子显微镜入门1

    1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 发射电子 束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径 选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同 时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电 子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开 阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密 度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。 12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴 极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压,以控制针尖场发射的电流强度,而第二 (下)阳极主要是决定加速电压,以将电子加速至所需要的能量。 13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子 或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发 射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格 极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。 14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能 量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除 所吸附的气体原子。它的另一缺点是发射的总电流最小。 15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较 差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷 式大3~5倍,影像分辨率较差,通常较不常使用。 16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函 数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr 。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。 17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。 18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。 19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空( step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。 20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 【分享】新一代电子显微镜将会如何发展

    一、高性能场发射枪电子显微镜日趋普及和应用 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs0.05mm。 色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具。 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率。即从0.19nm提高到0。12nm甚至于小于0.1nm。 利用单色器,能量分辨率将小于0.1eV。但单色器的束流只有不加单色器时的十分之一左右。因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右。因此,校正球差的同时,也要同时考虑校正色差。 三、电子显微镜分析工作迈向计算机化和网络化在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用。 四、电子显微镜在纳米材料研究中的重要应用 由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。如,在电镜上观察到内径为0.4nm的纳米碳管、Si-C-N纳米棒、以及Li掺杂Si的半导体纳米线等。 在生物医学领域,纳米胶体金技术、纳米硒保健胶囊、纳米级水平的细胞器结构,以及纳米机器人可以小如细菌,在血管中监测血液浓度,清除血管中的血栓等的研究工作,可以说都与电子显微镜这个工具分不开。 总之: 扫描电镜、透射电镜在材料科学特别纳米科学技术上的地位日益重要。稳定性、操作性的改善使得电镜不再是少数专家使用的高级仪器,而变成普及性的工具;更高分辨率依旧是电镜发展的最主要方向;扫描电镜和透射电镜的应用已经从表征和分析发展到原位实验和纳米可视加工;聚焦离子束(FIB)在纳米材料科学研究中得到越来越多的应用;FIB/SEM双束电镜是目前集纳米表征、纳米分析、纳米加工、纳米原型设计的最强大工具;矫正型STEM(Titan)的目标:2008年实现0.5Å分辨率下的3D结构表征。 五、低温电镜技术和三维重构技术是当前生物电子显微学的研究热点低温电镜技术和三维重构技术是当前生物电子显微学的研究热点。主要是研讨利用低温电子显微镜(其中还包括了液氦冷台低温电镜的应用)和计算机三维像重构技术,测定生物大分子及其复合体三维结构。如利用冷冻电子显微学测定病毒的三维结构和在单层脂膜上生长膜蛋白二维晶体及其电镜观察和分析。 当今结构生物学引起人们的高度重视,因为从系统的观点看生物界,它有不同的层次结构:个体®器官®组织®细胞®生物大分子。虽然生物大分子处于最低位置,可它决定高层次系统间的差异。三维结构决定功能结构是应用的基础:药物设计,基因改造,疫苗研制开发,人工构建蛋白等,有人预言结构生物学的突破将会给生物学带来革命性的变革。 电子显微学是结构测定重要手段之一。低温电子显微术的优点是:样品处于含水状态,分子处于天然状态;由于样品在辐射下产生损伤,观测时须采用低剂量技术(lowdosetechnique);观测温度低,增强了样品耐受辐射能力;可将样品冻结在不同状态,观测分子结构的变化,通过这些技术,使各种生物样品的观察分析结果更接近真实的状态。 六、高性能CCD相机日渐普及应用于电子显微镜中 CCD的优点是灵敏度高,噪音小,具有高信噪比。在相同像素下CCD的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确,摄像头的图像解析度/分辨率也就是我们常说的多少像素,在实际应用中,摄像头的像素越高,拍摄出来的图像品质就越好,对于同一画面,像素越高的产品它的解析图像的能力也越强,但相对它记录的数据量也会大得多,所以对存储设备的要求也就高得多。 当今的TEM领域,新开发的产品完全使计算机控制的,图象的采集通过高分辨的CCD摄像头来完成,而不是照相底片。数字技术的潮流正从各个方面推动TEM应用以至整个实验室工作的彻底变革。尤其是在图象处理软件方面,许多过去认为不可能的事正在成为现实。

