当前位置: 仪器信息网 > 行业主题 > >

红外色谱压片方法

仪器信息网红外色谱压片方法专题为您提供2024年最新红外色谱压片方法价格报价、厂家品牌的相关信息, 包括红外色谱压片方法参数、型号等,不管是国产,还是进口品牌的红外色谱压片方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外色谱压片方法相关的耗材配件、试剂标物,还有红外色谱压片方法相关的最新资讯、资料,以及红外色谱压片方法相关的解决方案。

红外色谱压片方法相关的资讯

  • 红外光谱仪的保养及压片小技巧
    1、实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。   2、为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。   3、如所用的是单光朿型傅里叶红外分光光度计(目前应用最多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。   4、红外光谱测定最常用的试样制备方法是溴化钾(KBr)压片法,因此为减少对测定的影响,所用KBr最好应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。   5、如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。   6、压片法时取用的供试品量一般为1~2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所没得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少 相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。   7、压片时KBr的取用量一般为200mg左右,应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。   8、压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中,并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并因此对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。   9、测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8~1GPa(8~10T/cm2)后维持2~5min。不抽真空将影响片子的透明度。   10、压片用模具用后应立即把各部分擦干净,必要时用无水乙醇棉球擦洗干净,置干燥器中保存,以免污染、锈蚀。
  • 天津城建学院现场使用红外压片无需脱膜模具
    2019年9月26日李经理一早对天津城建学院现场回访刘老师使用红外压片无需脱膜模具的情况。并且和老师们进一步沟通实验过程细节,同时对产品使用步骤一一讲解。恒创立达一直以来都服务于各大高校,为高校实验室提供了优质的产品,从而得到老师们一致的认可。 红外压片模具(无需脱膜)模具材质:日本 高速工具钢ASSAB+17,压头硬度:HRC68-HRC70,样品尺寸:直径:13mm(M)。红外压片模具(无需脱膜) 模具材质:日本 高速工具钢ASSAB+17压头硬度:HRC68-HRC70样品尺寸:直径:13mm(M)腔体深度:10mm(N)外形尺寸:76×50×70mm (L×W×N)模具重量:0.75Kg
  • 重庆交通大学434.70万元采购搅拌器,气相色谱仪,电导率仪,凝胶色谱仪,紫外分光光度,液相色谱仪,原子吸收光谱,压片机,分子荧光光谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 搅拌器,气相色谱仪,电导率仪,凝胶色谱仪,紫外分光光度,液相色谱仪,原子吸收光谱,压片机,分子荧光光谱 开标时间: 2021-09-03 14:00 采购金额: 434.70万元 采购单位: 重庆交通大学 采购联系人: 张泽荣 采购联系方式: 立即查看 招标代理机构: 重庆民禾招标代理有限公司 代理联系人: 梁远园 代理联系方式: 立即查看 详细信息 重庆交通大学2021化学实验教学设备公开招标公告 重庆市-南岸区 状态:公告 更新时间: 2021-08-11 重庆交通大学2021化学实验教学设备公开招标公告 发布日期: 2021年8月11日 项目概况: “重庆交通大学2021化学实验教学设备”项目的潜在投标人应在“到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。”获取采购文件,并于 2021年9月3日 14:00(北京时间)前提交投标文件。一、项目基本情况 项目号:21A01432 采购执行编号:CQMH-2021048 项目名称:重庆交通大学2021化学实验教学设备 采购方式:公开招标 预算金额:4,347,000.00元 最高限价:4,347,000.00元 采购需求: 分包号:1 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(仪器分析实验进口设备) 1,100,000.00元 1 批 本分包为化学实验教学设备(仪器分析实验进口设备)采购,采购内容为:紫外分光光度计2台,气相色谱仪2台,凝胶色谱仪1台等。 分包号:2 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(化工原理实验设备) 544,000.00元 1 批 本分包为化学实验教学设备(化工原理实验设备)采购,采购内容为:流体流动阻力实验装置1台,传热实验装置1台,精馏实验装置1台,填料吸收实验装置1台,洞道干燥实验装置1台等。 分包号:3 分包内容 最高限价 数量单位 简要技术要求 化学实验教学设备(物理化学实验及常规化学实验设备) 1,353,000.00元 1 批 本分包为化学实验教学设备(物理化学实验及常规化学实验设备)采购,采购内容为:压片机2台,氧弹20台,数显氧弹量热计20台,自冷式凝固点测定仪20台,制冰机1台,电导率仪20台,磁力搅拌器20台等。 分包号:4 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(仪器分析实验国产设备) 1,350,000.00元 1 批 本分包为化学实验教学设备(仪器分析实验国产设备)采购,采购内容为:原子吸收分光光度计2台,液相色谱仪2台,荧光分光光度计2台,紫外可见分光光度计15台等。 最高限价总计:4,347,000.00元 合同履行期限:包 1,合同签订日后60个日历日 包 2、3、4,合同签订日后45个日历日 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求:无三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2021年8月11日 至 2021年8月19日。 每天上午09:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外 ) 文件购买费:300.00元/分包 获取文件地点:到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。(二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自招标公告发布之日(2021年8月11日)起五个工作日。(四)报名及招标文件发售1.报名和招标文件发售期:2021年8月11日-2021年8月19日17:00。2. 招标文件售价:人民币300元/分包(售后不退)。2.1报名及招标文件的购买方式:详见招标文件。 四、投标文件递交 投标文件递交截止时间: 2021年9月3日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层,详见当日公共资源交易中心指示屏)五、开标信息 开标时间: 2021年9月3日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层,详见当日公共资源交易中心指示屏)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 八、联系方式 1、采购人信息 采购人:重庆交通大学 采购经办人:张泽荣 采购人电话:023-62652445 采购人地址:重庆市南岸区学府大道66号 2、采购代理机构信息 代理机构:重庆民禾招标代理有限公司 代理机构经办人:梁远园 代理机构电话:023-86216056 代理机构地址:重庆市渝中区重庆村55号1单元14-1# 3、项目联系方式 项目联系人:梁远园 项目联系人电话:023-86216056 九、附件 重庆交通大学-重庆交通大学2021化学实验教学设备-公开(发售稿)-8.11.doc 重庆民禾招标代理有限公司采购文件发售登记表.doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 ×扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:搅拌器,气相色谱仪,电导率仪,凝胶色谱仪,紫外分光光度,液相色谱仪,原子吸收光谱,压片机,分子荧光光谱 开标时间:2021-09-03 14:00 预算金额:434.70万元 采购单位:重庆交通大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆民禾招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆交通大学2021化学实验教学设备公开招标公告 重庆市-南岸区 状态:公告更新时间: 2021-08-11 重庆交通大学2021化学实验教学设备公开招标公告 发布日期: 2021年8月11日 项目概况: “重庆交通大学2021化学实验教学设备”项目的潜在投标人应在“到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。”获取采购文件,并于 2021年9月3日 14:00(北京时间)前提交投标文件。一、项目基本情况 项目号:21A01432 采购执行编号:CQMH-2021048 项目名称:重庆交通大学2021化学实验教学设备 采购方式:公开招标 预算金额:4,347,000.00元 最高限价:4,347,000.00元 采购需求: 分包号:1 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(仪器分析实验进口设备) 1,100,000.00元 1 批 本分包为化学实验教学设备(仪器分析实验进口设备)采购,采购内容为:紫外分光光度计2台,气相色谱仪2台,凝胶色谱仪1台等。 分包号:2 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(化工原理实验设备) 544,000.00元 1 批 本分包为化学实验教学设备(化工原理实验设备)采购,采购内容为:流体流动阻力实验装置1台,传热实验装置1台,精馏实验装置1台,填料吸收实验装置1台,洞道干燥实验装置1台等。 分包号:3 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(物理化学实验及常规化学实验设备) 1,353,000.00元 1 批 本分包为化学实验教学设备(物理化学实验及常规化学实验设备)采购,采购内容为:压片机2台,氧弹20台,数显氧弹量热计20台,自冷式凝固点测定仪20台,制冰机1台,电导率仪20台,磁力搅拌器20台等。 分包号:4 分包内容 最高限价 数量 单位 简要技术要求 化学实验教学设备(仪器分析实验国产设备) 1,350,000.00元 1 批 本分包为化学实验教学设备(仪器分析实验国产设备)采购,采购内容为:原子吸收分光光度计2台,液相色谱仪2台,荧光分光光度计2台,紫外可见分光光度计15台等。 最高限价总计:4,347,000.00元 合同履行期限:包 1,合同签订日后60个日历日 包 2、3、4,合同签订日后45个日历日 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无 3、本项目的特定资格要求:无三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2021年8月11日 至 2021年8月19日。 每天上午09:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外 ) 文件购买费:300.00元/分包 获取文件地点:到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。(二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件、重庆民禾招标代理有限公司采购文件发售登记表以及图纸、补遗等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自招标公告发布之日(2021年8月11日)起五个工作日。(四)报名及招标文件发售1.报名和招标文件发售期:2021年8月11日-2021年8月19日17:00。2. 招标文件售价:人民币300元/分包(售后不退)。2.1报名及招标文件的购买方式:详见招标文件。 四、投标文件递交 投标文件递交截止时间: 2021年9月3日 14:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层,详见当日公共资源交易中心指示屏)五、开标信息 开标时间: 2021年9月3日 14:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层,详见当日公共资源交易中心指示屏)六、公告期限 自本公告发布之日起5个工作日七、其他补充事宜 八、联系方式 1、采购人信息 采购人:重庆交通大学 采购经办人:张泽荣 采购人电话:023-62652445 采购人地址:重庆市南岸区学府大道66号 2、采购代理机构信息 代理机构:重庆民禾招标代理有限公司 代理机构经办人:梁远园 代理机构电话:023-86216056 代理机构地址:重庆市渝中区重庆村55号1单元14-1# 3、项目联系方式 项目联系人:梁远园 项目联系人电话:023-86216056 九、附件 重庆交通大学-重庆交通大学2021化学实验教学设备-公开(发售稿)-8.11.doc 重庆民禾招标代理有限公司采购文件发售登记表.doc 免责声明:本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。