  • 高通量(场发射)扫描电子显微镜技术进展

    分享一篇关于高通量SEM的文献。《电子显微学报》2023年4月,第42卷第2期。本文重点阐述高通量扫描电镜概念与发展的过程,具体介绍了高通量扫描电镜拟要解决的问题和对应的设计思路,给出了综合数据通量的定义和影响因素。同时阐述了相应的实现手段,分别从重要模组角度介绍高通量扫描电镜的核心性能。通过实际案例计算,分析比较了高通量扫描电镜与标准场发射扫描电镜间的结果差异。探讨了高通量扫描电镜适合应用的领域,同时指出了目前的设计还存在的不足并展望该技术今后的发展前景。

  • 【初中内容】显微镜的发明史~~

    显微镜的发明史 在16世纪末之前,人们并没有什么方法可以观察到细胞,甚至还没有人知道细胞的存在,当时的研究只停留在动物和植物的形态、内部结构或生活方式等方面。直到1590年左右,显微镜的发明使人们发现和认识细胞成为可能。没有显微镜,就不可能发现细胞。从发明显微镜至今的400年来,显微镜在许多方面得到了改进: A、第一台显微镜是由荷兰密得尔堡一个眼镜店的老板詹森和他的父亲罕斯发明的。细说起来,詹森父子发明显微镜,还带有一定的偶然性呢!事情的经过是这作的:1590年,一个晴朗无风的早晨,詹森在楼顶上闲玩。无意中,他把两片凸玻璃片装到一个金属管子里,并用这个管子去看街道上的建筑物,奇怪的事情发生了,教堂高塔上大公鸡的雕塑比原来大了好几倍,这个意外的发现,使詹森兴奋起来,他高兴地跑下楼去,把父亲也拉上楼来观看,一起和他分享这种新发现带来的愉快。当然,偶然性的发现代替不了科学上的发明。值得强调的是,詹森父子俩的修养起了决定作用,他们抓住这个偶然的发现,认真思索,反复实践,用大大小小的凸玻璃片做各种距离不等的配合,终于发明了世界上第一台显微镜。当然,这台显微镜只能称为显微镜家族中的“始祖”,无论是放大倍数,还是分辨能力都是相当低的。 B、1660年,罗伯特。胡克对复合显微镜进行了改良。它的右侧有一个带油灯的支架,用来为显微镜下的标本照明。 C、1683年,列文虎克在显微镜中加了一块透镜。虽然只加了一块透镜,但是它能把标本放大266倍。列文虎克是第一个看到许多单细胞的人。 D、1886年,德国科学家恩斯特。阿贝和卡尔。蔡斯制作了一台与此图相似的显微镜。马蹄形的底座增加了显微镜的稳固性。底部的镜子能会聚并反射光线使光线透过上放的标本。现代复合光学显微镜已经能把标本放大到1000倍了。 E、1933年,德国物理学家恩斯特。卢斯卡创造了第一台电子显微镜(TEM)。这种显微镜是通过发射电子穿过极薄的标本切片来成像的。对于观察细胞的内部结构非常有用,TEM能把标本放大50万倍。 F、1965年,第一台商用的扫描电子显微镜(SEM)问世了。它把电子束发射到标本的表面(而不是穿过标本),然后形成标本外观的精细三维图像。SEM能把标本放大15万倍。 G、1981年,隧道扫描显微镜(STM)是通过检测从标本表面逸出的电子来成像的。科学家用它可以观察到细胞外层上的单个分子。STM能把标本放大100万倍。 随着科学技术的进一步发展,显微镜的结构也越来越复杂,其观察的功能也越来越完善,当然,我们最常使用的还是现代复合显微镜了。……通过显微镜,人们发现了细胞。 1665年,英国物理学家罗伯特。虎克(Robert Hooks)把软木切成极薄的薄片放在自己制造的一架复式显微镜下观察,在显微镜的视野里发现竟有许多蜂窝状的小室,他给这些小室取名为细胞(cell)。实际上,虎克当时所看到的只是一些死细胞的细胞壁,对细胞里的内含物,虎克当时并不清楚。在Robert Hooks发现细胞的同时,Leeuwen Hooks也开始用显微镜观察微小的物体。Leeuwen Hooks是一名荷兰商人,也是一名自己制造透镜的业余科学家。他用这些透镜制造出了许多简易的显微镜。Leeuwen Hooks曾经观察过一个池塘里的水,他惊讶地的发现水中有些单细胞的生物。由此他成为第一个看到细菌等的微小单细胞生物的人。这两位科学家发现了细胞,为后人开启了通往微观世界的大门。 1674年,荷兰布商列文• 虎克(Antonie van Leeuwenhoek, 1632~1723)为了检查布的质量,亲自磨制透镜,装配了高倍显微镜(300倍左右),并观察到了血细胞、池塘水滴中的原生动物、人类和哺乳类动物的精子,这是人类第一次观察到完整的活细胞。列文• 虎克把他的观察结果写信报告给了英国皇家学会,得到英国皇家学会的充分肯定,并很快成为世界知名人士。 列文• 虎克的一生致力于在微观世界中探索,发表论文402篇,其中《列文• 虎克发现的自然界的秘密》是人类关于微生物研究的最早专著。

  • 46个电子显微镜知识点,拿走不谢~

    [align=left]01、光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。[/align]02、根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。03、扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。04、扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。05、电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。06、热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。07、价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。08、六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。09、场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10、场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及肖基发射式(Schottky emission ,SE)11、当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12、场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13、要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14、冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15、热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16、肖基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17、场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18、由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19、平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20、场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。21、在电子显微镜中须考虑到的像差(aberration)包括:衍射像差(diffraction aberration)、球面像差(spherical aberration)、散光像差(astigmatism)及波长散布像差(即色散像差,chromatic aberration)。22、面像差为物镜中主要缺陷,不易校正,因偏离透镜光轴之电子束偏折较大,其成像点较沿轴电子束成像之高斯成像平面(Gauss image plane)距透镜为近。23、散光像差由透镜磁场不对称而来,使电子束在二互相垂直平面之聚焦落在不同点上。散光像差一般用散光像差补偿器(stigmator)产生与散光像差大小相同、方向相反的像差校正,目前电子显微镜其聚光镜及物镜各有一组散光像差补偿器。24、光圈衍射像差(Aperture diffraction):由于电子束通过小光圈电子束产生衍射现象,使用大光圈可以改善。25、色散像差(Chromatic aberration):因通过透镜电子束能量差异,使得电子束聚焦后并不在同一点上。26、电子束和样品作用体积(interaction volume),作用体积约有数个微米(μm)深,其深度大过宽度而形状类似梨子。此形状乃源于弹性和非弹性碰撞的结果。低原子量的材料,非弹性碰撞较可能,电子较易穿进材料内部,较少向边侧碰撞,而形成梨子的颈部,当穿透的电子丧失能量变成较低能量时,弹性碰撞较可能,结果电子行进方向偏向侧边而形成较大的梨形区域。27、在固定电子能量时,作用体积和原子序成反比,乃因弹性碰撞之截面积和原子序成正比,以致电子较易偏离原来途径而不能深入样品。28、电子束能量越大,弹性碰撞截面积越小,电子行走路径倾向直线而可深入样品,作用体积变大。29、电子束和样品的作用有两类,一为弹性碰撞,几乎没有损失能量,另一为非弹性碰撞,入射电子束会将部份能量传给样品,而产生二次电子、背向散射电子、俄歇电子、X光、长波电磁放射、电子-空位对等。这些信号可供SEM运用者有二次电子、背向散射电子、X光、阴极发光、吸收电子及电子束引起电流(EBIC)等。