  • 可能你不知道,红外光谱法才是中药快速检测的不二之选
    中药检测的方法有很多,比如气相色谱法、髙效液相色谱法、薄层色谱法、紫外-可见分光光度法、红外分光光度法等等。通过这些光谱和色谱的鉴别方法,我们可以对中药材和饮片的理化性能进行科学分析,定性定量。由于全民保健意识的提高,我国中药质量检测越来越被重视。高效,快速、精准、低廉就成为选择中药检测方法的重要参考因素。红外光谱法就是符合以上四点的中药常用检测方法之一。通常绝大部分的有机化合物、或者无机化合物的红外光谱都具有一定的指纹特征,所以就不需要再进行衍生等成分标记处理,尤其是表征一些有机小分子、有机大分子、无机化合物等中药产品,红外光谱几乎都能直接进行表征其中的绝大部分成分,而且红外光谱法适用各种固体、液体、气体形态的中药药品,对于及时发现不合格样品,减少检测周期时间,大批量检测,效率提高,成本降低等各种需求都能满足。检测原理按照《中华人民共和国药典》通则中的相关规定:除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析。中药药品的各种化合物成分的红外信号也是叠加的,如果化合物种类或数量不相同,那么红外光谱肯定就会存在一定差异,所以我们就可以以此为依据进行定性分析。此外,化合物对红外辐射的吸收程度与其浓度的关系符合朗伯-比尔定律,这也是红外光谱法得以应用的重要依据之一。检测仪器红外光谱仪是中药红外光谱法检测的主要使用仪器设备。这里我们可以使用傅里叶变换红外光谱仪或色散型红外光谱仪,色散型红外光谱仪也就是红外分光光度计。通常这些设备性能符合《中药典》的规定即可。当然,我们在实际检测时,也会根据测试样品的需要,有针对性的选择附属装置,比如压片装置、衰减全反射测定装置等。当然有些附属装置还会配备透射、反射、光纤探头等装置。不过中药检测一般使用压片法和衰减全发射法进行红外测定。取样方法通常我们对一般药材和饮片进行红外光谱法取样时,要求每份试样的重量都不能少于100g;如果是均匀的粉末状药材或者饮片,则要求试样最少不能少于25g;液体药品则要求试样每份不得少于25 mL。当然,事无绝对,如果属于贵重试样,只要能保证试样具有代表性,则可以适当减少取样量。对于成分不均匀的固体试样要求进行粉碎处理,粒度要求能够通过100目筛。浓度较低的液体试可以进行浓缩处理或干燥处理后进行测试。测试方法前面我们也说了中药的红外光谱法,主要分为压片法和衰减全反射法。压片法主要适用于检测干燥的固体试样,或者是不会溶解稀释剂的液体试样。衰减全反射法则是永夜检测不同形态、不同含水量的固体试样或液体试样,这些试样一般不需要进行稀释处理,可以直接进行测试。定性定量分析中药定性分析、中药定量分析是红外光谱法的关键所在。通常中药定性分析一般分为成分定性分析和类别定性分析两种。成分定性分析主要进行化合物结构解析、化合物定性检测;类别定性分析一般为对中药真伪鉴别,产品鉴别、登记鉴别,类别定性分析也分单类别分析、多类别分析。定量分析就是对中药成分的含量或浓度进行测定。以上便是使用红外光谱法来进行中药检测的相关知识。我们在实际检测时,由于空气中的水蒸气和二氧化碳能够吸收特定频率的红外光,所以当测试背景光谱与试样光谱的环境氛围差异较大时,光谱仪就可能吸收水蒸气或二氧化碳的信号,从而影响结果的准确度。所以我们在检测时,一定要排除水蒸气或二氧化碳的干扰,通过及时更新背景光谱,对测试设备进行真空处理,保持环境的温度、湿度,避免相关人员干扰,采取数学方法对相关信号进行扣除等操作,尽量消除空气中水蒸气或二氧化碳的信号干扰影响。
  • 手动压片机的日常使用保养注意事项
    手动压片机的日常使用保养注意事项 手动压片机是X荧光、红外光谱、钙铁、硅铝等分析仪的配套产品,主要用于压制粉末状的样品,使粉状物在样品模内受压后变成块状,以便于放进仪器分析。除此之外它也可用于仪器仪表五金等方面的零件弯曲、冲孔、铆接装配等各种经营工艺中。  吨位大、体积小适用于较大截面积的粉模压片,或需要较大压力的场合,配上不同形状的模具,可以压出不同形状不同尺寸的片子。如:圆形、方形、长形、环形、六角形、平板形,配上电加热模具温控器/推荐双通道加热,可以在加热过程中压片成型。 手动压片机及模具的使用保养: 1、新诺压片机全部为实验室压片机,与新诺模具配套使用,主要用户粉末成型,使用时将模具放置在压片机中心位置;顺时针拧紧压片机放油阀;旋紧丝杠将模具固定住;前后摇动手柄压杆达到所需压力。 2、使用中需要特别注意的是,模具使用不要超压,以免模具压崩,造成人员伤害;模具使用完要及时清理,长期不适用需涂防锈油干燥环境放置。压片机使用中行程不能打的太高,容易造成拉簧变形,油缸无法回程;压片机长期不用,好保压放置,可有效保证下次的正常使用。 3、压片机有漏油现象或有咔咔的声音,请暂停使用,检查原因,或联系新诺。油缸中油量不足会影响压片机的使用寿命。
  • 发布博君BJ-15数显粉末压片机新品
    BJ-15型 粉末压片机 作为红外分光光度计的附件,用于将溴化钾(KBr)、氯化钠(NaCl)等材料粉末压制成各种规格的试片,以便进行光谱分析,本压片机尤其适合于国外进口各种傅里叶红外光谱仪配套替代进口附件。同时它也适用于其它需要相应压力的工作场合。该机在结构紧凑、重量轻、生压快、操作简单、方便安全。BJ-15型 粉末压片机 主要特点:质量轻、外表美观、使用简单、升压快、不掉压BJ-15型 粉末压片机 主要参数: 压力范围:0-15t 活塞工作直径:65mm 活塞工作行程:10mm 工作台面:60mm 最大工作空间:105mmBJ-15型 粉末压片机+数显压力表主要参数:压力表量程0-50MPa压力表最小分辨率:0.01mpa压片机最小分辨率:3.92公斤创新点:用数显压力表代替机械压力表,分辨率大大提高。 博君BJ-15数显粉末压片机
  • 恒创立达发布恒创立达YP-15 手动粉末压片机新品
    型号YP-15压力范围0-15T(0-30MPa)整体结构设备无密封链接,减少漏油点压力表压力、压强双刻度显示最大活塞行程30mm(T)压力稳定性≤1MPa/10min工作台直径Φ80mm(D)立柱数量2根立柱立柱间距96×130mm(M×N)外形尺寸225×155×380mm设备重量28Kg创新点:1.采用独特的一体式结构。 2.不掉压,不漏油,消除了多年来压片机漏油、掉压的困扰。 3.可配套FTIR红外光谱仪;红外分光光度计固体粉末制样。 恒创立达YP-15 手动粉末压片机
  • 质量检测中心用户选用能谱科技iCAN9傅立叶红外光谱仪
    山东某质量检测中心通过对多家红外光谱仪生产厂商产品的细数对比仔慎重挑选,天津能谱科技以一流的服务,优质的产品,赢得了该检测中心的青睐,正式达成合作关系 。2017年12月1日,山东某质量检测中心订购一批红外光谱检测套装经过各项检测项目,各项参数均符合客户订购需求,顺利完成备货。本月19日,在能谱科技各部门的紧密配合下,该批设备顺利送往山东青岛,能谱科技工程部张工随货同行,协助现场验收及培训工作。此次合同包含的设备和红外附件比较多,包括iCAN9 傅立叶红外光谱仪、 Lab Press 15T 粉末压片机、 HF-2 压片模具、高纯KBr光谱纯、 红外液体池-固定密封液体池、密封式气体池、红外烤箱、红外光谱谱图数据分析系统、等红外光谱检测分析仪器。上午9点,该批仪器顺利达到客户公司,由于此次设备种类比较多,产品涵盖范围也比较广,因此,此次验收的第一项工作就是对仪器进行交接,交接内容包括确定产品数量、型号规格、主机附件。经过检查之后,到场设备清单与订购设备清单一致,无错发、漏发现象。iCAN9傅立叶变换红外光谱仪属于精密仪器,为避免长途运输对设备造成影响,天津能谱在包装方面有着严格的要求,因此,虽然经过长途运输,仪器外观并没有受影响。随后,张工为客户进行详细的产品说明及操作演示,并且现场记录试验结果。各项结果与标准技术参数一致,设备性能稳定、符合要求。除了对调试设备的性能进行再次质检,操作方法培训也是此次验收工作的一项要点。为了让客户更加清楚的了解设备,张工结合ican9傅立叶红外光谱仪的使用说明书、操作视频以及现场试验全方面、多角度的对该批设备进行培训,确保每一个参与培训的技术员都可以独立操作设备,完成各项试验。验收项目结束后,客户对本次验收情况非常满意,并提出下一批红外光谱分析仪器的采购意向,欲与能谱科技建立长期合作关系,这对天津能谱而言,也是一次莫大的肯定与鼓舞。
  • 仪器信息网“红外光谱分析技术提高班”圆满结束
    国家电化学和光谱研究分析中心与仪器信息网培训中心合作,于08年7月28日至8月1日在长春举办了“红外光谱分析技术提高班”。此次学习班继续推行“1+1实战式培训”的特点,分别邀请了国家电化学和光谱研究分析中心主任徐经伟研究员、汪冬梅高级工程师做理论与实践两部分的讲解。学员在深入的进行理论学习同时,还自带谱图请专家分析、带样品来测试,并亲自动手上机实验等等。培训期间徐经伟主任还带领学员参观了中国科学院长春应用化学研究所,对于学员感兴趣的实验室,请专家对学员进行详细介绍等。学习班结束后学员均表示此行不虚,收获颇丰。 理论和实践两手抓 专家就学员提供样品进行压片 学员自己动手进行压片操作 参观长春应化所各实验室,并由专家进行介绍   通过这种理论与实践紧密结合的培训模式,学员学习到的理论第一时间在实践中进行了验证,培训中心要求每个学习班的培训效果,不仅要在与会学员“学会”中体现,更关注的是对学员“用会”这个层次的考察。   08年10月仪器信息网培训中心继续推行的“1+1实战式培训”课程有:样品前处理学习班、气相色谱学习班。   详细内容可参阅http://www.instrument.com.cn/training/。   咨询热线:010-51299927-112 张老师。Email: training@ instrument.com.cn。
  • iCAN9傅立叶红外光谱仪让饲料中的 “禁药”喹乙醇无处可藏
    由于喹乙醇有中度至明显的蓄积毒性,对众多数动物有明显的致畸作用,对人类也有潜在的三致性,即致畸形,致突变,致癌变。因此喹乙醇在美国及欧盟都被严禁用作饲料添加剂。代表药品名为倍育诺、快育灵。《中国兽药典》(2005版)也有明文规定,喹乙醇被禁止用于家禽及水产养殖领域。喹乙醇称喹酰胺醇,奥喹多司,为浅黄色结晶性粉末,无臭,味苦。溶于热水,微溶于冷水,在乙醇中几乎不溶。化学名为2--氨基甲酰-3-甲基-喹恶啉-1,4-二氧化物。 国家315晚会上报报导了一些饲料企业为了一己私利瞒天过海地在往饲料中非法添加 “禁药”——喹乙醇。 饲料违规添加此类禁药,能使饲养的动物傻吃酣睡猛长,但是抗生素在肉里边有残留,人吃了带抗生素的肉以后,或产生“耐药性”。长远地来说,它可能会让某种病菌、病毒产生耐药性,这样就会导致整个人类都无法再有效抵御疾病。 天津市能谱科技有限公司红外光谱仪应用分析工程师本着专业的态度和认真负责任的精神,立即行动起来,利用能谱科技自主研发的ican9傅里叶变换红外光谱仪设计制作出来完整的检测解决方案,供相关单位使用。检测设备: 主机:ican9傅立叶变换红外光谱仪 1台 附件:常规固体测试包(溴化钾kbr压片法) 1套检测步骤:(1)样品片制备:取供试品喹乙醇约1.0mg (预先在红外灯下烘1小时或在恒温105℃下干燥3小时,特殊供试品需用其它方法进行干燥),置玛瑙研钵中,加入干燥的溴化钾(溴化钾与供试品的比例应按照具体要求进行混合),充分研磨混匀(向同一方向研磨),移置于压模中,使分布均匀,把压模水平放置于压片机座上,加压至10t/cm2,保持3分钟,(压力大小与保持时间应根据实际需要进行调整),取出供试片,用目视检查应均匀,表面平滑,透光好。(2)溴化钾准备:每次做样取适量的kbr于称量瓶中,在红外灯下烘1小时或在恒温105℃下烘3小时,取出后置干燥器中待用。(3)在红外光谱仪软件工作站中设置扫描参数为分辨率4cm-1,扫描次数32次,依次将溴化钾空白片和喹乙醇样品片放入红外光谱仪主机样品仓中,得到样品的红外光谱图。
  • 中药制造领域近红外光谱技术的专利技术进展和趋势
    中药制药工业是我国医药行业中拥有自主知识产权的民族产业。我国中药制药水平整体不高,难以满足现代化生产对质量控制提出的要求,一定程度上影响了中药产业现代化进程和国际化脚步[1]。《中药现代化发展纲要》《中医药发展战略规划纲要(2016—2030年)》《中国制造2025》等指出要推进中药工业数字化、网络化、智能化建设,提高质量在线监测、在线控制。实现中药制造的数字化、智能化是走向“制药强国”的必经之路。中药制剂过程控制是国家战略需求的重要组成部分。然而,现阶段我国中药生产制造领域工艺较粗糙,2018年智造中药高峰论坛上,张伯礼院士指出:“我国中药现代化战略实施20多年来,中药工业总产值从不到300亿元增长到9000余亿元… … 我国中医药现代化还处于初级阶段,中药产业普遍存在生产工艺粗放、科技基础薄弱、质控水平低、质量有待升级等问题”[2]。近红外光谱技术因其快速、无损等优势,近年来被国内诸多研究团队引入中药制造的原料检测、过程控制和成品质量快速无损检测等中药制造过程的多个环节,其应用特点主要在于不破坏样品的情况下快速测定其中的有效成分,便于实现在线分析,是制造过程质量控制的关键技术之一[3]。浙江大学程翼宇教授和瞿海斌教授团队以近红外光谱为技术工具,分别对提取(水提、醇提和渗漉)、浓缩、醇沉、精制纯化(硅胶柱色谱和大孔树脂纯化)、混合和包衣等关键工艺过程和制剂成品进行了快速分析,主要完成了复方苦参注射液、痰热清注射液和丹参注射液等生产过程的快速质量评价[4-5]。罗国安教授团队应用近红外光谱技术,开展了提取、混合、柱色谱等生产过程在线质量分析,完成了安神口服液、丹参多酚酸盐、清开灵注射液等生产过程快速质量控制体系[6-7]。北京中医药大学乔延江教授和吴志生教授智能制造创新团队在国内较早提出基于光谱技术及信息技术的中药生产过程分析技术研究思路,完成了安宫牛黄丸、清开灵注射液和乳块消片近红外光谱快速质量评价和过程控制体系[8-9]。近20年,国内学者采用近红外光谱技术,建立了系列中药制造质量控制方法,为中药制造数字化、智能化发展提供了关键技术支撑。本文对中药制造领域近红外技术相关的专利进展进行分析,并进一步对近红外光谱技术在中药制造领域的发展趋势进行展望,为中药近红外光谱技术发展提供重要数据支撑。