30、二次电子(Secondary Electrons):电子束和样品作用,可将传导能带(conduction band)的电子击出,此即为二次电子,其能量约 50eV。由于是低能量电子,所以只有在距离样品表面约50~500?深度范围内所产生之二次电子,才有机会逃离样品表面而被侦测到。由于二次电子产生的数量,会受到样品表面起伏状况影响,所以二次电子影像可以观察出样品表面之形貌特征。31、背向散射电子(Backscattered Electrons):入射电子与样品子发生弹性碰撞,而逃离样品表面的高能量电子,其动能等于或略小于入射电子的能量。背向散射电子产生的数量,会因样品元素种类不同而有差异,样品中平均原子序越高的区域,释放出来的背向散射电子越多,背向散射电子影像也就越亮,因此背向散射电子影像有时又称为原子序对比影像。由于背向散射电子产生于距样品表面约5000?的深度范围内,由于入射电子进入样品内部较深,电子束已被散射开来,因此背向散射电子影像分辨率不及二次电子影像。32、X光:入射电子和样品进行非弹性碰撞可产生连续X光和特征X光,前者系入射电子减速所放出的连续光谱,形成背景决定最少分析之量,后者系特定能阶间之能量差,可藉以分析成分元素。33、电子束引致电流(Electron-beam induced Current , EBIC):当一个p-n接面(Junction )经电子束照射后,会产生过多的电子-空位对,这些载子扩散时被p-n接面的电场收集,外加线路时即会产生电流。34、阴极发光(Cathodoluminescence):当电子束产生之电子-空位对再结合时,会放出各种波长电磁波,此为阴极发光(CL),不同材料发出不同颜色之光。35、样品电流(Specimen Current):电子束射到样品上时,一部份产生二次电子及背向散射电子,另一部份则留在样品里,当样品接地时即产生样品电流。36、电子侦测器有两种,一种是闪烁计数器侦测器(Scintillator),常用于侦测能量较低的二次电子,另一种是固态侦测器(solid state detector),则用于侦测能量较高的反射电子。37、影响电子显微镜影像品质的因素:A. 电子枪的种类:使用场发射、LaB6或钨丝的电子枪。B. 电磁透镜的完美度。C. 电磁透镜的型式: In-lens ,semi in-lens, off-lensD. 样品室的洁净度: 避免粉尘、水气、油气等污染。E. 操作条件: 加速电压、工作电流、仪器调整、样品处理、真空度。F. 环境因素: 振动、磁场、噪音、接地。38、如何做好SEM的影像,一般由样品的种类和所要的结果来决定观察条件,调整适当的加速电压、工作距离 (WD)、适当的样品倾斜,选择适当的侦测器、调整合适的电子束电流。39、一般来说,加速电压提高,电子束波长越短,理论上,只考虑电子束直径的大小,加速电压愈大,可得到愈小的聚焦电子束,因而提高分辨率,然而提高加速电压却有一些不可忽视的缺点:A. 无法看到样品表面的微细结构。B. 会出现不寻常的边缘效应。C. 电荷累积的可能性增高。D. 样品损伤的可能性增高。因此适当的加速电压调整,才可获得最清晰的影像。40、适当的工作距离的选择,可以得到最好的影像。较短的工作距离,电子讯号接收较佳,可以得到较高的分辨率,但是景深缩短。较长的工作距离,分辨率较差,但是影像景深较长,表面起伏较大的样品可得到较均匀清晰的影像。41、SEM样品若为金属或导电性良好,则表面不需任何处理,可直接观察。若为非导体,则需镀上一层金属膜或碳膜协助样品导电,膜层应均匀无明显特征,以避免干扰样品表面。金属膜较碳膜容易镀,适用于SEM影像观察,通常为Au或Au-Pd合金或Pt。而碳膜较适于X光微区分析,主要是因为碳的原子序低,可以减少X光吸收。42、SEM样品制备一般原则为: A. 显露出所欲分析的位置。 B. 表面导电性良好,需能排除电荷。 C. 不得有松动的粉末或碎屑(以避免抽真空时粉末飞扬污染镜柱体)。 D. 需耐热,不得有熔融蒸发的现象。 E. 不能含液状或胶状物质,以免挥发。 F. 非导体表面需镀金(影像观察)或镀碳(成份分析)。43、镀导电膜的选择,在放大倍率低于1000倍时,可以镀一层较厚的Au,以提高导电度。 放大倍率低于10000倍时,可以镀一层Au来增加导电度。放大倍率低于100000倍时,可以镀一层Pt或Au-Pd合金,在超过100000时,以镀一层超薄的Pt或Cr膜较佳。44、电子束与样品作用,当内层电子被击出后,外层电子掉入原子内层电子轨道而放出X光,不同原子序,不同能阶电子所产生的X光各不相同,称为特征X光,分析特征X光,可分析样品元素成份。45、分析特征X光的方式,可分析特征X光的能量分布,称为EDS,或分析特征X光的波长,称为WDS。X光能谱的分辨率,在EDS中约有100~200eV的分辨率,在WDS中则有5~ 10eV的分辨率。由于EDS的分辨率较WDS差,因此在能谱的解析上,较易产生重迭的情形。46、由于电子束与样品作用的作用体积(interaction volume)的关系,特征X光的产生和作用体积的大小有关,因此在平面的样品中,EDS或WDS的空间分辨率,受限于作用体积的大小。