1 研究方法本文采用Incopat科技创新情报平台和patentics系统,对涉及近红外光谱技术在中药制造应用中的发明专利申请(截至2020年12月)进行检索,经人工浏览,手动筛选,对数据进行归纳整理。2 专利技术申请概况2.1 近红外光谱技术在中药制造领域的发明专利趋势2002年至今,近红外光谱技术在中药制造领域发明专利的变化趋势如图1所示,最早的一件申请是2002年浙江大学提出的,涉及将近红外光谱技术用于中药生产工艺中产品质量指标的在线检测。之后的近10年这一领域的专利申请数量相对较少,每年平均申请量基本在5件左右。至2011年,申请数量相比之前增长2倍以上,随后的10年,每年平均申请数量较前10年增长2倍以上。就申请国家而言,公开专利申请绝大部分来自中国,其他国家的申请较少,这也符合中药制造领域的研究现状,大都集中在中国。虽然日本和韩国在中药制造行业也有一些较为成熟的技术,但涉及近红外光谱技术的应用领域并未以专利形式进入中国。2.2 近红外光谱技术在中药制造领域的发明专利申请人2.2.1 申请人及其类型 如图2所示,相关专利的申请人以企业和大专院校为主,企业占57%,大专院校占34%,科研单位占5%,个人占4%。其中大专院校中申请数量排名前3的分别是浙江大学、中山大学和北京中医药大学。可以看出,企业和高校是该领域最主要的创新主体,其根据需要收购了个人或企业的有关专利权。其中,浙江大学的程翼宇教授、刘雪松教授深耕中药制造过程控制多年,也成功将近红外光谱技术引入中药生产过程质量控制当中。中山大学的葛发欢教授团队与广州中大南沙科技创新产业园有限公司合作,共同申请5项专利,将近红外光谱技术应用于凉茶和娑罗子中七叶皂苷的在线监测。北京中医药大学乔延江教授、吴志生教授团队也针对中药生产过程质量控制进行了多年的研究。企业申请人排名前3的分别是江西汇仁药业有限公司、广州中大南沙科技创新产业园有限公司和天津天士力现代中药资源有限公司。就数量而言,排名前3的制药公司和大专院校,申请数量相当,这表明近红外光谱技术作为一个应用型技术,其研究正不断实现从实验室走向生产过程的应用,广泛分布在企业当中,这也充分体现了其因快速、无损的特点适用于中药制造过程质量检测的优势。2.2.2 申请人申请趋势 图3显示的是2002年至今排名前几位的申请人的申请数量。包括申请数量排名前3的江西汇仁药业有限公司、天津天士力现代中药资源有限公司等企业的申请时间主要集中在某个时间段,说明近红外光谱技术在企业中的应用范围较为单一,没有技术上的突破和创新,仅是一种成熟技术应用于不同中药的制造过程。而大专院校相对企业而言,申请分布的时间更长,如北京中医药大学在2014、2016、2018、2019年都有申请,相对更有连续性。这说明近红外光谱技术尚存在很大发展空间,其作为一门过程分析技术,在中药制造中的应用整体呈上升趋势。2.3 发明专利申请的当前法律状态及转让情况如图4所示,相关专利授权42件,授权率为47.7%,驳回27件,驳回率为30.7%,撤回19件,撤回率为21.6%。失效专利数量为51件,有效专利数量为42件,即超过50%的专利申请已失效。申请人江西汇仁药业有限公司、浙江大学、上海市中药研究所、上海雷允上科技发展有限公司的专利权转让基本都发生在相同申请人内部,江西汇仁药业有限公司将7件专利都变更为与其旗下公司上海中创医药科技有限公司共有。除此之外,还存在其他转让情况,见表1。3 近红外光谱技术发明专利申请的技术内容3.1 中药原料制造过程质量评价的近红外光谱技术现状分析中药原料是中药制造的首关环节,直接影响中药的产品质量和药效。如何快速、准确地评价药材质量是中药制造需解决的首要问题。传统的鉴定方法耗时较长、样品处理繁琐,存在不同程度的局限性。将近红外光谱技术与计算机软硬件、化学计量方法等结合,可作为快速准确鉴别中药材的新方法[10]。涉及中药原料近红外光谱技术的发明情况如图5所示。中药制造原料质量评价包括真伪优劣、道地性、产地、加工炮制、种属等。将近红外光谱与聚类分析等方法相结合,建立假冒伪劣中药材鉴别系统,能有效提升假药的鉴别能力和速度。3.1.1 中药原料的真伪鉴别 在真伪鉴别方面有7件申请,分别涉及药材三七、丹参、山参、麻黄、皂角刺和甘草,如申请人天津天士力现代中药资源有限公司的2件申请CN101961360A、CN101961379A均通过主成分分析法在降低维数的同时充分提取光谱图中的有效信息,再采用马氏距离法判别样本的类别归属,以鉴别三七和丹参的真伪。其他4件也与此类似,创新之处主要在于近红外光谱数据的不同建模方法在中药制造原料质量评价中的应用。3.1.2 中药原料的道地性鉴别 在中药制造原料道地性鉴别方面,药材因在疗效、产量、贮藏、生长环境、采摘时节等方面所体现出来的综合特性优于同种内其他非道地药材,不同产地的气候环境直接影响中草药的化学成分、药用价值和治疗效果,因此中药材产地鉴定是中药疗效和用药安全的重要保障。针对道地性、产地鉴别的申请涉及的药材有陈皮(CN103033486A)、淫羊藿(CN104089921A)、三叶青(CN107607485A)和忧遁草(CN111595802A)。对不同基原以及不同产地的中药材进行鉴别,无需对样品进行复杂处理,操作简单、快速,结果稳定可靠。3.1.3 中药原料的炮制鉴别 炮制是中药制造原料的重要工艺之一。中药材加工炮制鉴定主要是针对加工后的药材进行检验,了解其是否具备原有的药材成分与药效。中药材在经过了炮制加工后,均会产生一定的化学性质变化,而这种变化便可以利用近红外光谱技术加以验证。硫磺熏蒸是一种传统的药材加工方法,可使药材快速干燥,解决药材颜色发黄和生虫等问题,保存时间长、卖相好,但硫磺熏蒸会导致药材中二氧化硫残留,影响人体的健康,已被国家明令禁止。如何区别中药是否被硫磺熏蒸过已成为人们关注的一项内容[11]。2件专利申请涉及白芷硫磺熏蒸与否的鉴定研究,1件专利(CN107449754A)采用近红外光谱分析方法对栀子炮制品的品质进行定性鉴别,为市场栀子炮制品的质量监管提供科学依据。3.1.4 中药原料的综合评价 另外,还有11件申请涉及中药材种属、真伪、优劣、产地、道地性等综合质量评价。CN144711A涉及中药药材红外光谱非分离提取多级宏观指纹鉴定方法,CN103076300A涉及专属性模式识别模型判别分析中药材资源指纹信息的方法,都是使用指纹鉴定的方法。CN104345045A和CN107782695A是相似药材、合格与否的鉴别,其他几件申请涉及大黄、人参、党参、甘草、三七、丹参和麻花艽的鉴别。水分是中药制造原料的关键质量属性之一。涉及含水量检测的申请,如鲜人参含水量的检测(CN108709869A)、中药水分测量方法及系统(CN110702631A)。3.2 中药制剂制造过程在线控制的近红外光谱专利技术现状分析在线检测的应用为中药制剂生产过程的动态监控和工艺优化提供了依据,改变了传统检验滞后的模式,真正实现了药品质量的在线控制。检测前,对预先采集的数据进行处理,建立模型,无需进行样品处理,可同时测定样品中的多个分子结构,液体、固体等均可直接检测,减少了样品处理时间,缩短了检测时间,提高了检测效率,为中药制剂生产过程控制提供数据支持。中药制剂制造工艺较为复杂,最终产品的品质稳定性与生产过程多项工艺参数息息相关。因此,中药制剂生产的过程监控非常重要。近红外光谱在线检测技术可以全面监控中药生产过程中的微生物、含水量、水不溶物、混合过程中药物分布的均匀性等,同时对多项参数进行有效控制,可在很大程度上提高制药工艺的自动化水平及药物自身的稳定性与均一性。3.2.1 近红外光谱技术应用的中药制剂剂型 发明专利申请中有78件涉及中药制剂在线检测和过程质量控制,近红外光谱技术在中药制剂领域的应用最为广泛。涉及中药制剂的剂型有药酒、胶囊、口服液、浓缩丸、合剂、颗粒和注射剂,如枣仁安神胶囊、肾宝合剂、贞芪扶正颗粒、金玄痔科熏洗散、一清颗粒、复方杜仲胶囊、增健口服液。3.2.2 近红外光谱技术应用的中药制剂主要成分和辅料 在发明专利申请中,涉及的单一成分或单类物质有丹酚酸B、丹参素钠、鞣质、芍药苷、总蛋白、柚皮苷、新橙皮苷、总黄酮、马兜铃酸I、枯矾、绿原酸、栀子苷、七叶皂苷A~D、苯丙素类、生物碱类或萜类化合物;涉及的多种成分或多类物质为总黄酮和总皂苷、药材浸出物(天花粉和葛根)、娑罗子提取物、淫羊藿提取物、苦黄注射剂等。有2件申请涉及中药注射剂(CN1432803A)和中药颗粒(CN1447109A),申请人均是清华大学,主要方法都是脱去溶剂的试样(注射剂)用溴化钾压片制样,测定粉末样品压片试样的普通红外光谱(注射剂)或中红外光谱(颗粒)、漫反射近红外、漫反射中红外光谱、反射光谱及衰减全反射光谱,求出并绘出相应光谱图的二阶导数光谱图,测定试样的二维相关红外光谱,分级对比相应图谱,测定主料和辅料的相对含量。3.2.3 近红外光谱技术应用的中药制剂生产环节 近红外光谱检测手段被应用于中药制剂生产的提取、浓缩、混合[12]、纯化、干燥[13]等多个环节。对于提取环节,申请中所涉及的药材或制剂有丹参、白芍、杏香兔耳风、娑罗子、大黄、栀子、淫羊藿、葛根、天花粉、龙血竭、川红活血胶囊、女金胶囊、肾宝合剂渗漉液、动物提取液。如CN102252992A涉及一种对中药提取过程进行近红外光谱在线检测的方法,实现了对中药各指标成分和含固量的实时监测以及提取过程终点的快速判断。CN102106888A公开了一种杏香兔耳风提取过程的质量控制方法,应用近红外光谱技术对杏香兔耳风提取液指标成分进行连续取样和现场分析,建立了在线应用的提取液指标成分的近红外模型,用于杏香兔耳风提取过程质量控制。对于浓缩环节,申请中涉及的有六味地黄丸、女金胶囊、淫羊藿提取物、丹参提取液,如CN102106939A提供了一种六味地黄丸浓缩丸提取浓缩液质量控制方法,能测定六味地黄丸浓缩丸提取浓缩液比重及马钱苷、丹皮酚含量,可对六味地黄丸浓缩丸提取浓缩液指标成分进行连续取样和现场分析。混合是中药制造的关键环节之一。对于混合均匀度的测定,如控制中药药粉二维混合的均匀度(CN101832921A)、正天丸混合过程终点的测定方法(CN105092520A)。对于纯化步骤,CN103808665A公开了一种测定娑罗子提取物纯化过程中多指标成分含量的方法,CN108362663A涉及丹参提取液纯化过程中的质量控制方法。针对干燥过程质量控制,CN108592527A涉及石斛冻干加工系统及其控制方法,采用近红外光谱仪对冻干加工过程中的石斛的水分含量进行检测,并根据检测结果自动调节冻干控制数据,不仅节约能源,还能确保冻干石斛的品质。CN110632016A涉及中药饮片在干燥环节中水分浓度的精准控制。贵州景峰注射剂有限公司在中药制剂制造过程控制领域进行了较为全面的保护,其申请内容涵盖了提取过程(CN108760676A)、浓缩过程(CN108398401A)、纯化过程(CN108362663A)和大孔树脂吸附分离过程(CN108693138A)的终点判断方法。3.3 中药制造近红外光谱技术一体化装备专利技术现状分析在所有发明专利申请中,涉及近红外检测装置的共有8件,3件涉及中药在线监测的提取装置,2件(CN111175247A、CN102507491A)涉及中药品质的检测装置,2件涉及中药成分的检测,1件(CN105092517A)为颗粒沸腾干燥过程的在线质量控制装置。4 存在问题及建议4.1 存在问题中医药发展“十三五”规划要求发挥中医药特色优势,利用现代科学技术,推进中医药现代化与国际发展,引领中医药自主创新国际主导权。而近红外光谱技术在中药制造业中的应用,可解决中药真伪鉴别、分类和分级靠人工经验的落后面貌,同时可实现中药制造过程在线质量监控,该技术的推广应用对我国中药提升产品质量产生了巨大影响。通过对近红外光谱技术在中药制造领域的专利技术分析,发现如下问题。4.1.1 申请数量少,后劲不足 近红外光谱技术在中药制造应用领域的专利总量还较少,从2002年至今发展较为缓慢,申请量最多的一年也仅有17件,申请量最大的申请人也仅有7件申请,申请时间主要集中在某个时间段,没有针对某项技术的持续性改进,技术方向重点有所转移。4.1.2 专利申请涉及的适用范围有限 重点申请人的申请基本都是涉及提取过程的质量控制,申请方向较为单一。在产业实践中,近红外光谱技术被广泛应用于药品检测,基本涵盖了从原材料供应到生产全过程乃至上市后的监督检验,但是在专利申请中还未见有药品非法添加的相关检测,对假劣药品的鉴别也非常少。相关专利中近红外光谱技术局限于药材的鉴定,且进行综合评价的药材基本都是根、茎和根茎类药材,其中参类药材较多,药材品种少而分散。4.1.3 专利质量有待调高,布局有待改善 该领域专利许可数量为0,技术转让寥寥无几,从侧面反映了其专利的质量不够高、应用性不够强。所有申请中也没有针对某个核心专利的后续改进及专利布局。国内申请中,仅有深圳市药品检验研究院2018年申请的一件涉及皂角刺真伪化学模式识别的方法(WO2019192433A1)提出了国际申请,其是以国内专利CN108509997A为优先权,其仍然处于国际阶段,说明该领域研究在国外的布局起步很晚,且数量非常少,保护主题单一,大部分国内申请人尚未建立国际化的专利布局意识。这也反映出对于专利应用价值和成果转化预期的不确定。4.2 建议基于以上问题,笔者提出以下建议。4.2.1 开展广泛的产学研一体化合作 在中药制造业创新发展的过程中,高校、科研机构、中药制造企业应当充分利用近红外光谱技术和中药的优势,发挥各自的特点和特长,走产学研一体化的创新之路,对该领域的专利信息数据进行跟踪,有针对性地进行改进创新,推动近红外光谱技术在中药制造领域的产业化发展,进一步提高专利技术的实际应用价值。4.2.2 拓展适用范围 近红外光谱技术可以应用于中药原料和中药制剂的质量控制,涉及中药的种属、真伪、优劣、产地、道地性、非法添加等,生产过程中微生物、含水量、水不溶物等多种指标,炮制、提取、浓缩、混合、纯化、干燥等多个环节,中药品种成千上万,药用部位包括花、果实、种子、根及根茎等,除了植物药,还包括动物药、矿物药,申请人可以针对某种或某类药材或制剂从多个角度拓展应用,或联合其他检测技术以增强或改善检测结果或效果。4.2.3 提升专利质量,扩展海外布局,加强专利运营 “十四五”规划纲要的指标中专门为知识产权设置了一项关键性指标,即每万人高价值发明专利拥有量达到12件。国家知识产权局出台了一系列知识产权政策,显示了政府努力提高专利质量的决心,专利质量的提升是未来参与全球竞争的关键所在。申请人在研究和申请前应充分了解相关领域的现有技术和在线申请情况,围绕核心专利进行全面、持续性改进研究并进行海外专利布局。重视高价值专利的运营,加强校企合作,强化市场意识和应用导向,提高专利的转化率,实现专利价值的最大化。利益冲突 所有作者均声明不存在利益冲突参考文献(略) 来 源:刘南岑,耿立冬,马丽娟,吴志生.中药制造领域近红外光谱技术的专利技术进展和趋势 [J]. 中草药, 2021, 52(21): 6768-6774 .