  • 中国电子显微镜学会 举办的透射电子显微镜(TEM)短期课程计划感觉很好,有想一起去的不

    中国电子显微镜学会 举办的透射电子显微镜(TEM)短期课程计划感觉比较系统,我想去,不过他们说要报名凑够6人以上开班,我在这边分享下,看看大家有没有想一起去的。要是有想去的联系 李宁春老师(中国电子显微镜学会;电话:010-82671519)下面附上他们的通知Ⅰ. TEM基本课程:对象与目的:初学人员或希望从新学习者,经此课程学习透射电镜原理并达到可独立操作的基本要求。授课内容:⑴ 透射电子显微主讲结构与电子光学系统。⑵ 电子与薄晶体的相互作用——运动学成像理论。⑶ 原子分辨的高分辨像基本原理(动力学散射)。⑷ 扫描透射原理与EDS扫描分析。实验安排:⑴ TEM(FEI 200 kV场发射)基本操作方法(电镜的启动,样品的安装和更换,条件的设定及观察图像)。⑵ HR-TEM原子像的获得与相应电子衍射谱。⑶ STEM模式成像与扫描分析(一维线扫与二维面扫EDS谱与像的获得)。[/

  • 【转帖】【雅俗共赏,甚推荐】扫描电子显微镜介绍

    原作在:http://140.120.61.154/fesem/ref-fe/fe-sem-intro-nchu.asp1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10. 场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及萧基发射式(Schottky emission ,SE)11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ionpump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 红外显微镜样品前处理问题

    现在有个样品,玻璃上印有油墨,油墨上面有一块区域颜色异常。我能不能直接用红外显微镜反射模式测试?是不是红外的样品都要专门制样,不能直接测试?

  • 电子显微镜的现状与展望(ZT)

    摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 关键词 透射电子显微镜 扫描电子显微镜 仪器制造与发展 中图法分类号 TN16 O766.1 Q336    电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[1]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[2]。   电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。 半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究[3]。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献[1]。 透射电子显微镜 1、高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献[4]。 用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子[5]。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构[6]。 2.像差校正电子显微镜 电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm[7]。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm[8]。 3、原子尺度电子全息学 Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果[9]。Lichte等用电子全息术在CM30 FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30 FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领[10,11]。

  • 【求助】红外显微镜金刚石压池的使用

    本人使用红外显微镜金刚石压池做透射的时候,谱图的基线总是很扭曲。不知道有什么影响因素,比如在样品量、检测过程等方面有没有什么技巧,请高手指点一下,谢谢!!!!

  • 红外显微镜

    我想用红外显微镜观察容易吸收红外光的一些生物物质,同时与可见光的结果对照,该如何选显微镜?

  • 【转帖】(很好的电镜综述)新一代电子显微镜的发展趋势及应用特点

    新一代电子显微镜的发展趋势及应用特点2007年BCEIA分析测试仪器评议微观结构专业组新一代电子显微镜的发展趋势及应用特点一、高性能场发射枪电子显微镜日趋普及和应用。场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。球差系数:常规的透射电镜的球差系数 Cs约为mm级;现在的透射电镜的球差系数已降低到 Cs0.05mm.色差系数:常规的透射电镜的色差系数约为 0.7;现在的透射电镜的色差系数已减小到 0.1。场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具.物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm提高到0.12nm甚至于小于0.1nm.利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。在球差校正的同时,色差大约增大了30%左右. 因此,校正球差的同时,也要同时考虑校正色差.三、电子显微镜分析工作迈向计算机化和网络化。在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变, 电镜参数的调整等。以实现对电镜的遥控作用.四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要 0.1nm 左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。利用电子显微镜,一般要在200KV 以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。如,在电镜上观察到内径为 0.4nm 的纳米碳管、Si-C-N 纳米棒、以及Li 掺杂Si 的半导体纳米线等。在生物医学领域,纳米胶体金技术、纳米硒保健胶囊、纳米级水平的细胞器结构,以及纳米机器人可以小如细菌,在血管中监测血液浓度,清除血管中的血栓等的研究工作,可以说都与电子显微镜这个工具分不开。总之:扫描电镜、透射电镜在材料科学特别纳米科学技术上的地位日益重要。稳定性、操作性的改善使得电镜不再是少数专家使用的高级仪器,而变成普及性的工具;更高分辨率依旧是电镜发展的最主要方向;扫描电镜和透射电镜的应用已经从表征和分析发展到原位实验和纳米可视加工;聚焦离子束(FIB)在纳米材料科学研究中得到越来越多的应用;FIB/SEM双束电镜是目前集纳米表征、纳米分析、纳米加工、纳米原型设计的最强大工具;矫正型 STEM (Titan)的目标:2008年实现0.5Å 分辨率下的3D结构表征。

  • 【资料】荧光显微镜结构原理

    【资料】荧光显微镜结构原理

    [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812162103_124527_1601358_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812162104_124528_1601358_3.jpg[/img]荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。现在多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发时,可达50~70个标准大气压力,这一过程一般约需5~15min。超高压汞灯的发光是电极间放电使水银分子不断解离和还原过程中发射光量子的结果。它发射很强的紫外和蓝紫光,足以激发各类荧光物质,因此,为荧光显微镜普遍采用。

  • 荧光显微镜常见的滤光片有哪些种类。

    荧光显微镜常见的滤光片有哪些种类。

    滤光片是荧光显微镜不可缺少的一个部件之一,赓旭小编给大家介绍荧光显微镜常见的滤光片有哪些种类。  1、吸热滤光片  吸热滤光片是防止光源光谱中的热辐射线损伤光具组所必需的滤光片。  2、阻挡滤光片  阻挡滤光片是选择性吸收短波谱线和红外线而通透较长波长可视线的滤光片,其功能是使观察都能看到被检物体所激发出来的荧光,同时保护观察都的角膜免遭紫外线伤害。[img=,640,428]http://ng1.17img.cn/bbsfiles/images/2018/04/201804160934486662_1236_3391505_3.jpg!w640x428.jpg[/img]  3、干涉滤光片  干涉滤光片是高性能激发[url=http://www.gxoptics.com/]滤光片[/url]的一种。它是将数张薄层金属膜叠放在抛光的两张玻璃片之间制成的滤光片。每张薄金属膜的折光系数都不相同,因此照明光源的各种不同波长的谱线在每张金属膜上反复进行反射,使得某些波长的谱线因相消干涉而抵消,另一些波长的谱线相加干涉而得以加强,并透射过去,这样得到透射波谱很窄、半波峰宽度只有6-20nm,透光度可达到60% -70%的滤光片。  4、激发光滤光片  激发光滤光片可以选择性吸收长波谱线而吸通透紫外线,紫色,蓝色和绿色光线的滤光片为激发滤色片。  5、色光分离滤光片  色光分离滤光片是将激发光反射到被检物体上,使被检物体激发出荧光,再将荧光透射到目镜的滤光反射镜。这类滤我片只能用于落射光聚光器中,而透射光荧光显微镜不需要色光分离。  所以,荧光显微镜常见的滤光片有吸热滤光片,阻挡滤光片,干涉滤光片,激发光滤光片和色光分离滤光片。那么荧光显微镜常见的滤光片种类,除了以上介绍的,欢迎大家补充共同探讨!