  • 中国药典《药品红外光谱集》标准谱图采集全攻略
    红外光谱仪是药物研究及生产必备的分析仪器之一,而粉末压片几乎是每个测试人员的必备技能。尽管压片工作看起来简单重复且没有太多的技术含量,但是想要采集到一张能够与药典标准红外谱图相媲美的谱图数据却并不是一件轻松的事情。2023 年 10 月,中国药典《药品红外光谱集》(2023 年版)正式发布。安捷伦技术人员经过多年的工作经验的积累,将通过红外谱图评价标准、红外实验室基本要求、仪器准备、粉末压片标准工作流程、粉末压片制样过程注意事项以及谱图常见问题解析等六个方面对标准红外谱图采集流程进行详细介绍。红外谱图评价标准高质量红外光谱图通常需要满足以下条件:基线平直且纵坐标在 85-100%T 之间最强吸收峰纵坐标在 5-15%T 之间在 2200-2400 cm-1 处没有 CO2 吸收峰干扰在 3400 cm-1 及 1600 cm-1 附近区域没有水峰干扰光谱信噪比好且谱线平滑下图为使用 Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图。图 1. Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图红外实验室基本要求使用红外光谱仪的用户实验室应具备以下条件:实验室温度控制在 25℃ 左右,湿度控制在 50% 以下,并保证日常恒温恒湿要求用于仪器波数准确度及光度精度验证的标准聚苯乙烯(PS)薄膜储备溴化钾、氯化钾及石蜡油等常规试剂,并放置在干燥皿内备用用于样品压片制备过程中的红外烘烤灯红外压片机、模具及配套的压片工具仪器准备安捷伦 Cary630 FTIR 光谱仪体积小巧、性能稳定,且满足《中国药典》对红外光谱仪的所有指标要求。仪器采用主机与附件分体式的设计,用户可根据测试需求及样品类型选择合适的附件。药物粉末压片测试时,可选择主机搭配透射样品仓附件实现 400-4000 cm-1 范围内红外谱图的采集。仪器软件为符合 21 CFR Part11 法规要求的 MicroLab PC 软件,为药物研发及药物质控实验室提供最安全的数据完整性保证。粉末压片时,测试条件如下:仪器分辨率:2 cm-1波长范围:400-4000 cm-1扫描次数:32 次药物粉末压片标准工作流程取 1-2 mg 样品与 100-200 mg 干燥后的溴化钾粉末(取决于药物红外吸收的强弱特性,二者比例可适当调整)放入玛瑙研钵中混合研磨,直至得到均匀、超细的颗粒。组装压片磨具,将底部压头光面朝上放入模具中。将样品缓慢加入模具中并使其均匀地散布在底面压头上。把上压头光面向下放入模具,压上压杆。将模具放入压片机中压制,压力调整到 20 MPa 左右,保持 1-2 min。转动卸压阀,缓慢卸掉压力并取出模具。用压头反向取出片子并检查片子的均匀程度和透明度。将样品放入样品支架并置于样品仓内进行测量。粉末压片制样过程注意事项为了能够获得效果良好的谱图,注意事项总结如下:1溴化钾及氯化钾粉末易吸水,日常应放置在干燥皿中保存。使用前须在 120℃(或 150℃)干燥箱中恒温干燥 2 小时以上。2为避免颗粒散射造成的基线倾斜问题,样品及试剂颗粒应进行充分研磨至 2.5um 以下,以研磨过程中粉末不再有颗粒感为宜。3如样品和试剂在研磨过程中发生离子交换,则需要更换试剂类型或改用糊法进行测试。4如果压出的片子易碎,请确认是否与加入粉末太少、压力过大或压力保持时间太长有关,可通过增加粉末体积或降低压力等方式来避免这种情况。5如果片子与模具粘合在一起、脱模困难,需要确认是否由样品易吸水或比较粘稠的特性引起。若是样品特性原因,可适当减少样品加入量;若是室内湿度过大或模具未清洗干净引起,可降低室内湿度或在红外烘烤灯下制备样品以及深度清洗模具等来优化。谱图常见问题解析获得红外谱图后,分析谱图可发现制样过程中存在的问题并优化制样过程。经常遇到的几种情况分别为:1加入样品量不合适谱图吸收峰的强弱,可判断加入的样品量的多少。如图 2 所示,光谱 1 中所有峰为尖峰,但吸收峰强度较弱,可判定为加入样品量不足;光谱 2 中多个峰平顶饱和,可判定为加入样品量过多。根据峰强度的强与弱,可通过减少或者增加样品加入量来优化。图 2. 光谱 1 中加入样品量太少,吸收较弱;光谱 2 中加入样品量太多,峰饱和2基线倾斜透过率光谱越高波数越向下倾斜,如图 3 所示。通常是样品与试剂研磨不充分,光在样品上发生散射造成的。图 3. 研磨不充分样品谱图对比如图 4 所示,分别制备不同颗粒粒度样品的溴化钾压片并采集红外谱图。从图中可以看出,随着颗粒粒径减小,透射谱图基线的倾斜问题得到明显改善。图 4. 不同颗粒粒度样品的溴化钾压片谱图3样品与试剂发生离子交换在样品压片过程中,试剂与样品可能发生离子交换。如一些有机盐,可选择更换试剂类型或者采用糊法的方式来避免。以盐酸氯酯醒为例,如使用 KBr 作为研磨试剂,则会发生离子交换导致谱图发生变化,此时可选用 KCl 为研磨试剂进行压片。如图 5 所示,可以看到分别使用两种试剂压片后的谱图差异。图 5. 分别使用 KBr 及 KCl 作为研磨试剂进行盐酸氯酯醒压片后采集的红外谱图4二氧化碳干扰峰影响用户经常会发现在 2200-2400 cm-1 处出现杂峰,这主要是因为空气中二氧化碳浓度变化引起的,如图 6 所示。从图中可见,此特征峰有时为正峰,有时候为倒峰,造成这种差异的原因是扫描背景谱图与扫描样品谱图时环境中二氧化碳的浓度发生了变化。所以在进行红外谱图采集的过程中,工作人员应尽量避免对着样品仓的位置呼气,同时要尽量降低背景与样品扫描的时间差。图 6. 二氧化碳对光谱影响示意图结 语以上经验总结,希望能够对日常工作中需要使用红外光谱仪的用户带来一些启发。通过对工作细节的优化,能够轻松获得一张可与药典中标准红外谱图相媲美的结果。如果您对安捷伦 Cary630 FTIR 红外光谱仪感兴趣的话,可通过点击以下链接获取相关资料。https://www.agilent.com/cs/library/technicaloverviews/public/te-cary630-material-id-5994-4992zh-cn-agilent.pdf
  • 近红外/气相色谱样品处理技术培训班通知
    近红外分析技术及应用培训班 近红外光谱(NIR)是近年来发展较为迅速的一种高新分析测试技术,具有分析效率高、不破坏样品、适合于在线分析等特点。当前,近红外分析已广泛应用于农业、食品、医药、烟草、石油、化工等领域,从国际近红外发展的趋势,在“十一五”期间我国对近红外技术的需求还会继续增加,待研究和开发的领域还会不断扩展。为提高广大近红外光谱分析技术水平,特举办“近红外光谱分析技术及应用培训班”,欢迎大家前来参加。 【培训时间】 2009年6月22日— 6月26日 杭州 培训费1600元(包括授课费、讲义、文具、证书费等),食宿统一安排,费用自理 【授课专家】 袁洪福 教授 北京化工大学分析测试中心 韩东海 教授 中国农业大学 金同铭 研究员 北京农林科学院蔬菜研究中心 【培训内容】 (一)理论部分 1、近红外光谱基本原理和分析基础知识 2、近红外光谱分析技术国内外发展及应用进展 3、近红外光谱的仪器结构与操作维护 (二)应用部分 1、近红外光谱的定量分析技术 2、近红外光谱的定性分析技术 3、近红外光谱仪信号采集、信号处理、信号变换及信号采样与复原 4、近红外光谱算法选择,分析模型建立、检验与评价 5、近红外光谱在医学、制药、化工行业质量分析和控制 6、近红外光谱在农产品检验、食品安全、烟草加工等领域的应用 7、近红外光谱在矿物、纺织等领域的应用 (三)实践部分 1、现场仪器分析实验操作 2、讨论答疑 3、红外光谱生产厂商参观 另,受国家质检总局质量技术监督行业职业技能鉴定指导中心委托,学员参加本次培训后,可参加质检行业国家职业资格的考核鉴定,颁发劳动和社会保障部相应工种的初、中、高级的国家《职业资格证书》。初级/国家五级、中级/国家四级1000元;高级/国家三级1260元(含教材、资料、培训、考核、认证证书等),详细内容可与工作人员具体咨询、索取资料。 气相色谱样品处理的实用操作技术培训班 近年来,色谱分析工作者已经越来越认识到分析样品处理技术在样品分析过程中的重要性和必要性。用于分析样品处理的仪器与以往相比,制备样品的效率和操作程序的自动化水平越来越高,而仪器的体积越来越小型化。 顶空进样器和热解吸进样器是气相色谱分析的样品前处理装置,它的使用可以免除分析工作者繁琐费时的样品前处理过程,是较简单实用方便快捷的样品前处理装置,能大大的提高工作效率,通过分析发现如果我们把顶空进样器与热解吸进样器巧妙的联合使用更可得到独特效果,可使难以检测的痕量组分得到检测。相应的方法极具优越性,这门技术极具发展前途,这种装置极具推广使用。 为了促进我国色谱样品处理技术的发展,提高色谱仪器分析的测定效率和测定水平,特举办“气相色谱样品处理的实用操作技术”培训班,欢迎大家前来参加。 【培训时间】 2009年6月29日 –7月3日 北 京 培训费1600元(含资料费、培训证书费),食宿统一安排,费用自理。 【授课专家】 武 杰 研究员 中国色谱学会副理事长、中国石油科学研究院研究员 王 立 研究员 北京劳动保护所研究员、色谱丛书《色谱分析样品处理》作者 李洪盛 高 工 北京北分天普仪器技术有限公司总工程师 【培训内容】 (一)理论课(1.5天) 1. 现代气相色谱仪的简单介绍 2. 气体、固体、液体、大气悬浮颗粒样品的采集技术 3.气相色谱的液-固、液-气、液-液溶剂样品萃取处理技术 4. 气相色谱的膜分离样品处理技术 5.气相色谱的固相萃取样品处理技术 6.气相色谱的超临界萃取、微波萃取、热裂解等样品处理技术 7.气相色谱中常用的的柱前衍生化方法 8. 气相色谱的顶空进样技术,顶空进样器的设计结构、加热方式、取样方式、进行方式的对比评价 9. 气相色谱的气体萃取技术(热解析技术),热解吸进样器的设计结构、进样方式对比评价 10. 顶空进样器、热解析进样器联合操作使用的优点 (二)操作使用实验(2天) 学员分成两组:第一天分别进行顶空与热解吸实验操作,第二天两组对调进行实验操作。试验样机各配备3--5台,色谱仪配备3--5台,有专门的实验工程师指导实验工作 (三)座谈、交流及答疑(0.5天) 【报名办法】 电话:010-51299927-101、13269178446 传真:010-51413697 联系人:张老师 E-mail:training@instrument.com.cn 更多培训请参阅http://www.instrument.com.cn/training/
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical AtomicSpectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • “港东科技”2012年新款红外光谱仪产品发布
    产品图片: FTIR-850傅里叶变换红外光谱仪 产品简介: FTIR-850傅里叶变换红外光谱仪是港东公司推出的最新款红外光谱仪,具有分辨率高、稳定性好、防潮效果佳、可扩展性强等特点,主要应用于石油化工、有机化学、高分子化学、药品、食品分析等传统领域,还应用于半导体、光学等新技术领域。 产品特点: (1)分辨率高 最高分辨率可达到0.5cm-1,极大的满足了用户不同情况下的样品测试需要。 研究内容 FTIR技术及附件 分辨率要求 快速反应动力学 快速扫描 4~16cm-1 化学结构测定:液体、常规气体、固体(晶体、薄膜等)、无定形体、粉末、高聚物 常规固体压片和石蜡糊法、液体、常规气体池和长程气体池、镜面反射、漫反射、ATR 2~8cm-1 微量样品分析 微量固体压片技术、单反射ATR、微量液体池 2~8cm-1 定量分析 峰高法、峰面积法 2~8cm-1 常压气体分析 气体池 0.5~1.0cm-1 (2)稳定性好 采用动镜动态准直技术,每秒高达130000次的连续动态调整,保证样品检测的超高稳定性,并可保持更好的光谱峰形。采用平面反射镜,没有立体角镜补偿系统干涉仪的&ldquo 光谱失真&rdquo 现象 。抗震能力优,免维护,无需经常调整能量。 (3)防潮效果佳 除样品仓以外,采用全密封设计,有效隔绝湿气,使干涉仪系统得到很好的保护,同时检测器也得到了有效的保护。超大容量的干燥剂盒,除湿能力比普通傅里叶红外高出八倍,有效的减少了更换干燥剂的频率,极大的提高了用户样品测试的效率。 (4)可扩展性强 超大样品室设计,方便用户扩展其它红外附件,如镜面反射附件、漫反射附件、ATR附件、气体池、液体池、偏振附件等。 更多红外光谱仪产品信息请登录http://www.tjgd.com 联系我们: 天津港东科技发展股份有限公司 地址:天津市华苑产业园区鑫茂科技园G座EF单元二层 邮编:300384 电话: 022-23859771/23858877 传真: 022-83711608/83712698