  • 【讨论】关于离子显微镜的讨论

    【讨论】关于离子显微镜的讨论

    ZEISS ORION 离子显微镜的主要性能如下:[img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802281039_80023_1642476_3.jpg[/img]它的性能特点在某些方面比电子显微镜有些优势,但是否能适用于各个领域?据说他的价格比高档的场发射扫描电镜略贵一些。下面是一篇关于离子显微镜的资料,可下载。http://www.instrument.com.cn/download/shtml/063902.shtml

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 荧光显微镜原理及应用

    荧光显微镜的原理 :荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源 、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长 ,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种[url=http://www.gengxu.cn]滤光片[/url]必须选择配合使用。荧光显微镜就其光路来分有两种:1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。荧光显微镜使用方法.1.打开灯源,超高压汞灯要预热几分钟才能达到最亮点。2.透射式荧光显微镜需在灯源与聚光器之间装上所要求的激发滤片,在物镜的后面装上相应的阻断滤片。落射式荧光显微镜需在光路的插槽中插入所要求的激发滤片/双色束分离器/阻断滤片的插块。3.用低倍镜观察,根据不同型号荧光显微镜的调节装置,调整光源中心,使其位于整个照明光斑的中央。4.放置标本片,调焦后即可观察。 使用中应注意:末装滤光片不要用眼直接观察,以免引起眼的损伤;用油镜观察标本时,必须用无荧光的特殊油镜;高压汞灯关闭后不能立即重新打开,需经5分钟后才能再启动,否则会不稳定,影响汞灯寿命。荧光显微镜的观察在示教台上的荧光显微镜下用蓝紫光滤光片,可见经o.01%的丫啶橙荧光染料染色的细胞,细胞核和细胞质被激发产生两种不同颜色的荧光(暗绿色和橙红色)。

  • 【转帖】常规扫描电子显微镜的特点和发展

    常规扫描电子显微镜1 仪器组成与工作原理 60年代中期扫描电子显微镜(SEM)的出现,使人类观察微小物质的能力有了质的飞跃。相对于光学显微镜,SEM在分辨率、景深及微分析等方面具有巨大优越性,因而发展迅速,应用广泛。随着科学技术的发展,使SEM的性能不断提高,使用的范围也逐渐扩大。 常规SEM由以下基本部分组成(见图1):产生电子束的柱形镜简,电子束与样品发生相互作用的样品室,检测样品室所产生信号的探头,以及将信号变因像的数据处理与显示系统。 镜筒顶端电子枪发射出的电子由静电场引导,沿镜简向下加速。在镜筒中,通过一系列电磁透镜将电子束聚焦并射向样品。靠近镜简底部,在样品表面上方,扫描线圈使电子束以光栅扫描方式偏转。最后一级电磁透镜把电子束聚焦成一个尽可能小的斑点射入样品,从而激发出各种成像信号,其强弱随样品表面的形貌和组成元素不同而变化。仪器(具有数字成像能力)将探头送来的信号加以处理并送至显示屏,即可显示出样品表面各点图像。 为了保证初始电子束在打到样品表面前其所台电子不被气体分子散射,电子束行进的整个路径需处于高真空状态,即不但要求电子枪、镜简内各处是高真空,而且样品室也必须维持高真空状态,通常达10-3Pa[1]。2 SEM的缺陷 由于工作原理及结构上的一些限制,使常规SEM的使用性能和适用范围受到很大影响。归纳起来,这些影响主要有:(1)样品必须干净、干燥。肮脏、潮湿的样品会使仪器真空度下降,并可能在镜简内各狭缝、样品室壁上留下沉积物,从而降低成像性能并给探头或电子枪造成损害。此限制使得对各种各样的含水样品不能在自然状态下观察。同样对挥发性样品也不能观察。 (2)样品必须有导电性。这是因为电子束在与样品相互作用时,会在样品表面沉积相当可观的电荷。若样品不导电,电荷累积所形成的电场会使作为SEM成像信号的二次电子发射状况发生变化,极端情况下甚至会使电子束改变方向而使图像失真。因此观察绝缘样品时、必须采取各种措施来消除所沉积的电荷,如在样品表面做导电性涂层或进行低压电荷平衡。然而这些措施的采用,对仪器本身提出更高要求,并使样品预处理变得繁琐、复杂。而导电涂层又带来了新问题:涂层是否会显著地改变样品外貌?涂层后的样品图像是涂层图像而非样品图像,这两者是否完全相同? (3)常规则信号探头使用光电倍增管放大原始成像信号,它对光、热非常敏感,因此不能观察发光或高温样品。成像过程中观察窗、照明器不能打开,给观察过程带来极大不便[2]。3 SEM的发展 针对SEM的缺陷,人们提出了各种解决办法,其中以近年开发的环境扫描电子显微镜(ESEM)技术最引人注目。 ESEM最大的优点在于允许改变显微镜样品室的压力、温度及气体成分。它不但保留了常规SEM的全部优点,而且消除了对样品室环境必须是高真空的限制。潮湿、油腻、肮脏、无导电性的样品在自然状态下都可检测,无需任何预处理。在气体压力高达5000Pa,温度高达1500℃,含有任何气体种类的多气环境中,ESEM都可提供高分辨率的二次电子成像,从而使常规SEM的使用性能及适用范围大幅度改善。 开发ESEM的关键在于取消对样品室高真空的限制。要做到这点.必须解决以下几个主要问题:(1)将镜简与样品室的真空环境分开。ESEM设计中的重大改进是将两个相距很近的限压光栏孔放入镜简的最后一组透镜中使其合为一体(见图2)。在多重限压光栏孔之下、之间、之上分别抽气以提供一个压强逐渐变化的真空:样品室可低至5000Pa,而镜筒中可达10-3Pa或更高。由于光栏孔放置很近,减少了电子束通过高气压段的距离(此结构已申请了多个专利)。 (2)对样品室真空度要求的降低,必然导致镜筒底部至样品表面这段距离内初始电子束电子被气体分子散射。这样一来,束电子是否还能保持足够的成像信号强度?要回答这一问题,有必要对电子束与气体分子间相互作用的过程进行分析。 散射是一个离散的过程。单个电子与气体分子碰撞发生散射的概率可按理想气体规律处理。因此,在到达样品表面之前,每个电子的碰撞次数是有限的且为整数。按照Poisson分布,结合理想气体定律可推导出一个电子完全不散射概率方程为:P(0)=e-kpd/TV.式中P(0)——一个电子完全不散射的概率 k——一个与气体种类有关的常数 V——束电子能量 P、T、d——分别代表样品室的气体压强、温度及电子束在气体中通过的距离(束气路径长度)。 显然,P(0)也可理解为未散射束电子形成的有效成像电流与电子束总电流的比值。由此式可知,若从结构上使d减小,样品室压强较高时,仍然能获得较高的成像电流。这一推论为ESEM的开发奠定了理论基础〔3J。 (3)需要一个在样品室处于高压强环境下仍然能起作用的二次电子探头。ESEM的二次电子探头是特别设计的,位于样品正上方。探头上施以致百伏的正电压以吸引由样品发射出的用于成像的二次电子。二次电于在探头电场中加速,并与样品室中的气体分子碰撞、电离,产生额外的电子和正离子。这种加速、电离过程多次重复,使初始二次电子信号呈连续比例级数放大而无须再使用光电倍增管。探头采集这些信号并将其直接传送到电子放大器放大成像。由于不使用光电倍增管,故ESEM对光、热不敏感。同时,当样品表面出现电荷积累时,信号放大过程中所产生的正离子会被吸引到样品表面,从而抑制了区域性电场,有效地消除了由于样品表面电荷积累而引起的信号失真,使得不导电的样品在自然、未涂层状态下亦可成像。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79550]常规扫描电子显微镜的特点和发展[/url]

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制