  • 黑龙江省第二医院176.71万元采购压片机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 黑龙江省第二医院医疗设备购置竞争性磋商公告 黑龙江省-哈尔滨市-松北区 状态:公告 更新时间: 2024-04-21 招标文件: 附件1 项目概况 医疗设备购置采购项目的潜在供应商应在公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可获取采购文件,并于 2024年05月06日 09时00分 (北京时间)前提交响应文件。 一、项目基本情况 项目编号:[230001]YZGC[CS]20240004 项目名称:医疗设备购置 采购方式:竞争性磋商 预算金额:1,767,100.00元 采购需求: 合同包1(医疗设备购置): 合同包预算金额:1,767,100.00元 品目号 品目名称采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他医疗设备 二氧化碳激光治疗机 1(套) 详见采购文件 85,000.00 - 1-2 其他医疗设备 多功能自动煎药机 6(套) 详见采购文件 178,800.00 - 1-3 其他医疗设备 多功能自动煎药机 6(套) 详见采购文件 198,000.00 - 1-4 其他医疗设备 电动挤压密闭煎药机 4(套) 详见采购文件 116,000.00 - 1-5 其他医疗设备 中药汤剂包装机 8(套) 详见采购文件 128,000.00 - 1-6 其他医疗设备 常压循环煎药包装一体机 2(套) 详见采购文件 32,000.00 - 1-7 其他医疗设备 中药小型烘干箱 8(套) 详见采购文件 28,000.00 - 1-8 其他医疗设备 中型粉碎机10kg 1(套) 详见采购文件 7,380.00 - 1-9 其他医疗设备 中型粉碎机5kg 1(套) 详见采购文件 2,500.00 - 1-10 其他医疗设备 小型粉碎机1000g 2(套) 详见采购文件 2,760.00 - 1-11 其他医疗设备 小型粉碎机100g 2(套) 详见采购文件 500.00 - 1-12 其他医疗设备 小型粉碎机400g 2(套) 详见采购文件 1,700.00 - 1-13 其他医疗设备 超微粉粉碎机 1(套) 详见采购文件3,980.00 - 1-14 其他医疗设备 小型电动振筛机 1(套) 详见采购文件 1,500.00 - 1-15 其他医疗设备 水丸机 2(套) 详见采购文件 11,000.00 - 1-16 其他医疗设备 全自动蜜丸机 1(套) 详见采购文件 3,650.00 - 1-17 其他医疗设备 小型抛光机 1(套) 详见采购文件 2,230.00 - 1-18 其他医疗设备 夹层锅 2(套) 详见采购文件31,600.00 - 1-19 其他医疗设备 膏方包装机 1(套) 详见采购文件 39,000.00 - 1-20 其他医疗设备 压片机 1(套) 详见采购文件 8,800.00 - 1-21 其他医疗设备 粉末均分包装机 1(套) 详见采购文件 15,000.00 - 1-22 其他医疗设备 紫外消毒箱 2(套) 详见采购文件 3,000.00 - 1-23 其他医疗设备 液体真空浓缩煎药机 1(套) 详见采购文件 65,000.00 - 1-24 其他医疗设备 自动调膏机 1(套) 详见采购文件 15,000.00 - 1-25 其他医疗设备 医用冰箱 3(套) 详见采购文件 51,000.00 - 1-26 其他医疗设备 电子针疗仪 10(套) 详见采购文件 9,500.00 - 1-27 其他医疗设备 电磁波红外线理疗神灯 10(套) 详见采购文件 7,500.00 - 1-28 其他医疗设备 中药定向透药仪 2(套) 详见采购文件 6,000.00 - 1-29 其他医疗设备 艾灸蒸慰仪 1(套) 详见采购文件 46,800.00 - 1-30 其他医疗设备 红光治疗仪 2(套) 详见采购文件 90,000.00 - 1-31 其他医疗设备 微波治疗仪 2(套) 详见采购文件 45,000.00 - 1-32 其他医疗设备 气压治疗仪 1(套) 详见采购文件 22,900.00 - 1-33 其他医疗设备 中药熏蒸设备 2(套) 详见采购文件 60,000.00 - 1-34 其他医疗设备 医用红外线热像仪 1(套) 详见采购文件 230,000.00 - 1-35 其他医疗设备 特定电磁波治疗仪 10(套) 详见采购文件 5,500.00 - 1-36 其他医疗设备 中频电治疗仪(8片) 2(套) 详见采购文件 12,000.00 - 1-37 其他医疗设备 子午流注治疗仪 2(套) 详见采购文件 196,000.00 - 1-38 其他医疗设备 糖尿病足诊疗箱 1(套) 详见采购文件 4,500.00 - 本合同包不接受联合体投标 合同履行期限:自货物验收合格之日起1年 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(医疗设备购置)特定资格要求如下: (1)须按《医疗器械分类目录》规定,根据招标文件采购产品的所属类别提供相应材料。 1、如所投产品属于第一类医疗器械,提供《第一类医疗器械备案凭证》、《第一类医疗器械生产备案证》(进口除外)及信息表(体现规格型号); 2、如所投产品属于第二医疗器械,提供《第二类医疗器械经营备案凭证》(生产厂家投标除外)、所投产品的《医疗器械生产许可证》(进口除外)及《医疗器械注册证》; 3、如所投产品属于第三类医疗器械,提供《医疗器械经营许可证》(生产厂家投标除外)、所投产品的《医疗器械生产许可证》(进口除外)及《医疗器械注册证》。 三、获取采购文件 时间: 2024年04月22日 至 2024年04月26日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可 方式:在线获取 售价: 免费获取 四、响应文件提交 截止时间: 2024年05月06日 09时00分00秒 (北京时间) 地点:平台递交 五、开启 时间: 2024年05月06日 09时00分00秒 (北京时间) 地点:平台开启 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:黑龙江省第二医院 地 址:哈尔滨市松北区江都街209号 联系方式:18646037488 2.采购代理机构信息 名 称:黑龙江屿泽工程咨询有限公司 地 址:黑龙江省哈尔滨市道里区西雅图水岸武威路s7-6 联系方式:13204506421 3.项目联系方式 项目联系人:黑龙江屿泽项目管理有限公司 电 话:13204506421 黑龙江屿泽工程咨询有限公司 2024年04月21日 相关附件: 医疗设备购置磋商文件(2024041901).pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:压片机 开标时间:null 预算金额:176.71万元 采购单位:黑龙江省第二医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:黑龙江屿泽工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 黑龙江省第二医院医疗设备购置竞争性磋商公告 黑龙江省-哈尔滨市-松北区 状态:公告 更新时间: 2024-04-21 招标文件: 附件1 项目概况 医疗设备购置采购项目的潜在供应商应在公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可获取采购文件,并于 2024年05月06日 09时00分 (北京时间)前提交响应文件。 一、项目基本情况 项目编号:[230001]YZGC[CS]20240004 项目名称:医疗设备购置 采购方式:竞争性磋商 预算金额:1,767,100.00元 采购需求: 合同包1(医疗设备购置): 合同包预算金额:1,767,100.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他医疗设备 二氧化碳激光治疗机 1(套) 详见采购文件 85,000.00 - 1-2 其他医疗设备 多功能自动煎药机 6(套) 详见采购文件 178,800.00 - 1-3 其他医疗设备 多功能自动煎药机 6(套) 详见采购文件 198,000.00 - 1-4 其他医疗设备 电动挤压密闭煎药机 4(套) 详见采购文件 116,000.00 - 1-5 其他医疗设备 中药汤剂包装机 8(套) 详见采购文件 128,000.00 - 1-6 其他医疗设备 常压循环煎药包装一体机 2(套) 详见采购文件 32,000.00 - 1-7 其他医疗设备 中药小型烘干箱 8(套) 详见采购文件 28,000.00 - 1-8 其他医疗设备 中型粉碎机10kg 1(套) 详见采购文件 7,380.00 - 1-9 其他医疗设备 中型粉碎机5kg 1(套)详见采购文件 2,500.00 - 1-10 其他医疗设备 小型粉碎机1000g 2(套)详见采购文件 2,760.00 - 1-11 其他医疗设备 小型粉碎机100g 2(套) 详见采购文件 500.00 - 1-12 其他医疗设备 小型粉碎机400g 2(套) 详见采购文件 1,700.00 - 1-13 其他医疗设备 超微粉粉碎机 1(套) 详见采购文件 3,980.00 - 1-14 其他医疗设备 小型电动振筛机 1(套) 详见采购文件 1,500.00 - 1-15 其他医疗设备 水丸机 2(套) 详见采购文件 11,000.00 - 1-16 其他医疗设备 全自动蜜丸机 1(套) 详见采购文件 3,650.00 - 1-17 其他医疗设备 小型抛光机 1(套) 详见采购文件 2,230.00 - 1-18 其他医疗设备 夹层锅 2(套) 详见采购文件 31,600.00 - 1-19 其他医疗设备 膏方包装机 1(套) 详见采购文件 39,000.00- 1-20 其他医疗设备 压片机 1(套) 详见采购文件 8,800.00 - 1-21 其他医疗设备 粉末均分包装机 1(套) 详见采购文件 15,000.00 - 1-22 其他医疗设备 紫外消毒箱 2(套) 详见采购文件 3,000.00 - 1-23 其他医疗设备 液体真空浓缩煎药机 1(套) 详见采购文件 65,000.00 - 1-24 其他医疗设备 自动调膏机 1(套) 详见采购文件 15,000.00 - 1-25 其他医疗设备 医用冰箱 3(套) 详见采购文件 51,000.00 - 1-26 其他医疗设备 电子针疗仪 10(套) 详见采购文件 9,500.00 - 1-27 其他医疗设备 电磁波红外线理疗神灯 10(套) 详见采购文件 7,500.00 - 1-28 其他医疗设备 中药定向透药仪 2(套) 详见采购文件 6,000.00 - 1-29 其他医疗设备 艾灸蒸慰仪 1(套) 详见采购文件 46,800.00 - 1-30 其他医疗设备 红光治疗仪 2(套) 详见采购文件 90,000.00 - 1-31 其他医疗设备 微波治疗仪 2(套) 详见采购文件 45,000.00 - 1-32 其他医疗设备 气压治疗仪 1(套) 详见采购文件 22,900.00 - 1-33 其他医疗设备 中药熏蒸设备 2(套) 详见采购文件 60,000.00 - 1-34 其他医疗设备 医用红外线热像仪 1(套) 详见采购文件 230,000.00 - 1-35 其他医疗设备 特定电磁波治疗仪 10(套) 详见采购文件 5,500.00 - 1-36 其他医疗设备 中频电治疗仪(8片) 2(套) 详见采购文件 12,000.00 - 1-37 其他医疗设备 子午流注治疗仪 2(套) 详见采购文件 196,000.00 - 1-38 其他医疗设备 糖尿病足诊疗箱 1(套) 详见采购文件 4,500.00 - 本合同包不接受联合体投标 合同履行期限:自货物验收合格之日起1年 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 无。 3.本项目的特定资格要求: 合同包1(医疗设备购置)特定资格要求如下: (1)须按《医疗器械分类目录》规定,根据招标文件采购产品的所属类别提供相应材料。 1、如所投产品属于第一类医疗器械,提供《第一类医疗器械备案凭证》、《第一类医疗器械生产备案证》(进口除外)及信息表(体现规格型号); 2、如所投产品属于第二医疗器械,提供《第二类医疗器械经营备案凭证》(生产厂家投标除外)、所投产品的《医疗器械生产许可证》(进口除外)及《医疗器械注册证》; 3、如所投产品属于第三类医疗器械,提供《医疗器械经营许可证》(生产厂家投标除外)、所投产品的《医疗器械生产许可证》(进口除外)及《医疗器械注册证》。 三、获取采购文件 时间: 2024年04月22日 至 2024年04月26日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外) 地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可 方式:在线获取 售价: 免费获取 四、响应文件提交 截止时间: 2024年05月06日 09时00分00秒 (北京时间) 地点:平台递交 五、开启 时间: 2024年05月06日 09时00分00秒 (北京时间) 地点:平台开启 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:黑龙江省第二医院 地 址:哈尔滨市松北区江都街209号 联系方式:18646037488 2.采购代理机构信息 名 称:黑龙江屿泽工程咨询有限公司 地 址:黑龙江省哈尔滨市道里区西雅图水岸武威路s7-6 联系方式:13204506421 3.项目联系方式 项目联系人:黑龙江屿泽项目管理有限公司 电 话:13204506421 黑龙江屿泽工程咨询有限公司 2024年04月21日 相关附件: 医疗设备购置磋商文件(2024041901).pdf
  • 酵母实现葡萄糖变鸦片 我们如何应对?
    每年,世界著名的合成生物学竞赛iGEM( International Genetically Engineered Machine)都会吸引数以千计来自全球各地的学生,就&ldquo 组装生命系统&rdquo 的创意与技术一较高下。 Jerome Sessini/Magnum 为了探讨合成生物学给社会安全和人类健康带来的潜在风险,2014年11月,FBI特工爱德华· 尤(Edward You)假设了这样一个场景:如果经过遗传改造的酵母能将糖&ldquo 加工&rdquo 成鸦片,我们该怎么办? 曾经的假想现在已经成真。就在2014年iGEM大赛结束一周后,两位专门研究如何用酵母制造鸦片的科学家找到了我们。那时他们还没有发表论文,希望听听我们作为生物技术政策研究人员的意见。他们想知道,如何能在论文中将研究的益处最大化,并且缓和由此带来的风险的尖锐性。如今,加利福尼亚大学伯克利分校的约翰· (John Dueber)、肯高迪亚大学的文森特· 马丁(Vincent Martin)和同事已经将这篇论文公诸于众。经他们改造的酵母具有将葡萄糖转换成吗啡的完整生化反应通路(见&ldquo &lsquo 酿造&rsquo 鸦片的酵母&rdquo );而卡尔加里大学的研究人员更是给这架&ldquo 鸦片机器&rdquo 添上了最后一块零件。 我们现有的吗啡都提取自罂粟(Papaver somniferum)。而通过改造酵母,寻找更简单、更可控的生物合成途径,可以帮助我们获得更便宜、成瘾性更低、更安全,以及更有效的镇痛药物。酵母可以自我复制、容易生长、貌不显眼,还能轻易地播撒四方。因此,这一研究还会为鸦片制品的违禁交易提供便利。鸦片制品可以由此实现分散化、本地化生产,普通人可以轻而易举地得到它们。 这些年来,合成生物学家利用改造过的酵母、细菌和真核植物,制造了许多&ldquo 友好&rdquo 的物质,例如抗疟疾药物、香氛、调味料、工业化学品和燃料。制造吗啡的酵母菌株,是我们研究出的第一种可以合成管制镇痛药的生物系统;然而,它肯定不会是最后一种可能&ldquo 惹麻烦&rdquo 的生物合成系统。 合成生物学界应该和监管者合作,积极评估这类具有&ldquo 两面性&rdquo 的技术的风险与收益。本文列出了一些最需要优先讨论的问题,它们不仅关乎公共卫生与安全,也与合成生物学的前景密切相关。这些问题包括:只允许持有相关执照的机构、获得授权的研究人员和技术人员使用能够合成鸦片制品的酵母菌株;减小这种酵母菌株对鸦片违禁交易市场的吸引力;贯彻灵活、灵敏的监管措施,以应对我们对这一技术在认识上的转变,以及技术本身的变化。 &ldquo 酿&rdquo 鸦片的酵母 葡萄糖需要经过若干个生物化学反应才能变成吗啡,研究人员花费了7年时间才赋予了酵母合成吗啡的能力。参与这一研究的3个团队分别将罂粟、甜菜根,以及土壤中一种细菌的遗传物质转移到酵母中,使其获得发生其中一个或几个反应的能力。第4个团队则为这条反应链接上了最后一环,在酵母中实现了(S)-网状番荔枝碱[ (S)-reticuline] 到(R)-网状番荔枝碱的转化:一种能够实现&ldquo 葡萄糖&rarr 吗啡&rdquo 全转化的酵母由此诞生。 理论上,只要懂得一些基本的发酵操作,任何人都能使用家用的啤酒发酵工具养殖这种酵母。如果你用发酵罐&ldquo 酿&rdquo 出了10g吗啡,只需喝下1~2ml发酵液,你就能摄入一个标准的处方剂量。现有的工程酵母菌株并没有这么高的产能,然而,其他一些相关的商业化发酵产物,已经达到了此种产出率,有些物质的产出率甚至比这还高10倍以上。 尽管研究人员的初衷是制造合法的镇痛药,这一新技术还是带来了不少麻烦。生物合成的吗啡要么比现有吗啡具有更高的费-效比(即在成本相等的情况下效果更好)、更为监管者所接受,要么成瘾性更小、更安全。然而,现有的吗啡在制造、管理,以及运输环节上,成本都不高。 2001到2007年间,高产罂粟的成功培育使得罂粟制品(又叫&ldquo 罂粟杆浓缩物&rdquo ,一般以大批量形式销售)的成本降低了20%(约为每公斤300~500美元)。合成生物学家、神经科学学家、药物化学家等不同领域从业人员必须通力合作,并且进行旷日持久、所费不赀的临床试验,才能设计出更具商业价值的鸦片类镇痛药。此外,为了防止更多人对鸦片上瘾,全球鸦片制品的供需都处于严格的管控之下。 法律保障 为了防止罂粟制品流向非法市场,国际社会、各个国家均制定了多种条约与法律。鸦片制造国往往会采用有安保措施的大型设施生产鸦片制品。为了加强安全性,澳大利亚甚至专门选种了一种含有大量二甲氢吗啡的罂粟品种。二甲氢吗啡很难转变成吗啡,直接口服还会导致中毒。我们很难预测全球最大的麻醉品管制机构&mdash &mdash 国际麻醉品管制局(International Narcotics Control Board,INCB))&mdash &mdash 会对这种新型吗啡合成系统作何反应。INCB不大可能因此削减目前鸦片类镇痛药的生产定额,也不大可能对目前合法的鸦片交易模式进行调整。这就阻碍了酵母菌株进入鸦片制造市场。 这种新型酵母菌株很可能对鸦片的违禁交易市场产生巨大影响。如今,鸦片有两个主要的非法交易渠道。首先是药物处方。非法交易者会窃取氧可酮(oxycodone)或氢可酮(hydrocodone)等镇痛药处方、开具不合理处方,或将合法处方非法销售出去。其次是毒品犯罪网络。阿富汗、缅甸、老挝、墨西哥等国家非法种植的罂粟制成的海洛因会通过犯罪网络流入市场,并以几十上百倍于成本的价格出售。 新型菌株为毒品犯罪网络(特别是对毒品有高需求的北美和欧洲)提供了一个新&ldquo 选项&rdquo 。使用酵母制毒极易掩人耳目。酵母生长迅速、运输方便,不论犯罪组织还是执法机构都很难对这种酵母的流向进行控制。总之,由此带来的&ldquo 分散化&rdquo 与&ldquo 本地化&rdquo 生产,必然会降低非法鸦片制品的生产成本,增加其易得性,对全球的鸦片问题起到持续的恶化作用。目前,全世界有超过1 600万人正在非法使用鸦片制品。 理论上讲,有了这种酵母,你只需家用的啤酒酿造工具,就能制造吗啡。(How Hwee Young/EPA/Corbis) 四点建议 若要对这一研究进行灵活、合理的监管,我们需要克服两个主要障碍。首先,目前我们对&ldquo 工程微生物&rdquo 的监管,主要集中在病原微生物(例如炭疽杆菌和天花病毒)上;酵母本不在监管的范畴中。其次,要实现有效监管,各国与国际的药物监管部门、执法机构需要通力合作,然而他们的行为规范与准则各不相同。 公共卫生专家、科学家、监管者和执法机构必须加强沟通与协调。INCB,以及其他研究生物安全与生物安保监管的专业组织,就可以担负起组织这类国际对话的责任。 以下四点,是为四个亟待解决的问题敲响警钟。 技术层面 我们在设计酵母菌株时,应该尽可能降低它们对犯罪分子的&ldquo 吸引力&rdquo 。例如,我们可以用它制造对毒贩无甚价值的麻醉药(比如二甲氢吗啡);另外,我们可以弱化工程菌株,使其只能在既定的实验室环境内发挥作用,这样一来,一般人就很难利用它在其他地方生产和收集鸦片制品;最后,我们还可以设计需要特殊的营养成分,才能正常生长的酵母菌株。我们已经将以上&ldquo 生物遏制手段&rdquo (methods of biocontainment)应用在了大肠杆菌(Escherichia coli)上。我们也可以给这种菌株打上DNA水标记(DNA watermark)之类的&ldquo 烙印&rdquo ,方便执法机构对其进行识别。 加强审查 鉴于犯罪组织可能利用公开的DNA序列制造自己的菌株(尽管这种可能性不大),那些专门提供DNA片段定制服务的公司,也需要提高警惕。制造此种酵母菌株的基因序列必须被列入DNA片段供应商的审查列表。目前,这一审查列表由两个自发性组织&mdash &mdash 国际合成生物学学会(International Association of Synthetic Biology)与国际基因合成联合会(International Gene Synthesis Consortium)&mdash &mdash 负责监管, 而审查的对象仅限于病原体的基因片段。 健全安保 我们应该对此种酵母的使用环境进行严格管控,只有经监管者许可、受到控制的场所,才能利用它生产麻醉剂。上锁、安警报、实验室与实验原料监控系统等物理性质的生物安保措施可以防止酵母被盗。实验室的工作人员需要通过安保审查,方能上岗。同样,研究人员要承担相应的权责,不能向未经合法授权的单位或个体提供酵母菌种。 法律监管 监管麻醉剂的现有法律,例如《美国管制药物法案》(US Controlled Substance Act)以及其他国家的类似法律,应该将监管触角延伸至此类酵母,保证其产物在生产与销售上的合法性。生物技术的发展日新月异,如果我们能够对这种具有两面性的技术采取有力、有效的监管,就能给以后的类似情况树立榜样。事实上,参与此项研究的生物学家,已经在最关键问题上做出了表率:他们愿意,也正在为他们的&ldquo 造物&rdquo 担负责任。然而,这篇文章的写作对象并不是他们。 其他基因组工程师也在沿着这条道路前进。参与研发基因组编辑工具CRISPR/Cas9的科学家已经对学术界和监管机构发出呼吁,对CRISPR/Cas9进行积极的风险评估;而在此之前,我们不能利用这一工具编辑野生动植物基因,或修改人生殖细胞基因组。合成生物学已经日臻成熟,这要求我们必须拿出负责的态度,做出负责的行动。(撰文:肯尼思· A· 奥耶(Kenneth A. Oye) J· 查普尔· H· 劳森 (J. Chappell H. Lawson) 塔尼亚· 布贝拉(Tania Bubela)。
  • 190万!黑龙江大学高效液相色谱等仪器采购项目
    项目编号:[230001]CYGL[TP]20220006项目名称:JZ22003科研专用仪器采购方式:竞争性谈判预算金额:1,900,030.00元采购需求:合同包1(JZ22003科研专用仪器):合同包预算金额:1,900,030.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表纳米粒度及Zeta电位分析仪(进口)1(台)详见采购文件331,200.00-1-2其他仪器仪表光谱分析模块(进口)1(台)详见采购文件100,000.00-1-3其他仪器仪表高效液相色谱1(台)详见采购文件190,700.00-1-4其他仪器仪表转印涂布机1(台)详见采购文件23,000.00-1-5其他仪器仪表手动热压压片机1(台)详见采购文件25,000.00-1-6其他仪器仪表真空气氛管式电炉1(台)详见采购文件12,150.00-1-7其他仪器仪表光催化反应系统(配备光源)1(台)详见采购文件94,500.00-1-8其他仪器仪表光催化反应系统1(台)详见采购文件81,500.00-1-9其他仪器仪表自动多用吸附仪1(台)详见采购文件90,000.00-1-10其他仪器仪表超连续谱光源(进口)1(台)详见采购文件71,000.00-1-11其他仪器仪表电化学工作站(进口)1(台)详见采购文件105,000.00-1-12其他仪器仪表示差检测器1(台)详见采购文件60,000.00-1-13其他仪器仪表电化学工作站1(台)详见采购文件55,980.00-1-14其他仪器仪表小型PEM制氢装置1(台)详见采购文件12,500.00-1-15其他仪器仪表研究级傅立叶变换中远红外光谱仪(进口)1(台)详见采购文件520,000.00-1-16其他仪器仪表计算服务器1(台)详见采购文件84,000.00-1-17其他仪器仪表超声波细胞粉碎机1(台)详见采购文件19,000.00-1-18其他仪器仪表真空气氛管式炉1(台)详见采购文件24,500.00-本合同包不接受联合体投标合同履行期限:合同签订后3年
  • 智能化炼厂在线分析仪器技术与应用现状(涉及色谱、近红外和核磁)
    针对炼化企业的智能化建设,均涵盖在工业和信息化部提出的“生产管控”、“设备管控”、“能源管理”、“供应链管理”、“安全环保”和“辅助决策”六个主要业务领域,只是各企业现阶段的侧重点有所不同[1]。图1 工信部提出的石化智能工厂6个主要业务领域 [1] “生产管控”主要指通过生产过程智能化的优化控制,提升操作自动化和实时在线优化水平,炼厂作为生产企业,生产管控智能化在很大程度上决定着炼厂的智能化水平。目前,在大量使用DCS 的现代化炼油装置中,基本都具备了先进过程控制(Advanced Process Control,APC)能力,但随着过程工业日益走向大型化、连续化,对过程控制的智能化提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一种新的控制策略,实时优化(Real-Time Optimization,RTO)技术便应运而生,其能够显著提高生产过程的效益,已经在过程控制领域获得了广泛的应用,是决定炼厂 “生产管控”智能化的重要技术。同时,RTO技术要想顺利实施,必须及时感知生产中的各类过程数据,即离不开过程分析技术(Process analytical technology,PAT)的帮助。PAT过程分析技术的概念最早是由美国食品和药物管理局在2004年引入制药行业的,旨在支持创新和提高药品开发效率,保证药品质量。此后,该技术逐步推广到各个国家的各种生产制造行业,如炼化、食品、饲料等生产行业,其核心是利用在线分析仪监测所有影响最终产品的关键过程参数和质量属性,在线分析仪就是用来在线检测工业生产过程中的原料、中间产品、产品以及相关辅助原料、副产品等物料性能指标的分析仪器。在线分析仪取样分析方式有两种:一是通过探头直接从工艺管线或设备中取样同时进行分析,二是通过快速回路等方式将样品从主管线或设备中引出后取样分析。前者一般不需要或仅进行简单的样品预处理,而后者均需要配备样品预处理系统。炼厂各类油品往往含有从装置或管线中带出的少量固体颗粒及水等杂质,因此较少直接从工艺管线中直接取样进行在线分析,大部分在线分析都是将样品引出后进行。完整的在线分析系统除在线分析仪本身外,样品预处理系统和分析小屋也是其重要组成部分。预处理系统的目的不外乎调节样品环境、净化样品、保护装置等,但针对不同生产领域的样品,如炼油领域和化工领域,预处理系统也存在一定差异。分析小屋的需求一般取决于分析仪本身。样品预处理系统是分析对象进入在线分析仪的前端环节,就炼厂来说,样品预处理系统的目的就是为在线分析仪提供连续的、有代表性的油样,油样状态满足在线分析仪所需的温度、压力、流量、洁净度等要求,从而确保仪器长期可靠运行,减少仪表故障甚至是安全事故的发生。可见样品预处理系统的重要性丝毫不亚于在线分析仪,并且由于样品预处理系统涉及部件较多,集成性往往不如在线分析仪,因此其使用可靠性也低于分析仪。在实际使用中,样品预处理系统所遇到的问题往往比分析仪多,即使使用正常,其维护量也远远高于分析仪本身[2]。在线分析仪一般安装在工业现场,需要为其提供不同程度的气候和环境防护,以确保仪器的使用性能、寿命并便于维护。对分析仪的保护可以采取加装外壳及箱柜、搭掩体以及分析小屋的方式,简单的在线分析仪如电导仪、密度计等可直接依靠外壳、箱柜或掩体防护,但这些防护措施无法或仅能提供简单的环境防护,对仪器及维护人员提供的保护不足。对于在线色谱、在线近红外等需要经常维护且系统复杂、具有重要用途的大型在线分析仪,分析小屋能为其提供可控的操作和维护环境,并可延长使用寿命,降低维护成本。图2 某装置在线近红外分析小屋外景和预处理箱就油品质量性质分析来说,从干气、液化气、轻质油品到重质油品,油品质量性质成百上千,如液化气组成、汽油馏程、航煤冰点、柴油凝点、渣油粘度等等,对应的在线分析仪也很多,这些仪器构成了炼厂在线分析仪的主力军,概括起来可以分为三大类:以在线色谱为代表的组份分析仪;以在线近红外和在线核磁为代表的光(波)谱分析仪;基于常规方法的油品质量在线分析仪表,如在线硫分析仪、在线馏程分析仪等。在线色谱色谱是一种基于对分析样品强大的分离能力来进行定性和定量分析的仪器,在线色谱仪和实验室色谱仪分析侧重点完全不同,前者功能单一,注重自动化、集成度和持续稳定性,对分析速度和安全性要求很高,需配备取样和预处理系统,固定于装置现场,基本无可拆卸部件。而后者往往具备多种可更换部件和扩展功能,分析对象广、检测限低,但分析时间相对较长,需要丰富的人员操作经验。在线色谱仪在石化领域应用主要集中在组成分析,其另一主要功能即模拟馏程分析的应用较少。按照工艺装置来分,在线色谱仪在炼油行业主要应用场所有:催化裂化、催化重整、气体分离、烷基化、MTBE等;在化工行业的主要应用场所有:乙烯裂解、聚丙烯、聚乙烯、氯乙烯、苯乙烯、丁二烯、醋酸乙烯、乙二醇、芳烃抽提等,总体来说在线色谱在化工行业的应用要多于炼油领域。以重整和芳烃联合装置为例,在线色谱主要用来进行物料组成及含量分析,主要应用点有:检测脱戊烷塔顶馏出物中C6组分含量;C4/C5分馏塔液化石油气产品组成;脱戊烷塔底料(芳烃抽提进料)的芳烃(BTX,苯、甲苯、二甲苯)组成;苯抽提塔顶MCP、苯、非芳含量等等。表1 在线色谱在重整和芳烃联合装置上的应用应用点 物料 被测组分 测量目的 催化重整装置 脱戊烷塔顶 C6 减少C6+组分的损失 C4/C5分馏塔液化石油气 C5 控制C5质量分数 脱戊烷塔底 BTX、苯、甲苯、二甲苯 监测重整生成油中BTX纯度 循环氢 CO、CO2、C1- C5 监测循环氢中碳氢化合物杂质 芳烃抽提装置 脱己烷塔顶或塔底 甲基环戊烷(MCP)、苯 了解芳烃抽提进料质量 苯抽提塔顶 MCP、苯、非芳 了解抽提效果 溶剂回收塔顶 甲苯、二甲苯、非芳 了解抽提效果,减少苯损失 在线近红外和核磁在线近红外和核磁共振分析方法均属于波谱分析方法的在线应用,二者均反映化合物的结构信息;二者利用谱图直接进行化合物结构解析和定量分析的能力均有限,通常结合化学计量学方法如主成分分析(PCA)、偏最小二乘(PLS)等建立定性和定量分析模型,来进行样品判别分析或预测和样品化学结构直接或间接相关的性质,如油品的密度、烃类组成、馏程等等;二者在炼油企业原油调合、汽油调合、常减压、催化裂化、催化重整等很多装置上均有应用,分析对象涉及原油、汽柴油、航煤、蜡油等诸多油品;总的来说二者在炼化企业的应用范围和应用模式均有较高的重叠度。虽然应用重叠度较高,但在线近红外和核磁还是有区别,表2列出了两种技术的特点对比。表2 在线近红外光谱与核磁共振谱的对比在线近红外光谱在线核磁共振氢谱化学信息反映的是分子化学键振动的倍频和组合频信息,由分子偶极矩的变化即非谐性产生,主要是含氢官能团的信息,如C-H、N-H和O-H等;光谱范围12000~4000 cm-1,倍频和组合频的化学信息丰富,但有重叠。反映的是氢核对射频辐射(4~60MHz)的吸收,核磁共振氢谱的化学位移与氢核所处的分子结构密切相关,主要是不同化学环境下的氢核信息;相对高场核磁,在线低场核磁的分辨率较低,信号较弱,化学信息量明显减少。定量原理对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。工业现场在线分析技术可采用低羟值的石英光纤,传输距离大于100m;可同时对多路物料进行测量,不需要样品流路切换和清洗;需要一定的预处理。仅一路进样通道采用阀切换方式进行多路测量,存在交叉污染和阀内漏等风险,分析效率相对较低;需要简单预处理。工业应用成熟度已建立完善的原油光谱数据库和汽、柴油光谱数据库;实验室快速分析和工业在线分析应用广泛,工程化成熟度高。工业在线核磁应用起步相对较晚,受外界环境干扰大,导致核磁信号稳定性相对较差;未建立完善的油品数据库,工业应用成熟度和广度相对较低。从谱图的化学信息来看,在线核磁一般为60M左右的低场核磁,所以其谱图包含的组成信息较少。图3 某相同油品在线近红外和核磁谱图比较从仪器硬件来看,国内外知名品牌的在线近红外光谱仪器已有十余家厂商,仪器性能稳定,测量附件齐全,在国内外炼厂已有二十余年的应用历史,售后服务已经规范化和标准化,近红外硬件技术已很成熟。而目前世界范围内只有两家企业提供商用在线核磁共振仪器,应用案例相对较少。工业现场适应性来看,近红外光可以通过光纤进行传输,通过光源分配与多个检测器结合,一台在线近红外光谱仪可以同时对多路样品进行测量,分析效率高。在线核磁技术为避免磁场干扰,一台检测箱中只能安放一套检测仪,使用一根核磁管,通过程控阀组切换的方式实现多路样品轮流检测。由于不能多路同时测量,该技术测量速度相对较慢,同时,阀组长期高频次切换会产生磨损,造成堵塞、内漏、样品交叉污染等诸多隐患。但在分析深色重质油品如原油时,在线近红外对预处理系统的要求比在线核磁要高。最后,从油品谱图数据库来看,不论近红外还是核磁共振技术,数据库的大小和维护都是这类技术的核心。对于近红外光谱技术,由于在石化行业已有近30年的应用,已经建立较为完善的油品近红外光谱数据库,包括原油、石脑油、汽油、柴油、VGO、润滑油基础油等,分析项目涵盖了所有关键的化学组成和物性数据。对于在线核磁共振技术,由于发展时间较短,在炼油企业的应用成熟度和广度不高,尚未开展系统的数据库建立工作。结语相对于欧美等发达国家,过程分析技术在我国石化行业的普及性和投用率都有一定差距,原因是多方面的,主要原因还是维护困难,对操作人员专业知识水平要求较高,以及缺乏相应的标准,很多场合想用在线分析仪而不能用、不敢用。借助国家大力发展智能化炼厂建设的契机,过程分析技术有望在石化行业进入发展快车道。 参考文献[1] 龚燕, 杨维军, 王如强, 等. 我国智能炼厂技术现状及展望[J]. 石油科技论坛, 2018, 3: 29-33.[2] 王森. 在线分析仪器手册[M]. 1版. 北京: 化学工业出版社, 2008.作者:中国石油化工股份有限公司石油化工科学研究院 陈瀑
  • 国标委又立项一批国标 色谱/质谱/光谱分析方法尽在其中
    p   4月14日,国家标准委对2016年第一批拟立项的351项国家标准公开征求意见。 /p p   其中,涉及化妆品相关检测的标准有12条,此外还包括多条有关矿石、石墨烯、染料等材料的分析检测标准。检测方法涉及气相色谱法、高效液相色谱法、高效液相色谱-电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、红外光谱法、原子荧光光谱法、气相色谱-质谱法、液相色谱-串联质谱法等多种仪器分析方法。 /p p   仪器信息网摘录如下: br/ /p table width=" 567" align=" center" border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 469" align=" center" valign=" middle" p style=" text-align: center " strong 标准名称 /strong /p /td td width=" 55" p style=" text-align: center " strong 性质 /strong /p /td td width=" 43" p style=" text-align: center " strong 状态 /strong /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫酸二甲酯和硫酸二乙酯的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种萘二酚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中二氯苯甲醇和氯苯甘醚的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中38种限用着色剂的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中7种4-羟基苯甲酸酯的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中5种限用防腐剂的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中8-羟喹啉和硝羟喹啉的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中10种二元醇醚及其酯类化合物的测定 & nbsp & nbsp 气相色谱-质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中硫柳汞和苯基汞的测定 & nbsp & nbsp 高效液相色谱-电感耦合等离子质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中荧光增白剂367和荧光增白剂393的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 唇用化妆品中对位红的测定 & nbsp & nbsp 高效液相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 化妆品中11种生物碱的检测 & nbsp & nbsp 液相色谱质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量测定 & nbsp & nbsp 电感耦合等离子体原子发射光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第20部分:铌、钽、锆、铪及15个稀土元素量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第21部分:砷量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 钨矿石、钼矿石化学分析方法 & nbsp & nbsp 第22部分:锑量的测定 & nbsp & nbsp 氢化物发生-原子荧光光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 锑矿石化学物相分析方法 & nbsp & nbsp 锑华 辉锑矿和锑酸盐的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 镍(钴)矿石化学物相分析方法 & nbsp & nbsp 磁性硫化相、磁性非硫化相、硫酸盐相、非磁性硫化相、氧化相与易溶脉石相、难溶脉石相中镍和钴的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁矿石 & nbsp & nbsp 多种微量元素含量的测定 & nbsp & nbsp 电感耦合等离子体质谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铁合金产品粒度的取样和检测方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料比表面积的测定 & nbsp & nbsp 亚甲基蓝吸附法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料电导率测试方法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 石墨烯材料表面含氧官能团含量的测定 & nbsp & nbsp 化学滴定法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 数字印刷版材中残留溶剂的检测 & nbsp & nbsp 顶空-气相色谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 聚氯乙烯制品中邻苯二甲酸酯成分的快速检测方法 & nbsp & nbsp 红外光谱法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 木材及木质复合材料燃烧性能检测及分级方法—锥形量热仪法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 光学遥感器在轨成像辐射性能评价方法 & nbsp & nbsp 可见光-短波红外 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 甲基乙烯基硅橡胶 & nbsp & nbsp 乙烯基含量的测定 & nbsp & nbsp 近红外法 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中致敏染料的限量和测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中4-氨基偶氮苯的限量及测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中苯胺类化合物的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 染料产品中甲醛的测定 /p /td td width=" 55" p style=" text-align: center " 推 /p /td td width=" 43" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 氦质谱真空检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 真空技术 & nbsp & nbsp 四极质谱检漏方法 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 铸钢铸铁件射线照相检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 修 /p /td /tr tr td width=" 469" valign=" top" p 铸件的工业计算机层析成像(CT)检测 /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 耐火材料导热系数试验方法(铂电阻温度计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr tr td width=" 469" valign=" top" p 隔热耐火材料导热系数试验方法(量热计法) /p /td td width=" 55" valign=" top" p style=" text-align: center " 推 /p /td td width=" 43" valign=" top" p style=" text-align: center " 制 /p /td /tr /tbody /table p br/ /p
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 国标委第一批国标计划涉多类仪器分析方法 气相色谱-质谱法“大行其道”
    p   3月25日,国家标准化管理委员会,下达2019年第一批推荐性国家标准计划。本批计划共计507项,其中制定294项、修订213项,推荐性标准506项、指导性技术文件1项。 /p p   值得注意的是,本次标准计划中,数十项与仪器及分析技术紧密相关。从仪器分析方法来说,涉及了气相色谱-质谱法、气相色谱法、分光光度法、波长色散X射线荧光光谱法、近红外法等。 /p p   仪器信息网摘录部分如下: /p table width=" 600" border=" 1" cellpadding=" 0" cellspacing=" 0" align=" center" colgroup col width=" 162" / col width=" 175" / col width=" 72" span=" 2" / col width=" 260" / /colgroup tbody tr class=" firstRow" td width=" 162" 计划编号 /td td width=" 175" 项目名称 /td td width=" 72" 标准性质 /td td width=" 72" 制修订 /td td width=" 260" 起草单位 /td /tr tr td width=" 162" 20191007-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第2部分:吗啡 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191016-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第4部分:可卡因 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191014-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第6部分:美沙酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191010-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第10部分:地西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190734-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 硅含量的测定 钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190798-T-469 /td td width=" 175" 柴油十六烷值测定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油化工股份有限公司石油化工科学研究院 /td /tr tr td width=" 162" 20190893-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第8部分:用紫外荧光光度法测定总硫含量 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190890-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190891-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 在一定不确定度下用气相色谱法测定组成 第1部分:分析导则 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190992-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20190892-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190988-T-607 /td td width=" 175" 家具产品及其材料中邻苯二甲酸酯增塑剂的测定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家家具产品质量监督检验中心(广东) /td /tr tr td width=" 162" 20190950-T-469 /td td width=" 175" 化妆品中地索奈德等十一种糖皮质激素的测定 液相色谱/串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 广州质量监督检测研究院 br/ & nbsp & nbsp & nbsp 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190998-T-606 /td td width=" 175" 硫化橡胶中多环芳烃含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 上海市质量监督检验技术 br/ & nbsp & nbsp & nbsp 研究院、山东玲珑轮胎有 br/ & nbsp & nbsp & nbsp 限公司、北京橡胶工业研 br/ & nbsp & nbsp & nbsp 究设计院有限公司等。 /td /tr tr td width=" 162" 20191012-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第8部分:三唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190733-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝分光光度法和铋磷钼蓝分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190732-T-605 /td td width=" 175" 钒铁 & nbsp & nbsp 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 攀钢集团有限公司、冶金工业信息标准研究院 /td /tr tr td width=" 162" 20190796-T-469 /td td width=" 175" 硅片表面薄膜厚度的测试 光学反射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 有研半导体材料有限公司 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190658-T-604 /td td width=" 175" 真空计 & nbsp & nbsp 四极质谱仪的定义与规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 兰州空间技术物理研究所 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191050-T-326 br/ /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 水分、蛋白质、挥发性盐基氮含量的测定近红外法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国肉类食品综合研究中心、江苏大学、中国农业科学院农产品加工研究所 /td /tr tr td width=" 162" 20191054-T-326 /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 近红外法通则 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国农业科学院北京畜牧兽医研究所、中国农科院科学院农科院质量标准与 br/ & nbsp & nbsp & nbsp 检测技术研究所、中国农业科学院农产品加工研究所等 /td /tr tr td width=" 162" 20190854-T-469 /td td width=" 175" 钢中低含量SiMn的电子探针定量分析方法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国科学院金属研究所 /td /tr tr td width=" 162" 20191017-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第3部分:大麻中三种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191009-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第11部分:溴西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 0191008-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第12部分:氯氮卓 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190978-T-607 /td td width=" 175" 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国检验检疫科学研究院、上海市日用化学工业研究所(国家香料香精化妆 br/ & nbsp & nbsp & nbsp 品质量监督检验中心) /td /tr tr td width=" 162" 20190977-T-607 /td td width=" 175" 化妆品中林可霉素和克林霉素的测定 液相色谱-串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 江苏省产品质量监督检验研究院、苏州质量检测科学研究院、上海市日用化 br/ & nbsp & nbsp & nbsp 学工业研究所(国家香料香精化妆品质量监督检验中心)、河北省食品质量 br/ & nbsp & nbsp & nbsp 监督检验研究院 /td /tr tr td width=" 162" 20190991-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20191013-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第7部分:安眠酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190997-T-606 /td td width=" 175" 橡胶 & nbsp & nbsp 氮、硫含量的测定 自动分析仪法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 双钱轮胎有限公司、怡维怡橡胶研究院有限公司、北京市理化分析测试中心 br/ & nbsp & nbsp & nbsp 、北京橡胶工业研究设计院有限公司等。 /td /tr tr td width=" 162" 20190949-T-469 /td td width=" 175" 化妆品中禁用物质三氯乙酸的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190948-T-469 /td td width=" 175" 化妆品中壬二酸的检测 气相色谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190947-T-469 /td td width=" 175" 化妆品中人工合成麝香的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190945-T-469 /td td width=" 175" 化妆品中塑料微珠的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 深圳市计量质量检测研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190976-T-607 /td td width=" 175" 染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测 液相色谱质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院(国家保洁产品质量监督检验中心),上海 br/ & nbsp & nbsp & nbsp 市日用化学工业研究所(国家香料香精化妆品质量监督检验中心) /td /tr tr td width=" 162" 20191051-T-326 /td td width=" 175" 农畜产品动物源性成分定性定量检测方法高通量测序(NGS)法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家乳制品及肉类产品质量监督检验中心、中科通标检验检测技术服务有限 br/ & nbsp & nbsp & nbsp 公司、通标标准技术服务有限公司 /td /tr tr td width=" 162" 20191015-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第5部分:二亚甲基双氧安非他明 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190735-T-605 /td td width=" 175" 铁矿石 & nbsp & nbsp 全铁含量测定 三氯化钛还原后滴定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中钢集团马鞍山矿山研究院有限公司、国家冶金工业铁精矿质量监督检测中 br/ & nbsp & nbsp & nbsp 心、金属矿产资源高效循环利用国家工程研究中心 /td /tr tr td width=" 162" 20190757-T-610 /td td width=" 175" 硬质合金 & nbsp & nbsp 钴粉中硅量的测定 分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 自贡硬质合金有限责任公司 /td /tr tr td width=" 162" 20190752-T-610 /td td width=" 175" 钼及钼合金金相检验方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 金堆城钼业股份有限公司 /td /tr tr td width=" 162" 20191018-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第1部分:鸦片中五种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190817-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190816-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190596-T-432 /td td width=" 175" 人造板饰面材料中铅、隔、铬、汞重金属元素含量测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国林业科学研究院木材工业研究所,江苏海田技术有限公司,浙江升华云 br/ & nbsp & nbsp & nbsp 峰新材股份有限公司等 /td /tr tr td width=" 162" 20190936-T-469 /td td width=" 175" 进境牧草种子细菌的高通量检测技术规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 北京出入境检验检疫局 /td /tr tr td width=" 162" 20190935-T-469 /td td width=" 175" 轮枝菌属特异性引物筛查检疫鉴定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国宁波出入境检验检疫局、中国科学院微生物研究所、中国检 br/ & nbsp & nbsp & nbsp 验检疫科学研究院、中华人民共和国新疆出入境检验检疫局 /td /tr tr td width=" 162" 20190937-T-469 /td td width=" 175" 美澳型核果褐腐病菌活性检测方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国深圳出入境检验检疫局、深圳市检验检疫科学研究院、华南农业大学 /td /tr tr td width=" 162" 20190642-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第6部分:气态污染物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190641-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第7部分:活性微生物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190674-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 布氏硬度试验 第2部分:硬度计的检验与校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 昆山市创新科技检测仪器有限公司、长春机械科学研究院有限公司 /td /tr tr td width=" 162" 20190677-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 硬度和材料参数的仪器化压痕 试验 第2部分:试验机的检验和校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 长春机械科学研究院有限公司、上海材料研究所、吉林大学等。 /td /tr tr td width=" 162" 20190853-T-469 /td td width=" 175" 表面化学分析 & nbsp & nbsp 术语第2部分 扫描探针显微术 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市计量测试技术研究院,上海交通大学,北京大学,中国科学院上海应 br/ & nbsp & nbsp & nbsp 用物理研究所 /td /tr tr td width=" 162" 20190780-T-469 /td td width=" 175" 表面化学分析& nbsp & nbsp 扫描探针显微术 悬臂法向弹性常数的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海交通大学 /td /tr tr td width=" 162" 20191096-T-416 /td td width=" 175" 气溶胶PM10、PM2.5质量浓度观测 光散射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国气象局气象探测中心 /td /tr tr td width=" 162" 20190884-T-469 /td td width=" 175" 稀土金属及其氧化物中非稀土杂质化学分析方法 第8部分:钠量的测定 /td td width=" 72"   /td td width=" 72" 修订 /td td width=" 260" 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /td /tr /tbody /table p br/ /p
  • 探知建模新方法 洞悉成像新世界——第八届亚洲近红外光谱学术会议圆满落幕
    南开大学化学学院 段潮舒 韩丽 刘煦阳(导师:邵学广)2022年11月28-30日,第八届亚洲近红外光谱会议(ANS2022)以网络会议形式召开。来自6个国家的约70位代表参加了此次大会,中国有9位代表出席。韩国汉阳大学的Hoeil Chung教授在开幕式上致辞,对所有参会的老师、同学和厂商代表表示热烈欢迎。本次会议有大会邀请报告(plenary lecture)2场,主题报告(keynote presentation)和口头报告(oral presentation)34场,墙报(poster)29篇。其中,口头报告分为4个会议单元(session),主题分别是:“农业食品材料”、“高光谱成像”、“基础科学与化学计量学”和“先进技术和药物应用”。本次会议内容丰富,从多角度展现了近红外光谱技术的最新研究和应用进展,以下从四个方面加以概述。1、化学计量学方法与应用研究化学计量学方法是历届近红外光谱会议的重要主题,本次会议安排了一场大会邀请报告,题为“Key aspects to increase the robustness of NIRs prediction models”。报告者强调了数据质量对建模的重要性,介绍了稳健模型建立的四大关键部分,分别是校正集的选择、参考值的质量、光谱数据的质量、预测模型的开发和评估(预处理方法、回归方法等)。在实际应用中,由于近红外光谱预测模型是动态的,应该定期对模型进行监控和更新;来自南开大学的邵学广教授进行了题为“Chemometric studies for analyzing temperature-dependent near-infrared spectra”的报告。报告着重讲述了利用温控近红外光谱技术结合化学计量学方法,可通过提取随温度变化的水光谱信息,从而理解水结构的复杂性以及将水作为探针可以探测溶液或生物体系中分子的定量信息和结构变化;来自日本国家农业和食品研究院的Akifumi Ikehata教授带来了题为“Extended molar absorption coefficients of confined water in reverse micelles”的报告,提出了基于浓度的扩展摩尔吸收系数分析方法,当水与表面活性剂的分子比超过一定值时,可以准确检测到反胶束中核心水的存在,有利于更好地理解限域环境中的分子行为。深度学习是化学计量学领域发展的前沿方向之一,本次会议中也有与深度学习相关的研究。来自新加坡南洋理工大学的Ying Zhu教授带来了题为“Chemometrics and deep learning models for classification of spectroscopic data with application to detection of colon polyps”的报告,介绍了基于CNN的预测模型可用于区分癌前腺瘤状息肉和增生性息肉,优于PCDA和PLSDA模型;来自韩国江原大学的Nam-Wook Kim介绍了利用可见-近红外高光谱成像技术,基于卷积神经网络(CNN)模型预测紫玉米的花青素含量,与高效液相色谱测定结果相比,深度学习模型的预测准确度可以达到93%,有利于后续智能育种技术的应用;同样来自韩国江原大学的Hong-Gu Lee利用3D-卷积神经网络进行蜂螨分类。此外,还有多场化学计量学方面的报告,研究内容涉及了各种定性定量模型的建模方法,对扩展近红外光谱的应用范围和改善模型具有重要作用。总结以上的报告,我们深切体会到:化学计量学方法种类较多,使用者应该从原理入手学习,加强对每类方法原理的理解和学习,更有利于新方法的开发和已有方法的推广应用。2、高光谱成像技术作为近红外光谱技术的发展前沿,高光谱成像技术的发展和应用越来越引起大家的关注。本次会议安排了一场题为“Spectral imaging technologies for agricultural applications” 的大会邀请报告。报告者着重介绍了高光谱成像的原理和仪器技术的发展,以及在苹果损伤、在线家禽检测、蔬菜全表面新鲜度检测等领域的应用;来自韩国忠南大学的Byoung-Kwan Cho教授带来了“Application of hyperspectral imaging for quality measurement of agricultural materials”的报告。报告首先强调了农产品质量控制对于整个农业生产行业的重要性,并介绍了高光谱成像技术在水果瘀伤检测、压力植物监测、种子活力分选和食品掺假检测等农产品质量控制中的应用,最后提出高光谱成像技术作为农产品质量控制的新兴手段,具有快速、准确、无创的检测特点,并有望代替传统检测方法;来自泰国朱拉隆功大学的Sureerat Makmuang报告了其通过改进的自组织图和近红外高光谱成像识别杂草稻的工作,首次对栽培稻种子中的杂草稻进行原位高光谱成像,并通过监督自组织图分类,达到了88%以上的分类准确率。通过以上报告,我们发现,本次会议与高光谱成像技术相关的研究多集中于食品、农产品的质量控制等,极大地拓展了近红外光谱的应用。不过,大家也认识到,虽然高光谱技术是获取综合信息的高效手段,但高光谱的测量及数据处理技术仍需要进一步发展。3、先进技术与药物应用先进技术和药物应用也是本次会议的重要主题。来自泰国农业大学的Sirinad Noypitak教授带来了“A portable moisture content meter using near infrared spectroscopy with real-time data report on a smartphone”的报告。该报告介绍了一种基于近红外光谱技术的新型便携式水分测定仪,在测量的时候可以在智能手机上显示实时数据报告。通过应用程序控制近红外光谱仪,在智能手机上实时采集、显示和处理光谱数据,非常适合在锯木工厂中的实际应用;来自韩国汉阳大学的Eunjin Jang介绍了用近红外透射光谱检测不同病变的胆汁,通过主成分聚类分析可以准确识别出患有胆囊癌的胆汁样品。这些研究大大拓展了近红外光谱技术在疾病诊断、制药方面的应用,未来可逐步实现准确控制药物中的有效成分含量、精准医疗等。4、农业食品材料农业、食品和材料一直是近红外光谱技术的重要应用领域。来自印度贾达普大学的Rajib Bandyoypadhyay教授带来题为“Estimation of total alkaloids in Cinchona bark using a developed portable NIR”的报告,该报告使用便携式近红外光谱仪测定金鸡纳树皮中总生物碱(一种抗疟疾药物)含量,对近红外光谱进行PLS回归分析,与重量法评估的结果相比,达到了很好的预测结果。不仅如此,该研究还开发了包含图形用户界面和校正程序的软件,通过对软件进行适当的修改,便携式光谱仪还可用于植物及其产品中的其他标记分子的含量测定;来自尼泊尔特里布文大学的Milka Nakarmi介绍了近红外光谱检测鸡肉中的微生物菌落的应用,该研究以标准平板计数法检测细菌的污染情况作为参考,对885-1680 nm范围的光谱建立的模型对大肠菌群预测效果最好,这为近红外光谱技术用于提取微生物信息发展了新的应用。在本次会议中,很多研究工作集中在农产品和食品质量评估,实用性的特点较为突出。理论指导实践,实际应用也将当下的需求反馈于理论方法的研究,与此同时研究工作者从需求入手,深入分析了解研究对象的特性,针对这些特性设计了更适用的仪器或测量方法,更好地满足实际的生活生产需要。本次会议利用网络平台进行在线直播,整个会议日程安排紧凑有序。全世界各地参会者通过网络平台交流与学习,无论在学校、在家、还是在公司,都可以聆听专家们的报告,而且还可以在问答区进行发言和提问。除了精彩纷呈的报告,本次会议还采用线上墙报的形式,参会人员采用录制音频配合图像的形式为大家展示墙报,以直观的图像和图表展示主要内容,再配以简洁明了的讲解说明,让大家快速了解研究内容。此外,线上墙报不受展示时间的限制,大家可以在网上多次观看。特别值得一提的是,会议中,数位中国代表给我们带来了精彩的报告,但中国参会代表还是较少,期待更多的国内学者今后为大家带来精彩的报告,继续扩大中国在国际会议的影响力。第八届亚洲近红外光谱会议圆满落幕,探知建模新方法,洞悉成像新世界!下一届亚洲近红外光谱会议将在印度加尔各答举办,让我们共同期待能与大家面对面地交流学习!
  • 浙江浙能技术研究院选用恒创科技FAP-40X全自动荧光压片机
    浙江浙能技术研究院有限公司通过对多家生产厂商产品参数的仔细对比,经过慎重挑选,天津恒创立达科技以周到的服务,优质的产品,赢得了浙江浙能研究院的青睐,正式达成合作关系。 荧光专用压片机是专门为X射线荧光光谱仪设计配套的设备,该机通过程序自动加压/缓加压、程序控压、自动保压、定时泄压,具有造型美观、安全性等优点,适合实验室研究使用,目前该产品已通过客户验收,并顺利投入使用。 本次合作,恒创科技为浙江浙能研究院提供专业准确的仪器设备,为用户实验提供了便捷方法,从而提高了用户的满意度。恒创科技会继续努力为客户提供优质产品和服务,我们永远在路上。
  • 宁夏化学分析测试协会批准发布《煤矸石中主量元素的测定 粉末压片-X射线荧光光谱法》团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《煤矸石中主量元素的测定 粉末压片-X射线荧光光谱法》团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年5月15日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA 0214-2023煤矸石中主量元素的测定 粉末压片-X射线荧光光谱法2023-05-112023-05-15 宁夏化学分析测试协会 2023年5月11日
  • 206.88万!同步-红外-气相色谱/质谱联用仪、快速筛选量热仪采购中标公告
    一、项目编号:XPNZ2021146(招标文件编号:XPNZ2021146)二、项目名称:同步-红外-气相色谱/质谱联用仪、快速筛选量热仪采购三、中标(成交)信息供应商名称:上海般诺生物科技有限公司供应商地址:上海丰华公路1200号C303B中标(成交)金额:206.8800000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海般诺生物科技有限公司 同步-红外-气相色谱/质谱联用仪、快速筛选量热仪 美国铂金埃尔默、德国耐驰 详见招标文件的规格型号 数量若干 合计206.88万元 五、评审专家(单一来源采购人员)名单:邹跃、汪德华、王璟初、邢志鸿、李月华六、代理服务收费标准及金额:本项目代理费收费标准:按招标文件规定收取本项目代理费总金额:2.4405000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜如对评标结果有异议,请于本评标结果公布之日起7个工作日内以书面形式向上海祥浦建设工程监理咨询有限责任公司提出质疑。九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:上海化工研究院有限公司     地址:上海市云岭东路345号        联系方式:张春晖,021-31015267      2.采购代理机构信息名 称:上海祥浦建设工程监理咨询有限责任公司            地 址:上海市杨浦区宁国路129号10层、14层            联系方式:陆晨晖,021-65198205            3.项目联系方式项目联系人:陆晨晖电 话:  021-65198205
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制